1
|
Yang Y, Li Y, Wang Y, Chen X, Yao Y, Li D, Yu G, Song X. The role and regulatory mechanism of lysosome associated protein transmembrane 4β in tumors. Front Oncol 2025; 15:1552007. [PMID: 40231269 PMCID: PMC11995161 DOI: 10.3389/fonc.2025.1552007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
The oncogene LAPTM4B (encoding lysosome-associated protein transmembrane-4β), first cloned in hepatocellular carcinoma cells, is located on chromosome 8q22.1 and encodes two isoforms, LAPTM4B-35 and LAPTM4B-24. LAPTM4B proteins have four transmembrane structural domains and are mainly distributed in lysosomal and endosomal membranes of cells. Studies have shown that LAPTM4B is overexpressed in a variety of cancers, in which the genetic polymorphism of LAPTM4B is associated with tumor susceptibility. LAPTM4B also regulates various cell signaling pathways, interacts with autophagy-related proteins and ceramides, and regulates the autophagy process and the release of exosomes, which in turn affect the survival and drug resistance of tumor cells. In conclusion, this paper summarizes recent research on LAPTM4B, aiming to explore the role and potential mechanisms of LAPTM4B in a variety of tumors.
Collapse
Affiliation(s)
- Yuteng Yang
- The 2nd Medical College of Binzhou Medical University, Yantai, China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Dongxian Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Guohua Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
2
|
Russo T, Plessis-Belair J, Sher R, Riessland M. Regulatory Network Inference of Induced Senescent Midbrain Cell Types Reveals Cell Type-Specific Senescence-Associated Transcriptional Regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636893. [PMID: 39975267 PMCID: PMC11839108 DOI: 10.1101/2025.02.06.636893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cellular senescence of brain cell types has become an increasingly important perspective for both aging and neurodegeneration, specifically in the context of Parkinson's Disease (PD). The characterization of classical hallmarks of senescence is a widely debated topic, whereby the context in which a senescence phenotype is being investigated, such as the cell type, the inducing stressor, and/or the model system, is an extremely important aspect to consider when defining a senescent cell. Here, we describe a cell type-specific profile of senescence through the investigation of various canonical senescence markers in five human midbrain cell lines using chronic 5-Bromodeoxyuridine (BrdU) treatment as a model of DNA damage-induced senescence. We used principal component analysis (PCA) and subsequent regulatory network inference to define both unique and common senescence profiles in the cell types investigated, as well as revealed senescence-associated transcriptional regulators (SATRs). Functional characterization of one of the identified regulators, transcription factor AP4 (TFAP4), further highlights the cell type-specificity of the expression of the various senescence hallmarks. Our data indicates that SATRs modulate cell type-specific profiles of induced senescence in key midbrain cell types that play an important role in the context of aging and PD.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan Plessis-Belair
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Roger Sher
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior; Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders; Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Potts MA, Mizutani S, Garnham AL, Li Wai Suen CSN, Kueh AJ, Tai L, Pal M, Strasser A, Herold MJ. Deletion of the transcriptional regulator TFAP4 accelerates c-MYC-driven lymphomagenesis. Cell Death Differ 2023:10.1038/s41418-023-01145-w. [PMID: 36894688 DOI: 10.1038/s41418-023-01145-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Many lymphoid malignancies arise from deregulated c-MYC expression in cooperation with additional genetic lesions. While many of these cooperative genetic lesions have been discovered and their functions characterised, DNA sequence data of primary patient samples suggest that many more do exist. However, the nature of their contributions to c-MYC driven lymphomagenesis have not yet been investigated. We identified TFAP4 as a potent suppressor of c-MYC driven lymphoma development in a previous genome-wide CRISPR knockout screen in primary cells in vivo [1]. CRISPR deletion of TFAP4 in Eµ-MYC transgenic haematopoietic stem and progenitor cells (HSPCs) and transplantation of these manipulated HSPCs into lethally irradiated animals significantly accelerated c-MYC-driven lymphoma development. Interestingly, TFAP4 deficient Eµ-MYC lymphomas all arose at the pre-B cell stage of B cell development. This observation prompted us to characterise the transcriptional profile of pre-B cells from pre-leukaemic mice transplanted with Eµ-MYC/Cas9 HSPCs that had been transduced with sgRNAs targeting TFAP4. This analysis revealed that TFAP4 deletion reduced expression of several master regulators of B cell differentiation, such as Spi1, SpiB and Pax5, which are direct target genes of both TFAP4 and MYC. We therefore conclude that loss of TFAP4 leads to a block in differentiation during early B cell development, thereby accelerating c-MYC-driven lymphoma development.
Collapse
Affiliation(s)
- Margaret A Potts
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Shinsuke Mizutani
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Connie S N Li Wai Suen
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia
| | - Martin Pal
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Blood Cells and Blood Cancer Division, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Kaller M, Shi W, Hermeking H. c-MYC-Induced AP4 Attenuates DREAM-Mediated Repression by p53. Cancers (Basel) 2023; 15:cancers15041162. [PMID: 36831504 PMCID: PMC9954515 DOI: 10.3390/cancers15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The deregulated expression of the c-MYC oncogene activates p53, which is presumably mediated by ARF/INK4, as well as replication-stress-induced DNA damage. Here, we aimed to determine whether the c-MYC-inducible AP4 transcription factor plays a role in this context using a genetic approach. METHODS We used a CRISPR/Cas9 approach to generate AP4- and/or p53-deficient derivatives of MCF-7 breast cancer cells harboring an ectopic, inducible c-MYC allele. Cell proliferation, senescence, DNA damage, and comprehensive RNA expression profiles were determined after activation of c-MYC. In addition, we analyzed the expression data from primary breast cancer samples. RESULTS Loss of AP4 resulted in elevated levels of both spontaneous and c-MYC-induced DNA damage, senescence, and diminished cell proliferation. Deletion of p53 in AP4-deficient cells reverted senescence and proliferation defects without affecting DNA damage levels. RNA-Seq analyses showed that loss of AP4 enhanced repression of DREAM and E2F target genes after p53 activation by c-MYC. Depletion of p21 or the DREAM complex component LIN37 abrogated this effect. These p53-dependent effects were conserved on the level of clinical and gene expression associations found in primary breast cancer tumors. CONCLUSIONS Our results establish AP4 as a pivotal factor at the crossroads of c-MYC, E2F, and p53 target gene regulation.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Wenjing Shi
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-80336 Munich, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-89-2180-73685; Fax: +49-89-2180-73697
| |
Collapse
|
5
|
Chou J, Kaller M, Jaeckel S, Rokavec M, Hermeking H. AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage Checkpoint 1 and repressing MIR22HG/miR-22-3p. Mol Cancer 2022; 21:120. [PMID: 35624466 PMCID: PMC9137087 DOI: 10.1186/s12943-022-01581-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background AP4 (TFAP4) encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor and is a direct target gene of the oncogenic transcription factor c-MYC. Here, we set out to determine the relevance of AP4 in human colorectal cancer (CRC) cells. Methods A CRISPR/Cas9 approach was employed to generate AP4-deficient CRC cell lines with inducible expression of c-MYC. Colony formation, β-gal staining, immunofluorescence, comet and homologous recombination (HR) assays and RNA-Seq analysis were used to determine the effects of AP4 inactivation. qPCR and qChIP analyses was performed to validate differentially expressed AP4 targets. Expression data from CRC cohorts was subjected to bioinformatics analyses. Immunohistochemistry was used to evaluate AP4 targets in vivo. Ap4-deficient APCmin/+ mice were analyzed to determine conservation. Immunofluorescence, chromosome and micronuclei enumeration, MTT and colony formation assays were used to determine the effects of AP4 inactivation and target gene regulation on chromosomal instability (CIN) and drug sensitivity. Results Inactivation of AP4 in CRC cell lines resulted in increased spontaneous and c-MYC-induced DNA damage, chromosomal instability (CIN) and cellular senescence. AP4-deficient cells displayed increased expression of the long non-coding RNA MIR22HG, which encodes miR-22-3p and was directly repressed by AP4. Furthermore, Mediator of DNA damage Checkpoint 1 (MDC1), a central component of the DNA damage response and a known target of miR-22-3p, displayed decreased expression in AP4-deficient cells. Accordingly, MDC1 was directly induced by AP4 and indirectly by AP4-mediated repression of miR-22-3p. Adenomas and organoids from Ap4-deficient APCmin/+ mice displayed conservation of these regulations. Inhibition of miR-22-3p or ectopic MDC1 expression reversed the increased senescence, DNA damage, CIN and defective HR observed in AP4-deficient CRC cells. AP4-deficiency also sensitized CRC cells to 5-FU treatment, whereas ectopic AP4 conferred resistance to 5-FU in a miR-22-3p and MDC1-dependent manner. Conclusions In summary, AP4, miR-22-3p and MDC1 form a conserved and coherent, regulatory feed-forward loop to promote DNA repair, which suppresses DNA damage, senescence and CIN, and contributes to 5-FU resistance. These findings explain how elevated AP4 expression contributes to development and chemo-resistance of colorectal cancer after c-MYC activation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01581-1.
Collapse
Affiliation(s)
- Jinjiang Chou
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Oridonin Dose-Dependently Modulates the Cell Senescence and Apoptosis of Gastric Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5023536. [PMID: 34795783 PMCID: PMC8595004 DOI: 10.1155/2021/5023536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
Gastric cancer (GC) is the fourth most lethal cancer. Effective treatments are lacking, and our knowledge of the pathogenic mechanisms in play is poor. Oridonin from the Chinese herb Rabdosia rubescens exerts various anticancer activities. However, the dose-dependent effects of oridonin on human GC remain unclear. Here, we found that oridonin inhibited GC cell growth in a time- and dose-dependent manner. Low-dose oridonin induced GC cell cycle arrest at G0/G1 and cell senescence by suppressing the c-Myc-AP4 pathway and enhancing p53-p21 signaling. AP4 overexpression partly abrogated the oridonin-induced senescence of GC cells. High-dose oridonin induced apoptosis and autophagy, with the autophagy inhibitor BafA1 attenuating oridonin-induced apoptosis. Together, the findings indicate that oridonin at different doses modulates GC cell senescence and apoptosis; oridonin may thus usefully treat GC.
Collapse
|
7
|
Wang R, Sun L, Xia S, Wu H, Ma Y, Zhan S, Zhang G, Zhang X, Shi T, Chen W. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis 2021; 12:453. [PMID: 33958586 PMCID: PMC8102521 DOI: 10.1038/s41419-021-03736-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that cellular senescence induced by chemotherapy has been recognized as a new weapon for cancer therapy. This study aimed to research novel functions of B7-H3 in cellular senescence induced by a low dose of doxorubicin (DOX) in colorectal cancer (CRC). Here, our results demonstrated that B7-H3 knockdown promoted, while B7-H3 overexpression inhibited, DOX-induced cellular senescence. B7-H3 knockdown dramatically enhanced the growth arrest of CRC cells after low-dose DOX treatment, but B7-H3 overexpression had the opposite effect. By RNA-seq analysis and western blot, we showed that B7-H3 prevented cellular senescence and growth arrest through the AKT/TM4SF1/SIRT1 pathway. Blocking the AKT/TM4SF1/SIRT1 pathway dramatically reversed B7-H3-induced resistance to cellular senescence. More importantly, B7-H3 inhibited DOX-induced cellular senescence of CRC cells in vivo. Therefore, targeting B7-H3 or the B7-H3/AKT/TM4SF1/SIRT1 pathway might be a new strategy for promoting cellular senescence-like growth arrest during drug treatment in CRC.
Collapse
Affiliation(s)
- Ruoqin Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Linqing Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Suhua Xia
- Department of Oncology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hongya Wu
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanchao Ma
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Shenghua Zhan
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
- Suzhou Key Laboratory for Tumor Immunology of Digestive Tract, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China.
| |
Collapse
|
8
|
Transcription Factor AP4 Mediates Cell Fate Decisions: To Divide, Age, or Die. Cancers (Basel) 2021; 13:cancers13040676. [PMID: 33567514 PMCID: PMC7914591 DOI: 10.3390/cancers13040676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Here, we review the literature on Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) function and regulation and its role in cancer. Elevated expression of AP4 was detected in tumors of various organs and is associated with poor patient survival. AP4 is encoded by a Myc target gene and mediates cell fate decisions by regulating multiple processes, such as cell proliferation, epithelial-mesenchymal transition, stemness, apoptosis, and cellular senescence. Thereby, AP4 may be critical for tumor initiation and progression. In this review article, we summarize published evidence showing how AP4 functions as a transcriptional activator and repressor of a plethora of direct target genes in various physiological and pathological conditions. We also highlight the complex interactions of AP4 with c-Myc, N-Myc, p53, lncRNAs, and miRNAs in feed-back loops, which control AP4 levels and mediate AP4 functions. In the future, a better understanding of AP4 may contribute to improved prognosis and therapy of cancer. Abstract Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) is a basic-helix-loop-helix-leucine-zipper transcription factor that was first identified as a protein bound to SV40 promoters more than 30 years ago. Almost 15 years later, AP4 was characterized as a target of the c-Myc transcription factor, which is the product of a prototypic oncogene that is activated in the majority of tumors. Interestingly, AP4 seems to represent a central hub downstream of c-Myc and N-Myc that mediates some of their functions, such as proliferation and epithelial-mesenchymal transition (EMT). Elevated AP4 expression is associated with progression of cancer and poor patient prognosis in multiple tumor types. Deletion of AP4 in mice points to roles of AP4 in the control of stemness, tumor initiation and adaptive immunity. Interestingly, ex vivo AP4 inactivation results in increased DNA damage, senescence, and apoptosis, which may be caused by defective cell cycle progression. Here, we will summarize the roles of AP4 as a transcriptional repressor and activator of target genes and the contribution of protein and non-coding RNAs encoded by these genes, in regulating the above mentioned processes. In addition, proteins interacting with or regulating AP4 and the cellular signaling pathways altered after AP4 dysregulation in tumor cells will be discussed.
Collapse
|
9
|
Zhang X, Koga N, Suzuki H, Kato M. Promotion of cellular senescence by THG-1/TSC22D4 knockout through activation of JUNB. Biochem Biophys Res Commun 2020; 522:897-902. [DOI: 10.1016/j.bbrc.2019.11.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
|
10
|
Gholizadeh‐Ghaleh Aziz S, Fardyazar Z, Pashaiasl M. The human amniotic fluid mesenchymal stem cells therapy on, SKOV3, ovarian cancer cell line. Mol Genet Genomic Med 2019; 7:e00726. [PMID: 31111674 PMCID: PMC6625370 DOI: 10.1002/mgg3.726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/28/2019] [Accepted: 04/07/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose One of the most common malignancies peculiar to female health with few symptoms, low response to therapy, difficult diagnosis, frequent relapse, and high mortality, is ovarian cancer. Thus, our experiment, using Human amniotic fluid mesenchymal stem cells (hAFMSCs) as a therapeutic tool, aims to find an efficient treatment approach for patients suffering from SKOV3 ovarian cancer. Material & Methods In this study, we obtained 5 ml amniotic fluid from 16–20 week pregnant women who underwent amniocentesis for routine prenatal diagnosis by karyotyping in Al‐Zahra Hospital of Tabriz University of Medical Sciences, Iran. Using trans wells in 24 wells plate, hAFMSCs were isolated from all samples, co‐cultured with SKOV3 ovarian cancer cell line, and characterized via flow cytometry and RT‐PCR. Human skin fibroblast cells (HSFCs) were isolated and used as a negative control. SKOV3 and HSFCs' viability after 5 days was evaluated by MTT assay. Cell cycle and apoptotic genes were analyzed by real‐time PCR. Results We successfully isolated and characterized hAFMSCs through it positivity for CD44 and CD90 specific mesenchymal stem cell markers and negativity for CD31 and CD45. Oct4 and NANOG were evaluated by RT‐PCR as pluripotency markers, and visualized on 2% gel electrophoresis. We established hAFMS cell lines after 5 days of co‐culturing the SKOV3 cells, viability was decreased; however, HSFCs did not show toxicity by MTT assay. The genes indicated upregulation and high expression by a real‐time PCR. Conclusions Our findings showed that hAFMSCs have natural tumor tropism, and can release soluble factors in a cell culture, which cause an efficient anticancer effect. Thus, we can use hAFMSCs for complete anticancer therapy on SKOV3 cell line at cell culture condition and possibly in vivo in the near future.
Collapse
Affiliation(s)
| | - Zahra Fardyazar
- Women’s Reproductive Health Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science Tabriz University of Medical Science Tabriz Iran
| | - Maryam Pashaiasl
- Women’s Reproductive Health Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science Tabriz University of Medical Science Tabriz Iran
- Drug Applied Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Anatomical Sciences, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
11
|
Swier LJYM, Dzikiewicz‐Krawczyk A, Winkle M, van den Berg A, Kluiver J. Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol Oncol 2019; 13:26-45. [PMID: 30451365 PMCID: PMC6322196 DOI: 10.1002/1878-0261.12409] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023] Open
Abstract
Myelocytomatosis viral oncogene homolog (MYC) plays an important role in the regulation of many cellular processes, and its expression is tightly regulated at the level of transcription, translation, protein stability, and activity. Despite this tight regulation, MYC is overexpressed in many cancers and contributes to multiple hallmarks of cancer. In recent years, it has become clear that noncoding RNAs add a crucial additional layer to the regulation of MYC and its downstream effects. So far, twenty-five microRNAs and eighteen long noncoding RNAs that regulate MYC have been identified. Thirty-three miRNAs and nineteen lncRNAs are downstream effectors of MYC that contribute to the broad oncogenic role of MYC, including its effects on diverse hallmarks of cancer. In this review, we give an overview of this extensive, multilayered noncoding RNA network that exists around MYC. Current data clearly show explicit roles of crosstalk between MYC and ncRNAs to allow tumorigenesis.
Collapse
Affiliation(s)
- Lotteke J. Y. M. Swier
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | | | - Melanie Winkle
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical BiologyUniversity of GroningenUniversity Medical Center GroningenThe Netherlands
| |
Collapse
|
12
|
Ap4 is rate limiting for intestinal tumor formation by controlling the homeostasis of intestinal stem cells. Nat Commun 2018; 9:3573. [PMID: 30177706 PMCID: PMC6120921 DOI: 10.1038/s41467-018-06001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023] Open
Abstract
The gene encoding the transcription factor TFAP4/AP4 represents a direct target of the c-MYC oncoprotein. Here, we deleted Ap4 in ApcMin mice, a preclinical model of inherited colorectal cancer. Ap4 deficiency extends their average survival by 110 days and decreases the formation of intestinal adenomas and tumor-derived organoids. The effects of Ap4 deletion are presumably due to the reduced number of functional intestinal stem cells (ISCs) amenable to adenoma-initiating mutational events. Deletion of Ap4 also decreases the number of colonic stem cells and increases the number of Paneth cells. Expression profiling revealed that ISC signatures, as well as the Wnt/β-catenin and Notch signaling pathways are downregulated in Ap4-deficient adenomas and intestinal organoids. AP4-associated signatures are conserved between murine adenomas and human colorectal cancer samples. Our results establish Ap4 as rate-limiting mediator of adenoma initiation, as well as regulator of intestinal and colonic stem cell and Paneth cell homeostasis.
Collapse
|
13
|
Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma. Oncogene 2018; 37:5451-5465. [PMID: 29880876 PMCID: PMC6172192 DOI: 10.1038/s41388-018-0326-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 04/27/2018] [Indexed: 11/15/2022]
Abstract
Despite the identification of MYCN amplification as an adverse prognostic marker in neuroblastoma, MYCN inhibitors have yet to be developed. Here, by integrating evidence from a whole-genome shRNA library screen and the computational inference of master regulator proteins, we identify transcription factor activating protein 4 (TFAP4) as a critical effector of MYCN amplification in neuroblastoma, providing a novel synthetic lethal target. We demonstrate that TFAP4 is a direct target of MYCN in neuroblastoma cells, and that its expression and activity strongly negatively correlate with neuroblastoma patient survival. Silencing TFAP4 selectively inhibits MYCN-amplified neuroblastoma cell growth both in vitro and in vivo, in xenograft mouse models. Mechanistically, silencing TFAP4 induces neuroblastoma differentiation, as evidenced by increased neurite outgrowth and upregulation of neuronal markers. Taken together, our results demonstrate that TFAP4 is a key regulator of MYCN-amplified neuroblastoma and may represent a valuable novel therapeutic target.
Collapse
|
14
|
Song J, Xie C, Jiang L, Wu G, Zhu J, Zhang S, Tang M, Song L, Li J. Transcription factor AP-4 promotes tumorigenic capability and activates the Wnt/β-catenin pathway in hepatocellular carcinoma. Am J Cancer Res 2018; 8:3571-3583. [PMID: 30026867 PMCID: PMC6037031 DOI: 10.7150/thno.25194] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/19/2018] [Indexed: 01/27/2023] Open
Abstract
It has been reported that the transcription factor activating enhancer-binding protein 4 (TFAP4) is upregulated and associated with an aggressive phenotype in several cancers. However, the precise mechanisms underlying the oncogenic role of TFAP4 remain largely unknown. Methods: TFAP4 expression levels in hepatocellular carcinoma (HCC) cells and tissues were detected by quantitative real-time PCR (qPCR) and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of TFAP4 in the tumor-initiating cell (TIC)-like phenotype and the tumorigenic capability of HCC cells. Luciferase reporter and chromatin immunoprecipitation (ChIP)-qPCR assays were performed to determine the underlying mechanism of TFAP4-mediated HCC aggressiveness. Results: TFAP4 was markedly upregulated in human HCC, and was associated with significantly poorer overall and relapse-free survival in patients with HCC. Furthermore, we found that overexpression of TFAP4 significantly enhanced, whereas silencing TFAP4 inhibited, the tumor sphere formation ability and proportion of side-population cells in HCC cells in vitro, and ectopic TFAP4 enhanced the tumorigenicity of HCC cells in vivo. Mechanistically, we demonstrated that TFAP4 played an important role in activating Wnt/β-catenin signaling by directly binding to the promoters of DVL1 (dishevelled segment polarity protein 1) and LEF1 (lymphoid enhancer binding factor 1). Conclusions: Our results provide new insight into the mechanisms underlying hyperactivation of the Wnt/β-catenin pathway in HCC, as well the oncogenic ability of TFAP4 to enhance the tumor-forming ability of HCC cells.
Collapse
|
15
|
Yang J, Ma JP, Xiao S, Zhang XH, Xu JB, Chen CQ, Cai SR, He YL. Evaluating the prognostic value and functional roles of transcription factor AP4 in colorectal cancer. Oncol Lett 2018; 15:7545-7554. [PMID: 29725460 PMCID: PMC5920486 DOI: 10.3892/ol.2018.8290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
The basic helix-loop-helix transcription factor AP4 (TFAP4) gene serves an important function in the genesis and progression of tumors. However, few studies to date have defined the role of this gene in colorectal cancer (CRC). The aim of the present study was to assess the expression of TFAP4 in CRC and its impact on the prognosis of patients with CRC. In the present study, the expression of TFAP4 was detected in 30 matched pairs of fresh CRC tissues, 187 cases of clinical paraffin-embedded CRC tissues and CRC cell lines using the reverse transcriptase-quantitative polymerase chain reaction, immunohistochemistry or western blot analysis. Survival analysis was based on TFAP4 expression. The effects of TFAP4 on CRC cell function were investigated by ectopic expression or knockdown of TFAP4 in vitro. TFAP4 expression was revealed to be increased in human CRC tissues and cell lines. The overall survival (OS) time of patients with high TFAP4 expression was significantly decreased compared with patients with low TFAP4 expression (P<0.001). In addition, TFAP4 was revealed to be an independent prognostic factor for the OS time of patients with CRC (hazard ratio, 2.607; 95% confidence interval, 1.469-4.627; P=0.001). Ectopic TFAP4 expression promoted CRC cell proliferation, migration and invasion in vitro, and the silencing of TFAP4 expression resulted in the inhibition of these events. These results demonstrated that TFAP4, which was overexpressed in CRC tissues and cell lines, increased the malignant potential of CRC cells and may serve as an indicator for poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Jie Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin-Ping Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Siyu Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Hua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jian-Bo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuang-Qi Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
16
|
Meng Y, Wang L, Xu J, Zhang Q. AP4 positively regulates LAPTM4B to promote hepatocellular carcinoma growth and metastasis, while reducing chemotherapy sensitivity. Mol Oncol 2018; 12:373-390. [PMID: 29337428 PMCID: PMC5830630 DOI: 10.1002/1878-0261.12171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Polymorphisms of the lysosomal-associated protein transmembrane-4 beta (LAPTM4B) gene are related to various forms of tumour susceptibility, which led us to hypothesize that some unique transcription factors targeting this polymorphism region may affect the biological function of LAPTM4B in tumour progression. In this study, we found that the transcription factor AP4 directly binds to the polymorphism region of the LAPTM4B gene promoter and induces its transcription. In addition, we demonstrated that AP4 promotes hepatocellular carcinoma (HCC) cell proliferation and metastasis and depresses chemotherapy sensitivity via LAPTM4B by activating the PI3K/AKT signalling pathway and caspase-dependent pathway. Interestingly, we found that AP4 could not only regulate LAPTM4B by directly binding to the promoter, but also be regulated via a positive feedback mechanism involving LAPTM4B acting on c-myc. Finally, we showed that AP4 and LAPTM4B are highly coexpressed in HCC tissues, and their coexpression may be a marker of poor prognosis. These findings provide evidence of the expression and functional coupling between AP4 and LAPTM4B and shed light on the regulation of LAPTM4B and its function in liver cancer.
Collapse
Affiliation(s)
- Yue Meng
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Wang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianjun Xu
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qingyun Zhang
- Department of Clinical Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
17
|
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA, Ong’echa JM, Moormann AM, Bailey JA. Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer 2017; 17:761. [PMID: 29132323 PMCID: PMC5683570 DOI: 10.1186/s12885-017-3711-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is characterized by overexpression of the c-myc oncogene, which in the vast majority of cases is a consequence of an IGH/MYC translocation. While myc is the seminal event, BL is a complex amalgam of genetic and epigenetic changes causing dysregulation of both coding and non-coding transcripts. Emerging evidence suggest that abnormal modulation of mRNA transcription via miRNAs might be a significant factor in lymphomagenesis. However, the alterations in these miRNAs and their correlations to their putative mRNA targets have not been extensively studied relative to normal germinal center (GC) B cells. METHODS Using more sensitive and specific transcriptome deep sequencing, we compared previously published small miRNA and long mRNA of a set of GC B cells and eBL tumors. MiRWalk2.0 was used to identify the validated target genes for the deregulated miRNAs, which would be important for understanding the regulatory networks associated with eBL development. RESULTS We found 211 differentially expressed (DE) genes (79 upregulated and 132 downregulated) and 49 DE miRNAs (22 up-regulated and 27 down-regulated). Gene Set enrichment analysis identified the enrichment of a set of MYC regulated genes. Network propagation-based method and correlated miRNA-mRNA expression analysis identified dysregulated miRNAs, including miR-17~95 cluster members and their target genes, which have diverse oncogenic properties to be critical to eBL lymphomagenesis. Central to all these findings, we observed the downregulation of ATM and NLK genes, which represent important regulators in response to DNA damage in eBL tumor cells. These tumor suppressors were targeted by multiple upregulated miRNAs (miR-19b-3p, miR-26a-5p, miR-30b-5p, miR-92a-5p and miR-27b-3p) which could account for their aberrant expression in eBL. CONCLUSION Combined loss of p53 induction and function due to miRNA-mediated regulation of ATM and NLK, together with the upregulation of TFAP4, may be a central role for human miRNAs in eBL oncogenesis. This facilitates survival of eBL tumor cells with the IGH/MYC chromosomal translocation and promotes MYC-induced cell cycle progression, initiating eBL lymphomagenesis. This characterization of miRNA-mRNA interactions in eBL relative to GC B cells provides new insights on miRNA-mediated transcript regulation in eBL, which are potentially useful for new improved therapeutic strategies.
Collapse
Affiliation(s)
- Cliff I. Oduor
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Yasin Kaymaz
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiprotich Chelimo
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Juliana A. Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya
| | | | - Ann M. Moormann
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA USA
| | - Jeffrey A. Bailey
- Department of Bioinformatics & Integrative Biology, University of Massachusetts Medical School, Worcester, MA USA
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts Medical School, 368 Plantation St. Albert Sherman Building 41077, Worcester, MA 01605 USA
| |
Collapse
|
18
|
Hermosilla VE, Hepp MI, Escobar D, Farkas C, Riffo EN, Castro AF, Pincheira R. Developmental SALL2 transcription factor: a new player in cancer. Carcinogenesis 2017; 38:680-690. [DOI: 10.1093/carcin/bgx036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
|
19
|
Cheng Z, Zheng YZ, Li YQ, Wong CS. Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21. J Neuropathol Exp Neurol 2017; 76:260-269. [DOI: 10.1093/jnen/nlx006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Gao F, Wang T, Zhang Z, Wang R, Guo Y, Liu J. Regulation of activating protein-4-associated metastases of non-small cell lung cancer cells by miR-144. Tumour Biol 2016; 37:15535–15541. [PMID: 26254097 DOI: 10.1007/s13277-015-3866-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 01/27/2023] Open
Abstract
Activating protein-4 (AP4) has been recently shown to regulate the cancer metastases in some cancers including non-small cell lung cancer (NSCLC). Specifically, AP4 regulates mTor/p21 and transforming growth factor β (TGFβ) receptor signaling pathway to increase an epithelial-mesenchymal transition process to augment cell invasiveness. Nevertheless, how AP4 is regulated in NSCLC has not been studied. Here, we showed that in the specimens from the NSCLC patients, the levels of miR-144 were significantly decreased and the levels of AP4 were significantly increased, compared to the paired non-tumor lung tissue. The levels of miR-144 and AP4 inversely correlated in patients' specimens. Bioinformatics analyses revealed that miR-144 targeted the 3'-UTR of AP4 mRNA to inhibit its translation, confirmed by luciferase-reporter assay. Moreover, miR-144 overexpression inhibited AP4-mediated cell invasiveness, while miR-144 depletion increased AP4-mediated cell invasiveness in NSCLC cells. Together, our data suggest that miR-144 suppression may be the cause of the increased levels of AP4, as well as the augmented cancer metastases, in NSCLC.
Collapse
Affiliation(s)
- Feng Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Chang'an District, Shijiazhuang, 050011, China
| | | | | | | | | | | |
Collapse
|
21
|
Xie C, Subhash VV, Datta A, Liem N, Tan SH, Yeo MS, Tan WL, Koh V, Yan FL, Wong FY, Wong WK, So J, Tan IB, Padmanabhan N, Yap CT, Tan P, Goh LK, Yong WP. Melanoma associated antigen (MAGE)-A3 promotes cell proliferation and chemotherapeutic drug resistance in gastric cancer. Cell Oncol (Dordr) 2016; 39:175-86. [PMID: 26868260 DOI: 10.1007/s13402-015-0261-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.
Collapse
Affiliation(s)
- Chen Xie
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Vinod Vijay Subhash
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Arpita Datta
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Natalia Liem
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore.,Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Woei Loon Tan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Vivien Koh
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Fui Leng Yan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Wai Keong Wong
- Departments of Pathology and General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Jimmy So
- Departments of Medicine, Surgery, and Pathology, National University Health System, Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Nisha Padmanabhan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Celestial T Yap
- Department of Physiology, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, Singapore, Singapore
| | - Patrick Tan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Liang Kee Goh
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 2016; 5:233-244. [PMID: 26977395 PMCID: PMC4770267 DOI: 10.1016/j.molmet.2016.01.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/20/2023] Open
Abstract
Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion. Defined open chromatin regions in sorted human α- and β-cells using ATAC-seq. Detected type 2 diabetes-associated risk loci in human α- and β-cell open chromatin. Classified human α- and β-cell-specific transcripts using mRNA-seq. Discovered novel human α- and β-cell signature proteins. Identified potential gene regulatory regions by integrating ATAC- and mRNA-seq data.
Collapse
Key Words
- ARX, aristaless related homeobox
- ATAC-seq, Assay for Transposase-Accessible Chromatin with high throughput sequencing
- Alpha cell
- Beta cell
- CHODL, chondrolectin
- ChIP-seq, Chromatin Immunoprecipitation followed by high throughput sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- DPP4, dipeptidyl-peptidase 4
- Diabetes
- Epigenetics
- FACS, fluorescence-activated cell sorting
- FAIRE-seq, Formaldehyde-Assisted Isolation of Regulatory Elements followed by high throughput sequencing
- GC, group-specific protein
- GCG, glucagon
- GHRL, ghrelin
- IGF2, insulin like growth factor 2
- INS, insulin
- IRX2, iroquois homeobox 2
- Islet
- MAFA, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A
- NEUROD1, neuronal differentiation 1
- Open chromatin
- PP, pancreatic polypeptide
- SNP, single nucleotide polymorphism
- SST, somatostatin
Collapse
Affiliation(s)
- Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Jonathan Schug
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA; Department of Genetics, The University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia 19104, PA, USA.
| |
Collapse
|
23
|
Padi M, Quackenbush J. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators. BMC SYSTEMS BIOLOGY 2015; 9:80. [PMID: 26576632 PMCID: PMC4650867 DOI: 10.1186/s12918-015-0228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide libraries of yeast deletion strains have been used to screen for genes that drive phenotypes such as stress response. A surprising observation emerging from these studies is that the genes with the largest changes in mRNA expression during a state transition are not those that drive that transition. Here, we show that integrating gene expression data with context-independent protein interaction networks can help prioritize master regulators that drive biological phenotypes. RESULTS Genes essential for survival had previously been shown to exhibit high centrality in protein interaction networks. However, the set of genes that drive growth in any specific condition is highly context-dependent. We inferred regulatory networks from gene expression data and transcription factor binding motifs in Saccharomyces cerevisiae, and found that high-degree nodes in regulatory networks are enriched for transcription factors that drive the corresponding phenotypes. We then found that using a metric combining protein interaction and transcriptional networks improved the enrichment for drivers in many of the contexts we examined. We applied this principle to a dataset of gene expression in normal human fibroblasts expressing a panel of viral oncogenes. We integrated regulatory interactions inferred from this data with a database of yeast two-hybrid protein interactions and ranked 571 human transcription factors by their combined network score. The ranked list was significantly enriched in known cancer genes that could not be found by standard differential expression or enrichment analyses. CONCLUSIONS There has been increasing recognition that network-based approaches can provide insight into critical cellular elements that help define phenotypic state. Our analysis suggests that no one network, based on a single data type, captures the full spectrum of interactions. Greater insight can instead be gained by exploring multiple independent networks and by choosing an appropriate metric on each network. Moreover we can improve our ability to rank phenotypic drivers by combining the information from individual networks. We propose that such integrative network analysis could be used to combine clinical gene expression data with interaction databases to prioritize patient- and disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Megha Padi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Wang Y, Wong MMK, Zhang X, Chiu SK. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells. Exp Cell Res 2015; 339:135-46. [PMID: 26439195 DOI: 10.1016/j.yexcr.2015.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 01/09/2023]
Abstract
When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Matthew Man-Kin Wong
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Xiaojian Zhang
- Institute of Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Sung-Kay Chiu
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
25
|
Abstract
AP4 represents a c-MYC-inducible bHLH-LZ transcription factor, which displays elevated expression in many types of tumors. We found that serum-starved AP4-deficient mouse embryo fibroblasts (MEFs) were unable to resume proliferation and showed a delayed S-phase entry after restimulation. Furthermore, they accumulated as tetraploid cells due to a cytokinesis defect. In addition, AP4 was required for c-MYC-induced cell cycle re-entry. AP4-deficient MEFs displayed decreased expression of CDK2 (cyclin-dependent kinase 2), which we characterized as a conserved and direct AP4 target. Activation of an AP4 estrogen receptor fusion protein (AP4-ER) enhanced proliferation of human diploid fibroblasts in a CDK2-dependent manner. However, in contrast to c-MYC-ER, AP4-ER activation was not sufficient to induce cell cycle re-entry or apoptosis in serum-starved MEFs. AP4-deficiency was accompanied by increased spontaneous and c-MYC-induced DNA damage in MEFs. Furthermore, c-MYC-induced apoptosis was decreased in AP4-deficient MEFs, suggesting that induction of apoptosis by c-MYC is linked to its ability to activate AP4 and thereby cell cycle progression. Taken together, these results indicate that AP4 is a central mediator and coordinator of cell cycle progression in response to mitogenic signals and c-MYC activation. Therefore, inhibition of AP4 function may represent a therapeutic approach to block tumor cell proliferation.
Collapse
|
26
|
Jackstadt R, Hermeking H. MicroRNAs as regulators and mediators of c-MYC function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:544-53. [DOI: 10.1016/j.bbagrm.2014.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
|
27
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
28
|
Salas E, Rabhi N, Froguel P, Annicotte JS. Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions. J Diabetes Res 2014; 2014:873679. [PMID: 24672805 PMCID: PMC3941170 DOI: 10.1155/2014/873679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/20/2013] [Indexed: 12/11/2022] Open
Abstract
The ARF/INK4A (Cdkn2a) locus includes the linked tumour suppressor genes p16INK4a and p14ARF (p19ARF in mice) that trigger the antiproliferative activities of both RB and p53. With beta cell self-replication being the primary source for new beta cell generation in adult animals, the network by which beta cell replication could be increased to enhance beta cell mass and function is one of the approaches in diabetes research. In this review, we show a general view of the regulation points at transcriptional and posttranslational levels of Cdkn2a locus. We describe the molecular pathways and functions of Cdkn2a in beta cell cycle regulation. Given that aging reveals increased p16Ink4a levels in the pancreas that inhibit the proliferation of beta cells and decrease their ability to respond to injury, we show the state of the art about the role of this locus in beta cell senescence and diabetes development. Additionally, we focus on two approaches in beta cell regeneration strategies that rely on Cdkn2a locus negative regulation: long noncoding RNAs and betatrophin.
Collapse
Affiliation(s)
- Elisabet Salas
- European Genomic Institute for Diabetes (EGID), CNRS UMR 8199, Lille 2 University, 59000 Lille, France
| | - Nabil Rabhi
- European Genomic Institute for Diabetes (EGID), CNRS UMR 8199, Lille 2 University, 59000 Lille, France
| | - Philippe Froguel
- European Genomic Institute for Diabetes (EGID), CNRS UMR 8199, Lille 2 University, 59000 Lille, France
- Department of Genomics of Common Disease, Hammersmith Hospital, Imperial College London, London W12 0NN, UK
| | - Jean-Sébastien Annicotte
- European Genomic Institute for Diabetes (EGID), CNRS UMR 8199, Lille 2 University, 59000 Lille, France
- *Jean-Sébastien Annicotte:
| |
Collapse
|