1
|
Guerra B, Jurcic K, van der Poel R, Cousineau SL, Doktor TK, Buchwald LM, Roffey SE, Lindegaard CA, Ferrer AZ, Siddiqui MA, Gyenis L, Andresen BS, Litchfield DW. Protein kinase CK2 sustains de novo fatty acid synthesis by regulating the expression of SCD-1 in human renal cancer cells. Cancer Cell Int 2024; 24:432. [PMID: 39726006 DOI: 10.1186/s12935-024-03611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth. METHODS Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2. Effects on the expression levels of SCD-1 were investigated by RNA-sequencing, RT-qPCR, Western blot, and in vivo studies in mice. Phase-contrast microscopy, fluorescence microscopy, flow cytometry, and MALDI-mass spectrometry analysis were carried out to study the effects on endogenous lipid accumulation, induction of endoplasmic reticulum stress, rescue effects induced by exogenous MUFAs, and the identity of lipid populations. Cell proliferation and survival were investigated in real time employing the Incucyte® live-cell analysis system. Statistical significance was determined by applying the two-tailed Student's t test when comparing two groups of data whereas the two-way ANOVA, multiple Tukey's test was employed for multiple comparisons. RESULTS Here, we show that protein kinase CK2 is critical for preserving the expression of SCD-1 in ccRCC lines maintained in culture and heterotransplanted into nude mice. Consistent with this, pharmacological inhibition of CK2 leads to induction of endoplasmic reticulum stress linked to unfolded protein response activation and decreased proliferation of the cells. Both effects could be reversed by supplementing the growth medium with oleic acid indicating that these effects are specifically caused by reduced expression of SCD-1. Analysis of lipid composition by MALDI-mass spectrometry revealed that inhibition of CK2 results in a significant accumulation of the saturated palmitic- and stearic acids. CONCLUSIONS Collectively, our results revealed a previously unidentified molecular mechanism regulating the synthesis of monounsaturated fatty acids corroborating the notion that novel therapeutic approaches that include CK2 targeting, may offer a greater synergistic anti-tumour effect for cancers that are highly dependent on fatty acid metabolism.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark.
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON, Canada
| | - Rachelle van der Poel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laura M Buchwald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Scott E Roffey
- Department of Biochemistry, Western University, London, ON, Canada
| | - Caroline A Lindegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Anna Z Ferrer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Mohammad A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laszlo Gyenis
- Department of Biochemistry, Western University, London, ON, Canada
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | |
Collapse
|
2
|
Vladimirova SA, Kokoreva NE, Guzhova IV, Alhasan BA, Margulis BA, Nikotina AD. Unveiling the HSF1 Interaction Network: Key Regulators of Its Function in Cancer. Cancers (Basel) 2024; 16:4030. [PMID: 39682216 DOI: 10.3390/cancers16234030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Heat shock factor 1 (HSF1) plays a central role in orchestrating the heat shock response (HSR), leading to the activation of multiple heat shock proteins (HSPs) genes and approximately thousands of other genes involved in various cellular functions. In cancer cells, HSPs play a particular role in coping with the accumulation of damaged proteins resulting from dysregulated translation and post-translational processes. This proteotoxic stress is a hallmark of cancer cells and causes constitutive activation of HSR. Beyond its role in the HSR, HSF1 regulates diverse processes critical for tumor cells, including proliferation, cell death, and drug resistance. Emerging evidence also highlights HSF1's involvement in remodeling the tumor immune microenvironment as well as in the maintenance of cancer stem cells. Consequently, HSF1 has emerged as an attractive therapeutic target, prompting the development of specific HSF1 inhibitors that have progressed to clinical trials. Importantly, HSF1 possesses a broad interactome, forming protein-protein interactions (PPIs) with components of signaling pathways, transcription factors, and chromatin regulators. Many of these interactors modulate HSF1's activity and HSF1-dependent gene expression and are well-recognized targets for cancer therapy. This review summarizes the current knowledge on HSF1 interactions with molecular chaperones, protein kinases, and other regulatory proteins. Understanding the key HSF1 interactions promoting cancer progression, along with identifying factors that disrupt these protein complexes, may offer valuable insights for developing innovative therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Snezhana A Vladimirova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Nadezhda E Kokoreva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Bashar A Alhasan
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
3
|
Sebastian RM, Patrick JE, Hui T, Amici DR, Giacomelli AO, Butty VL, Hahn WC, Mendillo ML, Lin YS, Shoulders MD. Dominant-negative TP53 mutations potentiated by the HSF1-regulated proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621414. [PMID: 39554167 PMCID: PMC11565964 DOI: 10.1101/2024.11.01.621414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
Collapse
Affiliation(s)
- Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica E. Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Zamay G, Koshmanova A, Narodov A, Gorbushin A, Voronkovskii I, Grek D, Luzan N, Kolovskaya O, Shchugoreva I, Artyushenko P, Glazyrin Y, Fedotovskaya V, Kuziakova O, Veprintsev D, Belugin K, Lukyanenko K, Nikolaeva E, Kirichenko A, Lapin I, Khorzhevskii V, Semichev E, Mohov A, Kirichenko D, Tokarev N, Chanchikova N, Krat A, Zukov R, Bakhtina V, Shnyakin P, Shesternya P, Tomilin F, Kosinova A, Svetlichnyi V, Zamay T, Kumeiko V, Mezko V, Berezovski MV, Kichkailo A. Visualization of Brain Tumors with Infrared-Labeled Aptamers for Fluorescence-Guided Surgery. J Am Chem Soc 2024; 146:24989-25004. [PMID: 39186481 PMCID: PMC11404482 DOI: 10.1021/jacs.4c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Gliomas remain challenging brain tumors to treat due to their infiltrative nature. Accurately identifying tumor boundaries during surgery is crucial for successful resection. This study introduces an innovative intraoperative visualization method utilizing surgical fluorescence microscopy to precisely locate tumor cell dissemination. Here, the focus is on the development of a novel contrasting agent (IR-Glint) for intraoperative visualization of human glial tumors comprising infrared-labeled Glint aptamers. The specificity of IR-Glint is assessed using flow cytometry and microscopy on primary cell cultures. In vivo effectiveness is studied on mouse and rabbit models, employing orthotopic xenotransplantation of human brain gliomas with various imaging techniques, including PET/CT, in vivo fluorescence visualization, confocal laser scanning, and surgical microscopy. The experiments validate the potential of IR-Glint for the intraoperative visualization of gliomas using infrared imaging. IR-Glint penetrates the blood-brain barrier and can be used for both intravenous and surface applications, allowing clear visualization of the tumor. The surface application directly to the brain reduces the dosage required and mitigates potential toxic effects on the patient. The research shows the potential of infrared dye-labeled aptamers for accurately visualizing glial tumors during brain surgery. This novel aptamer-assisted fluorescence-guided surgery (AptaFGS) may pave the way for future advancements in the field of neurosurgery.
Collapse
Affiliation(s)
- Galina Zamay
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Anastasia Koshmanova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Andrey Narodov
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
| | - Anton Gorbushin
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
- Krasnoyarsk Inter-District Ambulance Hospital Named after N.S. Karpovich, 17 Kurchatova, Krasnoyarsk 660062, Russia
| | - Ivan Voronkovskii
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
- Krasnoyarsk Inter-District Ambulance Hospital Named after N.S. Karpovich, 17 Kurchatova, Krasnoyarsk 660062, Russia
| | - Daniil Grek
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
| | - Natalia Luzan
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Olga Kolovskaya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Irina Shchugoreva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Polina Artyushenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Yury Glazyrin
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Victoriya Fedotovskaya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Olga Kuziakova
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Dmitry Veprintsev
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Kirill Belugin
- Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk 660130, Russia
| | - Kirill Lukyanenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Elena Nikolaeva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Andrey Kirichenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
| | - Ivan Lapin
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Vladimir Khorzhevskii
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Krasnoyarsk Regional Pathology-Anatomic Bureau, Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Evgeniy Semichev
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Alexey Mohov
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Daria Kirichenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Nikolay Tokarev
- Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk 660130, Russia
| | - Natalia Chanchikova
- Federal Siberian Research Clinical Centre under the Federal Medical Biological Agency, Krasnoyarsk 660130, Russia
| | - Alexey Krat
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Krasnoyarsk Regional Clinical Cancer Center, 16 1-ya Smolenskaya, Krasnoyarsk 660133, Russia
| | - Ruslan Zukov
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Krasnoyarsk Regional Clinical Cancer Center, 16 1-ya Smolenskaya, Krasnoyarsk 660133, Russia
| | - Varvara Bakhtina
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Pavel Shnyakin
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Pavel Shesternya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Felix Tomilin
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Kirensky Institute of Physics, Krasnoyarsk 660036, Russia
| | - Aleksandra Kosinova
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Valery Svetlichnyi
- Laboratory of Advanced Materials and Technology, Tomsk State University, Tomsk 634050, Russia
| | - Tatiana Zamay
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Vadim Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | | | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anna Kichkailo
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Aptamerlab LLC, Krasnoyarsk 660042, Russia
- Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
5
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
6
|
Ilhan M, Hastar N, Kampfrath B, Spierling DN, Jatzlau J, Knaus P. BMP Stimulation Differentially Affects Phosphorylation and Protein Stability of β-Catenin in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:4593. [PMID: 38731813 PMCID: PMC11083028 DOI: 10.3390/ijms25094593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Increased expression and nuclear translocation of β-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting β-CATENIN are not as efficient as desired. Therefore, detailed understanding of β-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing β-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of β-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce β-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces β-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on β-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced β-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding β-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.
Collapse
Affiliation(s)
- Mustafa Ilhan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nurcan Hastar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Branka Kampfrath
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
| | - Deniz Neslihan Spierling
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; (M.I.); (N.H.); (B.K.); (D.N.S.)
- Berlin School of Integrative Oncology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Brandenburg School for Regenerative Therapies, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
7
|
Liang R, Tan H, Jin H, Wang J, Tang Z, Lu X. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett 2023; 573:216354. [PMID: 37625777 DOI: 10.1016/j.canlet.2023.216354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Protein homeostasis, an important aspect of cellular fitness that encompasses the balance of production, folding and degradation of proteins, has been linked to several diseases of the human body. Multiple interconnected pathways coordinate to maintain protein homeostasis within the cell. Recently, the role of the protein homeostasis network in tumorigenesis and tumour progression has gradually come to light. Here, we summarize the involvement of the most prominent components of the protein quality control mechanisms (HSR, UPS, autophagy, UPR and ERAD) in tumour development and cancer immunity. In addition, evidence for protein quality control mechanisms and targeted drugs is outlined, and attempts to combine these drugs with cancer immunotherapy are discussed. Altogether, combination therapy represents a promising direction for future investigations, and this exciting insight will be further illuminated by the development of drugs that can reach a balance between the benefits and hazards associated with protein homeostasis interference.
Collapse
Affiliation(s)
- Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huabing Tan
- Department of Infectious Diseases, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Faculty of Medicine, Hokkaido University, Japan
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
8
|
Sada Del Real K, Rubio A. Discovering the mechanism of action of drugs with a sparse explainable network. EBioMedicine 2023; 95:104767. [PMID: 37633093 PMCID: PMC10474372 DOI: 10.1016/j.ebiom.2023.104767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Although Deep Neural Networks (DDNs) have been successful in predicting the efficacy of cancer drugs, the lack of explainability in their decision-making process is a significant challenge. Previous research proposed mimicking the Gene Ontology structure to allow for interpretation of each neuron in the network. However, these previous approaches require huge amount of GPU resources and hinder its extension to genome-wide models. METHODS We developed SparseGO, a sparse and interpretable neural network, for predicting drug response in cancer cell lines and their Mechanism of Action (MoA). To ensure model generalization, we trained it on multiple datasets and evaluated its performance using three cross-validation schemes. Its efficiency allows it to be used with gene expression. In addition, SparseGO integrates an eXplainable Artificial Intelligence (XAI) technique, DeepLIFT, with Support Vector Machines to computationally discover the MoA of drugs. FINDINGS SparseGO's sparse implementation significantly reduced GPU memory usage and training speed compared to other methods, allowing it to process gene expression instead of mutations as input data. SparseGO using expression improved the accuracy and enabled its use on drug repositioning. Furthermore, gene expression allows the prediction of MoA using 265 drugs to train it. It was validated on understudied drugs such as parbendazole and PD153035. INTERPRETATION SparseGO is an effective XAI method for predicting, but more importantly, understanding drug response. FUNDING The Accelerator Award Programme funded by Cancer Research UK [C355/A26819], Fundación Científica de la AECC and Fondazione AIRC, Project PIBA_2020_1_0055 funded by the Basque Government and the Synlethal Project (RETOS Investigacion, Spanish Government).
Collapse
Affiliation(s)
- Katyna Sada Del Real
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián 20018, Spain
| | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, San Sebastián 20018, Spain; Instituto de Ciencia de Datos e Inteligencia Artificial (DATAI), Universidad de Navarra, Pamplona 31080, Spain.
| |
Collapse
|
9
|
Wang Y, Zhu Q, Guo S, Ao J, Zhang W, Fei J, Yu S, Niu M, Zhang Y, Sherman MY, Xiao ZXJ, Yi Y. HSF1 activates the FOXO3a-ΔNp63α-CDK4 axis to promote head and neck squamous cell carcinoma cell proliferation and tumour growth. FEBS Lett 2023; 597:1125-1137. [PMID: 36700826 DOI: 10.1002/1873-3468.14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers worldwide. Heat shock factor 1 (HSF1) is a conserved transcriptional factor that plays a critical role in maintaining cellular proteostasis. However, the role of HSF1 in HNSCC development remains largely unclear. Here, we report that HSF1 promotes forkhead box protein O3a (FOXO3a)-dependent transcription of ΔNp63α (p63 isoform in the p53 family; inhibits cell migration, invasion, and metastasis), which leads to upregulation of cyclin-dependent kinase 4 expression and HNSCC tumour growth. Ablation of HSF1 or treatment with KRIBB11, a specific pharmacological inhibitor of HSF1, significantly suppresses ΔNp63α expression and HNSCC tumour growth. Clinically, the expression of HSF1 is positively correlated with the expression of ΔNp63α in HNSCC tumours. Together, this study demonstrates that the HSF1-ΔNp63α pathway is critically important for HNSCC tumour growth.
Collapse
Affiliation(s)
- Yuemeng Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qile Zhu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shiya Guo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Ao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenhua Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023; 315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
Affiliation(s)
- Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Zhang W, Qian W, Gu J, Gong M, Zhang W, Zhang S, Zhou C, Jiang Z, Jiang J, Han L, Wang X, Wu Z, Ma Q, Wang Z. Mutant p53 driven-LINC00857, a protein scaffold between FOXM1 and deubiquitinase OTUB1, promotes the metastasis of pancreatic cancer. Cancer Lett 2023; 552:215976. [PMID: 36272615 DOI: 10.1016/j.canlet.2022.215976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 02/09/2023]
Abstract
Tumour metastasis is the major adverse factor for recurrence and death in pancreatic cancer (PC) patients. P53 mutations are considered to be the second most common type of mutation in PC and significantly promote PC metastasis. However, the molecular mechanisms underlying the effects of p53 mutations, especially the regulatory relationship of the protein with long noncoding RNAs (lncRNAs), remain unclear. In the present study, we demonstrated that the lncRNA LINC00857 exhibits a significantly elevated level in PC and that it is associated with poor prognosis; furthermore, TCGA data showed that LINC00857 expression was significantly upregulated in the mutant p53 group compared with the wild-type p53 group. Gain- and loss-of-function experiments showed that LINC00857 promotes the metastasis of PC cells. We further found that LINC00857 upregulates FOXM1 protein expression and thus accelerates metastasis in vitro and in vivo. Mechanistically, LINC00857 bound simultaneously to FOXM1 and to the deubiquitinase OTUB1, thereby serving as a protein scaffold and enhancing the interaction between FOXM1 and OTUB1, which inhibits FOXM1 degradation through the ubiquitin-proteasome pathway. Interestingly, we found that mutant p53 promotes LINC00857 transcription by binding to its promoter region. Finally, atorvastatin, a commonly prescribe lipid-lowering drug, appeared to inhibit PC metastasis by inhibiting the mutant p53-LINC00857 axis. Taken together, our results provide new insights into the biology driving PC metastasis and indicate that the mutant p53-LINC00857 axis might represent a novel therapeutic target for PC metastasis.
Collapse
Affiliation(s)
- Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Mengyuan Gong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Jie Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China; Pancreatic Disease Center of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi Province, China.
| |
Collapse
|
12
|
Liu B, Yi Z, Guan Y, Ouyang Q, Li C, Guan X, Lv D, Li L, Zhai J, Qian H, Xu B, Ma F, Zeng Y. Molecular landscape of TP53 mutations in breast cancer and their utility for predicting the response to HER-targeted therapy in HER2 amplification-positive and HER2 mutation-positive amplification-negative patients. Cancer Med 2022; 11:2767-2778. [PMID: 35393784 PMCID: PMC9302303 DOI: 10.1002/cam4.4652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose We used targeted capture sequencing to analyze TP53‐mutated circulating tumor DNA (ctDNA) in metastatic breast cancer patients and to determine whether TP53 mutation has predictive value for anti‐human epidermal growth factor receptor 2 (HER2) treatment for in HER2 amplification‐positive patients (HER2+) and HER2 mutation‐positive, amplification‐negative (HER2−/mut) patients. Patients and Methods TP53 mutation features were analyzed in the Geneplus cohort (n = 1184). The MSK‐BREAST cohort was used to explore the value of TP53 mutation in predicting anti‐HER‐2 antibody efficacy. Sequencing of ctDNA in phase Ib, phase Ic, phase II clinical trials of pyrotinib (HER2+ patients), and an investigator‐initiated phase II study of pyrotinib (HER2−/mut patients) were performed to analyze the relationships between TP53 mutation and prognosis for HER2 TKIs. The MSK‐BREAST cohort, MutHER, and SUMMIT cohort were used for verification. Results TP53 mutations were detected in 53.1% (629/1184) of patients in the Geneplus cohort. The TP53 mutation rate was higher in HR‐negative (p < 0.001) and HER2 amplification‐positive (p = 0.015) patients. Among patients receiving anti‐HER2 antibody therapy, those whose tumors carried TP53 mutations had a shorter PFS (p = 0.004). However, the value of TP53 mutation in predicting HER2 TKI response was inconsistent. In HER2+ patients, no difference in PFS was observed among patients with different TP53 statuses in the combined analysis of the pyrotinib phase Ib, phase Ic, and phase II clinical trials (p = 1.00) or in the MSK‐BREAST cohort (p = 0.62). In HER2−/mut patients, TP53 mutation‐positive patients exhibited a trend toward worse prognosis with anti‐HER2 TKI treatment than TP53‐wild‐type patients in our investigator‐initiated phase II study (p = 0.15), and this trend was confirmed in the combined analysis of the MutHER and SUMMIT cohorts (p = 0.01). Conclusions TP53 mutation can be used to identify biomarkers of anti‐HER2 antibody drug resistance in HER2+ patients and HER2 TKI resistance in HER2−/mut patients.
Collapse
Affiliation(s)
- Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Zongbi Yi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, Beijing, China.,Department of Computer Science and Technology, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Lv
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixi Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
13
|
Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14:38-54. [PMID: 35116102 PMCID: PMC8790418 DOI: 10.4251/wjgo.v14.i1.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal cancers with rising incidence. Despite progress in its treatment, with the introduction of more effective chemotherapy regimens in the last decade, prognosis of metastatic disease remains inferior to other cancers with long term survival being the exception. Molecular characterization of pancreatic cancer has elucidated the landscape of the disease and has revealed common lesions that contribute to pancreatic carcinogenesis. Regulation of proteostasis is critical in cancers due to increased protein turnover required to support the intense metabolism of cancer cells. The proteasome is an integral part of this regulation and is regulated, in its turn, by key transcription factors, which induce transcription of proteasome structural units. These include FOXO family transcription factors, NFE2L2, hHSF1 and hHSF2, and NF-Y. Networks that encompass proteasome regulators and transduction pathways dysregulated in pancreatic cancer such as the KRAS/ BRAF/MAPK and the Transforming growth factor beta/SMAD pathway contribute to pancreatic cancer progression. This review discusses the proteasome and its transcription factors within the pancreatic cancer cellular micro-environment. We also consider the role of stemness in carcinogenesis and the use of proteasome inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Biology, Algoma University, Sault Sainte Marie P6A3T6, ON, Canada
| | - Ioannis A Voutsadakis
- Department of Medical Oncology, Sault Area Hospital, Sault Sainte Marie P6A3T6, ON, Canada
| |
Collapse
|
14
|
Osteosarcoma exocytosis of soluble LGALS3BP mediates macrophages toward a tumoricidal phenotype. Cancer Lett 2021; 528:1-15. [PMID: 34952143 DOI: 10.1016/j.canlet.2021.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to elucidate the interactions between osteosarcoma (OS) and M1 macrophages infiltrated into the tumor microenvironment and to explore the underlying mechanisms whereby M1 macrophages influence the growth of OS, so that novel treatments of OS can be developed. A transwell co-culture system, an indirect conditioned medium culture system and two orthotopic bearing OS models were established to assess for the interplay between M1 macrophages and OS. We found that the co-culture of M1 macrophages with OS cells significantly inhibited the growth of the tumor cells by inducing apoptosis. Furthermore, HSPA1L secreted by M1 macrophages exerted this anti-tumor effect through the IRAK1 and IRAK4 pathways. LGALS3BP secreted by OS cells bound to the ligand LGALS3 on M1 macrophages and thereby induced the secretion of Hspa11 via Akt phosphorylation. In vivo experiments demonstrated that the culture supernatant of OS-stimulated M1 macrophages significantly inhibited the growth of OS, whereas silencing Lgals3bp promoted the progression of OS. In conclusion, OS modifies the phenotype of tumor-associated macrophages (TAMs) and thereby influences the apoptosis of OS cells through soluble factors. The modulation of TAMs may be a promising and effective therapeutic approach in OS.
Collapse
|
15
|
Nachmias B, Rund D. p53 in Acute Myeloid Leukemia-Still a significant other. Leuk Lymphoma 2021; 62:3315-3317. [PMID: 34608823 DOI: 10.1080/10428194.2021.1988592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah Rund
- Department of Hematology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
16
|
Zhang C, Liu J, Xu D, Zhang T, Hu W, Feng Z. Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol 2021; 12:674-687. [PMID: 32722796 PMCID: PMC7749743 DOI: 10.1093/jmcb/mjaa040] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
p53 is a key tumor suppressor, and loss of p53 function is frequently a prerequisite for cancer development. The p53 gene is the most frequently mutated gene in human cancers; p53 mutations occur in >50% of all human cancers and in almost every type of human cancers. Most of p53 mutations in cancers are missense mutations, which produce the full-length mutant p53 (mutp53) protein with only one amino acid difference from wild-type p53 protein. In addition to loss of the tumor-suppressive function of wild-type p53, many mutp53 proteins acquire new oncogenic activities independently of wild-type p53 to promote cancer progression, termed gain-of-function (GOF). Mutp53 protein often accumulates to very high levels in cancer cells, which is critical for its GOF. Given the high mutation frequency of the p53 gene and the GOF activities of mutp53 in cancer, therapies targeting mutp53 have attracted great interest. Further understanding the mechanisms underlying mutp53 protein accumulation and GOF will help develop effective therapies treating human cancers containing mutp53. In this review, we summarize the recent advances in the studies on mutp53 regulation and GOF as well as therapies targeting mutp53 in human cancers.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Dandan Xu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Tianliang Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
17
|
Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021; 1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023]
Abstract
Cell death is a common and active process that is involved in various biological processes, including organ development, morphogenesis, maintaining tissue homeostasis and eliminating potentially harmful cells. Abnormal regulation of cell death significantly contributes to tumor development, progression and chemoresistance. The mechanisms of cell death are complex and involve not only apoptosis and necrosis but also their cross-talk with other types of cell death, such as autophagy and the newly identified ferroptosis. Cancer cells are chronically exposed to various stresses, such as lack of oxygen and nutrients, immune responses, dysregulated metabolism and genomic instability, all of which lead to activation of heat shock factor 1 (HSF1). In response to heat shock, oxidative stress and proteotoxic stresses, HSF1 upregulates transcription of heat shock proteins (HSPs), which act as molecular chaperones to protect normal cells from stresses and various diseases. Accumulating evidence suggests that HSF1 regulates multiple types of cell death through different signaling pathways as well as expression of distinct target genes in cancer cells. Here, we review the current understanding of the potential roles and molecular mechanism of HSF1 in regulating apoptosis, autophagy and ferroptosis. Deciphering HSF1-regulated signaling pathways and target genes may help in the development of new targeted anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yumei Fan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Pengxiu Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ke Tan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
18
|
Kuchur OA, Kuzmina DO, Dukhinova MS, Shtil AA. The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development. Acta Naturae 2021; 13:65-76. [PMID: 34707898 PMCID: PMC8526179 DOI: 10.32607/actanaturae.11247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/24/2020] [Indexed: 12/05/2022] Open
Abstract
Survival mechanisms are activated in tumor cells in response to therapeutic ionizing radiation. This reduces a treatment's effectiveness. The p53, p63, and p73 proteins belonging to the family of proteins that regulate the numerous pathways of intracellular signal transduction play a key role in the development of radioresistance. This review analyzes the p53-dependent and p53-independent mechanisms involved in overcoming the resistance of tumor cells to radiation exposure.
Collapse
Affiliation(s)
- O. A. Kuchur
- ITMO University, Saint-Petersburg, 191002 Russia
| | | | | | - A. A. Shtil
- ITMO University, Saint-Petersburg, 191002 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
19
|
Isermann T, Şener ÖÇ, Stender A, Klemke L, Winkler N, Neesse A, Li J, Wegwitz F, Moll UM, Schulz-Heddergott R. Suppression of HSF1 activity by wildtype p53 creates a driving force for p53 loss-of-heterozygosity. Nat Commun 2021; 12:4019. [PMID: 34188043 PMCID: PMC8242083 DOI: 10.1038/s41467-021-24064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
The vast majority of human tumors with p53 mutations undergo loss of the remaining wildtype p53 allele (loss-of-heterozygosity, p53LOH). p53LOH has watershed significance in promoting tumor progression. However, driving forces for p53LOH are poorly understood. Here we identify the repressive WTp53-HSF1 axis as one driver of p53LOH. We find that the WTp53 allele in AOM/DSS chemically-induced colorectal tumors (CRC) of p53R248Q/+ mice retains partial activity and represses heat-shock factor 1 (HSF1), the master regulator of the proteotoxic stress response (HSR) that is ubiquitously activated in cancer. HSR is critical for stabilizing oncogenic proteins including mutp53. WTp53-retaining CRC tumors, tumor-derived organoids and human CRC cells all suppress the tumor-promoting HSF1 program. Mechanistically, retained WTp53 activates CDKN1A/p21, causing cell cycle inhibition and suppression of E2F target MLK3. MLK3 links cell cycle with the MAPK stress pathway to activate the HSR response. In p53R248Q/+ tumors WTp53 activation by constitutive stress represses MLK3, thereby weakening the MAPK-HSF1 response necessary for tumor survival. This creates selection pressure for p53LOH which eliminates the repressive WTp53-MAPK-HSF1 axis and unleashes tumor-promoting HSF1 functions, inducing mutp53 stabilization enabling invasion.
Collapse
Affiliation(s)
- Tamara Isermann
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Özge Çiçek Şener
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Adrian Stender
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Luisa Klemke
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadine Winkler
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, University Medical Center Göttingen, Göttingen, Germany
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
20
|
Pan-Cancer Analysis of the Prognostic and Immunological Role of HSF1: A Potential Target for Survival and Immunotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5551036. [PMID: 34239690 PMCID: PMC8238600 DOI: 10.1155/2021/5551036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Emerging evidence revealed the significant roles of heat shock factor 1 (HSF1) in cancer initiation, development, and progression, but there is no pan-cancer analysis of HSF1. The present study first comprehensively investigated the expression profiles and prognostic significance of HSF1 and the relationship of HSF1 with clinicopathological parameters and immune cell infiltration using bioinformatic techniques. HSF1 is significantly upregulated in various common cancers, and it is associated with prognosis. Pan-cancer Cox regression analysis indicated that the high expression of HSF1 was associated with poor overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), head and neck squamous cell carcinoma (HNSC), and kidney renal papillary cell carcinoma (KIRP) patients. The methylation of HSF1 DNA was decreased in most cancers and negatively correlated with the HSF1 expression. Increased phosphorylation of S303, S307, and S363 in HSF1 was observed in some cancers. HSF1 remarkably correlated with the levels of infiltrating cells and immune checkpoint genes. Our pan-cancer analysis provides a deep understanding of the functions of HSF1 in oncogenesis and metastasis in different cancers.
Collapse
|
21
|
Heat Shock Factor 1 as a Prognostic and Diagnostic Biomarker of Gastric Cancer. Biomedicines 2021; 9:biomedicines9060586. [PMID: 34064083 PMCID: PMC8224319 DOI: 10.3390/biomedicines9060586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/09/2023] Open
Abstract
Identification of effective prognostic and diagnostic biomarkers is needed to improve the diagnosis and treatment of gastric cancer. Early detection of gastric cancer through diagnostic markers can help establish effective treatments. Heat shock factor 1 (HSF1), presented in this review, is known to be regulated by a broad range of transcription factors, including those characterized in various malignant tumors, including gastric cancer. Particularly, it has been demonstrated that HSF1 regulation in various cancers is correlated with different processes, such as cell death, proliferation, and metastasis. Due to the effect of HSF1 on the initiation, development, and progression of various tumors, it is considered as an important gene for understanding and treating tumors. Additionally, HSF1 exhibits high expression in various cancers, and its high expression adversely affects the prognosis of various cancer patients, thereby suggesting that it can be used as a novel, predictive, prognostic, and diagnostic biomarker for gastric cancer. In this review, we discuss the literature accumulated in recent years, which suggests that there is a correlation between the expression of HSF1 and prognosis of gastric cancer patients through public data. Consequently, this evidence also indicates that HSF1 can be established as a powerful biomarker for the prognosis and diagnosis of gastric cancer.
Collapse
|
22
|
Role of p53-miRNAs circuitry in immune surveillance and cancer development: A potential avenue for therapeutic intervention. Semin Cell Dev Biol 2021; 124:15-25. [PMID: 33875349 DOI: 10.1016/j.semcdb.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/07/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
The genome's guardian, p53, is a master regulatory transcription factor that occupies sequence-specific response elements in many genes and modulates their expression. The target genes transcribe both coding RNA and non-coding RNA involved in regulating several biological processes such as cell division, differentiation, and cell death. Besides, p53 also regulates tumor immunology via regulating the molecules related to the immune response either directly or via regulating other molecules, including microRNAs (miRNAs). At the post-transcriptional level, the regulations of genes by miRNAs have been an emerging mechanism. Interestingly, p53 and various miRNAs cross-talk at different regulation levels. The cross-talk between p53 and miRNAs creates loops, turns, and networks that can influence cell metabolism, cell fate, cellular homeostasis, and tumor formation. Further, p53-miRNAs circuit has also been insinuated in the regulation of immune surveillance machinery. There are several examples of p53-miRNAs circuitry where p53 regulates immunomodulatory miRNA expression, such as miR-34a and miR-17-92. Similarly, a reverse process occurs in which miRNAs such as miR-125b and miR-let-7 regulate the expression of p53. Thus, the p53-miRNAs circuitry connects the immunomodulatory pathways and may shift the pro-inflammatory balance towards the pro-tumorigenic condition. In this review, we discuss the influence of p53-miRNAs circuitry in modulating the immune response in cancer development. We assume that thorough studies on the p53-miRNAs circuitry in various cancers may prove useful in developing effective new cancer therapeutics for successfully combating this disease.
Collapse
|
23
|
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer Stemness: p53 at the Wheel. Front Oncol 2021; 10:604124. [PMID: 33505918 PMCID: PMC7830093 DOI: 10.3389/fonc.2020.604124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor suppressor p53 maintains an equilibrium between self-renewal and differentiation to sustain a limited repertoire of stem cells for proper development and maintenance of tissue homeostasis. Inactivation of p53 disrupts this balance and promotes pluripotency and somatic cell reprogramming. A few reports in recent years have indicated that prevalent TP53 oncogenic gain-of-function (GOF) mutations further boosts the stemness properties of cancer cells. In this review, we discuss the role of wild type p53 in regulating pluripotency of normal stem cells and various mechanisms that control the balance between self-renewal and differentiation in embryonic and adult stem cells. We also highlight how inactivating and GOF mutations in p53 stimulate stemness in cancer cells. Further, we have explored the various mechanisms of mutant p53-driven cancer stemness, particularly emphasizing on the non-coding RNA mediated epigenetic regulation. We have also analyzed the association of cancer stemness with other crucial gain-of-function properties of mutant p53 such as epithelial to mesenchymal transition phenotypes and chemoresistance to understand how activation of one affects the other. Given the critical role of cancer stem-like cells in tumor maintenance, cancer progression, and therapy resistance of mutant p53 tumors, targeting them might improve therapeutic efficacy in human cancers with TP53 mutations.
Collapse
Affiliation(s)
- Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Damayanti Das Ghosh
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
24
|
Shi Y, Sun L, Zhang R, Hu Y, Wu Y, Dong X, Dong D, Chen C, Geng Z, Li E, Fan Y. Thrombospondin 4/integrin α2/HSF1 axis promotes proliferation and cancer stem-like traits of gallbladder cancer by enhancing reciprocal crosstalk between cancer-associated fibroblasts and tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:14. [PMID: 33407730 PMCID: PMC7789630 DOI: 10.1186/s13046-020-01812-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Background Cancer-associated fibroblasts (CAFs), the primary component of tumor stroma in tumor microenvironments, are well-known contributors to the malignant progression of gallbladder cancer (GBC). Thrombospondins (THBSs or TSPs) comprise a family of five adhesive glycoproteins that are overexpressed in many types of cancers. However, the expression and potential roles of TSPs in the crosstalk between CAFs and GBC cells has remained unclear. Methods Peritumoral fibroblasts (PTFs) and CAFs were extracted from GBC tissues. Thrombospondin expression in GBC was screened by RT-qPCR. MTT viability assay, colony formation, EdU incorporation assay, flow cytometry analysis, Transwell assay, tumorsphere formation and western blot assays were performed to investigate the effects of CAF-derived TSP-4 on GBC cell proliferation, EMT and cancer stem-like features. Subcutaneous tumor formation models were established by co-implanting CAFs and GBC cells or GBC cells overexpressing heat shock factor 1 (HSF1) to evaluate the roles of TSP-4 and HSF1 in vivo. To characterize the mechanism by which TSP-4 is involved in the crosstalk between CAFs and GBC cells, the levels of a variety of signaling molecules were detected by coimmunoprecipitation, immunofluorescence staining, and ELISA assays. Results In the present study, we showed that TSP-4, as the stromal glycoprotein, is highly expressed in CAFs from GBC and that CAF-derived TSP-4 induces the proliferation, EMT and cancer stem-like features of GBC cells. Mechanistically, CAF-secreted TSP-4 binds to the transmembrane receptor integrin α2 on GBC cells to induce the phosphorylation of HSF1 at S326 and maintain the malignant phenotypes of GBC cells. Moreover, the TSP-4/integrin α2 axis-induced phosphorylation of HSF1 at S326 is mediated by Akt activation (p-Akt at S473) in GBC cells. In addition, activated HSF1 signaling increased the expression and paracrine signaling of TGF-β1 to induce the transdifferentiation of PTFs into CAFs, leading to their recruitment into GBC and increased TSP-4 expression in CAFs, thereby forming a positive feedback loop to drive the malignant progression of GBC. Conclusions Our data indicate that a complex TSP-4/integrin α2/HSF1/TGF-β cascade mediates reciprocal interactions between GBC cells and CAFs, providing a promising therapeutic target for gallbladder cancer patients.
Collapse
Affiliation(s)
- Yu Shi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Rui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Yuan Hu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Yinying Wu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xuyuan Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Danfeng Dong
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Zhimin Geng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| | - Yangwei Fan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
25
|
HER2 Status in High-Risk Endometrial Cancers (PORTEC-3): Relationship with Histotype, Molecular Classification, and Clinical Outcomes. Cancers (Basel) 2020; 13:cancers13010044. [PMID: 33375706 PMCID: PMC7795222 DOI: 10.3390/cancers13010044] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary HER2 testing in endometrial cancer (EC) has gained renewed interest as a therapeutic target. However, HER2 status has not been investigated in the context of the molecular EC classification. Here, we aimed to determine the clinicopathological features and prognostic significance of the HER2 status in the molecularly classified PORTEC-3 trial population of patients with high-risk EC. HER2 status of 407 high-risk EC was determined by HER2 immunohistochemistry and HER2 dual in situ hybridization. Twenty-four (5.9%) HER2-positive EC of various histological subtypes were identified, including serous (n = 9, 37.5%), endometrioid (n = 6, 25.0%), and clear cell (n = 5, 20.8%). HER2 positivity was highly associated with the p53-abnormal subgroup (p53abn, 23/24 cases; p < 0.0001). The correlation between p53abn and the HER2 status (ρ = 0.438; p < 0.0001) was significantly stronger (p < 0.0001) than between serous histology and the HER2 status (ρ = 0.154; p = 0.002). HER2 status did not have independent prognostic value for survival after correction for the molecular classification. Our study strongly suggests that molecular subclass-directed HER2 testing is superior to histotype-directed testing. Abstract HER2 status has not been investigated in the context of the molecular endometrial cancer (EC) classification. Here, we aimed to determine the clinicopathological features and prognostic significance of the HER2 status in the molecularly classified PORTEC-3 trial population of patients with high-risk EC (HREC). HER2 testing was performed on tumor tissues of 407 molecularly classified HREC. HER2 status was determined by HER2 immunohistochemistry (IHC; all cases) and subsequent HER2 dual in situ hybridization for cases with any (in) complete moderate to strong membranous HER2 IHC expression. The Χ2 test and Spearman’s Rho correlation coefficient were used to compare clinicopathological and molecular features. The Kaplan–Meier method, log-rank test, and Cox proportional hazards models were used for survival analysis. We identified 24 (5.9%) HER2-positive EC of various histological subtypes including serous (n = 9, 37.5%), endometrioid (n = 6, 25.0%), and clear cell (n = 5, 20.8%). HER2 positivity was highly associated with the p53-abnormal subgroup (p53abn, 23/24 cases; p < 0.0001). The correlation between p53abn and the HER2 status (ρ = 0.438; p < 0.0001) was significantly stronger (p < 0.0001) than between serous histology and the HER2 status (ρ = 0.154; p = 0.002). HER2 status did not have independent prognostic value for survival after correction for the molecular classification. Our study strongly suggests that molecular subclass-directed HER2 testing is superior to histotype-directed testing. This insight will be relevant for future trials targeting HER2.
Collapse
|
26
|
The ABL2 kinase regulates an HSF1-dependent transcriptional program required for lung adenocarcinoma brain metastasis. Proc Natl Acad Sci U S A 2020; 117:33486-33495. [PMID: 33318173 PMCID: PMC7777191 DOI: 10.1073/pnas.2007991117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Among all cancer types, lung cancer patients exhibit the highest prevalence of brain metastasis, often associated with cognitive impairment, seizures, decline in quality of life, and decreased survival. Limited therapeutic options are currently available to treat brain metastasis. A comprehensive understanding of the signaling pathways and transcriptional networks required for survival and growth of brain-metastatic cancer cells is needed to develop effective strategies to treat this disease. Here, we report that the Heat Shock Transcription Factor 1 (HSF1) is upregulated in brain-metastatic lung cancer cells and is required for brain metastasis in mice. Importantly, we show that the HSF1-dependent expression of E2F target genes implicated in cell cycle progression and survival is decreased by blood–brain barrier-penetrant ABL allosteric inhibitors. Brain metastases are the most common intracranial tumors in adults and are associated with increased patient morbidity and mortality. Limited therapeutic options are currently available for the treatment of brain metastasis. Here, we report on the discovery of an actionable signaling pathway utilized by metastatic tumor cells whereby the transcriptional regulator Heat Shock Factor 1 (HSF1) drives a transcriptional program, divergent from its canonical role as the master regulator of the heat shock response, leading to enhanced expression of a subset of E2F transcription factor family gene targets. We find that HSF1 is required for survival and outgrowth by metastatic lung cancer cells in the brain parenchyma. Further, we identify the ABL2 tyrosine kinase as an upstream regulator of HSF1 protein expression and show that the Src-homology 3 (SH3) domain of ABL2 directly interacts with HSF1 protein at a noncanonical, proline-independent SH3 interaction motif. Pharmacologic inhibition of the ABL2 kinase using small molecule allosteric inhibitors, but not ATP-competitive inhibitors, disrupts this interaction. Importantly, knockdown as well as pharmacologic inhibition of ABL2 using allosteric inhibitors impairs expression of HSF1 protein and HSF1-E2F transcriptional gene targets. Collectively, these findings reveal a targetable ABL2-HSF1-E2F signaling pathway required for survival by brain-metastatic tumor cells.
Collapse
|
27
|
Vostakolaei MA, Hatami-Baroogh L, Babaei G, Molavi O, Kordi S, Abdolalizadeh J. Hsp70 in cancer: A double agent in the battle between survival and death. J Cell Physiol 2020; 236:3420-3444. [PMID: 33169384 DOI: 10.1002/jcp.30132] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70-1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane-associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Collapse
Affiliation(s)
- Mehdi A Vostakolaei
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hatami-Baroogh
- Department of Reproduction and Development, Royan Institute for Animal Biotechnology, ACER, Isfahan, Iran
| | - Ghader Babaei
- Department of Biochemistry, Urmia University Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirafkan Kordi
- Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem 2020; 8:829. [PMID: 33195038 PMCID: PMC7593821 DOI: 10.3389/fchem.2020.00829] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is the most lethal malignancy of the gastrointestinal tract. Due to its propensity for early local and distant spread, affected patients possess extremely poor prognosis. Currently applied treatments are not effective enough to eradicate all cancer cells, and minimize their migration. Besides, these treatments are associated with adverse effects on normal cells and organs. These therapies are not able to increase the overall survival rate of patients; hence, finding novel adjuvants or alternatives is so essential. Up to now, medicinal herbs were utilized for therapeutic goals. Herbal-based medicine, as traditional biotherapeutics, were employed for cancer treatment. Of them, apigenin, as a bioactive flavonoid that possesses numerous biological properties (e.g., anti-inflammatory and anti-oxidant effects), has shown substantial anticancer activity. It seems that apigenin is capable of suppressing the proliferation of cancer cells via the induction of cell cycle arrest and apoptosis. Besides, apigenin inhibits metastasis via down-regulation of matrix metalloproteinases and the Akt signaling pathway. In pancreatic cancer cells, apigenin sensitizes cells in chemotherapy, and affects molecular pathways such as the hypoxia inducible factor (HIF), vascular endothelial growth factor (VEGF), and glucose transporter-1 (GLUT-1). Herein, the biotherapeutic activity of apigenin and its mechanisms toward cancer cells are presented in the current review to shed some light on anti-tumor activity of apigenin in different cancers, with an emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Pooyan Makvandi
- Centre for Micro-BioRobotics, Istituto Italiano di Tecnologia, Pisa, Italy.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Fedorova O, Daks A, Shuvalov O, Kizenko A, Petukhov A, Gnennaya Y, Barlev N. Attenuation of p53 mutant as an approach for treatment Her2-positive cancer. Cell Death Discov 2020; 6:100. [PMID: 33083021 PMCID: PMC7548004 DOI: 10.1038/s41420-020-00337-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the world's leading causes of oncological disease-related death. It is characterized by a high degree of heterogeneity on the clinical, morphological, and molecular levels. Based on molecular profiling breast carcinomas are divided into several subtypes depending on the expression of a number of cell surface receptors, e.g., ER, PR, and HER2. The Her2-positive subtype occurs in ~10-15% of all cases of breast cancer, and is characterized by a worse prognosis of patient survival. This is due to a high and early relapse rate, as well as an increased level of metastases. Several FDA-approved drugs for the treatment of Her2-positive tumors have been developed, although eventually cancer cells develop drug resistance. These drugs target either the homo- or heterodimerization of Her2 receptors or the receptors' RTK activity, both of them being critical for the proliferation of cancer cells. Notably, Her2-positive cancers also frequently harbor mutations in the TP53 tumor suppressor gene, which exacerbates the unfavorable prognosis. In this review, we describe the molecular mechanisms of RTK-specific drugs and discuss new perspectives of combinatorial treatment of Her2-positive cancers through inhibition of the mutant form of p53.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Petukhov
- Institute of cytology RAS, St-Petersburg, Russia
- Almazov Federal North-West Medical Research Centre, St-Petersburg, Russia
| | | | - Nikolai Barlev
- Institute of cytology RAS, St-Petersburg, Russia
- MIPT, Doloprudnuy, Moscow region, Russia
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
- Chumakov FSC R&D IBP RAS, Moscow, 108819 Russia
| |
Collapse
|
30
|
Romeo MA, Gilardini Montani MS, Benedetti R, Santarelli R, D'Orazi G, Cirone M. STAT3 and mutp53 Engage a Positive Feedback Loop Involving HSP90 and the Mevalonate Pathway. Front Oncol 2020; 10:1102. [PMID: 32754441 PMCID: PMC7367154 DOI: 10.3389/fonc.2020.01102] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Oncosuppressor TP53 and oncogene STAT3 have been shown to engage an interplay in which they negatively influence each other. Conversely, mutant (mut) p53 may sustain STAT3 phosphorylation by displacing SH2 phosphatase while whether STAT3 could influence mutp53 has not been clarified yet. In this study we found that pharmacologic or genetic inhibition of STAT3 in both glioblastoma and pancreatic cancer cells, carrying mutp53 protein, reduced mutp53 expression level by down-regulating chaperone HSP90 as well as molecules belonging to the mevalonate pathway. On the other hand, HSP90 and the mevalonate pathway were involved in sustaining STAT3 phosphorylation mediated by mutp53. In conclusion, this study unveils for the first time that mutp53 can establish with STAT3, similarly to what observed with other oncogenic pathways, a criminal alliance with a crucial role in promoting cancerogenesis.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | - Gabriella D'Orazi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
31
|
Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer 2020; 1874:188390. [PMID: 32653364 DOI: 10.1016/j.bbcan.2020.188390] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 07/04/2020] [Indexed: 12/16/2022]
Abstract
Heat shock factor 1 (HSF1) systematically guards proteome stability and proteostasis by regulating the expression of heat shock protein (HSP), thus rendering cancer cells addicted to HSF1. The non-canonical transcriptional programme driven by HSF1, which is distinct from the heat shock response (HSR), plays an indispensable role in the initiation, promotion and progression of cancer. Therefore, HSF1 is widely exploited as a potential therapeutic target in a broad spectrum of cancers. Various molecules and signals in the cell jointly regulate the activation and attenuation of HSF1. The high-level expression of HSF1 in tumours and its relationship with patient prognosis imply that HSF1 can be used as a biomarker for patient prognosis and a target for cancer treatment. In this review, we discuss the newly identified mechanisms of HSF1 activation and regulation, the diverse functions of HSF1 in tumourigenesis, and the feasibility of using HSF1 as a prognostic marker. Disrupting cancer cell proteostasis by targeting HSF1 represents a novel anti-cancer therapeutic strategy.
Collapse
|
32
|
Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life Sci 2020; 256:118000. [PMID: 32585246 DOI: 10.1016/j.lfs.2020.118000] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS Hsp90 is regarded as an important therapeutic target in cancer treatment. Client proteins of Hsp90 like Beclin-1, PI3K, and AKT, are associated with tumor development, poor prognosis, and resistance to cancer therapies. This study aims to analyze the role of Gedunin, an Hsp-90 inhibitor, in mediation of crosstalk between apoptosis and autophagy by targeting Beclin-1:Bcl-2 interaction, and ER stress. MAIN METHODS A549 cells were treated with different concentrations of gedunin, and inhibitory rate was evaluated by MTT assay. Effect of gedunin on generation of reactive oxygen species, mitochondrial membrane potential, and chromatin condensation was studied by staining methods like DCFH-DA, MitoTracker, and DAPI. Expression of EGFR, PIK3CA, AKT, marker genes for apoptosis and autophagy were studied using semi-quantitative RT-PCR. Interaction study of Hsp90:Beclin-1:Bcl-2 was done by immunoprecipitation analysis. Protein expression of autophagy and apoptosis markers along with Grp78, Hsp70, and Hsp90 was analyzed by immunoblotting. KEY FINDINGS Gedunin exerts cytotoxic effects, causes increase in ROS generation, downregulates mitochondrial membrane potential and induces loss in DNA integrity. mRNA expression analysis revealed that gedunin sensitized A549 cells towards apoptosis by downregulating EGFR, PIK3CA, AKT, and autophagy. Gedunin also inhibited interaction between Hsp90:Beclin-1:Bcl-2, leading to downregulation of autophagy (Beclin-1, Atg5-12 complex, and LC3) and antiapoptotic protein Bcl-2, which may result in ER stress-induced apoptosis. Moreover, Hsp90 inhibition by gedunin did not cause upregulation of Hsp70 expression. SIGNIFICANCE Gedunin induces apoptosis in lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and autophagy downregulation, thus making gedunin a good drug lead for targeting lung cancer.
Collapse
|
33
|
Statin as anti-cancer therapy in autochthonous T-lymphomas expressing stabilized gain-of-function mutant p53 proteins. Cell Death Dis 2020; 11:274. [PMID: 32332697 PMCID: PMC7181693 DOI: 10.1038/s41419-020-2466-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/23/2022]
Abstract
An important component of missense mutant p53 gain-of-function (mutp53 GOF) activities is the ability of stabilized mutp53 proteins to upregulate the mevalonate pathway, providing a rationale for exploring the statin family of HMG-CoA reductase inhibitors as anticancer agents in mutp53 tumors. In this small exploratory study we report on the effects of statin treatment in autochthonous mouse models of clinically advanced T-cell lymphoma expressing two different GOF mutp53 alleles. We find that Rosuvastatin monotherapy shows a modest, p53 allele-selective and transient anti-tumor effect in autochthonous T-lymphomas expressing the p53 R248Q DNA contact mutant, but not in tumors expressing the p53 R172H conformational mutant. p53 null mice also do not benefit. In vitro statin sensitivity is not a strong predictor for in vivo sensitivity, while subcutaneous allografts are. Future explorations of statins in combination therapies are justified to improve its anti-tumor effects and to better define the most statin-sensitive alleles and tumor types among mutp53-stabilized cancers.
Collapse
|
34
|
Wang YL, Wu W, Su YN, Ai ZP, Mou HC, Wan LS, Luo Y, Qiu MH, Zhang JH. Buxus alkaloid compound destabilizes mutant p53 through inhibition of the HSF1 chaperone axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153187. [PMID: 32097779 DOI: 10.1016/j.phymed.2020.153187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND P53 is the most frequently mutated gene in most tumour types, and the mutant p53 protein accumulates at high levels in tumours to promote tumour development and progression. Thus, targeting mutant p53 for degradation is one of the therapeutic strategies used to manage tumours that depend on mutant p53 for survival. Buxus alkaloids are traditionally used in the treatment of cardiovascular diseases. We found that triterpenoid alkaloids extracted from Buxus sinica found in the Yunnan Province exhibit anticancer activity by depleting mutant p53 levels in colon cancer cells. PURPOSE To explore the anticancer mechanism of action of the triterpenoid alkaloid KBA01 compound by targeting mutant p53 degradation. STUDY DESIGN AND METHODS Different mutant p53 cell lines were used to evaluate the anticancer activity of KBA01. MTT assay, colony formation assay and cell cycle analysis were performed to examine the effect of KBA01 on cancer cell proliferation. Western blotting and qPCR were used to investigate effects of depleting mutant p53, and a ubiquitination assay was used to determine mutant p53 ubiquitin levels after cells were treated with the compound. Co-IP and small interfering RNA assays were used to explore the effects of KBA01 on the interaction of Hsp90 with mutant p53. RESULTS The triterpenoid alkaloid KBA01 can induce G2/M cell cycle arrest and the apoptosis of HT29 colon cancer cells. KBA01 decreases the stability of DNA contact mutant p53 proteins through the proteasomal pathway with minimal effects on p53 mutant protein conformation. Moreover, KBA01 enhances the interaction of mutant p53 with Hsp70, CHIP and MDM2, and knocking down CHIP and MDM2 stabilizes mutant p53 levels in KBA01-treated cells. In addition, KBA01 disrupts the HSF1-mutant p53-Hsp90 complex and releases mutant p53 to enable its MDM2- and CHIP-mediated degradation. CONCLUSION Our study reveals that KBA01 depletes mutant p53 protein in a chaperone-assisted ubiquitin/proteasome degradation pathway in cancer cells, providing insights into potential strategies to target mutant p53 tumours.
Collapse
Affiliation(s)
- Yu-Ling Wang
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wei Wu
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yong-Nan Su
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhi-Peng Ai
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Han-Chuan Mou
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Luo-Sheng Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ying Luo
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| | - Ji-Hong Zhang
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
35
|
Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0035-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractBackgroundReceptor tyrosine kinases (RTKs) are signaling enzymes responsible for the transfer of Adenosine triphosphate (ATP) γ-phosphate to the tyrosine residues substrates. RTKs demonstrate essential roles in cellular growth, metabolism, differentiation, and motility. Anomalous expression of RTK customarily leads to cell growth dysfunction, which is connected to tumor takeover, angiogenesis, and metastasis. Understanding the structure, mechanisms of adaptive and acquired resistance, optimizing inhibition of RTKs, and eradicating cum minimizing the havocs of quiescence cancer cells is paramount.MainTextTyrosine kinase inhibitors (TKIs) vie with RTKs ATP-binding site for ATP and hitherto reduce tyrosine kinase phosphorylation, thus hampering the growth of cancer cells. TKIs can either be monoclonal antibodies that compete for the receptor’s extracellular domain or small molecules that inhibit the tyrosine kinase domain and prevent conformational changes that activate RTKs. Progression of cancer is related to aberrant activation of RTKs due to due to mutation, excessive expression, or autocrine stimulation.ConclusionsUnderstanding the modes of inhibition and structures of RTKs is germane to the design of novel and potent TKIs. This review shed light on the structures of tyrosine kinases, receptor tyrosine kinases, tyrosine kinase inhibitors, minimizing imatinib associated toxicities, optimization of tyrosine kinase inhibition in curtailing quiescence in cancer cells and the prospects of receptor tyrosine kinase based treatments.
Collapse
|
36
|
HSF1 Regulates Mevalonate and Cholesterol Biosynthesis Pathways. Cancers (Basel) 2019; 11:cancers11091363. [PMID: 31540279 PMCID: PMC6769575 DOI: 10.3390/cancers11091363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock factor 1 (HSF1) is an essential transcription factor in cellular adaptation to various stresses such as heat, proteotoxic stress, metabolic stress, reactive oxygen species, and heavy metals. HSF1 promotes cancer development and progression, and increased HSF1 levels are frequently observed in multiple types of cancers. Increased activity in the mevalonate and cholesterol biosynthesis pathways, which are very important for cancer growth and progression, is observed in various cancers. However, the functional role of HSF1 in the mevalonate and cholesterol biosynthesis pathways has not yet been investigated. Here, we demonstrated that the activation of RAS-MAPK signaling through the overexpression of H-RasV12 increased HSF1 expression and the cholesterol biosynthesis pathway. In addition, the activation of HSF1 was also found to increase cholesterol biosynthesis. Inversely, the suppression of HSF1 by the pharmacological inhibitor KRIBB11 and short-hairpin RNA (shRNA) reversed H-RasV12-induced cholesterol biosynthesis. From the standpoint of therapeutic applications for hepatocellular carcinoma (HCC) treatment, HSF1 inhibition was shown to sensitize the antiproliferative effects of simvastatin in HCC cells. Overall, our findings demonstrate that HSF1 is a potential target for statin-based HCC treatment.
Collapse
|
37
|
Lorenzo-Herrero S, Sordo-Bahamonde C, González S, López-Soto A. Immunosurveillance of cancer cell stress. Cell Stress 2019; 3:295-309. [PMID: 31535086 PMCID: PMC6732214 DOI: 10.15698/cst2019.09.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer development is tightly controlled by effector immune responses that recognize and eliminate malignantly transformed cells. Nonetheless, certain immune subsets, such as tumor-associated macrophages, have been described to promote tumor growth, unraveling a double-edge role of the immune system in cancer. Cell stress can modulate the crosstalk between immune cells and tumor cells, reshaping tumor immunogenicity and/or immune function and phenotype. Infiltrating immune cells are exposed to the challenging conditions typically present in the tumor microenvironment. In return, the myriad of signaling pathways activated in response to stress conditions may tip the balance toward stimulation of antitumor responses or immune-mediated tumor progression. Here, we explore how distinct situations of cellular stress influence innate and adaptive immunity and the consequent impact on cancer establishment and progression.
Collapse
Affiliation(s)
- Seila Lorenzo-Herrero
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA) Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA) Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Segundo González
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA) Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA) Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
38
|
Cirone M, Gilardini Montani MS, Granato M, Garufi A, Faggioni A, D'Orazi G. Autophagy manipulation as a strategy for efficient anticancer therapies: possible consequences. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:262. [PMID: 31200739 PMCID: PMC6570888 DOI: 10.1186/s13046-019-1275-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
Abstract
Autophagy is a catabolic process whose activation may help cancer cells to adapt to cellular stress although, in some instances, it can induce cell death. Autophagy stimulation or inhibition has been considered an opportunity to treat cancer, especially in combination with anticancer therapies, although autophagy manipulation may be viewed as controversial. Thus, whether to induce or to inhibit autophagy may be the best option in the different cancer patients is still matter of debate. Her we will recapitulate the possible advantages or disadvantages of manipulating autophagy in cancer, not only with the aim to obtain cancer cell death and disable oncogenes, but also to evaluate its interplay with the immune response which is fundamental for the success of anticancer therapies.
Collapse
Affiliation(s)
- Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessia Garufi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy.,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Gabriella D'Orazi
- Department of Medical Science, University 'G. D'Annunzio', 66013, Chieti, Italy. .,Department of Research, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
39
|
Toma-Jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol (Dordr) 2019; 42:579-589. [DOI: 10.1007/s13402-019-00452-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
|
40
|
Gilardini Montani MS, Cecere N, Granato M, Romeo MA, Falcinelli L, Ciciarelli U, D'Orazi G, Faggioni A, Cirone M. Mutant p53, Stabilized by Its Interplay with HSP90, Activates a Positive Feed-Back Loop Between NRF2 and p62 that Induces Chemo-Resistance to Apigenin in Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11050703. [PMID: 31121848 PMCID: PMC6562395 DOI: 10.3390/cancers11050703] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers whose prognosis is worsened by the poor response to the current chemotherapies. In this study, we investigated the cytotoxic effect of Apigenin, against two pancreatic cell lines, namely Panc1 and PaCa44, harboring different p53 mutations. Apigenin is a flavonoid widely distributed in nature that displays anti-inflammatory and anticancer properties against a variety of cancers. Here we observed that Apigenin exerted a stronger cytotoxic effect against Panc1 cell line in comparison to PaCa44. Searching for mechanisms responsible for such different effect, we found that the higher cytotoxicity of Apigenin correlated with induction of higher level of intracellular ROS, reduction of mutant (mut) p53 and HSP90 expression and mTORC1 inhibition. Interestingly, we found that mutp53 was stabilized by its interplay with HSP90 and activates a positive feed-back loop between NRF2 and p62, up-regulating the antioxidant response and reducing the cytotoxicity of Apigenin. These results suggest that targeting the molecules involved in the mTOR-HSP90-mutp53-p62-NRF2-antioxidant response axis could help to overcome the chemo-resistance of pancreatic cancer to Apigenin.
Collapse
Affiliation(s)
- Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Nives Cecere
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Marisa Granato
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Maria Anele Romeo
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Luca Falcinelli
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Umberto Ciciarelli
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144 Rome, Italy.
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio", 66100 Chieti, Italy.
| | - Alberto Faggioni
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| |
Collapse
|
41
|
Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019; 11:cancers11050614. [PMID: 31052524 PMCID: PMC6563084 DOI: 10.3390/cancers11050614] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023] Open
Abstract
The capability of cancer cells to manage stress induced by hypoxia, nutrient shortage, acidosis, redox imbalance, loss of calcium homeostasis and exposure to drugs is a key factor to ensure cancer survival and chemoresistance. Among the protective mechanisms utilized by cancer cells to cope with stress a pivotal role is played by the activation of heat shock proteins (HSP) response, anti-oxidant response induced by nuclear factor erythroid 2-related factor 2 (NRF2), the hypoxia-inducible factor-1 (HIF-1), the unfolded protein response (UPR) and autophagy, cellular processes strictly interconnected. However, depending on the type, intensity or duration of cellular stress, the balance between pro-survival and pro-death pathways may change, and cell survival may be shifted into cell death. Mutations of p53 (mutp53), occurring in more than 50% of human cancers, may confer oncogenic gain-of-function (GOF) to the protein, mainly due to its stabilization and interaction with the above reported cellular pathways that help cancer cells to adapt to stress. This review will focus on the interplay of mutp53 with HSPs, NRF2, UPR, and autophagy and discuss how the manipulation of these interconnected processes may tip the balance towards cell death or survival, particularly in response to therapies.
Collapse
|
42
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
43
|
Moon HJ, Park SY, Lee SH, Kang CD, Kim SH. Nonsteroidal Anti-inflammatory Drugs Sensitize CD44-Overexpressing Cancer Cells to Hsp90 Inhibitor Through Autophagy Activation. Oncol Res 2019; 27:835-847. [PMID: 30982499 PMCID: PMC7848457 DOI: 10.3727/096504019x15517850319579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, novel therapeutic strategies have been designed with the aim of killing cancer stem-like cells (CSCs), and considerable interest has been generated in the development of specific therapies that target stemness-related marker of CSCs. In this study, nonsteroidal anti-inflammatory drugs (NSAIDs) significantly potentiated Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG)-mediated cytotoxicity through apoptotic and autophagic cell death induction, but COX-2-inhibitory function was not required for NSAID-induced autophagy in CD44-overexpressing human chronic myeloid leukemia K562 (CD44highK562) cells. Importantly, we found that treatment with NSAIDs resulted in a dose-dependent increase in LC3-II level and decrease in p62 level and simultaneous reduction in multiple stemness-related markers including CD44, Oct4, c-Myc, and mutant p53 (mutp53) in CD44highK562 cells, suggesting that NSAIDs could induce autophagy, which might mediate degradation of stemness-related marker proteins. Activation of AMPK and inhibition of Akt/mTOR/p70S6K/4EBP1 participated in NSAID-induced autophagy in CD44highK562 cells. In addition, treatment of CD44highK562 cells with NSAIDs inhibited expression of HSF1/Hsps, which resulted in suppression of 17-AAG-induced activation of Hsp70, leading to reversal of 17-AAG resistance and sensitization of CD44highK562 cells to 17-AAG by NSAIDs. In conclusion, combining NSAIDs with Hsp90 inhibitor may offer one of the most promising strategies for eradication of CD44-overexpressing CSCs.
Collapse
Affiliation(s)
- Hyun-Jung Moon
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - So-Young Park
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Su-Hoon Lee
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Chi-Dug Kang
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| | - Sun-Hee Kim
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
44
|
Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ 2019; 26:199-212. [PMID: 30538286 PMCID: PMC6329812 DOI: 10.1038/s41418-018-0246-9] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/09/2023] Open
Abstract
Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Licio Collavin
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), AREA Science Park, Trieste, Italy.
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, Trieste, Italy.
| |
Collapse
|
45
|
Kawamura G, Hattori M, Takamatsu K, Tsukada T, Ninomiya Y, Benjamin I, Sassone-Corsi P, Ozawa T, Tamaru T. Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun Biol 2018; 1:204. [PMID: 30480104 PMCID: PMC6250677 DOI: 10.1038/s42003-018-0209-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian clock allows physiological systems to adapt to their changing environment by synchronizing their timings in response to external stimuli. Previously, we reported clock-controlled adaptive responses to heat-shock and oxidative stress and showed how the circadian clock interacts with BMAL1 and HSF1. Here, we present a similar clock-controlled adaptation to UV damage. In response to UV irradiation, HSF1 and tumor suppressor p53 regulate the expression of the clock gene Per2 in a time-dependent manner. UV irradiation first activates the HSF1 pathway, which subsequently activates the p53 pathway. Importantly, BMAL1 regulates both HSF1 and p53 through the BMAL1-HSF1 interaction to synchronize the cellular clock. Based on these findings and transcriptome analysis, we propose that the circadian clock protects cells against the UV stress through sequential and hierarchical interactions between the circadian clock, the heat shock response, and a tumor suppressive mechanism.
Collapse
Affiliation(s)
- Genki Kawamura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Ken Takamatsu
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Teruyo Tsukada
- Nishina Center for Accelerator-Based Science, Riken, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasuharu Ninomiya
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Ivor Benjamin
- Department of Medicine, Froedtert & Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, School of Medicine, University of California Irvine, California, 92697, USA
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan.
| | - Teruya Tamaru
- Department of Physiology & Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
46
|
Noonan MM, Dragan M, Mehta MM, Hess DA, Brackstone M, Tuck AB, Viswakarma N, Rana A, Babwah AV, Wondisford FE, Bhattacharya M. The matrix protein Fibulin-3 promotes KISS1R induced triple negative breast cancer cell invasion. Oncotarget 2018; 9:30034-30052. [PMID: 30046386 PMCID: PMC6059025 DOI: 10.18632/oncotarget.25682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of cancer mortality. In particular, triple negative breast cancer (TNBC) comprise a heterogeneous group of basal-like tumors lacking estrogen receptor (ERα), progesterone receptor (PR) and HER2 (ErbB2). TNBC represents 15-20% of all breast cancers and occurs frequently in women under 50 years of age. Unfortunately, these patients lack targeted therapy, are typically high grade and metastatic at time of diagnosis. The mechanisms regulating metastasis remain poorly understood. We have previously shown that the kisspeptin receptor, KISS1R stimulates invasiveness of TNBC cells. In this report, we demonstrate that KISS1R signals via the secreted extracellular matrix protein, fibulin-3, to regulate TNBC invasion. We found that the fibulin-3 gene is amplified in TNBC primary tumors and that plasma fibulin-3 levels are elevated in TNBC patients compared to healthy subjects. In this study, we show that KISS1R activation increases fibulin-3 expression and secretion. We show that fibulin-3 regulates TNBC metastasis in a mouse experimental metastasis xenograft model and signals downstream of KISS1R to stimulate TNBC invasion, by activating matrix metalloproteinase 9 (MMP-9) and the MAPK pathway. These results identify fibulin-3 as a new downstream mediator of KISS1R signaling and as a potential biomarker for TNBC progression and metastasis, thus revealing KISS1R and fibulin-3 as novel drug targets in TNBC.
Collapse
Affiliation(s)
- Michelle M Noonan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Magdalena Dragan
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - Michael M Mehta
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| | - David A Hess
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Krembil Centre for Stem Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, London, ON, Canada
| | - Muriel Brackstone
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Division of Surgical Oncology, The University of Western Ontario, London, ON, Canada
| | - Alan B Tuck
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Pathology, The University of Western Ontario, London, ON, Canada.,The Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit, London Regional Cancer Program, London, ON, Canada
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Andy V Babwah
- Department of Pediatrics, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Frederic E Wondisford
- Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Moshmi Bhattacharya
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada.,Department of Medicine, Child Health Institute of NJ, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
47
|
Román-Rosales AA, García-Villa E, Herrera LA, Gariglio P, Díaz-Chávez J. Mutant p53 gain of function induces HER2 over-expression in cancer cells. BMC Cancer 2018; 18:709. [PMID: 29970031 PMCID: PMC6029411 DOI: 10.1186/s12885-018-4613-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background HER2 over-expression is related with a poor prognosis in patients with invasive breast cancer tumors. Clinical associations have reported that somatic mutations of p53 more frequently detected in cases of sporadic breast cancer of the HER2 subtypes, besides a high percentage of HER2-amplifying tumors carry germline mutations of p53. The mechanisms responsible for the acquisition of oncogenic functions of p53 mutant proteins (mtp53), known as Gain of Function (GOF), over HER2 expression have not been reported. The objective of this study was to evaluate a possible relationship between p53 mutants and HER2 regulation. Methods HER2 expression (transcription and protein), as well as HER2 protein stabilization have been evaluated after inducing or silencing of p53 mutants’ expression in cell lines. Finally, we evaluated the interaction of the p53 mutants over the HER2 receptor promoter. Results Higher HER2 expression in cell lines harboring endogenous mtp53 compared with wt or null expression of p53 cell lines. Transfection of p53 mutants (R248Q and R273C) in cell lines increased the expression of HER2. Silencing of p53 mutants, decrease HER2 expression. The p53 mutants R248Q and R273C significantly increase the luciferase activity on the HER2 promoter, and both mutants also promote acetylation of H3 and H4 histones binding in it. Conclusions These findings show for the first time that p53 mutants induce over-expression of HER2 at transcriptional level of the HER2 protein. Our results could have clinical implications in breast cancer and other types of cancer where HER2 is over-expressed and used as a therapy target. Electronic supplementary material The online version of this article (10.1186/s12885-018-4613-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A A Román-Rosales
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.,Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), 07360, Ciudad de México, Mexico
| | - E García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), 07360, Ciudad de México, Mexico
| | - L A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico
| | - P Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), 07360, Ciudad de México, Mexico.
| | - J Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
48
|
Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0525. [PMID: 29203710 DOI: 10.1098/rstb.2016.0525] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research NCI-Frederick, Building 560, Room 32-31b, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
49
|
Bellazzo A, Sicari D, Valentino E, Del Sal G, Collavin L. Complexes formed by mutant p53 and their roles in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:101-112. [PMID: 29950894 PMCID: PMC6011883 DOI: 10.2147/bctt.s145826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women, and mutations in the tumor suppressor p53 are commonly detected in the most aggressive subtypes. The majority of TP53 gene alterations are missense substitutions, leading to expression of mutant forms of the p53 protein that are frequently detected at high levels in cancer cells. P53 mutants not only lose the physiological tumor-suppressive activity of the wild-type p53 protein but also acquire novel powerful oncogenic functions, referred to as gain of function, that may actively confer a selective advantage during tumor progression. Some of the best-characterized oncogenic activities of mutant p53 are mediated by its ability to form aberrant protein complexes with other transcription factors or proteins not directly related to gene transcription. The set of cellular proteins available to interact with mutant p53 is dependent on cell type and extensively affected by environmental signals, so the prognostic impact of p53 mutation is complex. Specific functional interactions of mutant p53 can profoundly impact homeostasis of breast cancer cells, reprogramming gene expression in response to specific extracellular inputs or cell-intrinsic conditions. The list of protein complexes involving mutant p53 in breast cancer is continuously growing, as is the number of oncogenic phenotypes in which they could be involved. In consideration of the functional impact of such complexes, key interactions of mutant p53 may be exploited as potential targets for development of therapies aimed at defusing the oncogenic potential of p53 mutation.
Collapse
Affiliation(s)
- Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy
| | - Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
50
|
Gain-of-Function (GOF) Mutant p53 as Actionable Therapeutic Target. Cancers (Basel) 2018; 10:cancers10060188. [PMID: 29875343 PMCID: PMC6025530 DOI: 10.3390/cancers10060188] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
p53 missense mutant alleles are present in nearly 40% of all human tumors. Such mutated alleles generate aberrant proteins that not only lose their tumor-suppressive functions but also frequently act as driver oncogenes, which promote malignant progression, invasion, metastasis, and chemoresistance, leading to reduced survival in patients and mice. Notably, these oncogenic gain-of-function (GOF) missense mutant p53 proteins (mutp53) are constitutively and tumor-specific stabilised. This stabilisation is one key pre-requisite for their GOF and is largely due to mutp53 protection from the E3 ubiquitin ligases Mdm2 and CHIP by the HSP90/HDAC6 chaperone machinery. Recent mouse models provide convincing evidence that tumors with highly stabilized GOF mutp53 proteins depend on them for growth, maintenance, and metastasis, thus creating exploitable tumor-specific vulnerabilities that markedly increase lifespan if intercepted. This identifies mutp53 as a promising cancer-specific drug target. This review discusses direct mutp53 protein-targeting drug strategies that are currently being developed at various preclinical levels.
Collapse
|