1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Rossi E, Marenna S, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a potential remyelinating therapy: Visual evoked potentials recovery in cuprizone demyelination. Exp Neurol 2024; 382:114972. [PMID: 39326818 DOI: 10.1016/j.expneurol.2024.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
AIMS Non-invasive neuromodulation by transcranial direct current stimulation (tDCS), owing to its reported beneficial effects on neuronal plasticity, has been proposed as a treatment to promote functional recovery in several neurological conditions, including demyelinating diseases like multiple sclerosis. Less information is available on the effects of tDCS in major pathological mechanisms of multiple sclerosis, such as demyelination and inflammation. To learn more about the latter effects, we applied multi-session anodal tDCS in mice exposed to long-term cuprizone (CPZ) diet, known to induce chronic demyelination. METHODS Visual evoked potentials (VEP) and motor performance (beam test) were employed for longitudinal monitoring of visual and motor pathways in 28 mice undergoing CPZ diet, compared with 12 control (H) mice. After randomization, anodal tDCS was applied for 5 days in awake, freely-moving surviving animals: 12 CPZ-anodal, 10 CPZ-sham, 5H-anodal, 5 h-sham. At the end of the experiment, histological analysis was performed on the optic nerves and corpus callosum for myelin, axons and microglia/macrophages. KEY FINDINGS CPZ diet was associated with significantly delayed VEPs starting at 4 weeks compared with their baseline, significant compared with controls at 8 weeks. After 5-day tDCS, VEPs latency significantly recovered in the active group compared with the sham group. Similar findings were observed in the time to cross on the beam test Optic nerve histology revealed higher myelin content and lower microglia/macrophage counts in the CPZ-Anodal group compared with CPZ-Sham. SIGNIFICANCE Multiple sessions of anodal transcranial direct current stimulation (tDCS) in freely moving mice induced recovery of visual nervous conduction and significant beneficial effects in myelin content and inflammatory cells in the cuprizone model of demyelination. Altogether, these promising findings prompt further exploration of tDCS as a potential therapeutic approach for remyelination.
Collapse
Affiliation(s)
- Elena Rossi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Valerio Castoldi
- IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy
| | - Letizia Leocani
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy.; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy.
| |
Collapse
|
3
|
Vander Wall R, Basavarajappa D, Palanivel V, Sharma S, Gupta V, Klistoner A, Graham S, You Y. VEP Latency Delay Reflects Demyelination Beyond the Optic Nerve in the Cuprizone Model. Invest Ophthalmol Vis Sci 2024; 65:50. [PMID: 39576623 PMCID: PMC11587907 DOI: 10.1167/iovs.65.13.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Remyelination therapies are advancing for multiple sclerosis, focusing on visual pathways and using visual evoked potentials (VEPs) for de/remyelination processes. While the cuprizone (CZ) model and VEPs are core tools in preclinical trials, many overlook the posterior visual pathway. This study aimed to assess functional and structural changes across the murine visual pathway during de/remyelination. Methods One group of C57BL/6 mice underwent a CZ diet for 6 weeks to simulate demyelination, with a subset returning to a regular diet to induce remyelination. An additional group was fed a protracted CZ diet for 12 weeks to maintain chronic demyelination. Visual function was evaluated using electrophysiological recordings, including scotopic threshold responses (STRs) and electroretinograms (ERGs), with VEPs serving as a key biomarker for overall pathway health. Tissues from eyes, brains, and optic nerves (ONs) were collected at different time points for structural analysis. Results Our results demonstrated significant effects on VEPs, including increased N1 latencies and reduced amplitudes in the CZ mouse model. However, retinal function remained unaffected, as evidenced by unchanged STRs, ERGs, and retinal ganglion cell counts. Analysis of ONs revealed morphological changes, characterized by a significantly decreased axon diameter in the core region compared to the subpial region. Additionally, there was a significant increase in the g-ratio of the core region at 12 weeks CZ compared to controls. Immunofluorescence further demonstrated a decrease in myelin basic protein levels at 6 and 12 weeks in CZ animals. Interestingly, the dorsal lateral geniculate nucleus and primary visual cortex (V1) exhibited similar myelin changes, correlating with VEP latency alterations. Conclusions These data reveal that interpreting VEP latency solely as a marker for ON demyelination is incomplete. Previous preclinical studies have overlooked the posterior visual pathways, necessitating a broader interpretation of VEP latency to cover the entire visual pathway.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Viswanthram Palanivel
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Samridhi Sharma
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Catalpol Regulates Oligodendrocyte Regeneration and Remyelination by Activating the GEF-Cdc42/Rac1 Signaling Pathway in EAE Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7074157. [DOI: 10.1155/2022/7074157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
The main obstacle to remyelination in demyelinating diseases, such as multiple sclerosis, is the inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature oligodendrocytes (OLs) in the demyelinating region. Consequently, promoting OL differentiation and myelin remodeling is a key goal in the search for treatments. Rho GTPases play diverse and important roles throughout the development of neuronal axons and the formation of the myelin sheath. The current study aimed to investigate the direct protective effects of catalpol on demyelination damage induced by myelin oligodendrocyte glycoprotein (MOG) immunization and to explore whether the GEF-Cdc42/Rac1 signaling pathway contributes to the regeneration effect induced by catalpol. In the MOG-induced experimental autoimmune encephalomyelitis (EAE) mouse model of demyelination, we observed that catalpol significantly promoted OL development by enhancing the expression of glutathione S-transferase pi (GST-pi) in the affected brain. By Luxol fast blue staining and myelin basic protein (MBP) expression assessment, catalpol was found to increase MBP expression and promote myelin repair. Furthermore, catalpol promoted OL differentiation associated with the upregulation of Cdc42/Rac1 expression and activation in vivo. In addition, PAK1/MRCKα, proteins downstream of Cdc42/Rac1, was positively regulated by catalpol. We also found that catalpol alleviated clinical neurological dysfunction, inhibited inflammatory infiltration, increased the proportion of Treg cells, and suppressed demyelination. Overall, our study is the first to reveal that catalpol can promote OL generation and myelination and contributes to the crucial regulatory process of GEF-Cdc42/Rac1 signaling expression and activation. Therefore, catalpol is a promising drug candidate for the potential treatment of demyelinating diseases.
Collapse
|
5
|
Fallier-Becker P, Bonzheim I, Pfeiffer F. Cuprizone feeding induces swollen astrocyte endfeet. Pflugers Arch 2022; 474:1275-1283. [PMID: 36241864 DOI: 10.1007/s00424-022-02759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022]
Abstract
The cuprizone model is a widely used model to study the pathogenesis of multiple sclerosis (MS). Due to the selective loss of mature oligodendrocytes and myelin, it is mainly being used to study demyelination and the mechanisms of remyelination, as well as the efficiency of compounds or therapeutics aiming at remyelination. Although early investigations using high dosages of cuprizone reported the occurrence of hydrocephalus, it has long been assumed that cuprizone feeding at lower dosages does not induce changes at the blood-brain barrier (BBB). Here, by analyzing BBB ultrastructure with high-resolution electron microscopy, we report changes at astrocytic endfeet surrounding vessels in the brain parenchyma. Particularly, edema formation around blood vessels and swollen astrocytic endfeet already occurred after feeding low dosages of cuprizone. These findings indicate changes in BBB function that will have an impact on the milieu of the central nervous system (CNS) in the cuprizone model and need to be considered when studying the mechanisms of de- and remyelination.
Collapse
Affiliation(s)
- Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Friederike Pfeiffer
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Cordano C, Sin JH, Timmons G, Yiu HH, Stebbins K, Guglielmetti C, Cruz-Herranz A, Xin W, Lorrain D, Chan JR, Green AJ. Validating visual evoked potentials as a preclinical, quantitative biomarker for remyelination efficacy. Brain 2022; 145:3943-3952. [PMID: 35678509 DOI: 10.1093/brain/awac207] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease - and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the central nervous system are lacking. Therapies with potential to remyelinate the central nervous system constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential (VEP) have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on VEP, the interpretation of these trials is constrained. The VEP was originally developed and utilized in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to VEP latency in both inflammatory and chemical models of demyelination. VEP latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve VEP latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that VEP measures myelin status and is thereby a validated tool for preclinical verification of remyelination.
Collapse
Affiliation(s)
- Christian Cordano
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Jung H Sin
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Garrett Timmons
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Hao H Yiu
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | | | - Caroline Guglielmetti
- Department of Physical Therapy, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Andres Cruz-Herranz
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Wendy Xin
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | | | - Jonah R Chan
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari J Green
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. Histological and Top-Down Proteomic Analyses of the Visual Pathway in the Cuprizone Demyelination Model. J Mol Neurosci 2022; 72:1374-1401. [PMID: 35644788 PMCID: PMC9170674 DOI: 10.1007/s12031-022-01997-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 10/27/2022]
Abstract
Abstract
A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, histology and proteomics were used to investigate components of the visual pathway in young adult mice. Histological investigation did not identify demyelination or gliosis in the optic tracts, pretectal nuclei, superior colliculi, lateral geniculate nuclei or visual cortices. However, top-down proteomic assessment of the optic nerve/tract revealed a significant change in the abundance of 34 spots in high-resolution two-dimensional (2D) gels. Subsequent liquid chromatography-tandem mass spectrometry (LC-TMS) analysis identified alterations in 75 proteoforms. Literature mining revealed the relevance of these proteoforms in terms of proteins previously implicated in animal models, eye diseases and human MS. Importantly, 24 proteoforms were not previously described in any animal models of MS, eye diseases or MS itself. Bioinformatic analysis indicated involvement of these proteoforms in cytoskeleton organization, metabolic dysregulation, protein aggregation and axonal support. Collectively, these results indicate that continuous CPZ-feeding, which evokes a slow demyelination, results in proteomic changes that precede any clear histological changes in the visual pathway and that these proteoforms may be potential early markers of degenerative demyelinating conditions.
Collapse
|
8
|
Marenna S, Huang SC, Dalla Costa G, d’Isa R, Castoldi V, Rossi E, Comi G, Leocani L. Visual Evoked Potentials to Monitor Myelin Cuprizone-Induced Functional Changes. Front Neurosci 2022; 16:820155. [PMID: 35495042 PMCID: PMC9051229 DOI: 10.3389/fnins.2022.820155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The visual system is one of the most accessible routes to study the central nervous system under pathological conditions, such as in multiple sclerosis (MS). Non-invasive visual evoked potential (VEP) and optical coherence tomography (OCT) were used to assess visual function and neuroretinal thickness in C57BL/6 taking 0.2% cuprizone for 7 weeks and at 5, 8, 12, and 15 days after returning to a normal diet. VEPs were significantly delayed starting from 4 weeks on cuprizone, with progressive recovery off cuprizone, becoming significant at day 8, complete at day 15. In contrast, OCT and neurofilament staining showed no significant axonal thinning. Optic nerve histology indicated that whilst there was significant myelin loss at 7 weeks on the cuprizone diet compared with healthy mice, at 15 days off cuprizone diet demyelination was significantly less severe. The number of Iba 1+ cells was found increased in cuprizone mice at 7 weeks on and 15 days off cuprizone. The combined use of VEPs and OCT allowed us to characterize non-invasively, in vivo, the functional and structural changes associated with demyelination and remyelination in a preclinical model of MS. This approach contributes to the non-invasive study of possible effective treatments to promote remyelination in demyelinating pathologies.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Gloria Dalla Costa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele d’Isa
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
| | - Giancarlo Comi
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Casa di Cura Privata del Policlinico, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS-Scientific Institute San Raffaele, Milan, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Letizia Leocani,
| |
Collapse
|
9
|
Tian H, Cheng Y, Zhang Y, Bai X, Jiang Y, Li J, Fan S, Ding H. 18β-Glycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neurosci Lett 2021; 755:135871. [PMID: 33812928 DOI: 10.1016/j.neulet.2021.135871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
This research aimed to examine the nutritious supplementary function of 18β-Glycyrrhetinic acid (18β-GA) in moderating the myelin sheath destruction and behavioral impairments observed in the cuprizone model of demyelination. Mice were fed daily on food containing cuprizone (0.3 %) and given doses of 18β-GA (5 or 1 mg/kg) for a period of five weeks. The groups treated with 18β-GA exhibited improvements in exploratory behavior, locomotive activity, and weight. As assessed using luxol-fast blue and myelin basic protein (MBP) staining, which were used to detect demyelination in the brain, 18β-GA both reduced and prevented instances of cuprizone-induced demyelinating lesions; treatment with 18β-GA also caused the MBP level in the corpus callosum to increase. Furthermore, alongside these positive results following 18β-GA treatment, microglial polarisation was also observed to shift towards the beneficial M2 phenotype. The results of this research thus indicate the potential clinical application of 18β-GA for the prevention of myelin damage and behavioral dysfunction.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
10
|
Behrangi N, Lorenz P, Kipp M. Oligodendrocyte Lineage Marker Expression in eGFP-GFAP Transgenic Mice. J Mol Neurosci 2020; 71:2237-2248. [PMID: 33346907 PMCID: PMC8585802 DOI: 10.1007/s12031-020-01771-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, orchestrate several key cellular functions in the brain and spinal cord, including axon insulation, energy transfer to neurons, and, eventually, modulation of immune responses. There is growing interest for obtaining reliable markers that can specifically label oligodendroglia and their progeny. In many studies, anti-CC1 antibodies, presumably recognizing the protein adenomatous polyposis coli (APC), are used to label mature, myelinating oligodendrocytes. However, it has been discussed whether anti-CC1 antibodies could recognize as well, under pathological conditions, other cell populations, particularly astrocytes. In this study, we used transgenic mice in which astrocytes are labeled by the enhanced green fluorescent protein (eGFP) under the control of the human glial fibrillary acidic protein (GFAP) promoter. By detailed co-localization studies we were able to demonstrate that a significant proportion of eGFP-expressing cells co-express markers of the oligodendrocyte lineage, such as the transcription factor Oligodendrocyte Transcription Factor 2 (OLIG2); the NG2 proteoglycan, also known as chrondroitin sulfate proteoglycan 4 (CSPG4); or APC. The current finding that the GFAP promoter drives transgene expression in cells of the oligodendrocyte lineage should be considered when interpreting results from co-localization studies.
Collapse
Affiliation(s)
- Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, 80336, Munich, Germany
| | - Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057, Rostock, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
11
|
Sen MK, Almuslehi MSM, Coorssen JR, Mahns DA, Shortland PJ. Behavioural and histological changes in cuprizone-fed mice. Brain Behav Immun 2020; 87:508-523. [PMID: 32014578 DOI: 10.1016/j.bbi.2020.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.2% CPZ to young adult mice evoked sensorimotor behavioural changes. Behavioural tests included measurements of nociceptive withdrawal reflex responses and locomotor tests. Additionally, these were compared to histological analysis of the relevant CNS regions by analysis of neuronal and glial cell components. CPZ-fed mice exhibited more foot slips in walking ladder and beam tests compared to controls. In contrast, no changes in nociceptive thresholds to thermal or mechanical stimuli occurred between groups. Histological analysis showed demyelination throughout the CNS, which was most prominent in white matter tracts in the cerebrum but was also elevated in areas such as the hippocampus, basal ganglia and diencephalon. Profound demyelination and gliosis was seen in the deep cerebellar nuclei and brain stem regions associated with the vestibular system. However, in the spinal cord changes were minimal. No loss of oligodendrocytes, neurons or motoneurons occurred but a significant increase in astrocyte staining ensued throughout the white matter of the spinal cord. The results suggest that CPZ differentially affects oligodendrocytes throughout the CNS and induces subtle motor changes such as ataxia. This is associated with deficits in CNS regions associated with motor and balance functions such as the cerebellum and brain stem.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia; Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
12
|
Kopanitsa MV, Lehtimäki KK, Forsman M, Suhonen A, Koponen J, Piiponniemi TO, Kärkkäinen AM, Pavlidi P, Shatillo A, Sweeney PJ, Merenlender-Wagner A, Kaye J, Orbach A, Nurmi A. Cognitive disturbances in the cuprizone model of multiple sclerosis. GENES BRAIN AND BEHAVIOR 2020; 20:e12663. [PMID: 32372528 DOI: 10.1111/gbb.12663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Cognitive problems frequently accompany neurological manifestations of multiple sclerosis (MS). However, during screening of preclinical candidates, assessments of behaviour in mouse models of MS typically focus on locomotor activity. In the present study, we analysed cognitive behaviour of 9 to 10-week-old female C57Bl/6J mice orally administered with the toxin cuprizone that induces demyelination, a characteristic feature of MS. Animals received 400 mg/kg cuprizone daily for 2 or 4 weeks, and their performance was compared with that of vehicle-treated mice. Cuprizone-treated animals showed multiple deficits in short touchscreen-based operant tasks: they responded more slowly to visual stimuli, rewards and made more errors in a simple rule-learning task. In contextual/cued fear conditioning experiments, cuprizone-treated mice showed significantly lower levels of contextual freezing than vehicle-treated mice. Diffusion tensor imaging showed treatment-dependent changes in fractional anisotropy as well as in axial and mean diffusivities in different white matter areas. Lower values of fractional anisotropy and axial diffusivity in cuprizone-treated mice indicated developing demyelination and/or axonal damage. Several diffusion tensor imaging measurements correlated with learning parameters. Our results show that translational touchscreen operant tests and fear conditioning paradigms can reliably detect cognitive consequences of cuprizone treatment. The suggested experimental approach enables screening novel MS drug candidates in longitudinal experiments for their ability to improve pathological changes in brain structure and reverse cognitive deficits.
Collapse
Affiliation(s)
- Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute, Department of Brain Sciences, Imperial College, London, UK
| | | | | | - Ari Suhonen
- Charles River Discovery Services, Kuopio, Finland
| | - Juho Koponen
- Charles River Discovery Services, Kuopio, Finland
| | | | | | - Pavlina Pavlidi
- MSc Programme in Translational Neuroscience, Imperial College, London, UK
| | | | | | | | - Joel Kaye
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Aric Orbach
- Teva Pharmaceutical Industries Ltd, Netanya, Israel
| | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| |
Collapse
|
13
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
14
|
Bastakis GG, Ktena N, Karagogeos D, Savvaki M. Models and treatments for traumatic optic neuropathy and demyelinating optic neuritis. Dev Neurobiol 2019; 79:819-836. [PMID: 31297983 DOI: 10.1002/dneu.22710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Pathologies of the optic nerve could result as primary insults in the visual tract or as secondary deficits due to inflammation, demyelination, or compressing effects of the surrounding tissue. The extent of damage may vary from mild to severe, differently affecting patient vision, with the most severe forms leading to complete uni- or bilateral visual loss. The aim of researchers and clinicians in the field is to alleviate the symptoms of these, yet uncurable pathologies, taking advantage of known and novel potential therapeutic approaches, alone or in combinations, and applying them in a limited time window after the insult. In this review, we discuss the epidemiological and clinical profile as well as the pathophysiological mechanisms of two main categories of optic nerve pathologies, namely traumatic optic neuropathy and optic neuritis, focusing on the demyelinating form of the latter. Moreover, we report on the main rodent models mimicking these pathologies or some of their clinical aspects. The current treatment options will also be reviewed and novel approaches will be discussed.
Collapse
Affiliation(s)
| | - Niki Ktena
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Domna Karagogeos
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Maria Savvaki
- University of Crete Faculty of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
15
|
Wiltrout K, Ferrer A, van de Laar I, Namekata K, Harada T, Klee EW, Zimmerman MT, Cousin MA, Kempainen JL, Babovic-Vuksanovic D, van Slegtenhorst MA, Aarts-Tesselaar CD, Schnur RE, Andrews M, Shinawi M. Variants in DOCK3 cause developmental delay and hypotonia. Eur J Hum Genet 2019; 27:1225-1234. [PMID: 30976111 DOI: 10.1038/s41431-019-0397-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
The DOCK3 gene encodes the Dedicator of cytokinesis 3 (DOCK3) protein, which belongs to the family of guanine nucleotide exchange factors and is expressed almost exclusively in the brain and spinal cord. We used whole exome sequencing (WES) to investigate the molecular cause of developmental delay and hypotonia in three unrelated probands. WES identified truncating and splice site variants in Patient 1 and compound heterozygous and homozygous missense variants in Patients 2 and 3, respectively. We studied the effect of the three missense variants in vitro by using site-directed mutagenesis and pull-down assay and show that the induction of Rac1 activation was significantly lower in DOCK3 mutant cells compared with wild type human DOCK3 (P < 0.05). We generated a protein model to further examine the effect of the two missense variants within or adjacent to the DHR-2 domain in DOCK3 and this model supports pathogenicity. Our results support a loss of function mechanism but the data on the patients with missense variants should be cautiously interpreted because of the variability of the phenotypes and limited number of cases. Prior studies have described DOCK3 bi-allelic loss of function variants in two families with ataxia, hypotonia, and developmental delay. Here, we report on three patients with DOCK3-related developmental delay, wide-based or uncoordinated gait, and hypotonia, further supporting DOCK3's role in a neurodevelopmental syndrome and expanding the spectrum of phenotypic and genotypic variability.
Collapse
Affiliation(s)
- Kimberly Wiltrout
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alejandro Ferrer
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ingrid van de Laar
- Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael T Zimmerman
- Genomics Sciences & Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Marisa Andrews
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Araújo SES, Mendonça HR, Wheeler NA, Campello-Costa P, Jacobs KM, Gomes FCA, Fox MA, Fuss B. Inflammatory demyelination alters subcortical visual circuits. J Neuroinflammation 2017; 14:162. [PMID: 28821276 PMCID: PMC5562979 DOI: 10.1186/s12974-017-0936-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory demyelinating disease classically associated with axonal damage and loss; more recently, however, synaptic changes have been recognized as additional contributing factors. An anatomical area commonly affected in MS is the visual pathway; yet, changes other than those associated with inflammatory demyelination of the optic nerve, i.e., optic neuritis, have not been described in detail. Methods Adult mice were subjected to a diet containing cuprizone to mimic certain aspects of inflammatory demyelination as seen in MS. Demyelination and inflammation were assessed by real-time polymerase chain reaction and immunohistochemistry. Synaptic changes associated with inflammatory demyelination in the dorsal lateral geniculate nucleus (dLGN) were determined by immunohistochemistry, Western blot analysis, and electrophysiological field potential recordings. Results In the cuprizone model, demyelination was observed in retinorecipient regions of the subcortical visual system, in particular the dLGN, where it was found accompanied by microglia activation and astrogliosis. In contrast, anterior parts of the pathway, i.e., the optic nerve and tract, appeared largely unaffected. Under the inflammatory demyelinating conditions, as seen in the dLGN of cuprizone-treated mice, there was an overall decrease in excitatory synaptic inputs from retinal ganglion cells. At the same time, the number of synaptic complexes arising from gamma-aminobutyric acid (GABA)-generating inhibitory neurons was found increased, as were the synapses that contain the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B and converge onto inhibitory neurons. These synaptic changes were functionally found associated with a shift toward an overall increase in network inhibition. Conclusions Using the cuprizone model of inflammatory demyelination, our data reveal a novel form of synaptic (mal)adaption in the CNS that is characterized by a shift of the excitation/inhibition balance toward inhibitory network activity associated with an increase in GABAergic inhibitory synapses and a possible increase in excitatory input onto inhibitory interneurons. In addition, our data recognize the cuprizone model as a suitable tool in which to assess the effects of inflammatory demyelination on subcortical retinorecipient regions of the visual system, such as the dLGN, in the absence of overt optic neuritis.
Collapse
Affiliation(s)
- Sheila Espírito Santo Araújo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Rocha Mendonça
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Paula Campello-Costa
- Instituto de Biologia, Programa de Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Flávia C A Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
18
|
Hainz N, Becker P, Rapp D, Wagenpfeil S, Wonnenberg B, Beisswenger C, Tschernig T, Meier C. Probenecid-treatment reduces demyelination induced by cuprizone feeding. J Chem Neuroanat 2017. [PMID: 28629631 DOI: 10.1016/j.jchemneu.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent experiments showed that a pannexin-1 inhibitor, probenecid, reduced clinical symptoms in the murine experimental autoimmune encephalomyelitis when applied during the initial phase of neuronal inflammation. An inflammatory component is also present in a toxically induced inflammation and demyelination using cuprizone diet. Probenecid is a pannexin-1 antagonist and a probenecid therapy was investigated. Mice were fed for 10days with a cuprizone diet. In the following, the diet was continued but combined with a daily injection of a low dose of probenecid or solvent for 10days. Electron microscopy revealed demyelination in the optic nerve. The demyelination as measured by the axonal diameter was significantly reduced in the animals treated with 100mg per kg body weight probenecid. In comparison to controls, the number of leukocytes and lymphocytes in the peripheral blood was reduced in all cuprizone groups including the treatment group. In conclusion, early demyelination in the optic nerve was moderately reduced by 10days treatment with a low dose probenecid. This is a hint for the involvement of pannexin-1 modulated inflammation in cuprizone feeding induced toxic demyelination. Thus, probenecid is a candidate for the treatment of neuro-inflammation and multiple sclerosis.
Collapse
Affiliation(s)
- Nadine Hainz
- Institute of Anatomy and Cell Biology, Saarland University, Germany
| | - Philipp Becker
- Institute of Anatomy and Cell Biology, Saarland University, Germany
| | - Daniel Rapp
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Germany
| | - Bodo Wonnenberg
- Institute of Anatomy and Cell Biology, Saarland University, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Germany.
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Germany
| |
Collapse
|
19
|
Ji X, Liu H, An C, Wang Y, Zhao H, Zhang Q, Li M, Qi F, Chen Z, Wang X, Wang L. You-Gui pills promote nerve regeneration by regulating netrin1, DCC and Rho family GTPases RhoA, Racl, Cdc42 in C57BL/6 mice with experimental autoimmune encephalomyelitis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:123-133. [PMID: 27106785 DOI: 10.1016/j.jep.2016.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/14/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE You-Gui pills (YGPs) are an effective traditional Chinese formula being used clinically for the treatment of multiple sclerosis (MS). Previous studies demonstrated that YGPs exerted the potent neuroprotective effects in murine models of experimental autoimmune encephalomyelitis (EAE), which is an equivalent animal model for multiple sclerosis (MS). However, the mechanism of YGPs functions remained unclear. AIM OF THIS STUDY The aim of this study was to evaluate the therapeutic effect of YGPs in MOG35-55-induced EAE mice and to further elucidate the underlying molecular mechanism. METHODS Female C57BL/6 mice were divided into six groups, including the non-treated EAE model, prednisone acetate- and 1.2, 2.4 or 4.8g/kg YGPs-treated EAE groups, and a normal control group. The EAE model was established by injecting the mice subcutaneously with MOG35-55 antigen. The body weights were measured and the neurological functions were scored in each group. The pathology and morphology of the brain and spinal cord was examined. The expression of MAP-2 was detected by immunofluorescent staining. The levels of netrin1, DCC, RhoA, Rac1, and Cdc42 were assayed by immunohistochemistry, qRT-PCR and Western blot on day 40 post-immunization (PI). RESULTS YGPs treatments significantly reduced neurological function scores in EAE mice, where the inflammatory infiltration was reduced and the axon and myelin damage in both brain and spinal cord was alleviated. In the brain and spinal cord tissues, YGPs increased the expression of neuronal factors MAP-2, netrin1 and DCC. The expression of Rac1 and Cdc42 were increased, while RhoA was reduced following YGPs treatments. CONCLUSION Our results demonstrated that YGPs exhibited a neuroprotective effect on promoting nerve regeneration at the brain and spinal cord in EAE mice induced by MOG35-55. Netrin1, DCC and the Rho family GTPases of RhoA, Racl, Cdc42 were involved in mediating the effects of YGPs on nerve regeneration.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/pathology
- Brain/ultrastructure
- DCC Receptor
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Growth Factors/genetics
- Nerve Growth Factors/metabolism
- Nerve Regeneration/drug effects
- Netrin-1
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Peptide Fragments
- Phytotherapy
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Spinal Cord/drug effects
- Spinal Cord/pathology
- Spinal Cord/ultrastructure
- Tablets
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Xiaomin Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Chen An
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Yongqiang Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Ming Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Zhenzhen Chen
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
20
|
Retinal Cell Degeneration in Animal Models. Int J Mol Sci 2016; 17:ijms17010110. [PMID: 26784179 PMCID: PMC4730351 DOI: 10.3390/ijms17010110] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/25/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage.
Collapse
|
21
|
Regulating Rac in the nervous system: molecular function and disease implication of Rac GEFs and GAPs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632450. [PMID: 25879033 PMCID: PMC4388020 DOI: 10.1155/2015/632450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/06/2015] [Indexed: 12/11/2022]
Abstract
Rho family GTPases, including RhoA, Rac1, and Cdc42 as the most studied members, are master regulators of actin cytoskeletal organization. Rho GTPases control various aspects of the nervous system and are associated with a number of neuropsychiatric and neurodegenerative diseases. The activity of Rho GTPases is controlled by two families of regulators, guanine nucleotide exchange factors (GEFs) as the activators and GTPase-activating proteins (GAPs) as the inhibitors. Through coordinated regulation by GEFs and GAPs, Rho GTPases act as converging signaling molecules that convey different upstream signals in the nervous system. So far, more than 70 members of either GEFs or GAPs of Rho GTPases have been identified in mammals, but only a small subset of them have well-known functions. Thus, characterization of important GEFs and GAPs in the nervous system is crucial for the understanding of spatiotemporal dynamics of Rho GTPase activity in different neuronal functions. In this review, we summarize the current understanding of GEFs and GAPs for Rac1, with emphasis on the molecular function and disease implication of these regulators in the nervous system.
Collapse
|