1
|
Shan M, Tong C, Fu X, Zhang Y, Feng L, Sun L, Zhang K, Zheng J. Triiodothyronine ameliorates S-ketamine-induced hypomyelination via the PPARα pathway in neonatal rat. Exp Neurol 2025; 389:115260. [PMID: 40246008 DOI: 10.1016/j.expneurol.2025.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Growing evidence suggests that prolonged or repeated exposure to general anesthesia is associated with white matter alteration in children, which may underlie subsequent cognitive and behavioral abnormalities. Numerous infants undergo anesthesia for surgery each year, so it is imperative to identify the risk factors and find preventative treatment to prevent the effects of early anesthesia exposure. Thyroid hormones play a pivotal role in the process of myelination of white matter. Clinical studies have shown that thyroid hormone levels are decreased after infant surgery, whether thyroid hormone supplementation can prevent long-term toxicity of anesthesia remains to be elucidated. Here we used S-ketamine, an anesthetic drug commonly used in pediatric anesthesia, to investigate changes in thyroid hormones after anesthesia and their effects on myelin development. Our findings showed a significant decrease in thyroid hormones following S-ketamine anesthesia. The administration of triiodothyronine (T3) supplements ameliorated the S-ketamine-induced impairments in motor coordination and myelination. S-ketamine-induced hypothyroidism predominantly affects the differentiation of OPCs to mature oligodendrocytes. Further analysis revealed significant alterations in lipid metabolism, and we observed that S-ketamine inhibited PPARα in OPCs. Treatment with T3 effectively rescued S-ketamine-induced suppression of PPARα. The protective effects of T3 were significantly compromised by the PPARα inhibitor GW6471. The pharmacological activator of PPARα, fenofibrate, rescued the motor coordination deficits and the inhibition of OPC maturation induced by S-ketamine. In conclusion, our study demonstrates that S-ketamine anesthesia induces the decline of thyroid hormone and hypomyelination in neonatal rats. Administration of T3 ameliorates S-ketamine-induced hypomyelination through the PPARα signaling pathway.
Collapse
Affiliation(s)
- Mengqin Shan
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Chaoyang Tong
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Fu
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Luping Feng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Liping Sun
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Kan Zhang
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
2
|
Tortolani D, Decandia D, Giacovazzo G, Scipioni L, Panuccio A, Ciaramellano F, Eugelio F, Fanti F, Latagliata EC, La Barbera L, Cutuli D, Compagnone D, D’Amelio M, Coccurello R, Oddi S, Petrosini L, Maccarrone M. Chronic palmitoylethanolamide administration via slow-release subcutaneous pellets promotes neuroprotection and mitigates neuroinflammation in the Tg2576 mouse model of Alzheimer's disease. Front Cell Neurosci 2025; 19:1571428. [PMID: 40313591 PMCID: PMC12043567 DOI: 10.3389/fncel.2025.1571428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and non-cognitive decline associated with neuropathological hallmarks, including neuroinflammation. Palmitoylethanolamide (PEA), an endogenous lipid with anti-inflammatory and neuroprotective properties, has emerged as a promising therapeutic agent in managing AD. This study investigated the therapeutic effects of chronic (6-months) PEA administration via subcutaneous pellet in Tg2576 mice, a validated model of AD. The impact of PEA on amyloid precursor protein (APP) processing, astrocytic activation, microglial reactivity and neuroinflammation, nitrosative stress, dendritic spine density in hippocampal CA1 pyramidal neurons, and cognitive performance was assessed. Chronic PEA treatment of Tg2576 mice increased the expression of the α-secretase ADAM9 and reduced astrogliosis. Furthermore, PEA attenuated microglia reactivity, downregulated pro-inflammatory (CXCL13, MCP-1, GCSF) and upregulated anti-inflammatory (CXC3CL1 and IL-9) cytokine expression. Chronic PEA administration also decreased protein nitrosylation, downregulated calcineurin expression, restored dendritic spine density, and improved cognitive functions. Chronic PEA administration offers a promising therapeutic approach for AD by mitigating neuroinflammation, oxidative stress, and synaptic dysfunction, ultimately leading to cognitive function restoration.
Collapse
Affiliation(s)
- Daniel Tortolani
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Davide Decandia
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Lucia Scipioni
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Anna Panuccio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | | | - Fabiola Eugelio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Livia La Barbera
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Debora Cutuli
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marcello D’Amelio
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Laura Petrosini
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
3
|
Zhu Z, Guan Y, Gao S, Guo F, Liu D, Zhang H. Impact of natural compounds on peroxisome proliferator-activated receptor: Molecular effects and its importance as a novel therapeutic target for neurological disorders. Eur J Med Chem 2025; 283:117170. [PMID: 39700874 DOI: 10.1016/j.ejmech.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Neurological disorders refer to the pathological changes of the nervous system involving multiple pathological mechanisms characterized by complex pathogenesis and poor prognosis. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor that is a member of the nuclear receptor superfamily. PPAR has attracted considerable attention in the past decades as one of the potential targets for the treatment of neurological disorders. Several in vivo and in vitro studies have confirmed that PPARs play a neuroprotective role by regulating multiple pathological mechanisms. Several selective PPAR ligands, such as thiazolidinediones and fibrates, have been approved as pharmacological agonists. Nevertheless, PPAR agonists cause a variety of adverse effects. Some natural PPAR agonists, including wogonin, bergenin, jujuboside A, asperosaponin VI, monascin, and magnolol, have been introduced as safe agonists, as evidenced by clinical or preclinical experiments. This review summarizes the effects of phytochemicals on PPAR receptors in treating various neurological disorders. Further, it summarizes recent advances in phytochemicals as potential, safe, and promising PPAR agonists to provide insights into understanding the PPAR-dependent and independent cascades mediated by phytochemicals. The phytochemicals exhibited potential for treating neurological disorders by inhibiting neuroinflammation, exerting anti-oxidative stress and anti-apoptotic activities, promoting autophagy, preventing demyelination, and reducing brain edema and neurotoxicity. This review presents data that will help clarify the potential mechanisms by which phytochemicals act as pharmacological agonists of PPARs in the treatment of neurological disorders. It also provides insights into developing new drugs, highlighting phytochemicals as potential, safe, and promising PPAR agonists. Additionally, this review aims to enhance understanding of both PPAR-dependent and independent pathways mediated by phytochemicals.
Collapse
Affiliation(s)
- Zhe Zhu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Songlan Gao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Feng Guo
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Dong Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Honglei Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Balaji S, Woodward TJ, Richter E, Chang A, Otiz R, Kulkarni PP, Balaji K, Bradshaw HB, Ferris CF. Palmitoylethanolamide causes dose-dependent changes in brain function and the lipidome. Front Neurosci 2024; 18:1506352. [PMID: 39664446 PMCID: PMC11631868 DOI: 10.3389/fnins.2024.1506352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity. There was an inverse dose-response for negative BOLD suggesting a decrease in brain activity affecting the prefrontal ctx, sensorimotor cortices, basal ganglia and thalamus. However, there was a dose-dependent increase in functional connectivity in these same brain areas. Plasma and CNS levels of PEA and over 80 endogenous lipids (endolipids) were determined post treatment. While levels of PEA in the CNS were significantly higher after 30 mg/kg treatment, levels of the endocannabinoid, Anandamide, and at least 20 additional endolipids, were significantly lower across the CNS. Of the 78 endolipids that were detected in all CNS regions evaluated, 51 of them were modulated in at least one of the regions. Taken together, the functional connectivity and lipidomics changes provide evidence that PEA treatment drives substantial changes in CNS activity.
Collapse
Affiliation(s)
- Shreyas Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Emily Richter
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Otiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Praveen P. Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Kaashyap Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University Boston, Boston, MA, United States
| |
Collapse
|
5
|
Patil N, Patil K, Jain M, Mohammed A, Yadav A, Dhanda PS, Kole C, Dave K, Kaushik P, Azhar Abdul Razab MK, Hamzah Z, Nawi NM. A systematic study of molecular targets of cannabidiol in Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1339-1360. [PMID: 40034365 PMCID: PMC11863746 DOI: 10.1177/25424823241284464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent, incurable, and chronic neurodegenerative condition characterized by the accumulation of amyloid-β protein (Aβ), disrupting various bodily systems. Despite the lack of a cure, phenolic compounds like cannabidiol (CBD), a non-psychoactive component of cannabis, have emerged as potential therapeutic agents for AD. Objective This systematic review explores the impact of different types of cannabidiol on AD, unveiling their neuroprotective mechanisms. Methods The research used PubMed, Scopus, and Web of Science databases with keywords like "Alzheimer's disease" and "Cannabidiol." Studies were evaluated based on title, abstract, and relevance to treating AD with CBD. No restrictions on research type or publication year. Excluded were hypothesis papers, reviews, books, unavailable articles, etc. Results Microsoft Excel identified 551 articles, with 92 included in the study, but only 22 were thoroughly evaluated. In-vivo and in-silico studies indicate that CBD may disrupt Aβ42, reduce pro-inflammatory molecule release, prevent reactive oxygen species formation, inhibit lipid oxidation, and counteract Aβ-induced increases in intracellular calcium, thereby protecting neurons from apoptosis. Conclusions In summary, the study indicates that CBD and its analogs reduce the production of Aβ42. Overall, these findings support the potential of CBD in alleviating the underlying pathology and symptoms associated with AD, underscoring the crucial need for further rigorous scientific investigation to elucidate the therapeutic applications and mechanisms of CBD in AD.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Khushalika Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, Rewari, India
| | | | | | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Zulhazman Hamzah
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Norazlina Mat Nawi
- Department of Nuclear Medicine, Radiotherapy & Oncology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
6
|
Ansari F, Sohel M, Haidary MMH, Mostaq MS, Akter S, Nahar A, Labony FZ, Ahmed A, Hasan MS, Babu MH, Amin MN. Therapeutic potential of clinically proven natural products in the management of dementia. Heliyon 2024; 10:e27233. [PMID: 38533051 PMCID: PMC10963206 DOI: 10.1016/j.heliyon.2024.e27233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Dementia is a common neurodegenerative disorder connected to damage to nerve cells in the brain. Although some conventional drugs are available for dementia treatments and are still sanctified for dementia patients, their short- and long-term side effects and other limitations make treating patients more challenging. The authors aimed to explain novel options for treating dementia with natural products and unravel some clinically proven natural products. This article systematically reviewed recent studies that have investigated the role of natural products and their bioactive compounds for dementia. PubMed Central, Scopus, and Google Scholar databases of articles were collected, and abstracts were reviewed for relevance to the subject matter.In this review, we provide mechanistic insights of clinically validated natural products, including like- Yokukansan, Souvenaid, BDW, Hupergene, Bacopa monnier, Omega-3, Tramiprostate and Palmitoylethanolamide with which have therapeutic efficacy against dementia in the management of dementia. As shown by studies, certain natural ingredients could be used to treat and prevent dementia. We strongly believe that the medicinal plants and phytoconstituents alone or in combination with other compounds would be effective treatments against dementia with lesser side effects as compared to currently available treatments. Moreover, these products should be studied further in order to develop novel dementia medications.
Collapse
Affiliation(s)
- Farzana Ansari
- Department of Biochemistry and Molecular Biology, Laboratory of Nutrition and Health Research, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | | | - Md Saqline Mostaq
- Department of Pharmacy, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Shamima Akter
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230. Bangladesh
| | - Asrafun Nahar
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230. Bangladesh
| | | | - Arman Ahmed
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammed Shamim Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Hasem Babu
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230. Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230. Bangladesh
| |
Collapse
|
7
|
Chavan RS, Supalkar KV, Sadar SS, Vyawahare NS. Animal models of Alzheimer's disease: An originof innovativetreatments and insight to the disease's etiology. Brain Res 2023; 1814:148449. [PMID: 37302570 DOI: 10.1016/j.brainres.2023.148449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The main pathogenic features are the development and depositionof senile plaques and neurofibrillary tangles in brain. Recent developments in the knowledge of the pathophysiological mechanisms behind Alzheimer's disease and other cognitive disorders have suggested new approaches to treatment development. These advancements have been significantly aided by the use of animal models, which are also essential for the assessment of therapies. Various approaches as transgenic animal model, chemical models, brain injury are used. This review will presentAD pathophysiology and emphasize several Alzheimer like dementia causingchemical substances, transgenic animal model and stereotaxy in order to enhance our existing knowledge of their mechanism of AD induction, dose, and treatment duration.
Collapse
Affiliation(s)
- Ritu S Chavan
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India.
| | - Krishna V Supalkar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Smeeta S Sadar
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| | - Niraj S Vyawahare
- D. Y. Patil College of Pharmacy, Akurdi, Pune 411044, Maharashtra, India
| |
Collapse
|
8
|
Bossa M, Argento O, Piacentini C, Manocchio N, Scipioni L, Oddi S, Maccarrone M, Nocentini U. Effects of Long-Term Oral Administration of N-Palmitoylethanolamine in Subjects with Mild Cognitive Impairment: Study Protocol. Brain Sci 2023; 13:1138. [PMID: 37626494 PMCID: PMC10452679 DOI: 10.3390/brainsci13081138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
N-palmitoylethanolamine (PEA) plays a key role in preventing Aβ-mediated neuroinflammation and neurotoxicity in murine models. It has been demonstrated that PEA provides anti-neuroinflammatory, pain-relieving and neuroprotective actions even in humans. In this project, we aim to evaluate these anti-neuroinflammatory effects via the cognitive evaluation and biochemical analyses of a 12-month oral administration of PEA in subjects with mild cognitive impairment (MCI). Subjects with MCI will be randomized to placebo or PEA groups, and followed for another 6 months. Cognitive abilities and neurological inflammation will be examined at baseline and after treatment. The specific objectives of the project are to ascertain whether: (i) PEA influences the scores of the neuropsychological and behavioral evaluations after one-year treatment, comparing PEA-treated and placebo subjects in both MCI and control groups; (ii) PEA can change the inflammatory and neuronal damage markers of blood and urine in MCI subjects; and (iii) these changes correlate with the clinical scores of participating subjects.
Collapse
Affiliation(s)
- Michela Bossa
- Behavioral Neuropsychology Laboratory, I.R.C.C.S. “Santa Lucia” Foundation, 00179 Rome, Italy; (O.A.); (C.P.); (U.N.)
| | - Ornella Argento
- Behavioral Neuropsychology Laboratory, I.R.C.C.S. “Santa Lucia” Foundation, 00179 Rome, Italy; (O.A.); (C.P.); (U.N.)
| | - Chiara Piacentini
- Behavioral Neuropsychology Laboratory, I.R.C.C.S. “Santa Lucia” Foundation, 00179 Rome, Italy; (O.A.); (C.P.); (U.N.)
| | - Nicola Manocchio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (M.M.)
- European Center for Brain Research/I.R.C.C.S. “Santa Lucia” Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Sergio Oddi
- European Center for Brain Research/I.R.C.C.S. “Santa Lucia” Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (M.M.)
- European Center for Brain Research/I.R.C.C.S. “Santa Lucia” Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Ugo Nocentini
- Behavioral Neuropsychology Laboratory, I.R.C.C.S. “Santa Lucia” Foundation, 00179 Rome, Italy; (O.A.); (C.P.); (U.N.)
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
9
|
Muzaimi M, Prakash KNB, Cheah PS, Feng L. Editorial: New challenges and future perspectives in pathological conditions. Front Behav Neurosci 2023; 17:1201044. [PMID: 37304763 PMCID: PMC10250722 DOI: 10.3389/fnbeh.2023.1201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - K. N. Bhanu Prakash
- Cellular Image Informatics Division, Bioinformatics Institute (ASTAR), Singapore, Singapore
| | - Pike See Cheah
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Linqing Feng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Matrisciano F, Pinna G. The Strategy of Targeting Peroxisome Proliferator-Activated Receptor (PPAR) in the Treatment of Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:513-535. [PMID: 36949324 DOI: 10.1007/978-981-19-7376-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nonsteroid nuclear receptors and transcription factors that regulate several neuroinflammatory and metabolic processes, recently involved in several neuropsychiatric conditions, including Alzheimer's disease, Parkinson's disease, major depressive disorder, post-traumatic stress disorder (PTSD), schizophrenia spectrum disorders, and autism spectrum disorders. PPARs are ligand-activated receptors that, following stimulation, induce neuroprotective effects by decreasing neuroinflammatory processes through inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) expression and consequent suppression of pro-inflammatory cytokine production. PPARs heterodimerize with the retinoid X-receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of target genes involved in lipid metabolism, synthesis of cholesterol, catabolism of amino acids, and inflammation. Interestingly, PPARs are considered functionally part of the extended endocannabinoid (eCB) system that includes the classic eCB, anandamide, which act at cannabinoid receptor types 1 (CB1) and 2 (CB2) and are implicated in the pathophysiology of stress-related neuropsychiatric disorders. In preclinical studies, PPAR stimulation improves anxiety and depression-like behaviors by enhancing neurosteroid biosynthesis. The peculiar functional role of PPARs by exerting anti-inflammatory and neuroprotective effects and their expression localization in neurons and glial cells of corticolimbic circuits make them particularly interesting as novel therapeutic targets for several neuropsychiatric disorders characterized by underlying neuroinflammatory/neurodegenerative mechanisms. Herein, we discuss the pathological hallmarks of neuropsychiatric conditions associated with neuroinflammation, as well as the pivotal role of PPARs with a special emphasis on the subtype alpha (PPAR-α) as a suitable molecular target for therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Graziano Pinna
- Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Gorina YV, Vlasova OL, Bolshakova AV, Salmina AB. Alzheimer’s Disease: a Search for the Best Experimental Models to Decode Cellular and Molecular Mechanisms of Its Development. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
12
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Palmitoylethanolamide and White Matter Lesions: Evidence for Therapeutic Implications. Biomolecules 2022; 12:biom12091191. [PMID: 36139030 PMCID: PMC9496237 DOI: 10.3390/biom12091191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Università Giustino Fortunato, 82100 Benevento, Italy
- Correspondence: (L.S.); (C.S.)
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P.le A. Moro, 5, 00185 Rome, Italy
- Correspondence: (L.S.); (C.S.)
| |
Collapse
|
13
|
Herrera MI, Udovin LD, Kobiec T, Toro-Urrego N, Kusnier CF, Kölliker-Frers RA, Luaces JP, Otero-Losada M, Capani F. Palmitoylethanolamide attenuates neurodevelopmental delay and early hippocampal damage following perinatal asphyxia in rats. Front Behav Neurosci 2022; 16:953157. [PMID: 36090655 PMCID: PMC9452789 DOI: 10.3389/fnbeh.2022.953157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023] Open
Abstract
Impaired gas exchange close to labor causes perinatal asphyxia (PA), a neurodevelopmental impairment factor. Palmitoylethanolamide (PEA) proved neuroprotective in experimental brain injury and neurodegeneration models. This study aimed to evaluate PEA effects on the immature-brain, i.e., early neuroprotection by PEA in an experimental PA paradigm. Newborn rats were placed in a 37°C water bath for 19 min to induce PA. PEA 10 mg/kg, s.c., was administered within the first hour of life. Neurobehavioral responses were assessed from postnatal day 1 (P1) to postnatal day 21 (P21), recording the day of appearance of several reflexes and neurological signs. Hippocampal CA1 area ultrastructure was examined using electron microscopy. Microtubule-associated protein 2 (MAP-2), phosphorylated high and medium molecular weight neurofilaments (pNF H/M), and glial fibrillary acidic protein (GFAP) were assessed using immunohistochemistry and Western blot at P21. Over the first 3 weeks of life, PA rats showed late gait, negative geotaxis and eye-opening onset, and delayed appearance of air-righting, auditory startle, sensory eyelid, forelimb placing, and grasp reflexes. On P21, the hippocampal CA1 area showed signs of neuronal degeneration and MAP-2 deficit. PEA treatment reduced PA-induced hippocampal damage and normalized the time of appearance of gait, air-righting, placing, and grasp reflexes. The outcome of this study might prove useful in designing intervention strategies to reduce early neurodevelopmental delay following PA.
Collapse
Affiliation(s)
- Maria I. Herrera
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas D. Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolas Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos F. Kusnier
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo A. Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan P. Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile,*Correspondence: Francisco Capani,
| |
Collapse
|
14
|
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12081161. [PMID: 36009055 PMCID: PMC9405819 DOI: 10.3390/biom12081161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.
Collapse
|
15
|
Cifelli P, Ruffolo G, Ceccanti M, Cambieri C, Libonati L, Palma E, Inghilleri M. Classical and Unexpected Effects of Ultra-Micronized PEA in Neuromuscular Function. Biomolecules 2022; 12:biom12060758. [PMID: 35740883 PMCID: PMC9221058 DOI: 10.3390/biom12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the endocannabinoid system has attracted growing attention from the scientific community for its involvement in homeostatic and pathological processes as they pertains to human physiology. Among the constituents of the endocannabinoid system, the molecule palmitoyl ethanolamide has particularly been studied for its ability to reduce several inflammatory processes involving the central nervous system. Here, we reviewed published literature and summarized the main targets of the palmitoyl ethanolamide, along with its unique possible mechanisms for restoring correct functioning of the central nervous system. Moreover, we have highlighted a less-known characteristic of palmitoyl ethanolamide, namely its ability to modulate the function of the neuromuscular junction by binding to acetylcholine receptors in different experimental conditions. Indeed, there are several studies that have highlighted how ultra-micronized palmitoyl ethanolamide is an interesting nutraceutical support for the treatment of pathological neuromuscular conditions, specifically when the normal activity of the acetylcholine receptor is altered. Although further multicentric clinical trials are needed to confirm the efficacy of ultra-micronized palmitoyl ethanolamide in improving symptoms of neuromuscular diseases, all the literature reviewed here strongly supports the ability of this endocannabinoid-like molecule to modulate the acetylcholine receptors thus resulting as a valid support for the treatment of human neuromuscular diseases.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (P.C.); (M.I.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Chiara Cambieri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Laura Libonati
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Maurizio Inghilleri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
- Correspondence: (P.C.); (M.I.)
| |
Collapse
|
16
|
Bellanti F, Bukke VN, Moola A, Villani R, Scuderi C, Steardo L, Palombelli G, Canese R, Beggiato S, Altamura M, Vendemiale G, Serviddio G, Cassano T. Effects of Ultramicronized Palmitoylethanolamide on Mitochondrial Bioenergetics, Cerebral Metabolism, and Glutamatergic Transmission: An Integrated Approach in a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890855. [PMID: 35686025 PMCID: PMC9170916 DOI: 10.3389/fnagi.2022.890855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 01/26/2023] Open
Abstract
The therapeutic potential of ultramicronized palmitoylethanolamide (um-PEA) was investigated in young (6-month-old) and adult (12-month-old) 3 × Tg-AD mice, which received um-PEA for 3 months via a subcutaneous delivery system. Mitochondrial bioenergetics, ATP homeostasis, and magnetic resonance imaging/magnetic resonance spectroscopy were evaluated in the frontal cortex (FC) and hippocampus (HIPP) at the end of um-PEA treatment. Glutamate release was investigated by in vivo microdialysis in the ventral HIPP (vHIPP). We demonstrated that chronic um-PEA treatment ameliorates the decrease in the complex-I respiration rate and the FoF1-ATPase (complex V) activity, as well as ATP content depletion in the cortical mitochondria. Otherwise, the impairment in mitochondrial bioenergetics and the release of glutamate after depolarization was not ameliorated by um-PEA treatment in the HIPP of both young and adult 3 × Tg-AD mice. Moreover, progressive age- and pathology-related changes were observed in the cortical and hippocampal metabolism that closely mimic the alterations observed in the human AD brain; these metabolic alterations were not affected by chronic um-PEA treatment. These findings confirm that the HIPP is the most affected area by AD-like pathology and demonstrate that um-PEA counteracts mitochondrial dysfunctions and helps rescue brain energy metabolism in the FC, but not in the HIPP.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Archana Moola
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Rome, Italy
| | | | - Rossella Canese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Effects of Palmitoylethanolamide on Neurodegenerative Diseases: A Review from Rodents to Humans. Biomolecules 2022; 12:biom12050667. [PMID: 35625595 PMCID: PMC9138306 DOI: 10.3390/biom12050667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.
Collapse
|
18
|
Tao R, Huang S, Zhou J, Ye L, Shen X, Wu J, Qian L. Neonatal Supplementation of Oleamide During Suckling Promotes Learning Ability and Memory in Adolescent Mice. J Nutr 2022; 152:889-898. [PMID: 34967906 DOI: 10.1093/jn/nxab442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fatty acid amides (FAMs) are present in breast milk. Oleamide (ODA), a member of the FAM family, has been reported to affect learning and memory-related abilities in animal experiments. OBJECTIVES This study aimed to characterize the temporal changes of FAMs in human milk and sought to examine the effect of ODA supplementation during suckling on postweaning cognitive performance in mice. METHODS FAMs were measured in human milk (postpartum 1-24 wk) by ultra-performance liquid chromatography-triple quadruple mass spectrometry (UPLC-TQ-MS) analysis. We supplemented neonatal C57BL/6J mice of both sexes with vehicle (control), 5 mg/(kg · day) ODA (L-ODA), or 25 mg/(kg · day) ODA (H-ODA) throughout suckling by oral gavage. After weaning, the Morris water maze test and novel object recognition test were performed. Neurogenesis, spinal morphogenesis in the dentate gyrus (DG) region, and hippocampal expression of synaptic markers were analyzed. Data were analyzed by ANOVA and repeated-measures ANOVA. RESULTS ODA (0.566-1.31 mg/L) was the most abundant FAM in breast milk, followed by palmitamide (0.135-0.269 mg/L) and linoleamide (0.046-0.242 mg/L). Compared with the control group, the H-ODA group demonstrated shorter escape latency, shorter travel distance, 113% more platform crossing, and 48% greater discrimination index in behavioral tests (P < 0.05). Additionally, the H-ODA group showed a higher density of 5-ethynyl-2'-deoxyuridine (EdU)+ and EdU+& doublecortin (DCX)+ cells (62% and 53%, respectively), and 52% greater spine density in the DG region than the control group (P < 0.05). The synaptic markers, postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), were upregulated in the H-ODA group compared with the control group (P < 0.05). The L-ODA group also showed shorter escape latency in behavioral tests and 27% greater spine density in the DG region than the control group (P < 0.05). CONCLUSIONS ODA is the most common FAM in human milk. ODA supplementation during suckling promotes learning and memory-related abilities in adolescent mice by augmenting hippocampal neuronal proliferation and boosting synaptic plasticity.
Collapse
Affiliation(s)
- Ranran Tao
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shanshan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xiuhua Shen
- Department of Nutrition, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Wu
- Department of Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
19
|
Trauma-like exposure alters neuronal apoptosis, Bin1, Fkbp5 and NR2B expression in an amyloid-beta (1-42) rat model of Alzheimer's disease. Neurobiol Learn Mem 2022; 190:107611. [DOI: 10.1016/j.nlm.2022.107611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
|
20
|
Faborode OS, Dalle E, Mabandla MV. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer's disease. Behav Brain Res 2022; 419:113679. [PMID: 34826515 DOI: 10.1016/j.bbr.2021.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) affects several brain areas, including the prefrontal cortex (PFC) involved in execution, working memory, and fear extinction. Despite these critical roles, the PFC is understudied in AD pathology. People with post-traumatic stress disorder (PTSD) have twice the risk of developing AD, and the underlying mechanisms linking these two diseases are less understood. Here, we investigated the effect of footshock stress on behavioural vis-a-vis molecular changes in the PFC of an amyloid-beta (Aβ)-42 lesion rat model of AD. Trauma-like conditions were induced by exposing the animals to several footshocks. AD-like condition was induced via intra-hippocampal injection of Aβ-42 peptide. Following Aβ-42 injections, animals were tested for behavioural changes using the Open Field Test (OFT) and Y-maze test. The PFC was later harvested for neurochemical analyses. Our results showed an interactive effect of footshocks and Aβ-42 lesion on: reduced percentage alternation in the Y-maze test, suggesting memory impairment; reduced number of line crosses and time spent in the centre square of the OFT, indicating anxiogenic responses. Similarly, there was an interactive effect of footshocks and Aβ-42 lesion on: increased FK506 binding protein 51 (FKBP5) expression, which can be associated with stress-induced anxiogenic behaviours; and increased neuronal apoptosis in the PFC of the animals. In addition, footshocks, as well as Aβ-42 lesion, reduced superoxide dismutase levels and Bridging Integrator-1 (BIN1) expression in the PFC of the animals, which can be linked to the observed memory impairment. In conclusion, our findings indicate that footshocks exaggerate PFC-associated behavioural and molecular changes induced by an AD-like pathology.
Collapse
MESH Headings
- Alzheimer Disease/chemically induced
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Electroshock
- Male
- Memory Disorders/chemically induced
- Memory Disorders/etiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Peptide Fragments/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Sprague-Dawley
- Stress Disorders, Post-Traumatic/chemically induced
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Tacrolimus Binding Proteins/metabolism
Collapse
Affiliation(s)
- Oluwaseun Samuel Faborode
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Ernest Dalle
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|
21
|
Abdel-Aal RA, Hussein OA, Elsaady RG, Abdelzaher LA. Naproxen as a potential candidate for promoting rivastigmine anti-Alzheimer activity against aluminum chloride-prompted Alzheimer's-like disease in rats; neurogenesis and apoptosis modulation as a possible underlying mechanism. Eur J Pharmacol 2022; 915:174695. [PMID: 34914971 DOI: 10.1016/j.ejphar.2021.174695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is one of the leading causes of dependence and disability among the elderly worldwide. The traditional anti-Alzheimer medication, rivastigmine, one of the cholinesterase inhibitors (ChEIs), fails to achieve a definitive cure. We tested the hypothesis that naproxen administration to the rivastigmine-treated aluminum chloride (AlCl3) Alzheimer's rat model could provide an additive neuroprotective effect compared to rivastigmine alone. MATERIALS AND METHODS The studied groups were control (Cont), AlCl3 treated (Al), rivastigmine treated (RIVA), naproxen treated (Napro), and combined rivastigmine and naproxen treated (RIVA + Napro). Rats' memory, spatial learning, and cognitive behavior were assessed followed by evaluation of hippocampal acetylcholinesterase (AChE) activity. Hippocampal and cerebellar histopathology were thoroughly examined. Activated caspase-3 and the neuroepithelial stem cells marker; nestin expressions were immunohistochemically assayed. RESULTS AD rats displayed significantly impaired memory and cognitive function, augmented hippocampal AChE activity; massive neurodegeneration associated with enhanced astrogliosis, apoptosis, and impaired neurogenesis. Except for the enhancement of neurogenesis and suppression of apoptosis, the combination therapy had no additional neuroprotective benefit over rivastigmine-only therapy. CONCLUSION Naproxen's efficacy was established by its ability to function at the cellular level, improved neurogenesis, and decreased, apoptosis without having an additional mitigating impact on cognitive impairment in rivastigmine-treated AD rats.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Reham G Elsaady
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lobna A Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
22
|
Colizzi M, Bortoletto R, Colli C, Bonomo E, Pagliaro D, Maso E, Di Gennaro G, Balestrieri M. Therapeutic effect of palmitoylethanolamide in cognitive decline: A systematic review and preliminary meta-analysis of preclinical and clinical evidence. Front Psychiatry 2022; 13:1038122. [PMID: 36387000 PMCID: PMC9650099 DOI: 10.3389/fpsyt.2022.1038122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive decline is believed to be associated with neurodegenerative processes involving excitotoxicity, oxidative damage, inflammation, and microvascular and blood-brain barrier dysfunction. Interestingly, research evidence suggests upregulated synthesis of lipid signaling molecules as an endogenous attempt to contrast such neurodegeneration-related pathophysiological mechanisms, restore homeostatic balance, and prevent further damage. Among these naturally occurring molecules, palmitoylethanolamide (PEA) has been independently associated with neuroprotective and anti-inflammatory properties, raising interest into the possibility that its supplementation might represent a novel therapeutic approach in supporting the body-own regulation of many pathophysiological processes potentially contributing to neurocognitive disorders. Here, we systematically reviewed all human and animal studies examining PEA and its biobehavioral correlates in neurocognitive disorders, finding 33 eligible outputs. Studies conducted in animal models of neurodegeneration indicate that PEA improves neurobehavioral functions, including memory and learning, by reducing oxidative stress and pro-inflammatory and astrocyte marker expression as well as rebalancing glutamatergic transmission. PEA was found to promote neurogenesis, especially in the hippocampus, neuronal viability and survival, and microtubule-associated protein 2 and brain-derived neurotrophic factor expression, while inhibiting mast cell infiltration/degranulation and astrocyte activation. It also demonstrated to mitigate β-amyloid-induced astrogliosis, by modulating lipid peroxidation, protein nytrosylation, inducible nitric oxide synthase induction, reactive oxygen species production, caspase3 activation, amyloidogenesis, and tau protein hyperphosphorylation. Such effects were related to PEA ability to indirectly activate cannabinoid receptors and modulate proliferator-activated receptor-α (PPAR-α) activity. Importantly, preclinical evidence suggests that PEA may act as a disease-modifying-drug in the early stage of a neurocognitive disorder, while its protective effect in the frank disorder may be less relevant. Limited human research suggests that PEA supplementation reduces fatigue and cognitive impairment, the latter being also meta-analytically confirmed in 3 eligible studies. PEA improved global executive function, working memory, language deficits, daily living activities, possibly by modulating cortical oscillatory activity and GABAergic transmission. There is currently no established cure for neurocognitive disorders but only treatments to temporarily reduce symptom severity. In the search for compounds able to protect against the pathophysiological mechanisms leading to neurocognitive disorders, PEA may represent a valid therapeutic option to prevent neurodegeneration and support endogenous repair processes against disease progression.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara Colli
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Enrico Bonomo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniele Pagliaro
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Maso
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, School of Medicine, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
23
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Benvenuti L, Di Salvo C, Flori L, Piccarducci R, Daniele S, Martelli A, Calderone V, Martini C, Fornai M. Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2021; 12:748021. [PMID: 34658885 PMCID: PMC8511319 DOI: 10.3389/fphar.2021.748021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Palmitoylethanolamide (PEA), an endogenous lipid mediator, is emerging as a promising pharmacological agent in multiple neurodegenerative disorders for its anti-inflammatory and neuroprotective properties. However, its effects on enteric inflammation and colonic dysmotility associated with Alzheimer’s disease (AD) are lacking. This study was designed to investigate the beneficial effect of PEA administration in counteracting the enteric inflammation and relieving the bowel motor dysfunctions in an AD mouse model, SAMP8 mice. In addition, the ability of PEA in modulating the activation of enteric glial cells (EGCs), pivotally involved in the pathophysiology of bowel dysfunctions associated with inflammatory conditions, has also been examined. SAMP8 mice at 4 months of age were treated orally with PEA (5 mg/kg/day) for 2 months. SAMR1 animals were employed as controls. At the end of treatment, parameters dealing with colonic motility, inflammation, barrier integrity and AD protein accumulation were evaluated. The effect of PEA on EGCs was tested in cultured cells treated with lipopolysaccharide (LPS) plus β-amyloid 1–42 (Aβ). SAMP8 treated with PEA displayed: 1) an improvement of in vitro colonic motor activity, citrate synthase activity and intestinal epithelial barrier integrity and 2) a decrease in colonic Aβ and α-synuclein (α-syn) accumulation, S100-β expression as well as enteric IL-1β and circulating LPS levels, as compared with untreated SAMP8 mice. In EGCs, treatment with PEA counteracted the increment of S100-β, TLR-4, NF-κB p65 and IL-1β release induced by LPS and Aβ. These results suggest that PEA, under a condition of cognitive decline, prevents the enteric glial hyperactivation, reduces AD protein accumulation and counteracts the onset and progression of colonic inflammatory condition, as well as relieves intestinal motor dysfunctions and improves the intestinal epithelial barrier integrity. Therefore, PEA represents a viable approach for the management of the enteric inflammation and motor contractile abnormalities associated with AD.
Collapse
Affiliation(s)
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clelia Di Salvo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | | | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14101025. [PMID: 34681249 PMCID: PMC8538250 DOI: 10.3390/ph14101025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.
Collapse
|
25
|
Mahony C, O’Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021; 22:ijms221910757. [PMID: 34639097 PMCID: PMC8509728 DOI: 10.3390/ijms221910757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with extensive genetic and aetiological heterogeneity. While the underlying molecular mechanisms involved remain unclear, significant progress has been facilitated by recent advances in high-throughput transcriptomic, epigenomic and proteomic technologies. Here, we review recently published ASD proteomic data and compare proteomic functional enrichment signatures with those of transcriptomic and epigenomic data. We identify canonical pathways that are consistently implicated in ASD molecular data and find an enrichment of pathways involved in mitochondrial metabolism and neurogenesis. We identify a subset of differentially expressed proteins that are supported by ASD transcriptomic and DNA methylation data. Furthermore, these differentially expressed proteins are enriched for disease phenotype pathways associated with ASD aetiology. These proteins converge on protein–protein interaction networks that regulate cell proliferation and differentiation, metabolism, and inflammation, which demonstrates a link between canonical pathways, biological processes and the ASD phenotype. This review highlights how proteomics can uncover potential molecular mechanisms to explain a link between mitochondrial dysfunction and neurodevelopmental pathology.
Collapse
|
26
|
Grabacka M, Pierzchalska M, Płonka PM, Pierzchalski P. The Role of PPAR Alpha in the Modulation of Innate Immunity. Int J Mol Sci 2021; 22:10545. [PMID: 34638886 PMCID: PMC8508635 DOI: 10.3390/ijms221910545] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor α is a potent regulator of systemic and cellular metabolism and energy homeostasis, but it also suppresses various inflammatory reactions. In this review, we focus on its role in the regulation of innate immunity; in particular, we discuss the PPARα interplay with inflammatory transcription factor signaling, pattern-recognition receptor signaling, and the endocannabinoid system. We also present examples of the PPARα-specific immunomodulatory functions during parasitic, bacterial, and viral infections, as well as approach several issues associated with innate immunity processes, such as the production of reactive nitrogen and oxygen species, phagocytosis, and the effector functions of macrophages, innate lymphoid cells, and mast cells. The described phenomena encourage the application of endogenous and pharmacological PPARα agonists to alleviate the disorders of immunological background and the development of new solutions that engage PPARα activation or suppression.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland;
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland;
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Michałowskiego 12, 31-126 Cracow, Poland;
| |
Collapse
|
27
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
28
|
Successful and Unsuccessful Brain Aging in Pets: Pathophysiological Mechanisms behind Clinical Signs and Potential Benefits from Palmitoylethanolamide Nutritional Intervention. Animals (Basel) 2021; 11:ani11092584. [PMID: 34573549 PMCID: PMC8470385 DOI: 10.3390/ani11092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cognitive dysfunction syndrome is a common yet underreported neurodegenerative disorder of elderly dogs and cats and a natural model of human Alzheimer’s disease. The increasingly expanding life expectancy means a larger proportion of affected animals in the coming decades. Although far from being curative, available treatments are more effective the sooner they are started. Educating veterinary practitioners and owners in the early recognition of age-related cognitive dysfunction is thus mandatory. By shedding light on the mechanism underlying the disease, novel and more effective approaches might be developed. Emerging evidence shows that successful and unsuccessful brain aging share a common underlying mechanism that is neuroinflammation. This process involves astrocytes, microglia, and mast cells and has a restorative homeostatic intent. However, for reasons not fully elucidated yet, neuroinflammation can also exert detrimental consequences substantially contributing to neurodegeneration. Here we summarize the evidence accumulated so far on the pathogenic role of neuroinflammation in the onset and progression of age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential benefit of palmitoylethanolamide dietary intervention in rebalancing neuroinflammation and exerting neuroprotection is also discussed. Abstract Canine and feline cognitive dysfunction syndrome is a common neurodegenerative disorder of old age and a natural model of human Alzheimer’s disease. With the unavoidable expanding life expectancy, an increasing number of small animals will be affected. Although there is no cure, early detection and intervention are vitally important to delay cognitive decline. Knowledge of cellular and molecular mechanisms underlying disease onset and progression is an equally decisive factor for developing effective approaches. Uncontrolled neuroinflammation, orchestrated in the central nervous system mainly by astrocytes, microglia, and resident mast cells, is currently acknowledged as a hallmark of neurodegeneration. This has prompted scientists to find a way to rebalance the altered crosstalk between these cells. In this context, great emphasis has been given to the role played by the expanded endocannabinoid system, i.e., endocannabinoidome, because of its prominent role in physiological and pathological neuroinflammation. Within the endocannabinoidome, great attention has been paid to palmitoylethanolamide due to its safe and pro-homeostatic effects. The availability of new ultramicronized formulations highly improved the oral bioavailability of palmitoylethanolamide, paving the way to its dietary use. Ultramicronized palmitoylethanolamide has been repeatedly tested in animal models of age-related neurodegeneration with promising results. Data accumulated so far suggest that supplementation with ultramicronized palmitoylethanolamide helps to accomplish successful brain aging.
Collapse
|
29
|
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Bungau S. Multifaceted Alzheimer's Disease: Building a Roadmap for Advancement of Novel Therapies. Neurochem Res 2021; 46:2832-2851. [PMID: 34357520 DOI: 10.1007/s11064-021-03415-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative disorders of elderly humans associated with cognitive damage. Biochemical, epigenetic, and pathophysiological factors all consider a critical role of extracellular amyloid-beta (Aß) plaques and intracellular neurofibrillary tangles (NFTs) as pathological hallmarks of AD. In an endeavor to describe the intricacy and multifaceted nature of AD, several hypotheses based on the roles of Aß accumulation, tau hyperphosphorylation, impaired cholinergic signaling, neuroinflammation, and autophagy during the initiation and advancement of the disease have been suggested. However, in no way do these theories have the potential of autonomously describing the pathophysiological alterations located in AD. The complex pathological nature of AD has hindered the recognition and authentication of successful biomarkers for the progression of its diagnosis and therapeutic strategies. There has been a significant research effort to design multi-target-directed ligands for the treatment of AD, an approach which is developed by the knowledge that AD is a composite and multifaceted disease linked with several separate but integrated molecular pathways.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
30
|
Bottemanne P, Guillemot-Legris O, Paquot A, Masquelier J, Malamas M, Makriyannis A, Alhouayek M, Muccioli GG. N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibition, but Not Fatty Acid Amide Hydrolase Inhibition, Prevents the Development of Experimental Autoimmune Encephalomyelitis in Mice. Neurotherapeutics 2021; 18:1815-1833. [PMID: 34235639 PMCID: PMC8609003 DOI: 10.1007/s13311-021-01074-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
N-acylethanolamines (NAEs) are endogenous bioactive lipids reported to exert anti-inflammatory and neuroprotective effects mediated by cannabinoid receptors and peroxisome proliferator-activated receptors (PPARs), among others. Therefore, interfering with NAE signaling could be a promising strategy to decrease inflammation in neurological disorders such as multiple sclerosis (MS). Fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA) are key modulators of NAE levels. This study aims to investigate and compare the effect of NAAA inhibition, FAAH inhibition, and dual inhibition of both enzymes in a mouse model of MS, namely the experimental autoimmune encephalomyelitis (EAE). Our data show that NAAA inhibition strongly decreased the hallmarks of the pathology. Interestingly, FAAH inhibition was less efficient in decreasing inflammatory hallmarks despite the increased NAE levels. Moreover, the inhibition of both NAAA and FAAH, using a dual-inhibitor or the co-administration of NAAA and FAAH inhibitors, did not show an added value compared to NAAA inhibition. Furthermore, our data suggest an important role of decreased activation of astrocytes and microglia in the effects of NAAA inhibition on EAE, while NAAA inhibition did not affect T cell recall. This work highlights the beneficial effects of NAAA inhibition in the context of central nervous system inflammation and suggests that the simultaneous inhibition of NAAA and FAAH has no additional beneficial effect in EAE.
Collapse
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, B1.72.01, Av. E. Mounier 72, 1200, Bruxelles, Belgium.
| |
Collapse
|
31
|
Assogna M, Casula EP, Borghi I, Bonnì S, Samà D, Motta C, Di Lorenzo F, D'Acunto A, Porrazzini F, Minei M, Caltagirone C, Martorana A, Koch G. Effects of Palmitoylethanolamide Combined with Luteoline on Frontal Lobe Functions, High Frequency Oscillations, and GABAergic Transmission in Patients with Frontotemporal Dementia. J Alzheimers Dis 2021; 76:1297-1308. [PMID: 32623398 DOI: 10.3233/jad-200426] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a presenile neurodegenerative disease for which there is no effective pharmacological treatment. Recently, a link has been proposed between neuroinflammation and FTD. OBJECTIVE Here, we aim to investigate the effects of palmitoylethanolamide (PEA) combined with luteoline (PEA-LUT), an endocannabinoid with anti-inflammatory and neuroprotective effects, on behavior, cognition, and cortical activity in a sample of FTD patients. METHODS Seventeen patients with a diagnosis of probable FTD were enrolled. Cognitive and neurophysiological evaluations were performed at baseline and after 4 weeks of PEA-LUT 700 mg×2/day. Cognitive effects were assessed by Neuropsychiatric Inventory (NPI), Mini-Mental State Examination, Frontal Assessment Battery (FAB), Screening for Aphasia in Neurodegeneration, Activities of Daily Living-Instrumental Activities of Daily Living, and Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating scale. To investigate in vivo neurophysiological effects of PEA-LUT, we used repetitive and paired-pulse transcranial magnetic stimulation (TMS) protocols assessing LTP-like cortical plasticity, short-interval intracortical inhibition, long-interval intracortical inhibition (LICI), and short-latency afferent inhibition. Moreover, we used TMS combined with EEG to evaluate the effects on frontal lobe cortical oscillatory activity. RESULTS Treatment with PEA-LUT was associated with an improvement in NPI and FAB scores. Neurophysiological evaluation showed a restoration of LICI, in particular at ISI 100 ms, suggesting a modulation of GABA(B) activity. TMS-EEG showed a remarkable increase of TMS-evoked frontal lobe activity and of high-frequency oscillations in the beta/gamma range. CONCLUSION PEA-LUT could reduce behavioral disturbances and improve frontal lobe functions in FTD patients through the modulation of cortical oscillatory activity and GABA(B)ergic transmission.
Collapse
Affiliation(s)
- Martina Assogna
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Tor Vergata Policlinic, Rome, Italy
| | - Elias Paolo Casula
- Santa Lucia Foundation, IRCCS, Rome, Italy.,Department of Clinical and Movement Neurosciences, University College London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Giacomo Koch
- Santa Lucia Foundation, IRCCS, Rome, Italy.,eCampus University, Novedrate, Italy
| |
Collapse
|
32
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
33
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
35
|
Ultramicronized Palmitoylethanolamide (um-PEA): A New Possible Adjuvant Treatment in COVID-19 patients. Pharmaceuticals (Basel) 2021; 14:ph14040336. [PMID: 33917573 PMCID: PMC8067485 DOI: 10.3390/ph14040336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.
Collapse
|
36
|
Mazzini GS, Khoraki J, Browning MG, Wu J, Zhou H, Price ET, Wolfe LG, Mangino MJ, Campos GM. Gastric Bypass Increases Circulating Bile Acids and Activates Hepatic Farnesoid X Receptor (FXR) but Requires Intact Peroxisome Proliferator Activator Receptor Alpha (PPARα) Signaling to Significantly Reduce Liver Fat Content. J Gastrointest Surg 2021; 25:871-879. [PMID: 33555523 DOI: 10.1007/s11605-021-04908-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND We interrogate effects of gastric bypass (RYGB), compared with a low-calorie diet, on bile acid (BA), liver fat, and FXR, PPARα, and targets in rats with obesity and non-alcoholic fatty liver disease (NAFLD). METHODS Male Wistar rats received a high-fat diet (obese/NAFLD, n=24) or standard chow (lean, n=8) for 12 weeks. Obese/NAFLD rats had RYGB (n=11), sham operation pair-fed to RYGB (pair-fed sham, n=8), or sham operation (sham, n=5). Lean rats had sham operation (lean sham, n=8). Post-operatively, five RYGB rats received PPARα antagonist GW6417. Sacrifice occurred at 7 weeks. We measured weight changes, fasting total plasma BA, and liver % steatosis, triglycerides, and mRNA expression of the nuclear receptors FXR, PPARα, and their targets SHP and CPT-I. RESULTS At sacrifice, obese sham was heavier (p<0.01) than all other groups that had lost similar weight loss. Obese sham had lower BA levels and lower hepatic FXR, SHP, and CPT-I mRNA expression than lean sham (P<0.05, for all comparisons). RYGB had increased BA levels compared with obese and pair-fed sham (P<0.05, for both), while pair-fed sham had BA levels, similar to obese sham. Compared with pair-fed sham, RYGB animals had increased liver FXR and PPARα expression and signaling (P<0.05). Percentage of steatosis was lower in RYGB and lean sham, relative to obese and pair-fed sham (P<0.05, for all comparisons). PPARα inhibition after RYGB resulted in similar weight loss but higher liver triglyceride content (P=0.01) compared with RYGB alone. CONCLUSIONS RYGB led to greater liver fat loss than low-calorie diet, an effect associated to increased fasting BA levels and increased expression of modulators of liver fat oxidation, FXR, and PPARα. However, intact PPARα signaling was necessary for resolution of NAFLD after RYGB.
Collapse
Affiliation(s)
- Guilherme S Mazzini
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
- Division of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, 2350 Ramiro Barcelos Street, Porto Alegre, RS, Brazil
| | - Jad Khoraki
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
| | - Matthew G Browning
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
| | - Jilin Wu
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
| | - Huiping Zhou
- Central Virginia Veterans Affairs Health Care System, Department of Microbiology and Immunology, Virginia Commonwealth University, 1220 E. Broad Street, Richmond, VA, USA
| | - Elvin T Price
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, 410 N 12th Street, Richmond, VA, USA
| | - Luke G Wolfe
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
| | - Martin J Mangino
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA
| | - Guilherme M Campos
- Division of Bariatric and Gastrointestinal Surgery, Department of Surgery, Virginia Commonwealth University, 1200 E. Broad Street, Richmond, VA, USA.
| |
Collapse
|
37
|
Mancini GF, Marchetta E, Pignani I, Trezza V, Campolongo P. Social Defeat Stress During Early Adolescence Confers Resilience Against a Single Episode of Prolonged Stress in Adult Rats. Cells 2021; 10:360. [PMID: 33572375 PMCID: PMC7916240 DOI: 10.3390/cells10020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
Early-life adverse experiences (first hit) lead to coping strategies that may confer resilience or vulnerability to later experienced stressful events (second hit) and the subsequent development of stress-related psychopathologies. Here, we investigated whether exposure to two stressors at different stages in life has long-term effects on emotional and cognitive capabilities, and whether the interaction between the two stressors influences stress resilience. Male rats were subjected to social defeat stress (SDS, first hit) in adolescence and to a single episode of prolonged stress (SPS, second hit) in adulthood. Behavioral outcomes, hippocampal expression of brain-derived neurotrophic factor, and plasma corticosterone levels were tested in adulthood. Rats exposed to both stressors exhibited resilience against the development of stress-induced alterations in emotional behaviors and spatial memory, but vulnerability to cued fear memory dysfunction. Rats subjected to both stressors demonstrated resilience against the SDS-induced alterations in hippocampal brain-derived neurotrophic factor expression and plasma corticosterone levels. SPS alone altered locomotion and spatial memory retention; these effects were absent in SDS-exposed rats later exposed to SPS. Our findings reveal that exposure to social stress during early adolescence influences the ability to cope with a second challenge experienced later in life.
Collapse
Affiliation(s)
- Giulia Federica Mancini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Enrico Marchetta
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Irene Pignani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University Roma Tre, 00146 Rome, Italy;
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (G.F.M.); (E.M.); (I.P.)
- Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
38
|
Mancini GF, Marchetta E, Riccardi E, Trezza V, Morena M, Campolongo P. Sex-divergent long-term effects of single prolonged stress in adult rats. Behav Brain Res 2020; 401:113096. [PMID: 33359571 DOI: 10.1016/j.bbr.2020.113096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Single prolonged stress (SPS) is an experimental model that recapitulates in rodents some of the core symptoms of post-traumatic stress disorder (PTSD). Although women have a two-fold greater risk to develop PTSD, most preclinical studies have been carried out in males. Furthermore, the long-term effects of behavioral alterations induced by SPS have been rarely investigated. Here, we evaluated the long-term effects of SPS on PTSD-relevant behavioral domains in rats and whether these effects were sex-dependent. To this aim, separate cohorts of male and female adult rats were subjected to SPS and, 30 days later, long-term effects were assessed. We found that SPS exposure reduced locomotor activity in both sexes in an open field task. Males only showed increased anxiety-like behavior in the elevated plus maze and marble burying tests, enhanced acoustic startle response and impaired spatial memory retention while females were unaffected. SPS exposure did not alter auditory fear memory dynamics in males, but it did alter extinction retrieval in females. We provide the first evidence that SPS reproduces long-term emotional alterations in male, but not in female, rats which were observed 30 days following trauma exposure, thus resembling some of the hallmark symptoms of PTSD. Furthermore, our results show for the first time a long-term SPS-induced alteration of cued fear extinction in females. Our findings are relevant to future research on trauma-related disorders and may help develop sex-specific interventions to treat PTSD.
Collapse
Affiliation(s)
- Giulia Federica Mancini
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Enrico Marchetta
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy
| | - Eleonora Riccardi
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Viviana Trezza
- Dept. of Science, Section of Biomedical Sciences and Technologies, University Roma Tre, 00146 Rome, Italy
| | - Maria Morena
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; Neurobiology of Behavior Laboratory, Santa Lucia Foundation, 00143 Rome, Italy.
| |
Collapse
|
39
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
40
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
41
|
Beggiato S, Cassano T, Ferraro L, Tomasini MC. Astrocytic palmitoylethanolamide pre-exposure exerts neuroprotective effects in astrocyte-neuron co-cultures from a triple transgenic mouse model of Alzheimer's disease. Life Sci 2020; 257:118037. [PMID: 32622942 DOI: 10.1016/j.lfs.2020.118037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator that, also by blunting astrocyte activation, demonstrated beneficial properties in several in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we used astrocyte-neuron co-cultures from 3xTg-AD mouse (i.e. an animal model of AD) cerebral cortex to further investigate on the role of astrocytes in PEA-induced neuroprotection. To this aim, we evaluated the number of viable cells, apoptotic nuclei, microtubule-associated protein-2 (MAP2) positive cells and morphological parameters in cortical neurons co-cultured with cortical astrocytes pre-exposed, or not, to Aβ42 (0.5 μM; 24 h) or PEA (0.1 μM; 24 h). Pre-exposure of astrocytes to Aβ42 failed to affect the viability, the number of neuronal apoptotic nuclei, MAP2 positive cell number, neuritic aggregations/100 μm, dendritic branches per neuron, the neuron body area, the length of the longest dendrite and number of neurites/neuron in 3xTg-AD mouse astrocyte-neuron co-cultures. Compared to neurons from wild-type (non-Tg) mouse co-cultures, 3xTg-AD mouse neurons co-cultured with astrocytes from this mutant mice displayed higher number of apoptotic nuclei, lower MAP2 immunoreactivity and several morphological changes. These signs of neuronal suffering were significantly counteracted when the 3xTg-AD mouse cortical neurons were co-cultured with 3xTg-AD mouse astrocytes pre-exposed to PEA. The present data suggest that in astrocyte-neuron co-cultures from 3xTg-AD mice, astrocytes contribute to neuronal damage and PEA, by possibly counteracting reactive astrogliosis, improved neuronal survival. These findings further support the role of PEA as a possible new therapeutic opportunity in AD treatment.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy; IRET Foundation, Via Tolara di Sopra 41 - 40064 Ozzano dell'Emilia, Bologna, Italy; Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy
| |
Collapse
|
42
|
Asaro A, Carlo-Spiewok AS, Malik AR, Rothe M, Schipke CG, Peters O, Heeren J, Willnow TE. Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling. Alzheimers Dement 2020; 16:1248-1258. [PMID: 32588544 DOI: 10.1002/alz.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE-bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform-specific functions for sortilin in brain lipid metabolism and AD. RESULTS Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid-based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4.
Collapse
Affiliation(s)
- Antonino Asaro
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Anna R Malik
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | - Carola G Schipke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Joerg Heeren
- Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
44
|
Gaspar JC, Okine BN, Llorente-Berzal A, Roche M, Finn DP. Pharmacological Blockade of PPAR Isoforms Increases Conditioned Fear Responding in the Presence of Nociceptive Tone. Molecules 2020; 25:molecules25041007. [PMID: 32102354 PMCID: PMC7070536 DOI: 10.3390/molecules25041007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARβ/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR antagonists on formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA), and conditioned fear in the presence of nociceptive tone in rats. Twenty-three and a half hours following fear conditioning to context, male Sprague-Dawley rats received an intraplantar injection of formalin and intraperitoneal administration of vehicle, PPARα (GW6471), PPARβ/δ (GSK0660) or PPARγ (GW9662) antagonists, and 30 min later were re-exposed to the conditioning arena for 15 min. The PPAR antagonists did not alter nociceptive behaviour or fear-conditioned analgesia. The PPARα and PPARβ/δ antagonists prolonged context-induced freezing in the presence of nociceptive tone without affecting its initial expression. The PPARγ antagonist potentiated freezing over the entire trial. In conclusion, pharmacological blockade of PPARα and PPARβ/δ in the presence of formalin-evoked nociceptive tone, impaired short-term, within-trial fear-extinction in rats without affecting pain response, while blockade of PPARγ potentiated conditioned fear responding. These results suggest that endogenous signalling through these three PPAR isoforms may reduce the expression of conditioned fear in the presence of nociceptive tone.
Collapse
Affiliation(s)
- Jessica C. Gaspar
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Bright N. Okine
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Alvaro Llorente-Berzal
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - Michelle Roche
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Centre for Pain Research, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
- Physiology Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
| | - David P. Finn
- Pharmacology and Therapeutics Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland; (J.C.G.); (B.N.O.); (A.L.-B.)
- Galway Neuroscience Centre, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland;
- Physiology Department, National University of Ireland Galway, University Road, H91 W5P7 Galway, Ireland
- Correspondence: ; Tel.: +353-(0)91-495-280; Fax: +353-(0)91-495-586
| |
Collapse
|
45
|
Beggiato S, Tomasini MC, Cassano T, Ferraro L. Chronic Oral Palmitoylethanolamide Administration Rescues Cognitive Deficit and Reduces Neuroinflammation, Oxidative Stress, and Glutamate Levels in A Transgenic Murine Model of Alzheimer's Disease. J Clin Med 2020; 9:jcm9020428. [PMID: 32033363 PMCID: PMC7074257 DOI: 10.3390/jcm9020428] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/15/2023] Open
Abstract
N-palmitoylethanolamide (PEA) is a lipid mediator belonging to the class of the N-acylethanolamine. Products containing PEA, also in ultramicronized formulation (um-PEA), are already licensed for use in humans for its analgesic and anti-inflammatory properties, and demonstrated high safety and tolerability. Preclinical studies indicate that PEA, especially in the ultramicronized form, could be a potential therapeutic agent for Alzheimer's disease (AD). In this study, we evaluated the neuroprotective and antioxidant effects of chronic (three months) um-PEA administration in an animal model of AD (3×Tg-AD mice). For translation purposes, the compound has been orally administered. Cognitive performance as well as biochemical markers [(interleukin-16 (IL-16) and tumor necrosis factor- (TNF-)] levels, reactive oxygen species (ROS) production, synaptophysin and glutamate levels) have been evaluated at the end of um-PEA treatment. The results indicate that orally administered um-PEA was adsorbed and distributed in the mice brain. The chronic treatment with um-PEA (100 mg/kg/day for three months) rescued cognitive deficit, restrained neuroinflammation and oxidative stress, and reduced the increase in hippocampal glutamate levels observed in 3×Tg-AD mice. Overall, these data reinforce the concept that um-PEA exerts beneficial effects in 3×Tg-AD mice. The fact that PEA is already licensed for the use in humans strongly supports its rapid translation in clinical practice.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
- Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455276
| |
Collapse
|
46
|
Valenza M, Facchinetti R, Steardo L, Scuderi C. Altered Waste Disposal System in Aging and Alzheimer's Disease: Focus on Astrocytic Aquaporin-4. Front Pharmacol 2020; 10:1656. [PMID: 32063858 PMCID: PMC7000422 DOI: 10.3389/fphar.2019.01656] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diverse cell types included in the general population named glia, astrocytes emerge as being the focus of a growing body of research aimed at characterizing their heterogeneous and complex functions. Alterations of both their morphology and activities have been linked to a variety of neurological diseases. One crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules. Several data demonstrate that aquaporin-4 (AQP-4), a protein expressed by astrocytes, is crucially important for facilitating the removal of waste products from the brain. Aquaporins are water channels found in all district of the human organism and the most abundant isoform in the brain is AQP-4. This protein is involved in a myriad of astrocytic activities, including calcium signal transduction, potassium buffering, synaptic plasticity, astrocyte migration, glial scar formation and neuroinflammation. The highest density of AQP-4 is found at the astrocytic domains closest to blood vessels, the endfeet that envelop brain vessels, with low to zero expression in other astrocytic membrane regions. Increased AQP-4 expression and loss of polarization have recently been documented in altered physiological conditions. Here we review the latest findings related to aging and Alzheimer’s disease (AD) on this topic, as well as the available knowledge on pharmacological tools to target AQP-4.
Collapse
Affiliation(s)
- Marta Valenza
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.,Epitech Group SpA, Saccolongo, Italy
| | - Roberta Facchinetti
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Luca Steardo
- Università Telematica Giustino Fortunato, Benevento, Italy
| | - Caterina Scuderi
- Department Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Yang H, Gan S, Jiang Z, Song X, Chen T, Xu Y, Fu L, Zhang Y, Tao L, Shen X. Protective effects of essential oil from Fructus Alpiniae zerumbet on retinal Müller gliosis via the PPAR-γ-p-CREB signaling pathway. Chin Med 2020; 15:4. [PMID: 31938037 PMCID: PMC6954544 DOI: 10.1186/s13020-019-0283-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) involves extensive retinal damage and is one of the most common and serious complications of diabetes mellitus. Hyperglycemia is the major pathological trigger for diabetic complications. Müller cell gliosis, a key pathophysiological process in DR, could finally lead to vision loss. Our previous finding revealed that the essential oil of Fructus Alpiniae zerumbet (EOFAZ) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury via the PPAR-γ signal. However, Whether EOFAZ could prevent HG-induced Müller cell gliosis through the PPAR signaling remains unclear. METHODS The neuroprotective effects of EOFAZ were evaluated in HG-treated rat retinal Müller cells (RMCs) and DR rat model. RESULT GFAP and VEGF upregulation is the biomarker of Müller glial reactivity gliosis. Results suggested that EOFAZ could remarkably ameliorate retinal reactive gliosis by suppressing p-CREB and GFAP and VEGF downstream effectors. Its effects on PPAR-γ, a major target for currently available anti-diabetes drugs, were also investigated. EOFAZ treatment remarkably attenuated the reduction of PPAR-γ and high level of p-CaMK II and p-CREB in HG-treated RMCs and diabetic rats. Furthermore, the activation and ectopic expression of PPAR-γ downregulated p-CREB and p-CaMK II in HG-treated RMCs. By contrast, CaMK II inhibitor KN93 and CREB gene silencing did not significantly affect the PPAR-γ expression. CONCLUSIONS A novel PPAR-γ-p-CREB signaling pathway accounts for the inhibitory effect of EOFAZ on RMCs gliosis. These findings provide scientific evidence for the potential use of EOFAZ as a complementary and alternative medicine for DR prevention and treatment in the future.
Collapse
Affiliation(s)
- Hong Yang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Shiquan Gan
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Zhaohui Jiang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiaomei Song
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Tingting Chen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yini Xu
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Lingyun Fu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Yanyan Zhang
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| | - Xiangchun Shen
- The Department of Pharmacology of Materia Medica (the State Key Laboratory of Functions and Applications of Medicinal Plants, the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025 China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (the Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China
| |
Collapse
|
48
|
Udovin LD, Kobiec T, Herrera MI, Toro-Urrego N, Kusnier CF, Kölliker-Frers RA, Ramos-Hryb AB, Luaces JP, Otero-Losada M, Capani F. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front Neurosci 2020; 13:1345. [PMID: 31969800 PMCID: PMC6960201 DOI: 10.3389/fnins.2019.01345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/29/2019] [Indexed: 01/27/2023] Open
Abstract
Perinatal asphyxia (PA) is a clinical condition brought by a birth temporary oxygen deprivation associated with long-term damage in the corpus striatum, one of the most compromised brain areas. Palmitoylethanolamide (PEA) is a neuromodulator well known for its protective effects in brain injury models, including PA, albeit not deeply studied regarding its particular effects in the corpus striatum following PA. Using Bjelke et al. (1991) PA model, full-term pregnant rats were decapitated, and uterus horns were placed in a water bath at 37°C for 19 min. One hour later, the pups were injected with PEA 10 mg/kg s.c., and placed with surrogate mothers. After 30 days, the animals were perfused, and coronal striatal sections were collected to analyze protein-level expression by Western blot and the reactive area by immunohistochemistry for neuron markers: phosphorylated neurofilament-heavy/medium-chain (pNF-H/M) and microtubule-associated protein-2 (MAP-2), and the astrocyte marker, glial fibrillary acidic protein (GFAP). Results indicated that PA produced neuronal damage and morphological changes. Asphyctic rats showed a decrease in pNF-H/M and MAP-2 reactive areas, GFAP+ cells number, and MAP-2 as well as pNF-H/M protein expression in the striatum. Treatment with PEA largely restored the number of GFAP+ cells. Most important, it ameliorated the decrease in pNF-H/M and MAP-2 reactive areas in asphyctic rats. Noticeably, PEA treatment reversed the decrease in MAP-2 protein expression and largely prevented PA-induced decrease in pNF-H/M protein expression. PA did not affect the GFAP protein level. Treatment with PEA attenuated striatal damage induced by PA, suggesting its therapeutic potential for the prevention of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas D Udovin
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Tamara Kobiec
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - María I Herrera
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Carlos F Kusnier
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Rodolfo A Kölliker-Frers
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Ana B Ramos-Hryb
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Juan P Luaces
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina
| | - Francisco Capani
- Institute of Cardiological Research, University of Buenos Aires, National Research Council (ININCA-UBA-CONICET), Buenos Aires, Argentina.,Departamento de Biología, Universidad Argentina John F. Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
49
|
Maftei D, Ratano P, Fusco I, Marconi V, Squillace S, Negri L, Severini C, Balboni G, Steardo L, Bronzuoli MR, Scuderi C, Campolongo P, Lattanzi R. The prokineticin receptor antagonist PC1 rescues memory impairment induced by β amyloid administration through the modulation of prokineticin system. Neuropharmacology 2019; 158:107739. [DOI: 10.1016/j.neuropharm.2019.107739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
50
|
Mancuso R, Sicurella M, Agostini S, Marconi P, Clerici M. Herpes simplex virus type 1 and Alzheimer's disease: link and potential impact on treatment. Expert Rev Anti Infect Ther 2019; 17:715-731. [PMID: 31414935 DOI: 10.1080/14787210.2019.1656064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Alzheimer's disease (AD), the most common form of dementia worldwide, is a multifactorial disease with a still unknown etiology. Herpes simplex virus 1 (HSV-1) has long been suspected to be one of the factors involved in the pathogenesis of the disease. Areas covered: We review the literature focusing on viral characteristics of HSV-1, the mechanisms this virus uses to infect neural cells, its interaction with the host immune system and genetic background and summarizes results and research that support the hypothesis of an association between AD and HSV-1. The possible usefulness of virus-directed pharmaceutical approaches as potential treatments for AD will be discussed as well. Expert opinion: We highlight crucial aspects that must be addressed to clarify the possible role of HSV-1 in the pathogenesis of the disease, and to allow the design of new therapeutical approaches for AD.
Collapse
Affiliation(s)
| | | | | | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara , Ferrara , Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi , Milan , Italy.,Department of Pathophysiology and Transplantation, University of Milan , Milan , Italy
| |
Collapse
|