1
|
Esmaeili A, Awasthi P, Tabaee S. Beyond immortality: Epstein-Barr virus and the intricate dance of programmed cell death in cancer development. Cancer Treat Res Commun 2025; 43:100880. [PMID: 39923321 DOI: 10.1016/j.ctarc.2025.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
This comprehensive review delves into the intricate role of programmed cell death in Epstein-Barr virus (EBV)-associated malignancies, focusing on the sophisticated interplay between viral mechanisms and the host's immune response. The central objective is to unravel how EBV exerts control over cell death pathways such as apoptosis, ferroptosis, and autophagy, thereby fostering its persistence and oncogenic potential. By dissecting these mechanisms, the review seeks to identify therapeutic strategies that could disrupt EBV's manipulation of these pathways, enhancing immune recognition and opening new avenues for targeted treatment. A deeper understanding of the molecular underpinnings of EBV's influence on cell death not only enriches the field of viral oncology but also pinpoints targets for drug development. Furthermore, the insights gleaned from this review could catalyze the design of vaccines aimed at preventing EBV infection or curtailing its oncogenic impact. Innovatively, the review synthesizes recent discoveries on the multifaceted roles of non-coding RNAs and cellular signaling pathways in modulating cell death within the context of EBV infection. By consolidating current knowledge and identifying areas where understanding is lacking, it lays the groundwork for future research that could lead to significant advancements in vaccine development and therapeutic interventions for EBV-related cancers. This review underscores the critical necessity for ongoing investigation into the complex interplay between EBV and host cell death mechanisms, with the ultimate goal of enhancing patient outcomes in EBV-associated diseases.
Collapse
Affiliation(s)
- Arezoo Esmaeili
- Department of biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Samira Tabaee
- Department of immunology, school of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
3
|
Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol 2024; 20:729-740. [PMID: 39390260 DOI: 10.1038/s41584-024-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
The Epstein-Barr virus (EBV) is epidemiologically associated with development of autoimmune diseases, including systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. Although there is well-established evidence for this association, the underlying mechanistic basis remains incompletely defined. In this Review, we discuss the role of EBV infection as a potentiator of autoimmune rheumatic diseases. We review the EBV life cycle, viral transcription programmes, serological profiles and lytic reactivation. We discuss the epidemiological and mechanistic associations of EBV with systemic lupus erythematosus, Sjögren syndrome, rheumatoid arthritis and multiple sclerosis. We describe the potential mechanisms by which EBV might promote autoimmunity, including EBV nuclear antigen 1-mediated molecular mimicry of human autoantigens; EBV-mediated B cell reprogramming, including EBV nuclear antigen 2-mediated dysregulation of autoimmune susceptibility genes; EBV and host genetic factors, including the potential for autoimmunity-promoting strains of EBV; EBV immune evasion and insufficient host responses to control infection; lytic reactivation; and other mechanisms. Finally, we discuss the therapeutic implications and potential therapeutic approaches to targeting EBV for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Shady Younis
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences and Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Kim JY, Min YJ, Lee MH, An YR, Ashktorab H, Smoot DT, Kwon SW, Lee SK. Ceramide promotes lytic reactivation of Epstein-Barr virus in gastric carcinoma. J Virol 2024; 98:e0177623. [PMID: 38197630 PMCID: PMC10878077 DOI: 10.1128/jvi.01776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Jin Min
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Min-Hyeok Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yea Rim An
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Duane T. Smoot
- Department of Medicine, Howard University, Washington, DC, USA
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
5
|
Zhai H, Wang T, Liu D, Pan L, Sun Y, Qiu HJ. Autophagy as a dual-faced host response to viral infections. Front Cell Infect Microbiol 2023; 13:1289170. [PMID: 38125906 PMCID: PMC10731275 DOI: 10.3389/fcimb.2023.1289170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Autophagy selectively degrades viral particles or cellular components, either facilitating or inhibiting viral replication. Conversely, most viruses have evolved strategies to escape or exploit autophagy. Moreover, autophagy collaborates with the pattern recognition receptor signaling, influencing the expression of adaptor molecules involved in the innate immune response and regulating the expression of interferons (IFNs). The intricate relationship between autophagy and IFNs plays a critical role in the host cell defense against microbial invasion. Therefore, it is important to summarize the interactions between viral infections, autophagy, and the host defense mechanisms against viruses. This review specifically focuses on the interactions between autophagy and IFN pathways during viral infections, providing a comprehensive summary of the molecular mechanisms utilized or evaded by different viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Regulation of the Macroautophagic Machinery, Cellular Differentiation, and Immune Responses by Human Oncogenic γ-Herpesviruses. Viruses 2021; 13:v13050859. [PMID: 34066671 PMCID: PMC8150893 DOI: 10.3390/v13050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) encode oncogenes for B cell transformation but are carried by most infected individuals without symptoms. For this purpose, they manipulate the anti-apoptotic pathway macroautophagy, cellular proliferation and apoptosis, as well as immune recognition. The mechanisms and functional relevance of these manipulations are discussed in this review. They allow both viruses to strike the balance between efficient persistence and dissemination in their human hosts without ever being cleared after infection and avoiding pathologies in most of their carriers.
Collapse
|
9
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
10
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
12
|
Tognarelli EI, Reyes A, Corrales N, Carreño LJ, Bueno SM, Kalergis AM, González PA. Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells 2021; 10:cells10030542. [PMID: 33806291 PMCID: PMC7999576 DOI: 10.3390/cells10030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Human herpesviruses are a ubiquitous family of viruses that infect individuals of all ages and are present at a high prevalence worldwide. Herpesviruses are responsible for a broad spectrum of diseases, ranging from skin and mucosal lesions to blindness and life-threatening encephalitis, and some of them, such as Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein–Barr virus (EBV), are known to be oncogenic. Furthermore, recent studies suggest that some herpesviruses may be associated with developing neurodegenerative diseases. These viruses can establish lifelong infections in the host and remain in a latent state with periodic reactivations. To achieve infection and yield new infectious viral particles, these viruses require and interact with molecular host determinants for supporting their replication and spread. Important sets of cellular factors involved in the lifecycle of herpesviruses are those participating in intracellular membrane trafficking pathways, as well as autophagic-based organelle recycling processes. These cellular processes are required by these viruses for cell entry and exit steps. Here, we review and discuss recent findings related to how herpesviruses exploit vesicular trafficking and autophagy components by using both host and viral gene products to promote the import and export of infectious viral particles from and to the extracellular environment. Understanding how herpesviruses modulate autophagy, endolysosomal and secretory pathways, as well as other prominent trafficking vesicles within the cell, could enable the engineering of novel antiviral therapies to treat these viruses and counteract their negative health effects.
Collapse
Affiliation(s)
- Eduardo I. Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago 8330025, Chile; (E.I.T.); (A.R.); (N.C.); (L.J.C.); (S.M.B.); (A.M.K.)
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence:
| |
Collapse
|
13
|
Kong W, Mao J, Yang Y, Yuan J, Chen J, Luo Y, Lai T, Zuo L. Mechanisms of mTOR and Autophagy in Human Endothelial Cell Infected with Dengue Virus-2. Viral Immunol 2021; 33:61-70. [PMID: 31978319 DOI: 10.1089/vim.2019.0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanistic mammalian target of rapamycin (mTOR) plays a crucial role in response to many major cellular processes, including cellular metabolism, proliferation, and autophagy. Both mTOR and autophagy are suggested to be involved in the viral infection. However, little is known about the role of mTOR and autophagy in human endothelial cell infected with dengue virus-2 (DENV-2), this study is to investigate the role of mTOR and autophagy in human umbilical vein endothelial cells (HUVECs) infected with DENV-2 and related regulatory mechanisms. HUVECs were cultured in epithelial cell medium. A series of experiments involving immunohistochemistry, TCID50 method, real-time PCR, western blot, and laser confocal were performed in this study. The cell line was identified as HUVEC by the expression of cell factor VIII. The expression level of DENV-2 mRNA increased and showed an upward trend. Compared with the control group, the fluorescence of autophagy-labeled protein LC3B and lysosome-labeled protein lysosome-associated membrane protein 1 (LAMP1) in the cytoplasm of HUVEC induced by rapamycin was observed, and intensity was significantly enhanced under confocal laser scanning microscope, after fluorescence synthesis, the fluorescence of autophagy-labeled protein LC3B and lysosome-labeled protein LAMP1 overlaps were reduced. The intensity of fluorescence of autophagy-labeled protein LC3B and lysosome-labeled protein LAMP1 increased in 1 × 104 TCID50 DENV-2 infection group, after fluorescence synthesis, fluorescence of autophagy-labeled protein LC3B, lysosome-labeled protein LAMP1, and DEN2 NS1 overlapped. Compared with the control group, the phosphorylation level of mTOR, Atg13, and p-ULK1 in DENV-2-infected group or Rapa treatment group decreased significantly (p < 0.05), and the level of LC3-II increased significantly (p < 0.05). These results suggest that DENV-2 induces autophagy in HUVECs through mTOR signaling molecule.
Collapse
Affiliation(s)
- Weiying Kong
- Department of Immunology, Guizhou Medical University, Guiyang, China
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiaxuan Mao
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Yang Yang
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Jing Yuan
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Junhao Chen
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Yu Luo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Tao Lai
- Department of Immunology, Guizhou Medical University, Guiyang, China
| | - Li Zuo
- Department of Immunology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Ylä-Anttila P, Gupta S, Masucci MG. The Epstein-Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy. Autophagy 2021; 17:3461-3474. [PMID: 33509017 PMCID: PMC8632276 DOI: 10.1080/15548627.2021.1874660] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macroautophagy/autophagy plays an important role in the control of viral infections and viruses have evolved multiple strategies to interfere with autophagy to avoid destruction and promote their own replication and spread. Here we report that the deubiquitinase encoded in the N-terminal domain of the Epstein-Barr virus (EBV) large tegument protein, BPLF1, regulates selective autophagy. Mass spectrometry analysis identified several vesicular traffic and autophagy related proteins as BPLF1 interactors and potential substrates, suggesting that the viral protein targets this cellular defense during productive infection. Direct binding of BPLF1 to the autophagy receptor SQSTM1/p62 (sequestosome 1) was confirmed by co-immunoprecipitation of transfected BPLF1 and by in vitro affinity isolation of bacterially expressed proteins. Expression of the catalytically active BPLF1 was associated with decreased SQSTM1/p62 ubiquitination and failure to recruit LC3 to SQSTM1/p62-positive aggregates. Selective autophagy was inhibited as illustrated by the accumulation of large protein aggregates in BPLF1-positive cells co-transfected with an aggregate-prone HTT (huntingtin)-Q109 construct, and by a slower autophagy-dependent clearance of protein aggregates upon transfection of BPLF1 in cells expressing a tetracycline-regulated HTT-Q103. The inhibition of aggregate clearance was restored by overexpression of a SQSTM1/p62[E409A,K420R] mutant that does not require ubiquitination of Lys420 for cargo loading. These findings highlight a previously unrecognized role of the viral deubiquitinase in the regulation of selective autophagy, which may promote infection and the production of infectious virus.Abbreviations: BPLF1, BamH1 fragment left open reading frame-1; EBV, Epstein-Barr virus; GFP, green fluorescent protein; HTT, huntingtin; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; PB1, Phox and Bem1 domain; PE, phosphatidylethanolamine; SQSTM1/p62, sequestosome 1; UBA, ubiquitin-associated domain.
Collapse
Affiliation(s)
- Päivi Ylä-Anttila
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Soham Gupta
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Gonnella R, Dimarco M, Farina GA, Santarelli R, Valia S, Faggioni A, Angeloni A, Cirone M, Farina A. BFRF1 protein is involved in EBV-mediated autophagy manipulation. Microbes Infect 2020; 22:585-591. [PMID: 32882412 DOI: 10.1016/j.micinf.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022]
Abstract
Viral egress and autophagy are two mechanisms that seem to be strictly connected in Herpesviruses's biology. Several data suggest that the autophagic machinery facilitates the egress of viral capsids and thus the production of new infectious particles. In the Herpesvirus family, viral nuclear egress is controlled and organized by a well conserved group of proteins named Nuclear Egress Complex (NEC). In the case of EBV, NEC is composed by BFRF1 and BFLF2 proteins, although the alterations of the nuclear host cell architecture are mainly driven by BFRF1, a multifunctional viral protein anchored to the inner nuclear membrane of the host cell. BFRF1 shares a peculiar distribution with several nuclear components and with them it strictly interacts. In this study, we investigated the possible role of BFRF1 in manipulating autophagy, pathway that possibly originates from nucleus, regulating the interplay between autophagy and viral egress.
Collapse
Affiliation(s)
- Roberta Gonnella
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | - Marzia Dimarco
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | | | - Roberta Santarelli
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | - Sandro Valia
- Dep. Molecular Medicine University of Rome "La Sapienza", Italy
| | - Alberto Faggioni
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | - Antonio Angeloni
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | - Mara Cirone
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy
| | - Antonella Farina
- Dep. Experimental Medicine University of Rome "La Sapienza", Laboratory Affiliated to Istituto Pasteur Italia fondazione Cenci-Bolognetti, Italy; Dep. Molecular Medicine University of Rome "La Sapienza", Italy; Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
16
|
Manganelli V, Matarrese P, Antonioli M, Gambardella L, Vescovo T, Gretzmeier C, Longo A, Capozzi A, Recalchi S, Riitano G, Misasi R, Dengjel J, Malorni W, Fimia GM, Sorice M, Garofalo T. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy 2020; 17:2528-2548. [PMID: 33034545 DOI: 10.1080/15548627.2020.1834207] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/β-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Joern Dengjel
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Suisse, Germany
| | - Walter Malorni
- School of Pharmacy, University of Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Jeong EH, Cho SY, Vaidya B, Ha SH, Jun S, Ro HJ, Lee Y, Lee J, Kwon J, Kim D. Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition. J Microbiol Biotechnol 2020; 30:1412-1419. [PMID: 32522961 PMCID: PMC9745657 DOI: 10.4014/jmb.2003.03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture model for HuNoV replication has prevented developing effective anti-HuNoV therapy. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37°C significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30°C and 37°C were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37°C showed significantly increased autophagy- (ATG5 and ATG7) and immune- (IFNA, IFNB, ISG15, and NFKB) related genes compared to mock. However, the virus cultured at 30°C showed significantly decreased expression of autophagy- (ATG5 and ATG7) and not significantly different in major immune- (IFNA, ISG15, and NFKB) related genes compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30°C. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1, providing adaptability to different genotypes.
Collapse
Affiliation(s)
- Eun-Hye Jeong
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sangmi Jun
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyun-Joo Ro
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yujeong Lee
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Juhye Lee
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,J.K. Phone: +82-42-865-3446 Fax: +82-42-865-3419 E-mail:
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding authors D.K. Phone: +82-62-530-2144 Fax: +82-62-530-2149 E-mail:
| |
Collapse
|
18
|
Wang W, Zhang Y, Liu W, Zhang X, Xiao H, Zhao M, Luo B. CXCR4 induces cell autophagy and maintains EBV latent infection in EBVaGC. Am J Cancer Res 2020; 10:11549-11561. [PMID: 33052232 PMCID: PMC7545993 DOI: 10.7150/thno.44251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Rationale: Epstein-Barr virus (EBV) is found in ~7% of gastric carcinoma cases worldwide, and all tumour cells harbour the clonal EBV genome. EBV can regulate pathways and protein expression to induce gastric carcinoma; however, the molecular mechanism underlying EBV-associated gastric carcinoma (EBVaGC) remains elusive. Methods: GEO microarray and molecular experiments were performed to compare CXCR4 expression between EBV-positive and EBV-negative gastric carcinoma (EBVnGC). Transfections with LMP2A plasmid or siRNA were carried out to assess the role of LMP2A in CXCR4 expression. The effects and mechanisms of CXCR4 on cell autophagy were analysed in vitro using molecular biological and cellular approaches. Additionally, we also determined the regulatory role of CXCR4 in latent EBV infection. Results: CXCR4 expression was significantly upregulated in EBVaGC tissues and cell lines. LMP2A could induce AKT phosphorylation to increase NRF1 expression, thereby binding to the CXCR4 promoter to increase its transcriptional level. Moreover, CXCR4 promoted ZEB1 expression to upregulate ATG7 synthesis, which could then activate autophagy. Moreover, CXCR4 increased the number of cells entering the G2/M phase and inhibited cell apoptosis via the autophagy pathway. Finally, CXCR4 knockdown was associated with elevated BZLF1 expression, but this effect was not influenced by autophagy. Conclusions: Our data suggested new roles for CXCR4 in autophagy and EBV replication in EBVaGC, which further promoted cell survival and persistent latent infection. These new findings can lead to further CXCR4-based anticancer therapy.
Collapse
|
19
|
Yiu SPT, Dorothea M, Hui KF, Chiang AKS. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel) 2020; 12:cancers12082142. [PMID: 32748879 PMCID: PMC7465660 DOI: 10.3390/cancers12082142] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success. This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of translating the lytic induction therapy into clinical settings, and highlight some potential strategies in the future development of this therapy for EBV-related lymphoid and epithelial malignancies.
Collapse
|
20
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
21
|
Abstract
Autophagy plays an important role in the fight against viral infection, which can directly remove the virus, interact with the viral protein, and at the same time regulate the innate and adaptive immunity and promote virus clearance. The virus has also evolved autophagy, which evades, antagonizes and utilizes autophagy, and regulates autophagy pathways, affects autophagy maturation, changes autophagy small body environment or changes the body's immune response type to promote or inhibit autophagy. This chapter introduces the possible mechanisms of autophagy during pathogen infection such as human immunodeficiency virus and hepatitis virus, in order to provide new methods for the prevention and treatment of viral infection.
Collapse
Affiliation(s)
- Yichuan Xiao
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Cai
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Shao Z, Borde C, Quignon F, Escargueil A, Maréchal V. Epstein-Barr Virus BALF0 and BALF1 Modulate Autophagy. Viruses 2019; 11:v11121099. [PMID: 31783609 PMCID: PMC6950364 DOI: 10.3390/v11121099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an essential catabolic process that degrades cytoplasmic components within the lysosome, therefore ensuring cell survival and homeostasis. A growing number of viruses, including members of the Herpesviridae family, have been shown to manipulate autophagy to facilitate their persistence or optimize their replication. Previous works showed that the Epstein–Barr virus (EBV), a human transforming gammaherpesvirus, hijacked autophagy during the lytic phase of its cycle, possibly to favor the formation of viral particles. However, the viral proteins that are responsible for an EBV-mediated subversion of the autophagy pathways remain to be characterized. Here we provide the first evidence that the BALF0/1 open reading frame encodes for two conserved proteins of the Bcl-2 family, BALF0 and BALF1, that are expressed during the early phase of the lytic cycle and can modulate autophagy. A putative LC3-interacting region (LIR) has been identified that is required both for BALF1 colocalization with autophagosomes and for its ability to stimulate autophagy.
Collapse
|
23
|
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by orchestrating immunity upon viral infection. Following viral infection, autophagy is often initiated to curtail infection by delivering viral particles for lysosomal degradation and further integrating with innate pattern recognition receptor signaling to induce interferon (IFN)-mediated viral clearance. However, some viruses have evolved anti-autophagy strategies to escape host immunity and to promote viral replication. In this chapter, we illustrate how autophagy prevents viral infection to generate an optimal anti-viral milieu, and then concentrate on how viruses subvert and hijack the autophagic process to evade immunosurveillance, thereby facilitating viral replication and pathogenesis. Understanding the interplays between autophagy and viral infection is anticipated to guide the development of effective anti-viral therapeutics to fight against infectious diseases.
Collapse
|
24
|
Abstract
Autophagy is a powerful tool that host cells use to defend against viral infection. Double-membrane vesicles, termed autophagosomes, deliver trapped viral cargo to the lysosome for degradation. Specifically, autophagy initiates an innate immune response by cooperating with pattern recognition receptor signalling to induce interferon production. It also selectively degrades immune components associated with viral particles. Following degradation, autophagy coordinates adaptive immunity by delivering virus-derived antigens for presentation to T lymphocytes. However, in an ongoing evolutionary arms race, viruses have acquired the potent ability to hijack and subvert autophagy for their benefit. In this Review, we focus on the key regulatory steps during viral infection in which autophagy is involved and discuss the specific molecular mechanisms that diverse viruses use to repurpose autophagy for their life cycle and pathogenesis. Autophagy is crucial for innate and adaptive antiviral immunity; in turn, viruses evade and subvert autophagy to support their replication and pathogenesis. In this Review, Choi, Bowman and Jung discuss the molecular mechanisms that govern autophagy during host–virus interactions.
Collapse
|
25
|
Wang L, Howell MEA, Sparks-Wallace A, Hawkins C, Nicksic CA, Kohne C, Hall KH, Moorman JP, Yao ZQ, Ning S. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLoS Pathog 2019; 15:e1007541. [PMID: 31017975 PMCID: PMC6502431 DOI: 10.1371/journal.ppat.1007541] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage response (DDR) and selective autophagy both can be activated by reactive oxygen/nitrogen species (ROS/RNS), and both are of paramount importance in cancer development. The selective autophagy receptor and ubiquitin (Ub) sensor p62 plays a key role in their crosstalk. ROS production has been well documented in latent infection of oncogenic viruses including Epstein-Barr Virus (EBV). However, p62-mediated selective autophagy and its interplay with DDR have not been investigated in these settings. In this study, we provide evidence that considerable levels of p62-mediated selective autophagy are spontaneously induced, and correlate with ROS-Keap1-NRF2 pathway activity, in virus-transformed cells. Inhibition of autophagy results in p62 accumulation in the nucleus, and promotes ROS-induced DNA damage and cell death, as well as downregulates the DNA repair proteins CHK1 and RAD51. In contrast, MG132-mediated proteasome inhibition, which induces rigorous autophagy, promotes p62 degradation but accumulation of the DNA repair proteins CHK1 and RAD51. However, pretreatment with an autophagy inhibitor offsets the effects of MG132 on CHK1 and RAD51 levels. These findings imply that p62 accumulation in the nucleus in response to autophagy inhibition promotes proteasome-mediated CHK1 and RAD51 protein instability. This claim is further supported by the findings that transient expression of a p62 mutant, which is constitutively localized in the nucleus, in B cell lines with low endogenous p62 levels recaptures the effects of autophagy inhibition on CHK1 and RAD51 protein stability. These results indicate that proteasomal degradation of RAD51 and CHK1 is dependent on p62 accumulation in the nucleus. However, small hairpin RNA (shRNA)-mediated p62 depletion in EBV-transformed lymphoblastic cell lines (LCLs) had no apparent effects on the protein levels of CHK1 and RAD51, likely due to the constitutive localization of p62 in the cytoplasm and incomplete knockdown is insufficient to manifest its nuclear effects on these proteins. Rather, shRNA-mediated p62 depletion in EBV-transformed LCLs results in significant increases of endogenous RNF168-γH2AX damage foci and chromatin ubiquitination, indicative of activation of RNF168-mediated DNA repair mechanisms. Our results have unveiled a pivotal role for p62-mediated selective autophagy that governs DDR in the setting of oncogenic virus latent infection, and provide a novel insight into virus-mediated oncogenesis.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Mary E. A. Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Ayrianna Sparks-Wallace
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Caroline Hawkins
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Camri A. Nicksic
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Carissa Kohne
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Kenton H. Hall
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| | - Jonathan P. Moorman
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Zhi Q. Yao
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- The HCV/HIV Program, James H Quillen VA Medical Center, Johnson City, TN, United States of America
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States of America
| |
Collapse
|
26
|
Hui KF, Yiu SPT, Tam KP, Chiang AKS. Viral-Targeted Strategies Against EBV-Associated Lymphoproliferative Diseases. Front Oncol 2019; 9:81. [PMID: 30873380 PMCID: PMC6400835 DOI: 10.3389/fonc.2019.00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is strongly associated with a spectrum of EBV-associated lymphoproliferative diseases (EBV-LPDs) ranging from post-transplant lymphoproliferative disorder, B cell lymphomas (e.g., endemic Burkitt lymphoma, Hodgkin lymphoma, and diffuse large B cell lymphoma) to NK or T cell lymphoma (e.g., nasal NK/T-cell lymphoma). The virus expresses a number of latent viral proteins which are able to manipulate cell cycle and cell death processes to promote survival of the tumor cells. Several FDA-approved drugs or novel compounds have been shown to induce killing of some of the EBV-LPDs by inhibiting the function of latent viral proteins or activating the viral lytic cycle from latency. Here, we aim to provide an overview on the mechanisms by which EBV employs to drive the pathogenesis of various EBV-LPDs and to maintain the survival of the tumor cells followed by a discussion on the development of viral-targeted strategies based on the understanding of the patho-mechanisms.
Collapse
Affiliation(s)
- Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stephanie Pei Tung Yiu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kam Pui Tam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
27
|
Intracellular Iron Chelation by a Novel Compound, C7, Reactivates Epstein⁻Barr Virus (EBV) Lytic Cycle via the ERK-Autophagy Axis in EBV-Positive Epithelial Cancers. Cancers (Basel) 2018; 10:cancers10120505. [PMID: 30544928 PMCID: PMC6316324 DOI: 10.3390/cancers10120505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Pharmaceutical reactivation of lytic cycle of Epstein–Barr virus (EBV) represents a potential therapeutic strategy against EBV-associated epithelial malignancies, e.g., gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC). A novel lytic-inducing compound, C7, which exhibits structural similarity to Di-2-Pyridyl Ketone 4, 4-Dimethyl-3-Thiosemicarbazone (Dp44mT), a known chelator of intracellular iron, is found to reactivate EBV lytic cycle in GC and NPC. This study aims to investigate the role of intracellular iron chelation by C7 and other iron chelators in lytic reactivation of EBV in GC and NPC. Testing of six structural analogs of C7 revealed only those which have high affinity towards transition metals could induce EBV lytic cycle. Precomplexing C7 and iron chelators to iron prior to treatment of the cells abolished EBV lytic reactivation. Though hypoxia signaling pathway was activated, it was not the only pathway associated with EBV reactivation. Specifically, C7 and iron chelators initiated autophagy by activating extracellular signal-regulated kinase (ERK1/2) to reactivate EBV lytic cycle since autophagy and EBV lytic reactivation were abolished in cells treated with ERK1/2 blockers whilst inhibition of autophagy by 3-Methyladenine (3-MA) and atg5 knockdown significantly abolished EBV lytic reactivation. In summary, we discovered a novel mechanism of reactivation of the EBV lytic cycle through intracellular iron chelation and induction of ERK-autophagy axis in EBV-positive epithelial malignancies, raising the question whether clinically available iron chelators can be incorporated into existing therapeutic regimens to treat these cancers.
Collapse
|
28
|
EBV and KSHV Infection Dysregulates Autophagy to Optimize Viral Replication, Prevent Immune Recognition and Promote Tumorigenesis. Viruses 2018; 10:v10110599. [PMID: 30384495 PMCID: PMC6266050 DOI: 10.3390/v10110599] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process strongly involved in the immune response, and its dysregulation contributes to the onset of several diseases including cancer. The human oncogenic gammaherpesviruses, Epstein—Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), manipulate autophagy, either during the de novo infection or during the lytic reactivation, in naturally latently-infected lymphoma cells. In particular, the gammaherpesvirus infection reduces autophagy in immune cells, such as monocytes, resulting in the impairment of cell survival and cell differentiation into dendritic cells (DCs), which are essential for initiating and regulating the immune response. In the case of EBV, the reduction of autophagy in these cells, leading to p62 accumulation, activated the p62-NRF2-antioxidant response, reducing ROS, and further inhibiting autophagy. KSHV inhibits autophagy in monocytes by de-phosphorylating JNK2, altering the calpains–calpastatin balance and increasing the calpain activity responsible for the cleavage of ATG5. To further impair the immune response, KSHV also inhibits autophagy in differentiated DCs by hyper-phosphorylating STAT3. Conversely, when the lytic cycle is induced in vitro in latently-infected lymphoma B cells, both EBV and KSHV promote autophagy to enhance their replication, although the final autophagic steps are blocked through the down-regulation of Rab7. This strategy allows viruses to avoid the destructive environment of lysosomes, and to exploit the autophagic machinery for intracellular transportation. EBV and KSHV encode for proteins that may either inhibit or promote autophagy and, in addition, they can modulate the cellular pathways that control this process. In this review we will discuss the findings that indicate that autophagy is dysregulated by gammaherpesvirus to promote immune suppression, facilitate viral replication and contribute to the onset and maintenance of gammaherpesvirus-associated malignancies.
Collapse
|
29
|
Mattoscio D, Medda A, Chiocca S. Human Papilloma Virus and Autophagy. Int J Mol Sci 2018; 19:ijms19061775. [PMID: 29914057 PMCID: PMC6032050 DOI: 10.3390/ijms19061775] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Human papilloma viruses (HPVs) are a group of double-stranded DNA viruses known to be the primary cause of cervical cancer. In addition, evidence has now established their role in non-melanoma skin cancers, head and neck cancer (HNC), and the development of other anogenital malignancies. The prevalence of HPV-related HNC, in particular oropharyngeal cancers, is rapidly increasing, foreseeing that HPV-positive oropharyngeal cancers will outnumber uterine cervical cancers in the next 15–20 years. Therefore, despite the successful advent of vaccines originally licensed for cervical cancer prevention, HPV burden is still very high, and a better understanding of HPV biology is urgently needed. Autophagy is the physiological cellular route that accounts for removal, degradation, and recycling of damaged organelles, proteins, and lipids in lysosomal vacuoles. In addition to this scavenger function, autophagy plays a fundamental role during viral infections and cancers and is, therefore, frequently exploited by viruses to their own benefit. Recently, a link between HPV and autophagy has clearly emerged, leading to the conceivable development of novel anti-viral strategies aimed at restraining HPV infectivity. Here, recent findings on how oncogenic HPV16 usurp autophagy are described, highlighting similarities and differences with mechanisms adopted by other oncoviruses.
Collapse
Affiliation(s)
- Domenico Mattoscio
- Department of Medical, Oral, and Biotechnology Science, University of Chieti-Pescara, 66100 Chieti, Italy.
- Center on Aging Science and Translational Medicine (CeSI-MeT), University of Chieti-Pescara, 66100 Chieti, Italy.
| | - Alessandro Medda
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy.
| |
Collapse
|
30
|
Chang H, Tian L, Chen J, Tang A, Li C, Li Z, Yang Z. Rapamycin and ZSTK474 can have differential effects at different post‑infection time‑points regarding CVB3 replication and CVB3‑induced autophagy. Mol Med Rep 2018; 18:1088-1094. [PMID: 29845290 DOI: 10.3892/mmr.2018.9037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
Coxsackievirus B3 (CVB3) infection has been shown to stimulate autophagy. We have demonstrated that the inhibition of phosphoinositide 3‑kinase (PI3K)/protein kinase B/mammalian target of rapamycin complex (mTORC) signaling pathway could affect the autophagic reaction induced by CVB3 infection in our previous study. However, the processes associating autophagy and CVB3 replication remain to be determined. In the present study, CVB3‑induced autophagy and its impact on viral replication were investigated. Rapamycin (inhibitor of mTOR) and ZSTK474 (inhibitor of PI3K) were used to change the autophagic reaction caused by CVB3 in Hela cells at different post‑infection (p.i.) time points (6, 9, 12 and 24 h p.i.), meanwhile, we detected the CVB3 mRNA replication and CVB3 capsid protein VP1 expression following the change of autophagy. Here, it was showed that ZSTK474 and Rapamycin promoted CVB3‑induced autophagy, as well as decreasing CVB3 mRNA replication and CVB3 capsid protein VP1 expression at 6 and 9 h p.i. ZSTK474 also alleviated CVB3‑induced autophagy, and decreased CVB3 mRNA replication and VP1 expression at 12 and 24 h p.i. However, Rapamycin continued to promote CVB3‑induced autophagy and increase CVB3 mRNA replication at 12 and 24 h p.i, as well as increase VP1 expression at 12 h, but not at 24 h, p.i. In the present study, we found Rapamycin and ZSTK474 have differential effects at different p.i. time‑points regarding CVB3 replication and CVB3‑induced autophagy. This indicates that the association between CVB3‑induced autophagy and viral replication depends on the infection time. During the early course of infection, autophagy may help host cells clear the virus, thereby providing protection, whereas when the infection time increases, autophagy may be exploited for viral replication.
Collapse
Affiliation(s)
- Huan Chang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lang Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jia Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Anliu Tang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chunyun Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhuoying Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zuocheng Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
31
|
Transcriptional and epigenetic modulation of autophagy promotes EBV oncoprotein EBNA3C induced B-cell survival. Cell Death Dis 2018; 9:605. [PMID: 29789559 PMCID: PMC5964191 DOI: 10.1038/s41419-018-0668-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) oncoprotein EBNA3C is indispensable for primary B-cell transformation and maintenance of lymphoblastoid cells outgrowth. EBNA3C usurps two putative cellular pathways-cell-cycle and apoptosis, essentially through modulating ubiquitin-mediated protein-degradation or gene transcription. In cancer cells, these two pathways are interconnected with autophagy,-a survival-promoting catabolic network in which cytoplasmic material including mis/un-folded protein aggregates and damaged organelles along with intracellular pathogens are degraded and recycled in lysosomal compartments. Studies have shown that tumor viruses including EBV can manipulate autophagy as a survival strategy. Here, we demonstrate that EBNA3C elevates autophagy, which serves as a prerequisite for apoptotic inhibition and maintenance of cell growth. Using PCR based micro-array we show that EBNA3C globally accelerates autophagy gene transcription under growth limiting conditions. Reanalyzing the ENCODE ChIP-sequencing data (GSE52632 and GSE26386) followed by ChIP-PCR demonstrate that EBNA3C recruits several histone activation epigenetic marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) for transcriptional activation of autophagy genes, notably ATG3, ATG5, and ATG7 responsible for autophagosome formation. Moreover, under growth limiting conditions EBNA3C further stimulates the autophagic response through upregulation of a number of tumor suppressor genes, notably cyclin-dependent kinase inhibitors-CDKN1B (p27Kip1) and CDKN2A (p16INK4a) and autophagy mediated cell-death modulators-DRAM1 and DAPK1. Together our data highlight a new role of an essential EBV oncoprotein in regulating autophagy cascade as a survival mechanism and offer novel-targets for potential therapeutic expansion against EBV induced B-cell lymphomas.
Collapse
|
32
|
Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J Cell Physiol 2018; 233:6524-6543. [PMID: 29663416 DOI: 10.1002/jcp.26583] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
The balance between synthesis and degradation is crucial to maintain cellular homeostasis and different mechanisms are known to keep this balance. In this review, we will provide a short overview on autophagy as an intracellular homeostatic degradative machinery. We will also describe the involvement of downregulation of autophagy in numerous diseases including neurodegenerative diseases, cancer, aging, metabolic disorders, and other infectious diseases. Therefore, modulation of autophagic processes can represent a promising way of intervention in different diseases including neurodegeneration and cancer. Trehalose, also known as mycose, is a natural disaccharide found extensively but not abundantly among several organisms. It is described that trehalose can work as an important autophagy modulator and can be proficiently used in the control several diseases in which autophagy plays an important role. On these bases, we describe here the role of trehalose as an innovative drug in the treatment of neurodegenerative diseases and other illnesses opening a new scenario of intervention in conditions difficult to be treated.
Collapse
Affiliation(s)
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Amirhossein Sahebkar
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
34
|
Novel Role of vBcl2 in the Virion Assembly of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2018; 92:JVI.00914-17. [PMID: 29167347 DOI: 10.1128/jvi.00914-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
The viral Bcl-2 homolog (vBcl2) of Kaposi's sarcoma-associated herpesvirus (KSHV) displays efficient antiapoptotic and antiautophagic activity through its central BH3 domain, which functions to prolong the life span of virus-infected cells and ultimately enhances virus replication and latency. Independent of its antiapoptotic and antiautophagic activity, vBcl2 also plays an essential role in KSHV lytic replication through its amino-terminal amino acids (aa) 11 to 20. Here, we report a novel molecular mechanism of vBcl2-mediated regulation of KSHV lytic replication. vBcl2 specifically bound the tegument protein open reading frame 55 (ORF55) through its amino-terminal aa 11 to 20, allowing their association with virions. Consequently, the vBcl2 peptide derived from vBcl2 aa 11 to 20 effectively disrupted the interaction between vBcl2 and ORF55, inhibiting the incorporation of the ORF55 tegument protein into virions. This study provides new insight into vBcl2's function in KSHV virion assembly that is separable from its inhibitory role in host apoptosis and autophagy.IMPORTANCE KSHV, an important human pathogen accounting for a large percentage of virally caused cancers worldwide, has evolved a variety of stratagems for evading host immune responses to establish lifelong persistent infection. Upon viral infection, infected cells can go through programmed cell death, including apoptosis and autophagy, which plays an effective role in antiviral responses. To counter the host response, KSHV vBcl2 efficiently blocks apoptosis and autophagy to persist for the life span of virus-infected cells. Besides its anti-programmed-cell-death activity, vBcl2 also interacts with the ORF55 tegument protein for virion assembly in infected cells. Interestingly, the vBcl2 peptide disrupts the vBcl2-ORF55 interaction and effectively inhibits KSHV virion assembly. This study indicates that KSHV vBcl2 harbors at least three genetically separable functions to modulate both host cell death signaling and virion production and that the vBcl2 peptide can be developed as an anti-KSHV therapeutic application.
Collapse
|
35
|
Targeting autophagy in lymphomas: a double-edged sword? Int J Hematol 2018; 107:502-512. [DOI: 10.1007/s12185-018-2414-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022]
|
36
|
Wang M, Wu W, Zhang Y, Yao G, Gu B. Rapamycin enhances lytic replication of Epstein-Barr virus in gastric carcinoma cells by increasing the transcriptional activities of immediate-early lytic promoters. Virus Res 2018; 244:173-180. [PMID: 29169830 DOI: 10.1016/j.virusres.2017.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is linked to both epithelial and lymphoid malignancies. Induction of EBV reactivation is a potential therapeutic strategy for EBV-associated tumors. In this study, we assessed the effects of rapamycin on EBV reactivation in gastric carcinoma cells. We found that rapamycin upregulated expression of EBV lytic proteins and increased the viral proliferation triggered by the EBV lytic inducer sodium butyrate. Reverse transcription-qPCR, luciferase activity assays, chromatin immunoprecipitation and western blotting were employed to explore the mechanism by which rapamycin promotes EBV reactivation. Our results showed that rapamycin treatment resulted in increased mRNA levels of EBV immediate-early genes. Rapamycin also enhanced the transcriptional activities of the EBV immediate-early lytic promoters Zp and Rp by strengthening Sp1 binding. Repression of the cellular ataxia telangiectasia-mutated/p53 pathway by siRNA-mediated knockdown of the ataxia telangiectasia-mutated gene significantly abrogated virus reactivation by rapamycin/sodium butyrate treatment, indicating that the ataxia telangiectasia-mutated/p53 pathway is involved in rapamycin-promoted EBV reactivation. Taken together, these findings demonstrate that rapamycin might have the potential to enhance the effectiveness of oncolytic viral therapies developed for EBV-associated malignancies.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Butyric Acid/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/virology
- Gene Expression Regulation
- Genes, Reporter
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Humans
- Immediate-Early Proteins/agonists
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Oncolytic Virotherapy/methods
- Promoter Regions, Genetic/drug effects
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sirolimus/pharmacology
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
37
|
Lussignol M, Esclatine A. Herpesvirus and Autophagy: "All Right, Everybody Be Cool, This Is a Robbery!". Viruses 2017; 9:v9120372. [PMID: 29207540 PMCID: PMC5744147 DOI: 10.3390/v9120372] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an essential vacuolar process of the cell, leading to lysosomal degradation and recycling of proteins and organelles, which is extremely important in maintaining homeostasis. Multiple roles have been now associated with autophagy, in particular a pro-survival role in nutrient starvation or in stressful environments, a role in life span extension, in development, or in innate and adaptive immunity. This cellular process can also take over microorganisms or viral proteins inside autophagosomes and degrade them directly in autolysosomes and is then called xenophagy and virophagy, respectively. Several Herpesviruses have developed strategies to escape this degradation, by expression of specific anti-autophagic proteins. However, we are increasingly discovering that Herpesviruses hijack autophagy, rather than just fight it. This beneficial effect is obvious since inhibition of autophagy will lead to decreased viral titers for human cytomegalovirus (HCMV), Epstein-Barr virus (EBV) or Varicella-Zoster virus (VZV), for example. Conversely, autophagy stimulation will improve viral multiplication. The autophagic machinery can be used in whole or in part, and can optimize viral propagation or persistence. Some viruses block maturation of autophagosomes to avoid the degradation step, then autophagosomal membranes are used to contribute to the envelopment and/or the egress of viral particles. On the other hand, VZV stimulates the whole process of autophagy to subvert it in order to use vesicles containing ATG (autophagy-related) proteins and resembling amphisomes for their transport in the cytoplasm. During latency, autophagy can also be activated by latent proteins encoded by different oncogenic Herpesviruses to promote cell survival and achieve long term viral persistence in vivo. Finally, reactivation of gammaherpesvirus Murid Herpesvirus 68 (MHV68) in mice appears to be positively modulated by autophagy, in order to control the level of inflammation. Therefore, Herpesviruses appear to behave more like thieves than fugitives.
Collapse
Affiliation(s)
- Marion Lussignol
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Audrey Esclatine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
38
|
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188:53-67. [PMID: 28866100 DOI: 10.1016/j.lfs.2017.08.029] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is an essential cellular mechanism which plays "housekeeping" role in normal physiological processes including removing of long lived, aggregated and misfolded proteins, clearing damaged organelles, growth regulation and aging. Autophagy is also involved in a variety of biological functions like development, cellular differentiation, defense against pathogens and nutritional starvation. The integration of autophagy into these biological functions and other stress responses is determined by the transcriptional factors that undertake the regulatory mechanism. This review discusses the machinery of autophagy, the molecular web that connects autophagy to various stress responses like inflammation, hypoxia, ER stress, and various other pathologic conditions. Defects in autophagy regulation play a central role in number of diseases, including neurodegenerative diseases, cancer, pathogen infection and metabolic diseases. Similarly, inhibiting autophagy would contribute in the treatment of cancer. However, understanding the biology of autophagy regulation requires pharmacologically active compounds which modulate the autophagy process. Inducers of autophagy are currently receiving considerable attention as autophagy upregulation may be a therapeutic benefit for certain neurodegenerative diseases (via removal of protein aggregates) while the inhibitors are being investigated for the treatment of cancers. Both induction and inhibition of autophagy have been proven to be beneficial in the treatment of cancer. This dual role of autophagy in cancers is now getting uncovered by the advancement in the research findings and development of effective autophagy modulators.
Collapse
Affiliation(s)
- Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| | - Ida Florance Srikumar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| |
Collapse
|
39
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 2017; 162:3645-3659. [PMID: 28825144 PMCID: PMC7086938 DOI: 10.1007/s00705-017-3516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
During dengue virus (DENV) infection, the virus manipulates different cellular pathways to assure productive replication, including autophagy. However, it remains unclear how this autophagic process is regulated. Here, we have demonstrated a novel role for the microRNA miR-146a in negatively regulating the cellular autophagic pathway in DENV-infected A549 cells and THP-1 cells. Overexpression of miR-146a significantly blocked DENV2-induced autophagy, and LNA-mediated inhibition of miR-146a counteracted these effects. Moreover, co-overexpression of TRAF6, a target of miR-146a, significantly reversed the inhibitory effect of miR-146a on autophagy. Notably, treatment with recombinant IFN-β fully restored the autophagic activity in TRAF6-silenced cells. Furthermore, our data showed that, in DENV2-infected A549 cells, autophagy promoted a pro-inflammatory response to significantly increase TNF-α and IL-6 production. Taken together, our results define a novel role for miR-146a as a negative regulator of DENV-induced autophagy and identify TRAF6 as a key target of this microRNA in modulating the DENV-autophagy interaction.
Collapse
Affiliation(s)
- Jieying Pu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Siyu Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuye Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China.
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
40
|
Li H, Liu S, Hu J, Luo X, Li N, M Bode A, Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int J Biol Sci 2016; 12:1309-1318. [PMID: 27877083 PMCID: PMC5118777 DOI: 10.7150/ijbs.16564] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV can establish two alternative modes of life cycle, known as latent or lytic and the switch from latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly in latency, a small number of lytically-infected cells promote carcinogenesis through the release of growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection contributes to human malignancies.
Collapse
Affiliation(s)
- Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Sufang Liu
- Division of Hematology, Institute of Molecular Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China
| |
Collapse
|
41
|
Münz C. Autophagy Beyond Intracellular MHC Class II Antigen Presentation. Trends Immunol 2016; 37:755-763. [PMID: 27667710 DOI: 10.1016/j.it.2016.08.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Autophagy is a group of cellular pathways that deliver cytoplasmic constituents for lysosomal degradation. The peptides generated from these pathways can be presented by MHC II molecules, making autophagy an important source of antigens for CD4+ T cells. In addition, modules of the molecular machinery of autophagy were found in recent years to also influence extracellular antigen processing for MHC Class I and Class II presentation, as well as regulation of MHC Class I surface expression. These studies paint a more complicated picture of how regulation of individual autophagy proteins influences adaptive immunity. The respective pathways, especially in regard to their net outcome for CD4+ helper and CD8+ cytotoxic T cell responses in vivo, will be discussed in this review.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Paul P, Münz C. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond. Adv Virus Res 2016; 95:149-95. [PMID: 27112282 DOI: 10.1016/bs.aivir.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an important cellular catabolic process conserved from yeast to man. Double-membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. However, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facilitating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host-pathogen coevolution.
Collapse
Affiliation(s)
- P Paul
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|