1
|
Doghish AS, Mahmoud A, Abd-Elmawla MA, Zaki MB, Aborehab NM, Hatawsh A, Radwan AF, Sayed GA, Moussa R, Abdel-Reheim MA, Mohammed OA, Elimam H. Innovative perspectives on glioblastoma: the emerging role of long non-coding RNAs. Funct Integr Genomics 2025; 25:43. [PMID: 39992471 DOI: 10.1007/s10142-025-01557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor. Recent advancements have highlighted the crucial role of long noncoding RNAs (lncRNAs) in GBM's molecular biology. Unlike protein-coding RNAs, lncRNAs regulate gene expression through transcription, post-transcriptional modifications, and chromatin remodeling. Some lncRNAs, like HOTAIR, CCAT2, CRNDE, and MALAT1, promote GBM development by affecting tumor suppressors and various signaling pathways like PI3K/Akt, mTOR, EGFR, NF-κB, and Wnt/β-catenin. Conversely, certain lncRNAs such as TUG1, MEG3, and GAS8-AS1 act as tumor suppressors and are associated with better prognosis. The study presented in the manuscript aims to explore the involvement of lncRNAs in GBM, focusing on their roles in tumor progression, proliferation, invasion, and potential implications for early detection and immunotherapy. The research seeks to elucidate the mechanisms by which specific lncRNAs influence GBM characteristics and highlight their potential as therapeutic targets or biomarkers in managing this aggressive form of brain cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Abdelhamid Mahmoud
- Biotechnology School, 26 of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26 of July Corridor, Nile University, Sheikh Zayed City, Giza, 12588, Egypt
| | - Abdullah F Radwan
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | | | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt.
| |
Collapse
|
2
|
Albulescu A, Botezatu A, Fudulu A, Hotnog CM, Bostan M, Mihăilă M, Iancu IV, Plesa A, Brasoveanu L. Combined Effect of Conventional Chemotherapy with Epigenetic Modulators on Glioblastoma. Genes (Basel) 2025; 16:138. [PMID: 40004468 PMCID: PMC11855767 DOI: 10.3390/genes16020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma is the most common malignant primary brain tumor, characterized by necrosis, uncontrolled proliferation, infiltration, angiogenesis, apoptosis resistance, and genomic instability. Epigenetic modifiers hold promise as adjuvant therapies for gliomas, with synergistic combinations being explored to enhance efficacy and reduce toxicity. This study aimed to evaluate the effects of single or combined treatments with various anticancer drugs (Carboplatin, Paclitaxel, Avastin), natural compounds (Quercetin), and epigenetic modulators (suberoylanilide hydroxamic acid and 5-Azacytidine) on the expression of some long noncoding RNAs and methylation drivers or some functional features in the U87-MG cell line. METHODS Treated and untreated U87-MG cells were used for the evaluation of drug-induced cytotoxicity, apoptotic events, and distribution in cell cycle phases, detection of cytokine release, and assessment of gene expression and global methylation. RESULTS Cytotoxicity assays led to the selection of drug concentrations to be used in further experiments. Expression analysis revealed distinct downregulation of nearly all investigated genes and long noncoding RNAs following treatments. All treatments resulted in a higher percentage of global methylation compared to untreated controls. All treatments effectively increased levels of apoptosis, while the epigenetic modulators exhibited a lower proliferation profile, with combined treatments showing elevated values of cell lysis. CONCLUSIONS The results indicate a link between Carboplatin and Avastin treatments and DNA methylation mechanisms involving EZH2, DNMT3A, and DNMT3B, with Avastin's direct impact on these enzymes warranting further study. This research underscores the promise of platinum-based therapies combined with epigenetic drugs to reactivate silenced tumor suppressor genes and optimize methylation profiles.
Collapse
Affiliation(s)
- Adrian Albulescu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research and Development, 031299 Bucharest, Romania
| | - Anca Botezatu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Alina Fudulu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Camelia Mia Hotnog
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Mirela Mihăilă
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| | - Iulia Virginia Iancu
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Adriana Plesa
- Molecular Virology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (A.A.); (A.F.); (I.V.I.); (A.P.)
| | - Lorelei Brasoveanu
- Center of Immunology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.M.H.); (M.B.); (M.M.); (L.B.)
| |
Collapse
|
3
|
Ge M, Wang Y, Mu N, Yang C, Li H, Chen T, Xu D, Yao J. Study of the relationship among biomarkers, cell and tissue of glioma through Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125063. [PMID: 39232314 DOI: 10.1016/j.saa.2024.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Glioma is the most common brain tumors with high mortality and recurrence rates. Currently, the diagnosis methods for glioma are mainly based on tissue level, cellular level and biomarker level. In this paper, the characteristics of biomarkers (γ-aminobutyric acid and matrix mtalloproteinses-2), U87MG glioma cell and tissue were studied based on Raman spectroscopy, respectively. The results showed that the γ-aminobutyric acid concentration exhibited a linear relation with the intensity of characteristic peaks in 800-1600 cm-1 region, whereas the spectral baseline increased with the increasing of sample concentration in 200-700 cm-1 region. The Raman characteristics of matrix mtalloproteinses-2 in 20-1800 cm-1 region was investigated. Especially, it is demonstrated that the matrix mtalloproteinses-2 showed sixteen low-wavenumber Raman peaks in the range of 20-300 cm-1. Moreover, the U87MG glioma cell showed seven different Raman characteristic peaks in 600-1800 cm-1 region. Compared with the normal tissue, the Raman intensity of tumor tissue showed apparent intensity differences in 300-1800 cm-1, where the intensity changes of these Raman peaks were related to the reducing of the lipid metabolic pathways, and increase of the RNA in tumor tissue region. Furthermore, it is found that the Raman spectra of U87MG glioma cell and tumor tissue had corresponding peaks in the Raman spectra of the liquid γ-aminobutyric acid and matrix mtalloproteinses-2. It is suggested that the γ-aminobutyric acid and matrix mtalloproteinses-2 contributed to the formation and growth of glioma cell and tissue. Thus, Raman spectroscopy not only can diagnose glioma at the biomarkers, cellular and tissue level, but also analyze the relationship among the three. Furthermore, the results provided a physical marker for the detection of glioma in clinically.
Collapse
Affiliation(s)
- Meilan Ge
- School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin 300073, China; Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300073, China
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin 300073, China; Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300073, China.
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chuanyan Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haibin Li
- School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin 300073, China; Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300073, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin 300073, China; Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300073, China
| | - Jianquan Yao
- School of Precision Instruments and Optoelectronics Engineering Tianjin University, Tianjin 300073, China; Key Laboratory of Optoelectronics Information Technology (Ministry of Education), Tianjin University, Tianjin 300073, China
| |
Collapse
|
4
|
Sharma K, Esbona K, Eickhoff JC, Lloyd RV, Hu R. Long non-coding RNA MALAT 1 and PHOX2B expression in olfactory neuroblastomas and sympathetic neuroblastomas. Ann Diagn Pathol 2024; 73:152355. [PMID: 38878689 DOI: 10.1016/j.anndiagpath.2024.152355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 11/18/2024]
Abstract
Long noncoding RNAs (lncRNAs) participate in transcriptional, epigenetic, and post-transcriptional regulation of gene expression and may influence carcinogenesis. MALAT1 is a lncRNA that is expressed in endocrine and many other neoplasms and it has been shown to have oncogenic and/or tumor suppressor effects in tumor development. Olfactory neuroblastomas arise in the nasal cavity while sympathetic neuroblastomas are present mainly in the adrenal and periadrenal regions. These neoplasms have overlapping histopathological features. Rare cases of sympathetic neuroblastomas metastatic to the nasal cavity have been reported. PHOX2B has been shown to be relatively specific for sympathetic neuroblastomas, but only a limited number of cases of olfactory neuroblastomas have been examined for PHOX2B expression. This study aimed to explore the potential utilization of MALAT1 and PHOX2B in distinguishing these two entities. Tissue microarrays (TMA) were created for olfactory neuroblastomas (n = 26) and sympathetic neuroblastomas (n = 52). MALAT1 lncRNA expression was assessed by in situ hybridization using RNAScope technology. TMA slides were scanned by Vectra multispectral imaging system and image analysis and quantification were performed with inForm software. PHOX2B expression was analyzed by immunohistochemistry. MALAT1 showed predominantly nuclear expression in both tumor types and MALAT1 expression was 2-fold higher in olfactory neuroblastomas compared to sympathetic neuroblastomas (p < 0.0001). PHOX2B showed nuclear staining in most sympathetic neuroblastomas (51/52, 98 %) while only 1 olfactory neuroblastoma (3.8 %) was focally positive for this marker. These findings suggest immunostaining of PHOX2B could be an excellent marker in distinguishing between these two tumor types.
Collapse
Affiliation(s)
- Kusum Sharma
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.
| |
Collapse
|
5
|
Wu S, Wu W, Zhong Y, Chen X, Wu J. Novel signature of ferroptosis-related long non-coding RNA to predict lower-grade glioma overall survival. Discov Oncol 2024; 15:723. [PMID: 39609314 PMCID: PMC11604900 DOI: 10.1007/s12672-024-01587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Ferroptosis is a novel type of programmed cell death in various tumors; however, underlying mechanisms remain unclear. We aimed to develop ferroptosis-related long non-coding RNA (FRlncRNA) risk scores to predict lower-grade glioma (LGG) prognosis and to conduct functional analyses to explore potential mechanisms. METHODS LGG-related RNA sequencing data were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Pearson correlation analysis was used to identify the FRlncRNAs, univariate Cox regression analysis was for identify the prognostic FRlncRNAs, and then intersection FRlncRNAs were screened between TCGA and CGGA. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to develop a risk score to predict LGG prognosis. RESULTS A total of nine FRlncRNAs were screened to construct the novel prognostic risk score of LGG, and high-risk score patients had a worse overall survival than low-risk score patients both in TCGA and CGGA datasets. The risk score was quite correlated with clinicopathological characteristics (age, WHO grade, status of MGMT Methtlation, IDH mutation, 1p/19q codeletion, and TMB), and could promote current molecular subtyping systems. Comprehensive analyses revealed that signaling pathways of B-cell receptor and T-cell receptor, immune cells of macrophage cell and CD4+ T cell, tumor microenvironment of stroma score and immune score, and immune checkpoints of PD-1, PD-L1, and CTLA4 were all enriched in the high-risk score group. CONCLUSION The nine FRlncRNAs risk scores was a promising biomarker to predict the LGG's prognosis and distinguish the characteristics of molecular and immune.
Collapse
Affiliation(s)
- Shiji Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd, Jin'an District, Fuzhou, 350011, Fujian, China
| | - Wenxi Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd, Jin'an District, Fuzhou, 350011, Fujian, China
| | - Yaqi Zhong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd, Jin'an District, Fuzhou, 350011, Fujian, China
| | - Xingte Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd, Jin'an District, Fuzhou, 350011, Fujian, China.
| | - Junxin Wu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd, Jin'an District, Fuzhou, 350011, Fujian, China.
| |
Collapse
|
6
|
Doghish AS, Abd-Elmawla MA, Hatawsh A, Zaki MB, Aborehab NM, Radwan AF, Moussa R, Eisa MA, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Elimam H. Unraveling the role of LncRNAs in glioblastoma progression: insights into signaling pathways and therapeutic potential. Metab Brain Dis 2024; 40:42. [PMID: 39589598 DOI: 10.1007/s11011-024-01456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/27/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) is one of the most aggressive types of brain cancer, characterized by its poor prognosis and low survival rate despite current treatment modalities. Because GBM is lethal, clarifying the pathogenesis's underlying mechanisms is important, which are still poorly understood. Recent discoveries in the fields of molecular genetics and cancer biology have demonstrated the critical role that non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), play in the molecular pathophysiology of GBM growth. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. They are significant epigenetic modulators that control gene e expression at several levels. Their dysregulation and interactions with important signaling pathways play a major role in the malignancy and development of GBM. The increasing role of lncRNAs in GBM pathogenesis is thoroughly examined in this review, with particular attention given to their regulation mechanisms in key signaling pathways such as PI3K/AKT, Wnt/β-catenin, and p53. It also looks into lncRNAs' potential as new biomarkers and treatment targets for GBM. In addition, the study discusses the difficulties in delivering lncRNA-based medicines across the blood-brain barrier and identifies areas that need more research to advance lncRNA-oriented treatments for this deadly cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, 26th of July Corridor, Nile University, Sheikh Zayed City, 12588, Giza, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
7
|
Bagheri-Mohammadi S, Karamivandishi A, Mahdavi SA, Siahposht-Khachaki A. New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism. Heliyon 2024; 10:e39744. [PMID: 39553554 PMCID: PMC11564028 DOI: 10.1016/j.heliyon.2024.e39744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Glioma or glioblastoma (GBM) is one of the aggressive and fatal primary cerebral malignancies, with the highest mortality rate among all brain-related tumors. Also, glioma mainly progresses as a more invasive phenotype after primary treatment. Cumulative evidence suggested that dysregulation of noncoding RNAs (ncRNAs) such as long non-coding RNAs (LncRNAs) and microRNAs (miRNAs) are associated with tumor initiation, progression, and drug resistance, through epigenetic modifications, transcriptional, and post-transcriptional processes in the cells. Many scientific investigations have revealed that LncRNAs play important roles in various biological procedures linked with the development and progression of GBM. In recent years, it has been shown that dysregulation of molecular mechanisms in many LncRNAs such as MIR22HG, HULC, AGAP2-AS1, MALAT1, PVT1, TTTY14, HOTAIRM1, PTAR, LPP-AS2, LINC00336, and TINCR are connected with the GBM. Therefore, this scientific review paper focused on the molecular mechanisms of these LncRNAs in the context of GBM.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seif Ali Mahdavi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Garcia CJC, Grisetti L, Tiribelli C, Pascut D. The ncRNA-AURKA Interaction in Hepatocellular Carcinoma: Insights into Oncogenic Pathways, Therapeutic Opportunities, and Future Challenges. Life (Basel) 2024; 14:1430. [PMID: 39598228 PMCID: PMC11595987 DOI: 10.3390/life14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major public health concern and ranks among the leading cancer-related mortalities globally. Due to the frequent late-stage diagnosis of HCC, therapeutic options remain limited. Emerging evidence highlights the critical role of non-coding RNAs (ncRNAs) in the regulation of Aurora kinase A (AURKA), one of the key hub genes involved in several key cancer pathways. Indeed, the dysregulated interaction between ncRNAs and AURKA contributes to tumor development, progression, and therapeutic resistance. This review delves into the interplay between ncRNAs and AURKA and their role in hepatocarcinogenesis. Recent findings underscore the involvement of the ncRNAs and AURKA axis in tumor development and progression. Furthermore, this review also discusses the clinical significance of targeting ncRNA-AURKA axes, offering new perspectives that could lead to innovative therapeutic strategies aimed at improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Clarissa Joy C. Garcia
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Grisetti
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| |
Collapse
|
9
|
Jiang P, Ye S, Fan X, Tian Y, Zhang D, Pan W. Schistosoma japonicum infection-mediated downregulation of lncRNA Malat1 contributes to schistosomiasis hepatic fibrosis by the Malat1/miR-96/Smad7 pathway. Parasit Vectors 2024; 17:413. [PMID: 39363237 PMCID: PMC11451255 DOI: 10.1186/s13071-024-06499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Schistosoma japonicum infection causes hepatic fibrosis, a primary cause of morbidity and mortality associated with the disease, and effective treatments are still lacking. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenic process of various tissue fibroses. However, the role of lncRNAs in schistosomiasis hepatic fibrosis (HF) is poorly understood. Understanding the role of lncRNAs in schistosomiasis HF will enhance knowledge of disease processes and aid in the discovery of therapeutic targets and diagnostic biomarkers. METHODS Differentially expressed lncRNA profiles in primary hepatic stellate cells (HSCs) of mice infected with S. japonicum were identified using high-throughput lncRNA sequencing. Primary HSCs were isolated from infected mice using collagenase digestion and density-gradient centrifugation, cultured in DMEM with 10% fetal bovine serum. Dual-luciferase reporter assays, nuclear cytoplasm fractionation and RIP assays were employed to assess the relationship between Malat1 and miRNA-96. Malat1 lentivirus and ASO-Malat1 were constructed for forced expression and downregulated expression of Malat1. The Malat1-KO mouse was constructed by CRISPR/Cas9 technology. Pathological features of the liver were evaluated by hematoxylin-eosin (HE), Masson's trichrome staining and immunohistochemistry (IHC). The expression levels of fibrosis-related genes were determined by quantitative real-time PCR (qRT-PCR) and Western blot. RESULTS A total of 1561 differentially expressed lncRNAs were identified between infected and uninfected primary HSCs. Among the top altered lncRNAs, the downregulated Malat1 was observed in infected HSCs and verified by qPCR. Treatment of infected mice with praziquantel (PZQ) significantly increased the Malat1 expression. Elevated Malat1 expression in infected primary HSC reduced the expressions of profibrogenic genes, whereas Malat1 knockdown had the opposite effect. Moreover, Malat1 was found to interact with miR-96, a profibrotic miRNA, by targeting Smad7. Forced Malat1 expression reduced miR-96 levels in infected primary HSCs, attenuating fibrogenesis and showing negative correlation between Malat1 expression and the expression levels of miR-96 and profibrogenic genes α-SMA and Col1α1. Notably, in Malat1-KO mice, knockout of Malat1 aggravates schistosomiasis HF, while restored Malat1 expression in the infected HSCs reduced the expression of profibrogenic genes. CONCLUSIONS We demonstrate that lncRNA is involved in regulation of schistosomiasis HF. Elevated lncRNA Malat1 expression in infected HSCs reduces fibrosis via the Malat1/miR-96/Smad7 pathway, thus providing a novel therapeutic target for schistosomiasis HF. Furthermore, Malat1 expression is sensitive to PZQ treatment, thus offering a potential biomarker for assessing the response to chemotherapy.
Collapse
Affiliation(s)
- Pengyue Jiang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Shengyu Ye
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Xiaobin Fan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Yini Tian
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China.
| | - Weiqing Pan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China.
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Yadav B, Yadav P, Yadav S, Pandey AK. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma. Drug Discov Today 2024; 29:104140. [PMID: 39168403 DOI: 10.1016/j.drudis.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly severe primary brain tumor. Despite extensive research, effective treatments remain elusive. Long noncoding RNAs (lncRNAs) play a significant role in both cancer and normal biology. They influence alternative splicing (AS), which is crucial in cancer. Advances in lncRNA-specific microarrays and next-generation sequencing have enhanced understanding of AS. Abnormal AS contributes to cancer invasion, metastasis, apoptosis, therapeutic resistance, and tumor development, including glioma. lncRNA-mediated AS affects several cellular signaling pathways, promoting or suppressing cancer malignancy. This review discusses the lncRNAs regulating AS in glioblastoma and their mechanisms.
Collapse
Affiliation(s)
- Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Pooja Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Sunita Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Sheikhnia F, Fazilat A, Rashidi V, Azizzadeh B, Mohammadi M, Maghsoudi H, Majidinia M. Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs. Pathol Res Pract 2024; 260:155374. [PMID: 38889494 DOI: 10.1016/j.prp.2024.155374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The escalating global incidence of cancer, which results in millions of fatalities annually, underscores the pressing need for effective pharmacological interventions across diverse cancer types. Long noncoding RNAs (lncRNAs), a class of RNA molecules that lack protein-coding capacity but profoundly impact gene expression regulation, have emerged as pivotal players in key cellular processes, including proliferation, apoptosis, metastasis, cellular metabolism, and drug resistance. Among natural compounds, quercetin, a phenolic compound abundantly present in fruits and vegetables has garnered attention due to its significant anticancer properties. Quercetin demonstrates the ability to inhibit cancer cell growth and induce apoptosis-a process often impaired in malignant cells. In this comprehensive review, we delve into the therapeutic potential of quercetin in cancer treatment, with a specific focus on its intricate interactions with lncRNAs. We explore how quercetin modulates lncRNA expression and function to exert its anticancer effects. Notably, quercetin suppresses oncogenic lncRNAs that drive cancer development and progression while enhancing tumor-suppressive lncRNAs that impede cancer growth and dissemination. Additionally, we discuss quercetin's role as a chemopreventive agent, which plays a crucial role in mitigating cancer risk. We address research challenges and future directions, emphasizing the necessity for in-depth mechanistic studies and strategies to enhance quercetin's bioavailability and target specificity. By synthesizing existing knowledge, this review underscores quercetin's promising potential as a novel therapeutic strategy in the ongoing battle against cancer, offering fresh insights and avenues for further investigation in this critical field.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ahmad Fazilat
- Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | - Vahid Rashidi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Bita Azizzadeh
- Department of Biochemistry, School of Medicine, Ilam University of Medical sciences, Ilam, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
12
|
Peng G, Feng Y, Wang X, Huang W, Li Y. The mitochondria-related gene risk mode revealed p66Shc as a prognostic mitochondria-related gene of glioblastoma. Sci Rep 2024; 14:11418. [PMID: 38763954 PMCID: PMC11102912 DOI: 10.1038/s41598-024-62083-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
Numerous studies have highlighted the pivotal role of mitochondria-related genes (MRGs) in the initiation and progression of glioblastoma (GBM). However, the specific contributions of MRGs coding proteins to GBM pathology remain incompletely elucidated. The identification of prognostic MRGs in GBM holds promise for the development of personalized targeted therapies and the enhancement of patient prognosis. We combined differential expression with univariate Cox regression analysis to screen prognosis-associated MRGs in GBM. Based on the nine MRGs, the hazard ratio model was conducted using a multivariate Cox regression algorithm. SHC-related survival, pathway, and immune analyses in GBM cohorts were obtained from the Biomarker Exploration of the Solid Tumor database. The proliferation and migration of U87 cells were measured by CCK-8 and transwell assay. Apoptosis in U87 cells was evaluated using flow cytometry. Confocal microscopy was employed to measure mitochondrial reactive oxygen species (ROS) levels and morphology. The expression levels of SHC1 and other relevant proteins were examined via western blotting. We screened 15 prognosis-associated MRGs and constructed a 9 MRGs-based model. Validation of the model's risk score confirmed its efficacy in predicting the prognosis of patients with GBM. Furthermore, analysis revealed that SHC1, a constituent MRG of the prognostic model, was upregulated and implicated in the progression, migration, and immune infiltration of GBM. In vitro experiments elucidated that p66Shc, the longest isoform of SHC1, modulates mitochondrial ROS production and morphology, consequently promoting the proliferation and migration of U87 cells. The 9 MRGs-based prognostic model could predict the prognosis of GBM. SHC1 was upregulated and correlated with the prognosis of patients by involvement in immune infiltration. Furthermore, in vitro experiments demonstrated that p66Shc promotes U87 cell proliferation and migration by mediating mitochondrial ROS production. Thus, p66Shc may serve as a promising biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Gang Peng
- Department of Phamacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yabo Feng
- PET-CT Center, Chenzhou First People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Weicheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Lu X, Zhang D. Expression of lncRNAs in glioma: A lighthouse for patients with glioma. Heliyon 2024; 10:e24799. [PMID: 38322836 PMCID: PMC10844031 DOI: 10.1016/j.heliyon.2024.e24799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma is the most common malignant tumour in the central nervous system, accounting for approximately 30 % of the primary tumours of this system. The World Health Organization grades for glioma include: Grade I (pilocytic astrocytoma), Grade II (astrocytoma, oligodastoma, etc.), Grade III (anaplastic astrocytoma, anaplastic oligodastoma, etc.) and Grade IV (glioblastoma). With grade increases, the proliferation, invasion and other malignant biological properties of the glioma are enhanced, and the treatment results are less satisfactory. The overall survival of patients with glioblastoma is less than 15 months. Recent research has focused on the roles of long non-coding RNAs, previously regarded as "transcriptional noise", in diseases, leading to a new understanding of these roles. Therefore, we conducted this review to explore the progress of research regarding the expression and mechanism of long non-coding RNAs in glioma.
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Orthopedic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
15
|
Yoo JS, Kang MK. Clinical significance of exosomal noncoding RNAs in hepatocellular carcinoma: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 42:4. [PMID: 38325815 PMCID: PMC11812098 DOI: 10.12701/jyms.2023.01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 02/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide, with poor prognosis owing to its high frequency of recurrence and metastasis. Moreover, most patients are diagnosed at an advanced stage owing to a lack of early detection markers. Exosomes, which are characterized by their cargos of stable intracellular messengers, such as DNA, RNA, proteins, and lipids, play a crucial role in regulating cell differentiation and HCC development. Recently, exosomal noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, and circular RNAs, have become increasingly important diagnostic, prognostic, and predictive markers of HCC. Herein, we discuss the clinical implications of exosomal ncRNAs, specifically those within the HCC regulatory network.
Collapse
Affiliation(s)
- Jae Sung Yoo
- Department of Gastroenterology and Hepatology, The Catholic University of Korea, Seoul St Mary’s Hospital, Seoul, Korea
| | - Min Kyu Kang
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
16
|
Ji YL, Kang K, Lv QL, Wang DP. Roles of lncRNA-MALAT1 in the Progression and Prognosis of Gliomas. Mini Rev Med Chem 2024; 24:786-792. [PMID: 37859309 DOI: 10.2174/0113895575253875230922055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023]
Abstract
Long noncoding RNAs (lncRNAs) represent a large subgroup of RNA transcripts that lack the function of coding proteins and may be essential universal genes involved in carcinogenesis and metastasis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNAMALAT1) is overexpressed in various human tumors, including gliomas. However, the biological function and molecular mechanism of action of lncRNA-MALAT1 in gliomas have not yet been systematically elucidated. Accumulating evidence suggests that the abnormal expression of lncRNA-MALAT1 in gliomas is associated with various physical properties of the glioma, such as tumor growth, metastasis, apoptosis, drug resistance, and prognosis. Furthermore, lncRNAs, as tumor progression and prognostic markers in gliomas, may affect tumorigenesis, proliferation of glioma stem cells, and drug resistance. In this review, we summarize the knowledge on the biological functions and prognostic value of lncRNA-MALAT1 in gliomas. This mini-review aims to deepen the understanding of lncRNA-MALAT1 as a novel potential therapeutic target for the individualized precision treatment of gliomas.
Collapse
Affiliation(s)
- Yu-Long Ji
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi Province, China
| | - Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi Province, China
| | - Da-Peng Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Bahcheli AT, Min HK, Bayati M, Zhao H, Fortuna A, Dong W, Dzneladze I, Chan J, Chen X, Guevara-Hoyer K, Dirks PB, Huang X, Reimand J. Pan-cancer ion transport signature reveals functional regulators of glioblastoma aggression. EMBO J 2024; 43:196-224. [PMID: 38177502 PMCID: PMC10897389 DOI: 10.1038/s44318-023-00016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.
Collapse
Affiliation(s)
- Alexander T Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Hyun-Kee Min
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masroor Bayati
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hongyu Zhao
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Alexander Fortuna
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Weifan Dong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Irakli Dzneladze
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jade Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kissy Guevara-Hoyer
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, Department of Clinical Immunology, Institute of Laboratory Medicine (IML) and Biomedical Research Foundation (IdiSCC), San Carlos Clinical Hospital, Madrid, Spain
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
19
|
Liu C, Jia Y, Zhao X, Wang Z, Zhu X, Zhang C, Li X, Zhao X, Gong T, Zhao H, Zhang D, Niu Y, Dong X, Li G, Li F, Zhang H, Zhang L, Xu J, Yu B. Targeting B4GALT7 suppresses the proliferation, migration and invasion of hepatocellular carcinoma through the Cdc2/CyclinB1 and miR-338-3p/MMP2 pathway. PeerJ 2023; 11:e16450. [PMID: 38025683 PMCID: PMC10668818 DOI: 10.7717/peerj.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background As a three-dimensional network involving glycosaminoglycans (GAGs), proteoglycans (PGs) and other glycoproteins, the role of extracellular matrix (ECM) in tumorigenesis is well revealed. Abnormal glycosylation in liver cancer is correlated with tumorigenesis and chemoresistance. However, the role of galactosyltransferase in HCC (hepatocellular carcinoma) is largely unknown. Methods Here, the oncogenic functions of B4GALT7 (beta-1,4-galactosyltransferase 7) were identified in HCC by a panel of in vitro experiments, including MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), colony formation, transwell and flow cytometry assay. The expression of B4GALT7 in HCC cell lines and tissues were examined by qPCR (real-time quantitative polymerase chain reaction) and western blot assay. The binding between B4GALT7 and miR-338-3p was examined by dual-luciferase reporter assay. Results B4GALT7 encodes galactosyltransferase I and it is highly expressed in HCC cells and human HCC tissues compared with para-tumor specimens. MiR-338-3p was identified to bind the 3' UTR (untranslated region) of B4GALT7. Highly expressed miR-338-3p suppressed HCC cell invasive abilities and rescued the tumor-promoting effect of B4GALT7 in HCC. ShRNA (short hairpin RNA) mediated B4GALT7 suppression reduced HCC cell invasive abilities, and inhibited the expression of MMP-2 and Erk signaling. Conclusion These findings identified B4GALT7 as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry and Molecular Biology, Changzhi Medical College, Changzhi, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuqi Jia
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Xinan Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Zifeng Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Xiaoxia Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Chan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Xiaoning Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Dong Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Yuhu Niu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaopeng Li
- Department of General Surgery, Shanxi Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng Li
- Central Laboratory, Shanxi Cancer Hospital; Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hongwei Zhang
- Department of Hematology, Shanxi Cancer Hospital; Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences; Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jun Xu
- Department of General Surgery, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, China, Taiyuan, China
| |
Collapse
|
20
|
Dai K, Xu Y, Yang Y, Shen J, Liu X, Tu X, Yu L, Qi X, Li J, Wang L, Zuo X, Liu Y, Yan H, Fan C, Yao G. Edge Length-Programmed Single-Stranded RNA Origami for Predictive Innate Immune Activation and Therapy. J Am Chem Soc 2023; 145:17112-17124. [PMID: 37498993 DOI: 10.1021/jacs.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ligands targeting nucleic acid-sensing receptors activate the innate immune system and play a critical role in antiviral and antitumoral therapy. However, ligand design for in situ stability, targeted delivery, and predictive immunogenicity is largely hampered by the sophisticated mechanism of the nucleic acid-sensing process. Here, we utilize single-stranded RNA (ssRNA) origami with precise structural designability as nucleic acid sensor-based ligands to achieve improved biostability, organelle-level targeting, and predictive immunogenicity. The natural ssRNAs self-fold into compact nanoparticles with defined shapes and morphologies and exhibit resistance against RNase digestion in vitro and prolonged retention in macrophage endolysosomes. We find that programming the edge length of ssRNA origami can precisely regulate the degree of macrophage activation via a toll-like receptor-dependent pathway. Further, we demonstrate that the ssRNA origami-based ligand elicits an anti-tumoral immune response of macrophages and neutrophils in the tumor microenvironment and retards tumor growth in the mouse pancreatic tumor model. Our ssRNA origami strategy utilizes structured RNA ligands to achieve predictive immune activation, providing a new solution for nucleic acid sensor-based ligand design and biomedical applications.
Collapse
Affiliation(s)
- Kun Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Xu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfeng Shen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Tu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Lu Yu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaodong Qi
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Yan
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Zhu N, Ahmed M, Li Y, Liao JC, Wong PK. Long noncoding RNA MALAT1 is dynamically regulated in leader cells during collective cancer invasion. Proc Natl Acad Sci U S A 2023; 120:e2305410120. [PMID: 37364126 PMCID: PMC10319025 DOI: 10.1073/pnas.2305410120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
Cancer cells collectively invade using a leader-follower organization, but the regulation of leader cells during this dynamic process is poorly understood. Using a dual double-stranded locked nucleic acid (LNA) nanobiosensor that tracks long noncoding RNA (lncRNA) dynamics in live single cells, we monitored the spatiotemporal distribution of lncRNA during collective cancer invasion. We show that the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is dynamically regulated in the invading fronts of cancer cells and patient-derived spheroids. MALAT1 transcripts exhibit distinct abundance, diffusivity, and distribution between leader and follower cells. MALAT1 expression increases when a cancer cell becomes a leader and decreases when the collective migration process stops. Transient knockdown of MALAT1 prevents the formation of leader cells and abolishes the invasion of cancer cells. Taken together, our single-cell analysis suggests that MALAT1 is dynamically regulated in leader cells during collective cancer invasion.
Collapse
Affiliation(s)
- Ninghao Zhu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Mona Ahmed
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Yanlin Li
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA94305
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
- Department of Surgery, The Pennsylvania State University, University Park, PA17033
| |
Collapse
|
22
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
23
|
Feichtenschlager V, Zheng YJ, Ho W, Chen L, Callanan C, Chen C, Lee A, Ortiz J, Rappersberger K, Ortiz-Urda S. Deconstructing the role of MALAT1 in MAPK-signaling in melanoma: insights from antisense oligonucleotide treatment. Oncotarget 2023; 14:543-560. [PMID: 37235843 DOI: 10.18632/oncotarget.28447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
The long non-coding RNA (lncRNA) MALAT1 is a regulator of oncogenesis and cancer progression. MAPK-pathway upregulation is the main event in the development and progression of human cancer, including melanoma and recent studies have shown that MALAT1 has a significant impact on the regulation of gene and protein expression in the MAPK pathway. However, the role of MALAT1 in regulation of gene and protein expression of the MAPK-pathway kinases RAS, RAF, MEK and ERK in melanoma is largely unknown. We demonstrate the impacts of antisense oligonucleotide (ASO)-based MALAT1-inhibition on MAPK-pathway gene regulation in melanoma. Our results showed that MALAT1-ASO treatment decreased BRAF RNA expression and protein levels, and MALAT1 had increased correlation with MAPK-pathway associated genes in melanoma patient samples compared to healthy skin. Additionally, drug-induced MAPK inhibition upregulated MALAT1-expression, a finding that resonates with a paradigm of MALAT1-expression presented in this work: MALAT1 is downregulated in melanoma and other cancer types in which MALAT1 seems to be associated with MAPK-signaling, while MALAT1-ASO treatment strongly reduced the growth of melanoma cell lines, even in cases of resistance to MEK inhibition. MALAT1-ASO treatment significantly inhibited colony formation in vitro and reduced tumor growth in an NRAS-mutant melanoma xenograft mouse model in vivo, while showing no aberrant toxic side effects. Our findings demonstrate new insights into MALAT1-mediated MAPK-pathway gene regulation and a paradigm of MALAT1 expression in MAPK-signaling-dependent cancer types. MALAT1 maintains essential oncogenic functions, despite being downregulated.
Collapse
Affiliation(s)
- Valentin Feichtenschlager
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Dermatology, Clinic Landstrasse Vienna, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Yixuan James Zheng
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Wilson Ho
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Linan Chen
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Ciara Callanan
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Christopher Chen
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Albert Lee
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jose Ortiz
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| | - Klemens Rappersberger
- Department of Dermatology, Clinic Landstrasse Vienna, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt Zion Cancer Research Center, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
24
|
Gan Q, Huang X, Zhao W, Liu H, Xu Y, Zhang X, Cheng J, Chen R. AC010883.5 promotes cell proliferation, invasion, migration, and epithelial-to-mesenchymal transition in cervical cancer by modulating the MAPK signaling pathway. BMC Cancer 2023; 23:364. [PMID: 37081411 PMCID: PMC10120252 DOI: 10.1186/s12885-023-10825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/07/2023] [Indexed: 04/22/2023] Open
Abstract
Homo sapiens chromosome 2 clone RP11-339H12 (AC010883.5) is a dysregulated long non-coding RNA (lncRNA) that has never been investigated in cervical cancer (CC). Thus, the potential function and molecular mechanism remain unclear. Our study explored the biological function of AC010883.5 to determine the underlying mechanisms in CC and provide potential therapeutic targets for improving the clinical treatment strategy. We used quantitative real-time polymerase chain reaction to measure mitochondrial RNA levels and western blot to measure the protein levels of target genes. Further, we used Cell Counting Kit-8 and 5-Bromo-2'-deoxyuridine incorporation assays to evaluate cell proliferation in vitro. Cell apoptosis was analyzed by flow cytometry. Cell invasion was analyzed by wound healing and Transwell migration assays was ued to analyze cell migration. Finally, the biological function and mechanism of AC010883.5 in CC growth were evaluated by in vivo xenograft assay. AC010883.5 was enhanced in CC tissues and cell lines, and enhanced AC010883.5 expression accelerated CC cell proliferation, migration, and invasion and induced epithelial-mesenchymal transition in vitro and in vivo. AC010883.5 also activated the mitogen-activated protein kinase (MAPK) signaling pathway by promoting phosphorylation of extracellular signal-regulated kinase 1/2 (i.e., ERK1/2) and MAPK kinase 1/2 (i.e., MEK1/2). Blocking the MAPK signaling pathway could counteract the pro-proliferative, pro-migrative, and pro-invasive effects of AC010883.5 over-expression. We found that the lncRNA, AC010883.5, is an oncogenic molecule involved in CC tumor progression via dysregulation of the MAPK signaling pathway, implying that AC010883.5 could be a tumor progression and therapeutic response biomarker.
Collapse
Affiliation(s)
- Qiyu Gan
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Xia Huang
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China
| | - Wenrong Zhao
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Hui Liu
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Yan Xu
- Department of Pathology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Xiaohua Zhang
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China
| | - Jingxin Cheng
- Department of Gynecology and Obstetrics, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
- Department of Gynecology and Obstetrics, Shanghai East Hospital Ji'an Hospital, 80 Ji'an South Road, Ji'an City, 343000, Jiangxi, China.
| | - Rui Chen
- Department of Gynecology, United Family Hospital, Shanghai, China.
| |
Collapse
|
25
|
Activity-Dependent Non-Coding RNA MAPK Interactome of the Human Epileptic Brain. Noncoding RNA 2023; 9:ncrna9010003. [PMID: 36649033 PMCID: PMC9844323 DOI: 10.3390/ncrna9010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
The human brain has evolved to have extraordinary capabilities, enabling complex behaviors. The uniqueness of the human brain is increasingly posited to be due in part to the functions of primate-specific, including human-specific, long non-coding RNA (lncRNA) genes, systemically less conserved than protein-coding genes in evolution. Patients who have surgery for drug-resistant epilepsy are subjected to extensive electrical recordings of the brain tissue that is subsequently removed in order to treat their epilepsy. Precise localization of brain tissues with distinct electrical properties offers a rare opportunity to explore the effects of brain activity on gene expression. Here, we identified 231 co-regulated, activity-dependent lncRNAs within the human MAPK signaling cascade. Six lncRNAs, four of which were antisense to known protein-coding genes, were further examined because of their high expression and potential impact on the disease phenotype. Using a model of repeated depolarizations in human neuronal-like cells (Sh-SY5Y), we show that five out of six lncRNAs were electrical activity-dependent, with three of four antisense lncRNAs having reciprocal expression patterns relative to their protein-coding gene partners. Some were directly regulated by MAPK signaling, while others effectively downregulated the expression of the protein-coding genes encoded on the opposite strands of their genomic loci. These lncRNAs, therefore, likely contribute to highly evolved and primate-specific human brain regulatory functions that could be therapeutically modulated to treat epilepsy.
Collapse
|
26
|
Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, Sekawi Z. The evaluation expression of non-coding RNAs in response to HSV-G47∆ oncolytic virus infection in glioblastoma multiforme cancer stem cells. J Neurovirol 2022; 28:566-582. [PMID: 35951174 DOI: 10.1007/s13365-022-01089-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
Collapse
Affiliation(s)
- Reza Vazifehmand
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Dhuha Saeed Ali
- Halal Products Research Institute, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Zulkefley Othman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - De-Ming Chau
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang, Selangor, 43400, Malaysia
| | - Mehdi Shafa
- Cell Therapy process development, Lonza Houston Inc, Houston, TX, USA
| | - Zamberi Sekawi
- Department of Medical Microbiology & Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor Darul Ehsan, 43400, Malaysia.
| |
Collapse
|
27
|
Wang L, Li Y, Wang Y, Li J, Sun Y, Chen J, Wang Z. Identification of cuproptosis-related lncRNAs for prognosis and immunotherapy in glioma. J Cell Mol Med 2022; 26:5820-5831. [PMID: 36317420 PMCID: PMC9716210 DOI: 10.1111/jcmm.17603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Glioma is a highly invasive primary brain tumour, making it challenging to accurately predict prognosis for glioma patients. Cuproptosis is a recently discovered cell death attracting significant attention in the tumour field. Whether cuproptosis-related genes have prognostic predictive value has not been clarified. In this study, uni-/multi-variate Cox and Lasso regression analyses were applied to construct a risk model based on cuproptosis-related lncRNAs using TCGA and CGGA cohorts. A nomogram was constructed to quantify individual risk, including clinical and genic characteristics and risk. GO and KEGG analyses were used to define functional enrichment of DEGs. Tumour mutation burden (TMB) and immune checkpoint analyses were performed to evaluate potential responses to ICI therapy. Ten prognostic lncRNAs were obtained from Cox regression. Based on the median risk score, patients were divided into high- and low-risk groups. Either for grade 2-3 or for grade 4, glioma patients with high-risk exhibited significant poorer prognoses. The risk was an independent risk factor associated with overall survival. The high-risk group was functionally associated with immune responses and cancer-related pathways. The high-risk group was associated with higher TMB scores. The expression levels of many immune checkpoints in the high-risk group were significantly higher than those in the low-risk group. Differentiated immune pathways were primarily enriched in the IFN response, immune checkpoint and T-cell co-stimulation pathways. In conclusion, we established a risk model based on cuproptosis-related lncRNAs showing excellent prognostic prediction ability but also indicating the immuno-microenvironment status of glioma.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yunqian Li
- Department of Neurosurgical OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yubo Wang
- Department of Neurosurgical OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jia Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yajuan Sun
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jiajun Chen
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Ziqian Wang
- Department of Neurosurgical OncologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
28
|
Larionova TD, Bastola S, Aksinina TE, Anufrieva KS, Wang J, Shender VO, Andreev DE, Kovalenko TF, Arapidi GP, Shnaider PV, Kazakova AN, Latyshev YA, Tatarskiy VV, Shtil AA, Moreau P, Giraud F, Li C, Wang Y, Rubtsova MP, Dontsova OA, Condro M, Ellingson BM, Shakhparonov MI, Kornblum HI, Nakano I, Pavlyukov MS. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat Cell Biol 2022; 24:1541-1557. [PMID: 36192632 PMCID: PMC10026424 DOI: 10.1038/s41556-022-00994-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.
Collapse
Affiliation(s)
- Tatyana D Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tatiana E Aksinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Jia Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Dmitriy E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Yaroslav A Latyshev
- N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pascale Moreau
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Francis Giraud
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yichan Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Michael Condro
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute of Hokuto, Hokkaido, Japan.
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
29
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
30
|
Chan HYE, Chen ZS. Multifaceted investigation underlies diverse mechanisms contributing to the downregulation of Hedgehog pathway-associated genes INTU and IFT88 in lung adenocarcinoma and uterine corpus endometrial carcinoma. Aging (Albany NY) 2022; 14:7794-7823. [PMID: 36084949 PMCID: PMC9596204 DOI: 10.18632/aging.204262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
Hedgehog (Hh) signaling primarily functions in the control of mammalian embryonic development but also has roles in cancer. The Hh activation depends on ciliogenesis, a cellular process that describes outgrowth of the primary cilium from cell membrane. Ciliogenesis initiation requires a set of proteins known as planar cell polarity (PCP) effectors. Inturned (INTU) is a PCP effector that reportedly functions synergistically with Hh signaling in basal cell carcinoma, suggesting that INTU has an oncogenic role. In this study, we carried out a pan-cancer investigation on the prognostic significance of INTU in different types of cancer. We demonstrated that INTU downregulation correlated with reduced survival probabilities in lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma (UCEC) patients. Similar expression patterns and prognostic values were identified for intraflagellar transport 88 (IFT88), another Hh pathway-associated gene. We elucidated multiple mechanisms at transcriptional, post-transcriptional and translational levels that involved transcription factor 4 and non-coding RNAs-associated regulatory networks contributing to the reduction of INTU and IFT88 levels in LUAD and UCEC samples. Taken together, this study demonstrates the prognostic significance of the Hh-related genes INTU and IFT88 in LUAD and UCEC and further delineates multifaceted mechanisms leading to INTU and IFT88 downregulation in tumor samples.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
32
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Xia L, Chen J, Huang M, Mei J, Lin M. The functions of long noncoding RNAs on regulation of F-box proteins in tumorigenesis and progression. Front Oncol 2022; 12:963617. [PMID: 35928868 PMCID: PMC9343830 DOI: 10.3389/fonc.2022.963617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3 ubiquitin ligase complexes, participates in carcinogenesis and tumor progression via targeting its substrates for ubiquitination and degradation. F-box proteins could be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis. Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified to modulate the expression of F-box proteins and contribute to oncogenesis. In this review, we summarize the role and mechanisms of multiple lncRNAs in regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these lncRNAs could be helpful for treating cancer via modulating F-box protein expression. We hope our review can stimulate the research on exploration of molecular insight into how F-box proteins are governed in carcinogenesis. Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer therapy via regulation of F-box proteins.
Collapse
|
34
|
A Novel Necroptosis-Related lncRNA Signature for Predicting Prognosis and Immune Response of Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3742447. [PMID: 35757472 PMCID: PMC9226973 DOI: 10.1155/2022/3742447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Glioma is one of the most common intracranial malignancies that plagues people around the world. Despite current improvements in treatment, the prognosis of glioma is often unsatisfactory. Necroptosis is a form of programmed cell death. As research progresses, the role of necroptosis in tumors has gradually attracted the attention of researchers. And lncRNA is regarded as a critical role in the development of cancer. Therefore, this study is aimed at establishing a prognostic model based on necroptosis-associated lncRNAs to accurately assess the prognosis and immune response of patients with glioma. The RNA sequences of glioma patients and normal brain samples were downloaded from The Cancer Genome Atlas (TCGA) and GTEx databases, respectively. The coexpression analysis was performed to identify the necroptosis-related lncRNAs. Then, we utilized LASSO analysis following univariate Cox analysis to construct a prognostic model. Subsequently, we applied the Kaplan-Meier curve, time-dependent receiver operating characteristics (ROC), and univariate and multivariate Cox regression analyses to assess the effectiveness of this model. And the functional enrichment analyses and immune-related analyses were employed to investigate the potential biological functions. A validation set was obtained from the Chinese Glioma Genome Atlas (CGGA) database. And qRT-PCR was employed to further validate the expression levels of selected necroptosis-associated lncRNAs. Seven necroptosis-related lncRNAs (FAM13A-AS1, JMJD1C-AS1, LBX2-AS1, ZBTB20-AS4, HAR1A, SNHG14, and LINC00900) were determined to construct a prognostic model. The area under the ROC curve (AUC) was 0.871, 0.901, and 0.911 at 1, 2, and 3 years, respectively. The risk score was shown to be an important independent predictor in both univariate and multivariate Cox regression analyses. Through functional enrichment analyses, we found that the differentially expressed genes (DEGs) were mainly enriched in protein binding and signaling-related biological functions and immune-associated pathways. In conclusion, we established and validated a novel necroptosis-related lncRNA signature, which could accurately predict the overall survival of glioma patients and serve as potential therapeutic targets.
Collapse
|
35
|
Zhou D, Wang Y, Hu H, Liu H, Deng J, Li L, Zheng C. lncRNA MALAT1 promotes HCC metastasis through the peripheral vascular infiltration via miRNA-613: a primary study using contrast ultrasound. World J Surg Oncol 2022; 20:203. [PMID: 35706002 PMCID: PMC9202184 DOI: 10.1186/s12957-022-02655-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to explore the specific pathogenesis of lncRNA MALAT1 promoting the invasion and metastasis of hepatocellular carcinoma (HCC) through peripheral blood vessels by regulating the expression of miRNA-613 molecule. Methods The data of 60 HCC metastatic patients and 60 HCC non-metastatic patients detected by the contrast-enhanced ultrasound (CEUS) in the Second Affiliated Hospital of Qiqihar Medical College from January 2020 to June 2021 were collected, as well as postoperatively retained HCC tissues and paired paracancer tissues (5 cm laterally from the edge of the cancer area), to study the changes of microangiogenesis in HCC tissues with CEUS. The correlation between CEUS grading and lncRNA MALAT1 in patients with HCC was analyzed through Pearson correlation analysis, lncRNA MALAT1 and miRNA-613 in HCC tissues of patients with HCC were detected by qRT-PCR, followed by the bioinformatic analysis for the relationship between lncRNA MALAT1 and miRNA-613. The Log-growing human HCC cell strain, HepG2, was selected for experiments. Adenovirus transfection knocked down lncRNA MALAT1 in HCC cells, which was divided into two groups (inhibitor-NC group and lncR-inhibitor group), followed by knocking down miRNA-613 on the basis of knocking down lncRNA MALAT1, which was divided into three groups (inhibitor-NC group, lncR-inhibitor groups, and lncR/miR613-inhibitor group). The expression of miRNA-613 and lncRNA MALAT1 in each group was detected by qRT-PCR. The migration and invasiveness of cells in each group were detected by Transwell assay. Results CEUS of HCC and Pearson correlation analysis showed that CEUS grading and lncRNA MALAT1 were positively correlated in patients with HCC. In HCC tissues of patients with HCC, lncRNA MALAT1 expressed high and miRNA-613 expressed low. The results of bioinformatic analysis showed the targeting of lncRNA MALAT1 and miRNA-613. Knocking down lncRNA MALAT1 could increase miRNA-613 expression significantly, and reduce the migration of HCC cells. Inhibiting miRNA-613 based on knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells. Conclusions lncRNA MALAT1 can promote HCC metastasis through the peripheral vascular infiltration by inhibiting the level of MiRNA-613, which can, therefore, be used as a potential target for the treatment of HCC. 1. Contrast-enhanced ultrasound (CEUS) grading was positively correlated with lncRNA MALAT1 in patients with hepatocellular carcinoma (HCC). 2. lncRNA MALAT1 expressed high and miRNA-613 expressed low in HCC tissues of patients with HCC. 3. lncRNA MALAT1 was targeted with miRNA-613. 4. Knocking down lncRNA MALAT1 could significantly increase miRNA-613 expression. 5. Knocking down lncRNA MALAT1 could reduce the migration of HCC cells. 6. Inhibiting miRNA-613 on the basis of knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells.
Collapse
Affiliation(s)
- Dandan Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Ying Wang
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China.
| | - Haifeng Hu
- Department of Magnetic Resonance Imaging, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Huilin Liu
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Jiajia Deng
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Lu Li
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Chunlei Zheng
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| |
Collapse
|
36
|
The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4330681. [PMID: 35656022 PMCID: PMC9155922 DOI: 10.1155/2022/4330681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 12/14/2022]
Abstract
The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.
Collapse
|
37
|
Dissecting and analyzing the Subclonal Mutations Associated with Poor Prognosis in Diffuse Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4919111. [PMID: 35496054 PMCID: PMC9039777 DOI: 10.1155/2022/4919111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
The prognostic and therapeutic implications in diffuse gliomas are still challenging. In this study, we first performed an integrative framework to infer the clonal status of mutations in glioblastomas (GBMs) and low-grade gliomas (LGGs) by using exome sequencing data from TCGA and observed both clonal and subclonal mutations for most mutant genes. Based on the clonal status of a given gene, we systematically investigated its prognostic value in GBM and LGG, respectively. Focusing on the subclonal mutations, our results showed that they were more likely to contribute to the poor prognosis, which could be hardly figured out without considering clonal status. These risk subclonal mutations were associated with some specific genomic features, such as genomic instability and intratumor heterogeneity, and their accumulation could enhance the prognostic value. By analyzing the regulatory mechanisms underlying the risk subclonal mutations, we found that the subclonal mutations of AHNAK and AHNAK2 in GBM and those of NF1 and PTEN in LGG could influence some important molecules and functions associated with glioma progression. Furthermore, we dissected the role of risk subclonal mutations in tumor evolution and found that advanced subclonal mutations showed poorer overall survival. Our study revealed the importance of clonal status in prognosis analysis, highlighting the role of the subclonal mutation in glioma prognosis.
Collapse
|
38
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
39
|
Zhou H, Meng M, Wang Z, Zhang H, Yang L, Li C, Zhang L. The Role of m5C-Related lncRNAs in Predicting Overall Prognosis and Regulating the Lower Grade Glioma Microenvironment. Front Oncol 2022; 12:814742. [PMID: 35372082 PMCID: PMC8971304 DOI: 10.3389/fonc.2022.814742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most lethal primary brain tumor with a poor prognosis and high recurrence rate. Enormous efforts have been made to find therapeutic targets for gliomas. In the current study, we identified m5C-related lncRNAs through Pearson correlation analysis by the criteria |R|>0.5 and p<0.001 in TCGA LGG and CGGA325 datasets. We then established an eight-lncRNA m5C-related prognostic signature (m5C LPS) through lasso cox regression analysis and multivariate analysis. The performance of the signature was confirmed in the CGGA325 dataset and evaluated in differential subgroups divided by relevant clinicopathological characteristics. Patients were then divided into high and low risk groups using risk scores calculated with the signature. Next, we performed GO, KEGG and gene set enrichment analysis (GSEA) and identified the m5C LPS to be related with glioma microenvironment, immune response, EMT, cell cycle, and hypoxia. Correlation of the risk groups with immune cell infiltration, somatic mutation, and CNVs was then explored. Responses to immuno- and chemotherapies in different risk groups were evaluated using submap and pRRophetic R packages respectively. The high-risk group was more sensitive to anti-CTLA4 therapy and to compounds including Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A.443654 (Akt inhibitor), AZD6482 (PI3K inhibitor), GDC0941(PI3K inhibitor), and metformin. We present for the first time a m5C-related lncRNA signature for lower grade glioma patient prognosis and therapy response prediction with validated performance, providing a promising target for future research.
Collapse
Affiliation(s)
- Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Meng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liting Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- Brain Tumor Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- Brain Tumor Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, China
- Brain Tumor Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
41
|
Metastatic EMT Phenotype Is Governed by MicroRNA-200-Mediated Competing Endogenous RNA Networks. Cells 2021; 11:cells11010073. [PMID: 35011635 PMCID: PMC8749983 DOI: 10.3390/cells11010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a fundamental physiologically relevant process that occurs during morphogenesis and organ development. In a pathological setting, the transition from epithelial toward mesenchymal cell phenotype is hijacked by cancer cells, allowing uncontrolled metastatic dissemination. The competing endogenous RNA (ceRNA) hypothesis proposes a competitive environment resembling a large-scale regulatory network of gene expression circuits where alterations in the expression of both protein-coding and non-coding genes can make relevant contributions to EMT progression in cancer. The complex regulatory diversity is exerted through an array of diverse epigenetic factors, reaching beyond the transcriptional control that was previously thought to single-handedly govern metastatic dissemination. The present review aims to unravel the competitive relationships between naturally occurring ceRNA transcripts for the shared pool of the miRNA-200 family, which play a pivotal role in EMT related to cancer dissemination. Upon acquiring more knowledge and clinical evidence on non-genetic factors affecting neoplasia, modulation of the expression levels of diverse ceRNAs may allow for the development of novel prognostic/diagnostic markers and reveal potential targets for the disruption of cancer-related EMT.
Collapse
|
42
|
Xu K, Jiang X, Ariston Gabriel AN, Li X, Wang Y, Xu S. Evolving Landscape of Long Non-coding RNAs in Cerebrospinal Fluid: A Key Role From Diagnosis to Therapy in Brain Tumors. Front Cell Dev Biol 2021; 9:737670. [PMID: 34692695 PMCID: PMC8529119 DOI: 10.3389/fcell.2021.737670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNAs that act as molecular fingerprints and modulators of many pathophysiological processes, particularly in cancer. Specifically, lncRNAs can be involved in the pathogenesis and progression of brain tumors, affecting stemness/differentiation, replication, invasion, survival, DNA damage response, and chromatin dynamics. Furthermore, the aberrations in the expressions of these transcripts can promote treatment resistance, leading to tumor recurrence. The development of next-generation sequencing technologies and the creation of lncRNA-specific microarrays have boosted the study of lncRNA etiology. Cerebrospinal fluid (CSF) directly mirrors the biological fluid of biochemical processes in the brain. It can be enriched for small molecules, peptides, or proteins released by the neurons of the central nervous system (CNS) or immune cells. Therefore, strategies that identify and target CSF lncRNAs may be attractive as early diagnostic and therapeutic options. In this review, we have reviewed the studies on CSF lncRNAs in the context of brain tumor pathogenesis and progression and discuss their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kanghong Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | | | - Xiaomeng Li
- Department of Hematology, Jining First People's Hospital, Jining, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Key Laboratory of Brain Function Remodeling, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
43
|
Yadav G, Kulshreshtha R. Metastasis associated long noncoding RNAs in glioblastoma: Biomarkers and therapeutic targets. J Cell Physiol 2021; 237:401-420. [PMID: 34533835 DOI: 10.1002/jcp.30577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant, and therapeutically challenging Grade IV tumor of the brain. Although the possibility of distant metastasis is extremely rare, GBM is known to cause intracranial metastasis forming aggressive secondary lesions resulting in a dismal prognosis. Metastasis also plays an important role in tumor dissemination and recurrence making GBM largely incurable. Recent studies have indicated the importance of long noncoding RNAs (lncRNAs) in GBM metastasis. lncRNAs are a class of regulatory noncoding RNAs (>200 nt) that interact with DNA, RNA, and proteins to regulate various biological processes. This is the first comprehensive review summarizing the lncRNAs associated with GBM metastasis and the underlying molecular mechanism involved in migration/invasion. We also highlight the complex network of lncRNA/miRNA/protein that collaborate/compete to regulate metastasis-associated genes. Many of these lncRNAs also show attractive potential as diagnostic/prognostic biomarkers. Finally, we discuss various therapeutic strategies and potential applications of lncRNAs as therapeutic targets for the treatment of GBM.
Collapse
Affiliation(s)
- Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
44
|
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021; 7:47. [PMID: 34449663 PMCID: PMC8395730 DOI: 10.3390/ncrna7030047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer genome is characterized by extensive variability, in the form of Single Nucleotide Polymorphisms (SNPs) or structural variations such as Copy Number Alterations (CNAs) across wider genomic areas. At the molecular level, most SNPs and/or CNAs reside in non-coding sequences, ultimately affecting the regulation of oncogenes and/or tumor-suppressors in a cancer-specific manner. Notably, inherited non-coding variants can predispose for cancer decades prior to disease onset. Furthermore, accumulation of additional non-coding driver mutations during progression of the disease, gives rise to genomic instability, acting as the driving force of neoplastic development and malignant evolution. Therefore, detection and characterization of such mutations can improve risk assessment for healthy carriers and expand the diagnostic and therapeutic toolbox for the patient. This review focuses on functional variants that reside in transcribed or not transcribed non-coding regions of the cancer genome and presents a collection of appropriate state-of-the-art methodologies to study them.
Collapse
Affiliation(s)
- Marios Lange
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (M.L.); (R.B.)
- Institute for Fundamental Biomedical Research, B.S.R.C “Alexander Fleming”, 34 Fleming Str., 16672 Vari, Greece
| |
Collapse
|
45
|
Tan X, Guo W, Peng Z, Gu C, Xiang P, Tu Y, Fei H, Liu X, Lu Y, Li M, Wang H, Luo Y, Yang J. LncRNA-Malat1 promoting inflammatory response aggravates cerebral ischemia-reperfusion neuronal injury in rats by targeting miR-211-5p. Biochem Pharmacol 2021; 192:114694. [PMID: 34324865 DOI: 10.1016/j.bcp.2021.114694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ischemic stroke is one kind of disorder of cerebral blood circulation, which poses a severe threaten to human health and quality of life, causing serious economic loss to families and society. LncRNA-Malat1(Metastasis-associated lung adenocarcinoma transcript 1) and miRNA-211-5p are abnormally expressed in stroke patients and in the middle cerebral ischemia-reperfusion injury (CIRI) model. However, the involvement between LncRNA-Malat1 and miR-211-5p in cerebral ischemia-reperfusion neuronal injury and its mechanism remain unclear. METHODS The middle cerebral ischemia-reperfusion injury (CIRI) model was established in rat, and the rat primary neuron injury model induced by oxygen-glucose deprivation/reoxygenation (OGD/R) was simulated in vitro. Level of LncRNA-Malat1, miR-211-5p and COX-2 mRNA were detected via RT-qPCR. The protein levels of COX-2, BAX and BCL-2 were measured by western blot. MTT assay was performed to detect cell viability. RESULTS In our study, LncRNA-Malat1 and COX-2 were up-regulated while miR-211-5p down-regulated in vitro and in vivo. Knockdown of LncRNA-Malat1 improved neurological deficit scores, reduced cerebral infarction volume in vivo, and significantly promoted cell viability, reduced apoptosis and proinflammatory factors PGE2 and IL-10 in vitro. More importantly, the level of miR-211-5p was negatively correlated with that of LncRNA-Malat1 and COX-2. Knockdown of LncRNA-Malat1 inhibited the expression of COX-2 by up-regulating miR-211-5p. CONCLUSION Higher expression of LncRNA-Malat1 was involved in neuronal injury, LncRNA-Malat1 knockdown may reduce inflammation and apoptosis by modulating miR-211-5p, which provided a new therapeutic strategy for clinical stroke intervention targets.
Collapse
Affiliation(s)
- Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Wenjia Guo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Zhe Peng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Yunjun Tu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yi Lu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Miaomiao Li
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
46
|
Guo L, Zhang X, Pan H, Li Y, Wang J, Li L, Dong Y, Du X, Chen J, Guo F. Prognostic and immunological significance of metastasis associated lung adenocarcinoma transcript 1 among different kinds of cancers. Bioengineered 2021; 12:4247-4258. [PMID: 34308750 PMCID: PMC8806457 DOI: 10.1080/21655979.2021.1955511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
LncRNAs belong to the type of noncoding RNA transcripts, which exceed 200 nucleotides in size. MALAT1 as one of the earlier identified lncRNAs in cancer is investigated by more and more scientific researchers. Expression, clinical significance and function of MALAT1 in pan-cancer exist as big difference. To detect the expression and clinical significance of MALAT1 gene precisely and comprehensively among different kinds of cancers, some classical databases such as GEPIA, TIMER, KM Plotter, and PrognoScan were fully applied. An immunological role of MALAT1 among different kinds of cancers was also determined in TIMER database. Our results showed that MALAT1 was differently expressed in different kinds of cancers using GEPIA, Oncomine, and TIMER databases to analyze. Especially, MALAT1 high RNA level was related to the early stage in lung and gastric cancer patients. MALAT1 expression was closely related to prognosis among different cancer patients. Furthermore, expression of MALAT1 was related to tumor immune cell infiltrating. Expression level of MALAT1 was also related to immune makers such as macrophage, T cell, NK cells, and so on. These findings indicate that MALAT1 could be a potential prognostic biomarker of some kinds of cancer and was significantly correlated with tumor-infiltrating immune cells in a wide variety of cancers.
Collapse
Affiliation(s)
- Lili Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Precision Medicine Center, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiuwen Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Lin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yafang Dong
- Precision Medicine Center, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinxin Du
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
47
|
LINC00997/MicroRNA 574-3p/CUL2 Promotes Cervical Cancer Development via Mitogen-Activated Protein Kinase Signaling. Mol Cell Biol 2021; 41:e0005921. [PMID: 34031216 DOI: 10.1128/mcb.00059-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer (CC) is a common gynecological malignancy with high morbidity and mortality. Mounting evidence has highlighted that long noncoding RNAs are essential regulators in cancer development. Long intergenic non-protein-coding RNA 997 (LINC00997) was identified for study due to its high expression in CC tissues. The aim of the study was to investigate the function and mechanism of LINC00997 in CC. Reverse transcription-quantitative PCR (RT-qPCR) revealed that LINC00997 RNA expression was also increased in CC cells and LINC00997 copy number was upregulated in CC tissues. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), colony formation, and Transwell assays as well as transmission electron microscopy observation exhibited that LINC00997 depletion inhibited CC cell proliferation, migration, invasion, and autophagy. The relationship between LINC00997 and its downstream genes was confirmed by RNA pulldown, luciferase reporter, and RNA-binding protein immunoprecipitation assays. Mechanistically, LINC00997 upregulated the expression of cullin 2 (CUL2) by interacting with microRNA 574-3p (miR-574-3p). Moreover, Western blot analysis was employed to detect the protein levels of mitogen-activated protein kinase (MAPK) pathway-associated factors in CC cells. LINC00997 activated the MAPK signaling by increasing CUL2 expression, thus promoting malignant phenotypes of CC cells. In conclusion, the LINC00997/miR-574-3p/CUL2 axis contributes to CC cell proliferation, migration, invasion, and autophagy via the activation of MAPK signaling.
Collapse
|
48
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
49
|
Momtazmanesh S, Rezaei N. Long Non-Coding RNAs in Diagnosis, Treatment, Prognosis, and Progression of Glioma: A State-of-the-Art Review. Front Oncol 2021; 11:712786. [PMID: 34322395 PMCID: PMC8311560 DOI: 10.3389/fonc.2021.712786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most common malignant central nervous system tumor with significant mortality and morbidity. Despite considerable advances, the exact molecular pathways involved in tumor progression are not fully elucidated, and patients commonly face a poor prognosis. Long non-coding RNAs (lncRNAs) have recently drawn extra attention for their potential roles in different types of cancer as well as non-malignant diseases. More than 200 lncRNAs have been reported to be associated with glioma. We aimed to assess the roles of the most investigated lncRNAs in different stages of tumor progression and the mediating molecular pathways in addition to their clinical applications. lncRNAs are involved in different stages of tumor formation, invasion, and progression, including regulating the cell cycle, apoptosis, autophagy, epithelial-to-mesenchymal transition, tumor stemness, angiogenesis, the integrity of the blood-tumor-brain barrier, tumor metabolism, and immunological responses. The well-known oncogenic lncRNAs, which are upregulated in glioma, are H19, HOTAIR, PVT1, UCA1, XIST, CRNDE, FOXD2-AS1, ANRIL, HOXA11-AS, TP73-AS1, and DANCR. On the other hand, MEG3, GAS5, CCASC2, and TUSC7 are tumor suppressor lncRNAs, which are downregulated. While most studies reported oncogenic effects for MALAT1, TUG1, and NEAT1, there are some controversies regarding these lncRNAs. Expression levels of lncRNAs can be associated with tumor grade, survival, treatment response (chemotherapy drugs or radiotherapy), and overall prognosis. Moreover, circulatory levels of lncRNAs, such as MALAT1, H19, HOTAIR, NEAT1, TUG1, GAS5, LINK-A, and TUSC7, can provide non-invasive diagnostic and prognostic tools. Modulation of expression of lncRNAs using antisense oligonucleotides can lead to novel therapeutics. Notably, a profound understanding of the underlying molecular pathways involved in the function of lncRNAs is required to develop novel therapeutic targets. More investigations with large sample sizes and increased focus on in-vivo models are required to expand our understanding of the potential roles and application of lncRNAs in glioma.
Collapse
Affiliation(s)
- Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Kovalenko TF, Larionova TD, Antipova NV, Shakhparonov MI, Pavlyukov MS. The Role of Non-coding RNAs in the Pathogenesis of Glial Tumors. Acta Naturae 2021; 13:38-51. [PMID: 34707896 PMCID: PMC8526181 DOI: 10.32607/actanaturae.11270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Among the many malignant neoplasms, glioblastoma (GBM) leads to one of the worst prognosis for patients and has an almost 100% recurrence rate. The only chemotherapeutic drug that is widely used for treating glioblastoma is temozolomide, a DNA alkylating agent. Its impact, however, is only minor; it increases patients' survival just by 12 to 14 months. Multiple highly selective compounds that affect specific proteins and have performed well in other types of cancer have proved ineffective against glioblastoma. Hence, there is an urgent need for novel methods that could help achieve the long-awaited progress in glioblastoma treatment. One of the potentially promising approaches is the targeting of non-coding RNAs (ncRNAs). These molecules are characterized by extremely high multifunctionality and often act as integrators by coordinating multiple key signaling pathways within the cell. Thus, the impact on ncRNAs has the potential to lead to a broader and stronger impact on cells, as opposed to the more focused action of inhibitors targeting specific proteins. In this review, we summarize the functions of long noncoding RNAs, circular RNAs, as well as microRNAs, PIWI-interacting RNAs, small nuclear and small nucleolar RNAs. We provide a classification of these transcripts and describe their role in various signaling pathways and physiological processes. We also provide examples of oncogenic and tumor suppressor ncRNAs belonging to each of these classes in the context of their involvement in the pathogenesis of gliomas and glioblastomas. In conclusion, we considered the potential use of ncRNAs as diagnostic markers and therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- T. F. Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. D. Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - N. V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. I. Shakhparonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|