1
|
Liao H, Zheng J, Lu J, Shen HL. NF-κB Signaling Pathway in Rheumatoid Arthritis: Mechanisms and Therapeutic Potential. Mol Neurobiol 2025; 62:6998-7021. [PMID: 39560902 DOI: 10.1007/s12035-024-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that imposes a heavy economic burden on patients and society. Bone and cartilage destruction is considered an important factor leading to RA, and inflammation, oxidative stress, and mitochondrial dysfunction are closely related to bone erosion and cartilage destruction in RA. Currently, there are limitations in the clinical treatment methods for RA, which urgently necessitates finding new effective treatments for patients. Nuclear transcription factor-κB (NF-κB) is a signaling transcription factor that is widely present in various cells. It plays an important role as a stress source in the cellular environment and regulates gene expression in processes such as immunity, inflammation, cell proliferation, and apoptosis. NF-κB has long been recognized as a pathogenic factor of RA, and its activation can exacerbate RA by promoting inflammation, oxidative stress, mitochondrial dysfunction, and bone destruction. Conversely, inhibiting the activity of the NF-κB pathway effectively inhibits these pathological processes, thereby alleviating RA. Therefore, NF-κB may be a potential therapeutic target for RA. This article describes the physiological structure of NF-κB and its important role in RA through the regulation of oxidative stress, inflammatory response, mitochondrial function, and bone destruction. Meanwhile, we also summarized the impact of NF-κB crosstalk with other signaling pathways on RA and the effect of related drugs or inhibitors targeting NF-κB on RA. The purpose of this article is to provide evidence for the role of NF-κB in RA and to emphasize its significant role in RA by elucidating the mechanisms, so as to provide a theoretical basis for targeting the NF-κB pathway as a treatment for RA.
Collapse
Affiliation(s)
- Haiyang Liao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jianxiong Zheng
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Jinyue Lu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China
| | - Hai-Li Shen
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Serrano-Rodríguez M, Araya JE, Cortez M, Orrego PR. Cytotoxic Effect of Trypanosoma cruzi Calcineurin B Against Melanoma and Adenocarcinoma Cells In Vitro. Adv Pharmacol Pharm Sci 2024; 2024:5394494. [PMID: 39640496 PMCID: PMC11620811 DOI: 10.1155/adpp/5394494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/07/2024] Open
Abstract
Chagas disease caused by the obligate intracellular flagellate protozoan Trypanozoma cruzi infects about 6 million people. From the 1930s to the present, the antitumor capacity of T. cruzi has been studied; however, the identification of the responsible molecules for this effect remains undiscovered. Calcineurin, a calcium/calmodulin-dependent serine/threonine phosphatase, is a heterodimer consisting of a catalytic subunit (CaNA) and a regulatory subunit (CaNB). It has been described that T. cruzi CaN is involved in the cell invasion and proliferation of the parasite. Recently, extracellular human CaNB has been demonstrated to be capable of inhibiting tumor growth cells, conferring an antitumor effect; however, the extracellular role of T. cruzi CaNB (TcCaNB) is still unknown. The objective of this work was to investigate the antitumor potential of TcCaNB by interacting with membrane proteins and evaluating its effects on the viability, proliferation, and morphology of tumor cells in vitro. Additionally, the possible mechanism of action of TcCaNB was explored. Murine melanoma (B16-F10), human cervical adenocarcinoma (HeLa), and African green monkey kidney epithelial (Vero) cell lines were employed for in vitro assays. Far Western blot and immunofluorescence were performed to assess the interaction of TcCaNB with membrane proteins, and the effect of TcCaNB on cell viability and proliferation was evaluated using the MTS assay and the CyQUANT NF assay, respectively. The effect of the caspase inhibitor Z-VAD-FMK on TcCaNB-stimulated tumor cells was investigated to determine if TcCaNB-induced cell death was associated with apoptosis. To assess cell cycle progression, TcCaNB-treated cells were analyzed by flow cytometry. In this study, the results showed an interaction of TcCaNB with cell membrane proteins in B16-F10 and HeLa tumor lines, indicating that TcCaNB is capable of decreasing viability and proliferation of B16-F10 and HeLa cells, with no significant effect observed in Vero cells. Furthermore, morphological changes were observed in tumor cells treated with TcCaNB. DNA fragmentations and inhibition of caspases with Z-VAD-FMK partially counteracted the cytotoxic effects of TcCaNB on tumor cells, suggesting that TcCaNB-induced cell death might be associated with apoptosis. Additionally, TcCaNB caused S phase cell cycle arrest in HeLa cells, with an increase in the sub-G1 population indicative of apoptosis, while no significant effects were observed in Vero cells.
Collapse
Affiliation(s)
- Mayela Serrano-Rodríguez
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jorge E. Araya
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Patricio R. Orrego
- Biomedical Department, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| |
Collapse
|
3
|
Lu Y, Chen Y, Li Y, Xu S, Lian D, Liang J, Jiang D, Chen S, Hou S. Monotropein inhibits colitis associated cancer through VDR/JAK1/STAT1 regulation of macrophage polarization. Int Immunopharmacol 2023; 124:110838. [PMID: 37633235 DOI: 10.1016/j.intimp.2023.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Colorectal cancer (CRC) is a growing concern due to its high morbidity and mortality, and the search for effective and less toxic active substances against inflammatory bowel diseases has been a hot topic in the research and development of drugs against CRC. It is reported that monotropein isolated from the roots of Morinda officinalis, can improve Dextran Sodium Sulfate (DSS)-induced ulcerative colitis in mice, but its therapeutic effects and mechanisms for CRC treatment are still to be investigated. In the present study, we first used molecular docking, BLI, CESTA, and DARTS methods to detest whether monotropein targets VDR proteins. In addition, we used tumor cell conditioned co-culture and four models of macrophage polarisation to investigate the regulation of four macrophage polarisations by monotropein using RT-PCR, IF and western blot. Furthermore, we further validated the target of action of monotropein for the treatment of Azoxymethane (AOM)/DSS induced colitis associated cancer (CAC) using knockout animals. Meanwhile, we further explored the mechanism of action of monotropein in regulating polarisation by detecting JAK/STAT1-related genes and proteins. Molecular docking and biofilm interference techniques showed that monotropein bound to the VDR, and additional results from CESTA and DARTS suggested that VDR proteins are targets of monotropein. Furthermore, in tumor cell conditioned co-cultures or LPS + IFN-γ induced RAW264.7 cells, VDR translocation to the nucleus was reduced, JAK1/STAT1 signaling pathway proteins were up-regulated, and macrophages were polarised towards the M1-type after monotropein intervention. Animal models in which normal VDR or myeloid VDR was knocked out confirmed that JAK1 levels in intestinal tissues were increased after monotropein intervention, macrophages were polarised towards the M1 type, and CAC paracarcinomas were ameliorated. Taken together, the present study concluded that monotropein inhibited colitis-associated cancers through macrophage polarisation regulated by VDR/JAK1/STAT1.
Collapse
Affiliation(s)
- Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Yuhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dawei Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Jian Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Dongxu Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, PR China.
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
4
|
Lv J, Ji J, Bai L, Xu Y, Su Z, Jin Y. Effects of Interferon-γ and Interleukin-4 on Proliferating Cell Nuclear Antigen Expression in Transplanted Bone Tumor Tissue. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AbstractThe rabbit VX2 bone tumor model is an ideal animal model for studying malignant bone tumors. Cytokines have been reported to play a role in tumor initiation and promotion, angiogenesis, and metastasis. However, few studies have investigated the relationship between cytokines and VX2 bone tumor development. This study investigated the effect of interferon-γ (IFN-γ) and interleukin-4 (IL-4) on proliferating cell nuclear antigen (PCNA) expression in tumor tissue. Thirty Japanese white rabbits were randomly divided into group A (n = 15) and group B (n = 15). The rabbit VX2 bone tumor model was constructed by implanting VX2 tumors on the medial side of the upper tibia. Group A was sacrificed in the first week of implantation, and group B in the second week of implantation. Peripheral venous blood, tumor tissue from the medullary cavity at the implantation site, and surrounding bone and soft tissue were harvested before implantation and execution in both experimental groups. IFN-γ and IL-4 expression levels in peripheral blood and PCNA levels in tumor tissues were measured by enzyme-linked immunosorbent assay (ELISA). The tumor tissue of the medullary cavity and surrounding bone and soft tissue was harvested for pathological examination. By the end of the experiment, 30 rabbits were included in the study. There was no significant difference in IFN-γ, IL-4 and PCNA expression levels in group A compared to group B before implantation (t = 1.187, p value = 0.255; t = 1.282, p value = 0.221; t = 0.499, p value = 0.626). IFN-γ and IL-4 expression levels before execution in group A were not significantly different from those before implantation (t = -1.280, p value = 0.213; t = 0.952, p value = 0.349), and PCNA expression levels were higher than those before implantation (t = 2.469, p value = 0.020). Group B had significantly lower IFN-γ expression levels before execution than before implantation (t = -3.741, p value = 0.001) and significantly higher IL-4 and PCNA expression levels before execution than before implantation (t = 6.279, p value < 0.01; t = 13.031, p value < 0.001). IFN-γ expression levels before execution in group B was significantly lower than those before execution in group A (t = 17.184, p value < 0.001), and IL-4 and PCNA expression before execution in group B was significantly higher than that before execution in group A (t = -26.235, p value < 0.001; t = -24.619, p value < 0.001). The correlation between IFN-γ and PCNA levels before execution in groups A and B was negative (r = -0.566, p value = 0.028; r = -0.604, p value = 0.017), and the correlation between IL-4 and PCNA levels was positive (r = 0.583, p value = 0.023; r = 0.884, p value < 0.001). In the rabbit VX2 bone tumor model, extending the period of time after tumor implantation resulted in a negative correlation between IFN-γ and PCNA levels and a positive correlation between IL-4 and PCNA levels.
Collapse
|
5
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|
6
|
Juusola M, Kuuliala K, Kuuliala A, Mustonen H, Vähä-Koskela M, Puolakkainen P, Seppänen H. Pancreatic cancer is associated with aberrant monocyte function and successive differentiation into macrophages with inferior anti-tumour characteristics. Pancreatology 2021; 21:397-405. [PMID: 33461933 DOI: 10.1016/j.pan.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Inflammation is related to the development and progression of pancreatic cancer (PC). Locally, anti-inflammatory macrophages (M2), and systemically, high levels of certain inflammation-modulating cytokines associate with poor prognosis in PC. The detailed effects of systemic inflammation on circulating monocytes and macrophage polarisation remain unknown. We aimed to find out how intracellular signalling of peripheral blood monocytes is affected by the systemic inflammatory state in PC patients and how it affects their differentiation into macrophages. METHODS Monocytes were isolated from 50 consenting PC patients and 20 healthy controls (HC). The phosphorylation status of the signalling molecules was assessed by flow cytometry both from unstimulated and appropriately stimulated monocytes. Monocytes derived from HC and PC patients were co-cultured with cancer cells (MIA PaCa-2 and HPAF-II) in media supplemented with autologous serum, and the CD marker expression of the obtained macrophages was assessed by flow cytometry. RESULTS Phosphorylation levels of unstimulated STAT2, STAT3 and STAT6 were higher (p < 0.05) and those of stimulated NF-kB (p = 0.004) and STAT5 (p = 0.006) were lower in patients than in controls. The expression of CD86, a proinflammatory (M1) marker, was higher in control- than patient-derived co-cultured macrophages (p = 0.029). CONCLUSIONS Circulating monocytes from PC patients showed constitutive phosphorylation and weaker response to stimuli, indicating aberrant activation and immune suppression. When co-culturing the patient-derived monocytes with cancer cells, they differentiated into macrophages with reduced levels of M1 macrophage marker CD86, suggesting compromised anti-tumour features. The results highlight the need for global management of tumour-associated immune aberrations in PC treatment.
Collapse
Affiliation(s)
- Matilda Juusola
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021; 24:102112. [PMID: 33659877 PMCID: PMC7895754 DOI: 10.1016/j.isci.2021.102112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an in silico population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an in vitro condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive "virtual macrophage" simulation platform.
Collapse
|
8
|
Ferreira HB, Melo T, Paiva A, Domingues MDR. Insights in the Role of Lipids, Oxidative Stress and Inflammation in Rheumatoid Arthritis Unveiled by New Trends in Lipidomic Investigations. Antioxidants (Basel) 2021; 10:antiox10010045. [PMID: 33401700 PMCID: PMC7824304 DOI: 10.3390/antiox10010045] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.M.); (M.d.R.D.); Tel.: +351-234-370-698 (M.d.R.D.)
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), 3004-561 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Maria do Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (T.M.); (M.d.R.D.); Tel.: +351-234-370-698 (M.d.R.D.)
| |
Collapse
|
9
|
Zhao WJ, Ou GY, Lin WW. Integrative Analysis of Neuregulin Family Members-Related Tumor Microenvironment for Predicting the Prognosis in Gliomas. Front Immunol 2021; 12:682415. [PMID: 34054873 PMCID: PMC8155525 DOI: 10.3389/fimmu.2021.682415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Gliomas, including brain lower grade glioma (LGG) and glioblastoma multiforme (GBM), are the most common primary brain tumors in the central nervous system. Neuregulin (NRG) family proteins belong to the epidermal growth factor (EGF) family of extracellular ligands and they play an essential role in both the central and peripheral nervous systems. However, roles of NRGs in gliomas, especially their effects on prognosis, still remain to be elucidated. In this study, we obtained raw counts of RNA-sequencing data and corresponding clinical information from 510 LGG and 153 GBM samples from The Cancer Genome Atlas (TCGA) database. We analyzed the association of NRG1-4 expression levels with tumor immune microenvironment in LGG and GBM. GSVA (Gene Set Variation Analysis) was performed to determine the prognostic difference of NRGs gene set between LGG and GBM. ROC (receiver operating characteristic) curve and the nomogram model were constructed to estimate the prognostic value of NRGs in LGG and GBM. The results demonstrated that NRG1-4 were differentially expressed in LGG and GBM in comparison to normal tissue. Immune score analysis revealed that NRG1-4 were significantly related to the tumor immune microenvironment and remarkably correlated with immune cell infiltration. The investigation of roles of m6A (N6-methyladenosine, m6A)-related genes in gliomas revealed that NRGs were prominently involved in m6A RNA modification. GSVA score showed that NRG family members are more associated with prognosis in LGG compared with GBM. Prognostic analysis showed that NRG3 and NRG1 can serve as potential independent biomarkers in LGG and GBM, respectively. Moreover, GDSC drug sensitivity analysis revealed that NRG1 was more correlated with drug response compared with other NRG subtypes. Based on these public databases, we preliminarily identified the relationship between NRG family members and tumor immune microenvironment, and the prognostic value of NRGs in gliomas. In conclusion, our study provides comprehensive roles of NRG family members in gliomas, supporting modulation of NRG signaling in the management of glioma.
Collapse
Affiliation(s)
- Wei-jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Wei-jiang Zhao, ; Guan-yong Ou,
| | - Guan-yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- *Correspondence: Wei-jiang Zhao, ; Guan-yong Ou,
| | - Wen-wen Lin
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Xu J, Jiang C, Cai Y, Guo Y, Wang X, Zhang J, Xu J, Xu K, Zhu W, Wang S, Zhang F, Geng M, Han Y, Ning Q, Xu P, Meng L, Lu S. Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes. Arthritis Res Ther 2020; 22:200. [PMID: 32867828 PMCID: PMC7457370 DOI: 10.1186/s13075-020-02296-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The disruption of metabolic events and changes to nutrient and oxygen availability due to sustained inflammation in RA increases the demand of bioenergetic and biosynthetic processes within the damaged tissue. The current study aimed to understand the molecular mechanisms of SLC7A5 (amino acid transporter) in synoviocytes of RA patients. Methods Synovial tissues were obtained from OA and RA patients. Fibroblast-like synoviocytes (FLS) were isolated, and SLC7A5 expression was examined by using RT-qPCR, immunofluorescence, and Western blotting. RNAi and antibody blocking treatments were used to knockdown SLC7A5 expression or to block its transporter activities. mTOR activity assay and MMP expression levels were monitored in RA FLS under amino acid deprivation or nutrient-rich conditions. Results RA FLS displayed significantly upregulated expression of SLC7A5 compared to OA FLS. Cytokine IL-1β was found to play a crucial role in upregulating SLC7A5 expression via the NF-κB pathway. Intervening SLC7A5 expression with RNAi or blocking its function by monoclonal antibody ameliorated MMP3 and MMP13 protein expression. Conversely, upregulation of SLC7A5 or tryptophan supplementation enhanced mTOR-P70S6K signals which promoted the protein translation of MMP3 and MMP13 in RA FLS. Conclusion Activated NF-κB pathway upregulates SLC7A5, which enhances the mTOR-P70S6K activity and MMP3 and MMP13 expression in RA FLS.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Xipeng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jiaxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Jiawen Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
11
|
Zhao C, Mirando AC, Sové RJ, Medeiros TX, Annex BH, Popel AS. A mechanistic integrative computational model of macrophage polarization: Implications in human pathophysiology. PLoS Comput Biol 2019; 15:e1007468. [PMID: 31738746 PMCID: PMC6860420 DOI: 10.1371/journal.pcbi.1007468] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Macrophages respond to signals in the microenvironment by changing their functional phenotypes, a process known as polarization. Depending on the context, they acquire different patterns of transcriptional activation, cytokine expression and cellular metabolism which collectively constitute a continuous spectrum of phenotypes, of which the two extremes are denoted as classical (M1) and alternative (M2) activation. To quantitatively decode the underlying principles governing macrophage phenotypic polarization and thereby harness its therapeutic potential in human diseases, a systems-level approach is needed given the multitude of signaling pathways and intracellular regulation involved. Here we develop the first mechanism-based, multi-pathway computational model that describes the integrated signal transduction and macrophage programming under M1 (IFN-γ), M2 (IL-4) and cell stress (hypoxia) stimulation. Our model was calibrated extensively against experimental data, and we mechanistically elucidated several signature feedbacks behind the M1-M2 antagonism and investigated the dynamical shaping of macrophage phenotypes within the M1-M2 spectrum. Model sensitivity analysis also revealed key molecular nodes and interactions as targets with potential therapeutic values for the pathophysiology of peripheral arterial disease and cancer. Through simulations that dynamically capture the signal integration and phenotypic marker expression in the differential macrophage polarization responses, our model provides an important computational basis toward a more quantitative and network-centric understanding of the complex physiology and versatile functions of macrophages in human diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Adam C. Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Thalyta X. Medeiros
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Brian H. Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, United States of America
- Divison of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Yang J, Zhang H, Zhu Z, Gao Y, Xiang B, Wei Q. The immunostimulatory effects and pro-apoptotic activity of rhCNB against Lewis lung cancer is mediated by Toll-like receptor 4. Cancer Med 2019; 8:4441-4453. [PMID: 31218844 PMCID: PMC6675711 DOI: 10.1002/cam4.2158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Background Recombinant human calcineurin B subunit (rhCNB) has been shown to be an immune‐stimulatory protein promoting cytokine production and inducing phenotypic maturation of Dendritic cells (DCs). In vivo, it has good antitumor efficacy, and has potential as an antitumor drug. Exogenous rhCNB was found to be internalized into tumor cells via the Toll‐like receptor 4 (TLR4) complex, but it was not known whether its immuno‐modulatory and antitumor functions involved entry by this same route. Methods The production and secretion of the cytokines and chemokines in innate immune cells induced by rhCNB were determined by ELISA, and the expression of CD40, CD80, CD86, and MHCII was analyzed by FACs. Experimental Lewis lung cancer (LLC) model was prepared in C57 BL/6 wild‐type (WT) mice, TLR4−/− mice or their littermates by the inoculation of LLCs in their right armpit, and then administrated daily intraperitoneal injections (0.2 mL) of normal saline, rhCNB 20 mg/kg, and rhCNB 40 mg/kg, respectively. Results Recombinant human calcineurin B subunit promoted the production of antitumor cytokines by innate immune cells, and culture supernatants of rhCNB‐stimulated immune cells induced apoptosis of LLCs. In addition, rhCNB up‐regulated CD40, CD80, CD86, and MHCII expression in macrophages and DCs in TLR4+ cells but failed to do so in TLR4 deficient cells. rhCNB also induced the formation of CD4+ and CD8+T cells in splenocytes from WT mice, but not from TLR4‐deficient littermates. Intraperitoneal administration of WT C57BL/6 mice with rhCNB resulted in a 50% reduction in LLC tumor growth, but failed to inhibit tumor growth in TLR4−/− littermates. Conclusions The in vivo antitumor and immunomodulatory effects of rhCNB are mediated by the TLR4. This conclusion is important for the further understanding and development of rhCNB as an antitumor drug.
Collapse
Affiliation(s)
- Jinju Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China.,National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hongwei Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China
| | - Ziwei Zhu
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China
| | - Yadan Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, P. R. China
| |
Collapse
|
13
|
Jung N, Bueb JL, Tolle F, Bréchard S. Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis. Biochem Pharmacol 2019; 165:170-180. [PMID: 30862503 DOI: 10.1016/j.bcp.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
Abstract
For more than two centuries now, rheumatoid arthritis (RA) is under investigation intending to discover successful treatment. Despite decades of scientific advances, RA is still representing a challenge for contemporary medicine. Current drug therapies allow to improve significantly the quality of life of RA patients; however, they are still insufficient to reverse tissue injury and are often generating side-effects. The difficulty arises from the considerable fluctuation of the clinical course of RA among patients, making the predictive prognosis difficult. More and more studies underline the profound influence of the neutrophil multifaceted functions in the pathogenesis of RA. This renewed interest in the complexity of neutrophil functions in RA offers new exciting opportunities for valuable therapeutic targets as well as for safe and well-tolerated RA treatments. In this review, we aim to update the recent findings on the multiple facets of neutrophils in RA, in particular their impact in promoting the RA-based inflammation through the release of the cytokine-like S100A8/A9 protein complex, as well as the importance of NETosis in the disease progression and development. Furthermore, we delve into the complex question of neutrophil heterogeneity and plasticity and discuss the emerging role of miRNAs and epigenetic markers influencing the inflammatory response of neutrophils in RA and how they could constitute the starting point for novel attractive targets in RA therapy.
Collapse
Affiliation(s)
- N Jung
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
14
|
Yang J, Gao Y, Zhu Z, Qin N, Wei Q. Identification of a targeting-delivery peptide based on rhCNB. J Pept Sci 2019; 25:e3159. [PMID: 30843319 DOI: 10.1002/psc.3159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022]
Abstract
Calcineurin B subunit (CNB) is the regulatory subunit of calcineurin (CN), and its classical function is to regulate the activity of CN. Research in our laboratory has revealed that the recombinant human CNB (rhCNB) is a good antitumor candidate and can be internalized by tumor cells via TLR4 receptor complexes and targeted to tumor tissue in nude mice. However, the fragment or domain of rhCNB mediating internalization and target delivery has not been identified. To explore fragment- mediated rhCNB internalization and target delivery, we generated truncated derivatives of rhCNBs by recombinant DNA technology and examined their cellular uptake. Interactions between truncated rhCNBs and the TLR4 receptor were studied by ELISA and co-immunoprecipitation, and targeting of model tumors in nude mice was examined. The results showed that one truncated derivative, Trun3 (124-169aa), was taken up by cells and targeted tumors with almost the same efficiency as intact rhCNB. These results indicate that Trun3 (45aa) contains the major sequence responsible for rhCNB internalization and tumor targeting and might be developed for drug delivery to tumors.
Collapse
Affiliation(s)
- Jinju Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Yadan Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Ziwei Zhu
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Nannan Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
15
|
Hoxha M. A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Adv Med Sci 2018; 63:22-29. [PMID: 28818745 DOI: 10.1016/j.advms.2017.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rheumatoid arthritis is characterized by the production of eicosanoids, cytokines, adhesion molecules, infiltration of T and B lymphocytes in the synovium and oxygen reduction accompanied by the cartilage degradation. Eicosanoids are responsible for the progressive destruction of cartilage and bone, however neither steroids, nor the non steroidal anti-inflammatory drugs (NSAIDs), cannot slow down cartilage and bone destruction providing only symptomatic improvement. The current rheumatoid arthritis treatment options include mainly the use of disease-modifying anti-rheumatic drugs, the corticosteroids, the NSAIDs and biological agents. METHODS PubMed, Cochrane, and Embase electronic database were used as the main sources for extracting several articles, reviews, original papers in English for further review and analysis on the implication of arachidonic acid metabolites with rheumatoid arthritis and different strategies of targeting arachidonic acid metabolites, different enzymes or receptors for improving the treatment of rheumatoid arthritis patients. RESULTS We first focused on the role of individual prostaglandins and leukotrienes, in the inflammatory process of arthritis, concluding with an outline of the current clinical situation of rheumatoid arthritis and novel treatment strategies targeting the arachidonic acid pathway. CONCLUSIONS Extended research is necessary for the development of these novel compounds targeting the eicosanoid pathway, by increasing the levels of anti-inflammatory eicosanoids (PGD2,15dPGJ2), by inhibiting the production of pro-inflammatory eicosanoids (PGE2, LTB4, PGI2) involved in rheumatoid arthritis or also by developing dual compounds displaying both the COX-2 inhibitor/TP antagonist activity within a single compound.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Tirana, Albania; Department of Pharmacological and Biomolecular Sciences, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Zhang W, Zhong Y, Cui H, Wang L, Yang R, Su Z, Xiang B, Wei Q. Combination of calcineurin B subunit (CnB) and 5-fluorouracil reverses 5-fluorouracil-induced immunosuppressive effect and enhances the antitumor activity in hepatocellular carcinoma. Oncol Lett 2017; 14:6135-6142. [PMID: 29113258 DOI: 10.3892/ol.2017.6958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/03/2017] [Indexed: 02/05/2023] Open
Abstract
Five-fluorouracil (5-FU) is a widely used chemotherapeutic agent for digestive system tumors; however, continuous use of 5-FU may cause severe side effects, including myelosuppression and immunosuppression. Our previous study revealed that calcineurin B subunit (CnB), an innovative genetic engineering antitumor protein, possesses tumor-suppressive effects with low toxicity. CnB can bind to and activate integrin αM on macrophages, subsequently promoting the expression, and secretion of TNF-related apoptosis-inducing ligand, a specific proapoptotic cytokine. In the present study, whether the combined use of CnB and 5-FU can reverse the myelosuppression, and immunosuppressive effects of 5-FU by reactivating the immune system thus increasing antitumor efficacy, was investigated. It was demonstrated that combined treatment of 5-FU and CnB led to increased tumor-suppressive effects, as indicated by reduced tumor volume and weight when compared with 5-FU or CnB treatment alone in a hepatoma xenograph model. In addition, it was demonstrated that combined treatment inhibited the proliferation of hepatoma cells. Notably, the addition of CnB to 5-FU-based therapy completely reversed the immunosuppressive effect of 5-FU. The spleen index and total number of white blood cells in the combination group were higher compared with that of the 5-FU alone group. Furthermore, pathological examinations indicated that CnB attenuated 5-FU-induced organ damage. Based on these findings, it is proposed that CnB may serve as a novel and promising drug candidate for the improvement of 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Youxiu Zhong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Hongfei Cui
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Liya Wang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Rui Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Zhenyi Su
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China.,Department of Biochemistry, School of Medicine, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
17
|
Yang Y, Yang H, Yang J, Li L, Xiang B, Wei Q. The genetically engineered drug rhCNB induces apoptosis via a mitochondrial route in tumor cells. Oncotarget 2017; 8:65876-65888. [PMID: 29029479 PMCID: PMC5630379 DOI: 10.18632/oncotarget.19507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
The calcineurin B subunit (CNB) has antitumor activity. We showed previously that recombinant human CNB (rhCNB) also had strong anti-tumor activity in vivo, and was thus a promising candidate anti-tumor drug. It appeared to kill tumor cells via immunomodulation. Here, we show that rhCNB inhibits the proliferation of human hepatoma HepG-2 cells, resulting in their apoptosis. Exogenous CNB was found to localize to mitochondria in tumor cells and activate the mitochondrial apoptosis pathway, as indicated by a decrease of mitochondrial transmembrane potential, release of cytochrome C and activation of caspase-9, which then activates caspase-3. At the same time Bcl-2 &Bcl-xL expression decreased, Bim expression increased, and Bax was activated. Interaction between rhCNB and Bcl-xL was detected, which may inhibit the function of Bcl-xL. Long-term tumor targeting was also observed in nude mice. These data deepened our understanding of the anti-tumor mechanism of rhCNB and provided guidance for its drug development.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Huan Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Jinju Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Li Li
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing Key Laboratory, Beijing 100875, People's Republic of China
| |
Collapse
|
18
|
Fan HH, Li L, Zhang YM, Yang J, Li MC, Zeng FY, Deng F. PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumour Biol 2017. [PMID: 28631559 DOI: 10.1177/1010428317701442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages are key regulators of the complex interplay between tumor and tumor microenvironment. M2 Macrophages, one type of tumor-associated macrophages, are involved in prostate cancer growth and progression. Protein kinase C zeta has been shown to suppress prostate cancer cell growth, invasion, and metastasis as a tumor suppressor; however, its role in chemotaxis and activation of tumor-associated macrophages remains unclear. Here, we investigated the role of protein kinase C zeta of prostate cancer cells in regulation of macrophage chemotaxis and M2 phenotype activation. Immunohistochemistry was performed to analyze the expression of protein kinase C zeta and the number of CD206+ M2 macrophages in human prostate tissue. Macrophage chemotaxis and polarization were examined using Transwell migration assays and a co-culture system. Quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were used to detect M2 markers, protein kinase C zeta, interleukin-4, and interleukin-10 expression. We found the expression of protein kinase C zeta increased in prostate cancer tissues, especially in the early stage, and was negatively associated with tumor grade and the number of CD206+ macrophages. Inhibition of protein kinase C zeta expression in prostate cancer cells promoted chemotaxis of peripheral macrophages and acquisition of M2 phenotypic features. These results were further supported by the finding that silencing of endogenous protein kinase C zeta promoted the expression of prostate cancer cell-derived interleukin-4 and interleukin-10. These results suggest that protein kinase C zeta plays an important role in reducing infiltration of tumor-associated macrophages and activation of a pro-tumor M2 phenotype, which may constitute an important mechanism by which protein kinase C zeta represses cancer progression.
Collapse
Affiliation(s)
- Hui-Hui Fan
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Li
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Ming Zhang
- 3 Department of Clinical Laboratory, Hospital of Integrated Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Jie Yang
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mao-Cheng Li
- 1 Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang-Yin Zeng
- 2 Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- 4 Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Lodefalk M, Frykholm C, Esbjörner E, Ljunggren Ö. Hypercalcaemia in a Patient with 2p13.2-p16.1 Duplication. Horm Res Paediatr 2016; 85:213-8. [PMID: 26675490 DOI: 10.1159/000442747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Partial duplication of 2p is a rare condition that causes facial anomalies, psychomotor delay, and growth failure. Hypercalcaemia is rare in children. So far, duplication of 2p has never been associated with hypercalcaemia. METHODS Here, we report a girl with a partial duplication of 2p presenting with moderate to severe hypercalcaemia at the age of 2 years. She also had hypercalciuria, nephrocalcinosis, decreased renal function, and secondary hyperparathyroidism at presentation. She was thoroughly investigated, including genetic testing of the CYP24A1, CASR, ALPL, and NOD2 genes, to determine the cause of hypercalcaemia. RESULTS 1,25-dihydroxyvitamin D levels were increased. Hypercalcaemia and hypercalciuria responded well to glucocorticoids but not to cinacalcet. Hyperparathyroidism resolved with improving renal function. Apart from the known duplication of 2p, no pathogenic variants were detected in the studied genes. The duplication of 2p contains the PPP3R1 gene, which encodes for the calcineurin B subunit. CONCLUSION We conclude that partial duplication of 2p can be associated with hypercalcaemia and hypercalciuria and hypothesise that the underlying mechanism is an increased extra-renal, parathyroid hormone-independent 25-hydroxyvitamin D 1α-hydroxylase activity, leading to raised amounts of 1,25-dihydroxyvitamin D. The increased enzymatic activity could possibly be caused by calcineurin B subunit-related macrophage stimulation.
Collapse
Affiliation(s)
- Maria Lodefalk
- Department of Paediatrics, Faculty of Medicine and Health, x00D6;rebro University, x00D6;rebro, Sweden
| | | | | | | |
Collapse
|
20
|
Yang J, Qin N, Zhang H, Yang R, Xiang B, Wei Q. Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4. Sci Rep 2016; 6:24346. [PMID: 27090571 PMCID: PMC4835703 DOI: 10.1038/srep24346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.
Collapse
Affiliation(s)
- Jinju Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Nannan Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Hongwei Zhang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Rui Yang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Benqiong Xiang
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| | - Qun Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering and Biotechnology Beijing Key Laboratory, Beijing, 100875, P. R. of China
| |
Collapse
|
21
|
Gül N, van Egmond M. Antibody-Dependent Phagocytosis of Tumor Cells by Macrophages: A Potent Effector Mechanism of Monoclonal Antibody Therapy of Cancer. Cancer Res 2015; 75:5008-13. [PMID: 26573795 DOI: 10.1158/0008-5472.can-15-1330] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Nowadays, it is impossible to imagine modern cancer treatment without targeted therapies, such as mAbs, that bind to tumor-associated antigens. Subsequently, mAbs can use a wide range of effector functions that mostly engage the immune system. mAbs can bridge immune effector cells with tumor cells, which can result in antibody-dependent cytotoxicity. Increasing evidence, however, identified macrophages as prominent effector cells and induction of antibody-dependent cell phagocytosis as one of the primary mechanisms of action mediated by mAbs. Macrophages are extremely effective in eliminating tumor cells from the circulation. Several immunosuppressive mechanisms may, however, hamper their function, particularly in solid malignancies. In this review, we discuss the evolving insight of macrophages as effector cells in mAb therapy and address novel (co)therapeutic strategies that may be used to fully unleash their cytotoxic capacity for the treatment of cancer.
Collapse
Affiliation(s)
- Nuray Gül
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands. Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis 2015; 6:e1887. [PMID: 26379192 PMCID: PMC4650442 DOI: 10.1038/cddis.2015.246] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/29/2015] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by extensive synovitis resulting in erosions of articular cartilage and marginal bone that lead to joint destruction. The autoimmune process in RA depends on the activation of immune cells, which use intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. An intricate cytokine network participates in inflammation and in perpetuation of disease by positive feedback loops promoting systemic disorder. The widespread systemic effects mediated by pro-inflammatory cytokines in RA impact on metabolism and in particular in lymphocyte metabolism. Moreover, RA pathobiology seems to share some common pathways with atherosclerosis, including endothelial dysfunction that is related to underlying chronic inflammation. The extent of the metabolic changes and the types of metabolites seen may be good markers of cytokine-mediated inflammatory processes in RA. Altered metabolic fingerprints may be useful in predicting the development of RA in patients with early arthritis as well as in the evaluation of the treatment response. Evidence supports the role of metabolomic analysis as a novel and nontargeted approach for identifying potential biomarkers and for improving the clinical and therapeutical management of patients with chronic inflammatory diseases. Here, we review the metabolic changes occurring in the pathogenesis of RA as well as the implication of the metabolic features in the treatment response.
Collapse
|
23
|
Braster R, Bögels M, Beelen RHJ, van Egmond M. The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology 2015; 222:21-30. [PMID: 26358365 DOI: 10.1016/j.imbio.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/28/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
Abstract
Most tumours are heavily infiltrated by immune cells. This has been correlated with either a good or a bad patient prognosis, depending on the (sub) type of immune cells. Macrophages represent one of the most prominent leukocyte populations in the majority of tumours. Functions of macrophages range from cytotoxicity, to stimulation of tumour growth by secretion of cytokines, growth and angiogenic factors, or suppressing immune responses. In most tumours macrophages are described as cells with immune suppressing, and wound healing properties, which aids tumour development. Yet, increasing evidence shows that macrophages are potent inhibitors of tumour growth in colorectal cancer. Macrophages in this respect show high plasticity. The presence of high macrophage numbers in the tumour may therefore become advantageous, if cells can be reprogrammed from tumour promoting macrophages into potent effector cells. Enhancing cytotoxic properties of macrophages by microbial products, pro-inflammatory cytokines or monoclonal antibody therapy are promising possibilities, and are currently tested in clinical trials.
Collapse
Affiliation(s)
- R Braster
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - M Bögels
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - R H J Beelen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - M van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Surgery, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|