1
|
Wang Z, Ye C, Zhai W, Gao Z, Wang H, Liu H. Recombinant IL-34 alleviates bacterial enteritis in Megalobrama amblycephala by strengthening the intestinal barrier. Int J Biol Macromol 2025; 284:138072. [PMID: 39592038 DOI: 10.1016/j.ijbiomac.2024.138072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
The potential role of interleukin-34 (IL-34), an important cytokine that regulates intestinal function in mammals, is currently being explored in the context of fish intestinal diseases. In this study, we assessed the preventive potential of recombinant Megalobrama amblycephala IL-34 (rMaIL-34) protein in bacterial enteritis. MaIL-34 exhibited conserved structural and evolutionary features with teleost IL-34 and was found to be involved in the intestinal immune response to Aeromonas hydrophila infection. Furthermore, treatment with rMaIL-34 significantly improved the survival rate of M. amblycephala following A. hydrophila infection and alleviated the symptoms of enteritis in these fish. In vivo, rMaIL-34 enhanced goblet cell proliferation and mucus layer tightness, thereby maintaining mucosal integrity following infection. Additionally, rMaIL-34 attenuated the decrease in ZO-1 expression and inhibited the increase in intestinal permeability caused by A. hydrophila, thereby reducing the concentrations of DAO and D-LAC in the plasma. Furthermore, rMaIL-34 suppressed oxidative stress, apoptosis, and inflammatory responses triggered by A. hydrophila, thereby strengthening the immune barrier. At the microbiological level, rMaIL-34 contributed to improved intestinal microbiota distribution and enhanced the functions of intestinal microbiota in terms of energy metabolism, antibiotic biosynthesis, and oxidative phosphorylation. This study reveals, for the first time, the multiple roles of fish IL-34 in resistance to bacterial enteritis and paves the way for the development of rMaIL-34 as an immunotherapy for bacterial enteritis in fish.
Collapse
Affiliation(s)
- Zhensheng Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Canxun Ye
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Wenya Zhai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Adkins-Threats M, Arimura S, Huang YZ, Divenko M, To S, Mao H, Zeng Y, Hwang JY, Burclaff JR, Jain S, Mills JC. Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells. Cell Stem Cell 2024; 31:886-903.e8. [PMID: 38733994 PMCID: PMC11162331 DOI: 10.1016/j.stem.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Division of Biomedical and Biological Sciences, Washington University, St. Louis, MO 63130, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sumimasa Arimura
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita Divenko
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah To
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heather Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenie Y Hwang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX 78249, USA
| | - Joseph R Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Shilpa Jain
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Nie HZR, Zhou YW, Yu XH, Yin CG, Li LF, Hao HQ, Yuan T, Pan Y. Intestinal epithelial Krüppel-like factor 4 alleviates endotoxemia and atherosclerosis through improving NF-κB/miR-34a-mediated intestinal permeability. Acta Pharmacol Sin 2024; 45:1189-1200. [PMID: 38438579 PMCID: PMC11130237 DOI: 10.1038/s41401-024-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
Maintenance of intestinal barrier function contributes to gastrointestinal homeostasis and therefore cardiovascular diseases. A number of studies show that intestinal permeability is affected by excessive inflammatory responses. Krüppel-like factor (KLF) 4 is one of the critical transcriptional factors, which controls multiple immune responses. In this study we investigated the role of KLF4 in regulating intestinal inflammation and permeability during the atherosclerotic process. Atherosclerotic model was established in ApoE-/- mice by feeding a high fat high cholesterol (HFHC) diet. We showed that colon expression levels of KLF4 and tight junction proteins were significantly decreased whereas inflammatory responses increased in atherosclerotic mice. Overexpression of colon epithelial Klf4 decreased atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice, accompanied by remarkable suppression of intestinal NF-κB activation. We found that overexpression of epithelial Klf4 in atherosclerotic mice significantly increased intestinal tight junction expression and ameliorated endotoxemia, whereas replenishment of LPS abolished these benefits. Overexpression of Klf4 reversed LPS-induced permeability and downregulation of ZO-1 and Occludin in Caco-2 cells in vitro. HFHC diet stimulated the expression of epithelial microRNA-34a, whereas silence of epithelial Klf4 abolished the benefits of microRNA-34a sponge, a specific miR-34a inhibitor, on intestinal permeability and atherosclerotic development. A clinical cohort of 24 atherosclerotic patients supported colon KLF4/NF-κB/tight junction protein axis mediated intestine/cardiovascular interaction in patients with atherosclerosis. Taken together, intestinal epithelial KLF4 protects against intestinal inflammation and barrier dysfunction, ameliorating atherosclerotic plaque formation.
Collapse
Affiliation(s)
- He-Zhong-Rong Nie
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Yi-Wen Zhou
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Xiao-Hong Yu
- Center of clinical laboratory, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
| | - Cong-Guo Yin
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ling-Fei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui-Qin Hao
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Tao Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Li J, Niu C, Ai H, Li X, Zhang L, Lang Y, Wang S, Gao F, Mei X, Yu C, Sun L, Huang Y, Zheng L, Wang G, Sun Y, Yang X, Song Z, Bao Y. TSP50 Attenuates DSS-Induced Colitis by Regulating TGF-β Signaling Mediated Maintenance of Intestinal Mucosal Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305893. [PMID: 38189580 PMCID: PMC10953580 DOI: 10.1002/advs.202305893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Indexed: 01/09/2024]
Abstract
The integrity of the intestinal mucosal barrier is crucial for protecting the intestinal epithelium against invasion by commensal bacteria and pathogens, thereby combating colitis. The investigation revealed that the absence of TSP50 compromised the integrity of the intestinal mucosal barrier in murine subjects. This disruption facilitated direct contact between intestinal bacteria and the intestinal epithelium, thereby increasing susceptibility to colitis. Mechanistic analysis indicated that TSP50 deficiency in intestinal stem cells (ISCs) triggered aberrant activation of the TGF-β signaling pathway and impeded the differentiation of goblet cells in mice, leading to impairment of mucosal permeability. By inhibiting the TGF-β pathway, the functionality of the intestinal mucosal barrier is successfully restored and mitigated colitis in TSP50-deficient mice. In conclusion, TSP50 played a crucial role in maintaining the intestinal mucosal barrier function and exhibited the preventive effect against the development of colitis by regulating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jiawei Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Chunxue Niu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Huihan Ai
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- Department of General SurgeryAffiliated Tumor Hospital of Zhengzhou UniversityZhengzhouHenan450000China
| | - Xiaoli Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Linlin Zhang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Yan Lang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Shuyue Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Xianglin Mei
- Department of PathologyThe Second Hospital of Jilin UniversityChangchun130041China
| | - Chunlei Yu
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Xiaoguang Yang
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| |
Collapse
|
5
|
He X, Chen X, Yang C, Wang W, Sun H, Wang J, Fu J, Dong H. Prognostic value of RNA methylation-related genes in gastric adenocarcinoma based on bioinformatics. PeerJ 2024; 12:e16951. [PMID: 38436027 PMCID: PMC10909369 DOI: 10.7717/peerj.16951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Background Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa and has a poor prognosis. Stomach adenocarcinoma (STAD) covers 95% of total gastric cancer. This study aimed to identify the prognostic value of RNA methylation-related genes in gastric cancer. Methods In this study, The Cancer Genome Atlas (TCGA)-STAD and GSE84426 cohorts were downloaded from public databases. Patients were classified by consistent cluster analysis based on prognosis-related differentially expressed RNA methylation genes Prognostic genes were obtained by differential expression, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses. The prognostic model was established and validated in the training set, test set and validation set respectively. Independent prognostic analysis was implemented. Finally, the expression of prognostic genes was affirmed by reverse transcription quantitative PCR (RT-qPCR). Results In total, four prognostic genes (ACTA2, SAPCD2, PDK4 and APOD) related to RNA methylation were identified and enrolled into the risk signature. The STAD patients were divided into high- and low-risk groups based on the medium value of the risk score, and patients in the high-risk group had a poor prognosis. In addition, the RNA methylation-relevant risk signature was validated in the test and validation sets, and was authenticated as a reliable independent prognostic predictor. The nomogram was constructed based on the independent predictors to predict the 1/3/5-year survival probability of STAD patients. The gene set enrichment analysis (GSEA) result suggested that the poor prognosis in the high-risk subgroup may be related to immune-related pathways. Finally, the experimental results indicated that the expression trends of RNA methylation-relevant prognostic genes in gastric cancer cells were in agreement with the result of bioinformatics. Conclusion Our study established a novel RNA methylation-related risk signature for STAD, which was of considerable significance for improving prognosis of STAD patients and offering theoretical support for clinical therapy.
Collapse
Affiliation(s)
- Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Junjie Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Jincheng Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical College, HaiNan, HaiKou, China
| |
Collapse
|
6
|
Patel NM, Geropoulos G, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. The Role of Mucin Expression in the Diagnosis of Oesophago-Gastric Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15:5252. [PMID: 37958425 PMCID: PMC10650431 DOI: 10.3390/cancers15215252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Survival in oesophago-gastric cancer (OGC) is poor due to early diagnostic challenges. Non-invasive risk stratification may identify susceptible patients with pre-malignant or benign disease. Following diagnostic confirmation with endoscopic biopsy, early OGC may be treated sooner. Mucins are transmembrane glycoproteins implicated in OGC with potential use as biomarkers of malignant transformation. This systematic review defines the role of mucins in OGC diagnosis. A literature search of MEDLINE, Web of Science, Embase and Cochrane databases was performed following PRISMA protocols for studies published January 1960-December 2022. Demographic data and data on mucin sampling and analysis methods were extracted. The review included 124 studies (n = 11,386 patients). Gastric adenocarcinoma (GAc) was the commonest OG malignancy (n = 101) followed by oesophageal adenocarcinoma (OAc, n = 24) and squamous cell carcinoma (OSqCc, n = 10). Mucins MUC1, MUC2, MUC5AC and MUC6 were the most frequently implicated. High MUC1 expression correlated with poorer prognosis and metastases in OSqCc. MUC2 expression decreases during progression from healthy mucosa to OAc, causing reduced protection from gastric acid. MUC5AC was upregulated, and MUC6 downregulated in GAc. Mucin expression varies in OGC; changes may be epigenetic or mutational. Profiling upper GI mucin expression in OGC, with pre-malignant, benign and healthy controls may identify potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Georgios Geropoulos
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
7
|
Xiang F, Zhang M, Hao W, Liu R, Li Q, Gu Q, Zhu Z, Chen Z, Li X, Kang X, Wu R. Ursolic Acid Inhibits the Growth of Gastric Cancer by Targeting KLF4/YAP1. J Food Biochem 2023; 2023:1-11. [DOI: 10.1155/2023/7729962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor which has various mechanisms in different tumors. Ursolic acid (UA), a natural compound that exists in many herbs, is known to prevent tumor progression and has anticancer effects on many human cancers. The present study was to evaluate the antitumor effect of UA on gastric cancer (GC) through KLF4 and the Hippo pathway. Our data showed that UA inhibited the growth of GC in vivo and in vitro. UA treatment significantly increased the expression of KLF4 and decreased the expression of CTGF. The overexpression of KLF4 inhibited the proliferation and cell cycle of GC and decreased the expression of CTGF, whereas the knockdown of KLF4 attenuated the effects of UA. Furthermore, the inhibition of CTGF arrested tumor cells in G2/M which blocked proliferation progress. Confocal laser scanning and molecular simulation software MOE showed that KLF4 combined with YAP1 which may block the formation of the TEADs-YAP1 complex to interrupt the expression of CTGF and the downstream oncogenic process. In conclusion, UA can inhibit GC growth both in vivo and in vitro, and it activated KLF4 which may competitively bind with YAP1 against TEADs and block the oncogenic Hippo pathways.
Collapse
Affiliation(s)
- Fenfen Xiang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Mengzhe Zhang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Wenbin Hao
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Rongrong Liu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qian Li
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Qing Gu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zhaowei Zhu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zixi Chen
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaoxiao Li
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiangdong Kang
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Rong Wu
- Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
8
|
Takada H, Sasagawa Y, Yoshimura M, Tanaka K, Iwayama Y, Hayashi T, Isomura-Matoba A, Nikaido I, Kurisaki A. Single-cell transcriptomics uncovers EGFR signaling-mediated gastric progenitor cell differentiation in stomach homeostasis. Nat Commun 2023; 14:3750. [PMID: 37386010 PMCID: PMC10310803 DOI: 10.1038/s41467-023-39113-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Defects in gastric progenitor cell differentiation are associated with various gastric disorders, including atrophic gastritis, intestinal metaplasia, and gastric cancer. However, the mechanisms underlying the multilineage differentiation of gastric progenitor cells during healthy homeostasis remain poorly understood. Here, using a single-cell RNA sequencing method, Quartz-Seq2, we analyzed the gene expression dynamics of progenitor cell differentiation toward pit cell, neck cell, and parietal cell lineages in healthy adult mouse corpus tissues. Enrichment analysis of pseudotime-dependent genes and a gastric organoid assay revealed that EGFR-ERK signaling promotes pit cell differentiation, whereas NF-κB signaling maintains gastric progenitor cells in an undifferentiated state. In addition, pharmacological inhibition of EGFR in vivo resulted in a decreased number of pit cells. Although activation of EGFR signaling in gastric progenitor cells has been suggested as one of the major inducers of gastric cancers, our findings unexpectedly identified that EGFR signaling exerts a differentiation-promoting function, not a mitogenic function, in normal gastric homeostasis.
Collapse
Affiliation(s)
- Hitomi Takada
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Kaori Tanaka
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan.
- Department of Functional Genome Informatics, Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.
- Master's/Doctoral Program in Life Science Innovation (Bioinformatics), Degree Programs in Systems and Information Engineering, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Akira Kurisaki
- Laboratory of Stem Cell Technologies, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara, Japan.
| |
Collapse
|
9
|
Patil S, Islam F, Gopalan V. Diagnostic and Prognostic Implications of Cancer Stem Cell Transcription Factors. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:325-347. [DOI: 10.1007/978-981-99-3185-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev 2022; 75:101948. [PMID: 35809361 PMCID: PMC10378711 DOI: 10.1016/j.gde.2022.101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA. https://twitter.com/@madkinsthreats
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA; Department of Pathology & Immunology, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
11
|
Malovitski K, Sarig O, Assaf S, Mohamad J, Malki L, Bergson S, Peled A, Eskin-Schwartz M, Gat A, Pavlovsky M, Sprecher E. Loss-of-function variants in KLF4 underlie autosomal dominant palmoplantar keratoderma. Genet Med 2022; 24:1085-1095. [PMID: 35168889 DOI: 10.1016/j.gim.2022.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Palmoplantar keratodermas (PPKs) form a group of disorders characterized by thickening of palm and sole skin. Over the past 2 decades, many types of inherited PPKs have been found to result from abnormal expression, processing, or function of adhesion proteins. METHODS We used exome and direct sequencing to detect causative pathogenic variants. Functional analysis of these variants was conducted using reverse transcription quantitative polymerase chain reaction, immunofluorescence confocal microscopy, immunoblotting, a promoter reporter assay, and chromatin immunoprecipitation. RESULTS We identified 2 heterozygous variants (c.1226A>G and c.633_634dupGT) in KLF4 in 3 individuals from 2 different unrelated families affected by a dominant form of PPK. Immunofluorescence staining for a number of functional markers revealed reduced epidermal DSG1 expression in patients harboring heterozygous KLF4 variants. Accordingly, human keratinocytes either transfected with constructs expressing these variants or downregulated for KLF4 displayed reduced DSG1 expression, which in turn has previously been found to be associated with PPK. A chromatin immunoprecipitation assay confirmed direct binding of KLF4 to the DSG1 promoter region. The ability of mutant KLF4 to transactivate the DSG1 promoter was significantly decreased when compared with wild-type KLF4. CONCLUSION Loss-of-function variants in KLF4 cause a novel form of dominant PPK and show its importance in the regulation of epidermal differentiation.
Collapse
Affiliation(s)
- Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Shir Bergson
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Eskin-Schwartz
- Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetic Institute, Soroka University Medical Center, Be'er Sheva, Israel
| | - Andrea Gat
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Yang H, Yang WJ, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol 2022; 14:396-412. [PMID: 35317321 PMCID: PMC8919001 DOI: 10.4251/wjgo.v14.i2.396] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The most common histological type of gastric cancer (GC) is gastric adenocarcinoma arising from the gastric epithelium. Less common variants include mesenchymal, lymphoproliferative and neuroendocrine neoplasms. The Lauren scheme classifies GC into intestinal type, diffuse type and mixed type. The WHO classification includes papillary, tubular, mucinous, poorly cohesive and mixed GC. Chronic atrophic gastritis (CAG) and intestinal metaplasia are recommended as common precancerous conditions. No definite precancerous condition of diffuse/poorly/undifferentiated type is recommended. Chronic superficial inflammation and hyperplasia of foveolar cells may be the focus. Presently, the management of early GC and precancerous conditions mainly relies on endoscopy including diagnosis, treatment and surveillance. Management of precancerous conditions promotes the early detection and treatment of early GC, and even prevent the occurrence of GC. In the review, precancerous conditions including CAG, metaplasia, foveolar hyperplasia and gastric hyperplastic polyps derived from the gastric epithelium have been concluded, based on the overview of gastric epithelial histological organization and its renewal.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
13
|
Wang L, Shi C, Yu J, Xu Y. FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma. Cancer Cell Int 2022; 22:47. [PMID: 35093082 PMCID: PMC8801073 DOI: 10.1186/s12935-021-02372-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2023] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the major causes of cancer-related death. Thymidylate synthase (TYMS) catalyzes the methylation of deoxy guanosine to deoxy thymidylate, which is a crucial gene for DNA repair and replication. Thus, TYMS was reported to be closely associated with developing a variety of tumors, but it has been poorly studied in HCC.
Materials and methods
We used the cell counting kit-8 (CCK-8), BrdU, and CFSE assay to measure cell proliferation. The flow cytometry assay and the TUNEL assay were used for assessing cell apoptosis. The flow cytometry assay was used to analyze the cell cycle. The Transwell invasion assay and the wound healing assay were conducted to determine the invasive ability of the cells. RT-qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression levels of specific genes, respectively.
Results
TYMS was found to be upregulated in both HCC cells and patient samples. High expression of TYMS was associated with an unfavorable prognosis in HCC patients based on the TCGA-LIHC dataset. Cell proliferation, apoptosis, and invasion assays revealed that TYMS promoted the proliferation and invasion of HCC cells as well as inhibited apoptosis. In addition, TYMS is a downstream target of FOXM1. TYMS knockdown reversed the 5-FU resistance caused by FOXM1 overexpression and re-sensitized HCC cells to 5-FU treatment.
Conclusion
This study suggested that TYMS serves as an oncogene in HCC, and targeting the FOXM1-TYMS axis may help improve the survival of HCC patients as well as provide new insights for treating advanced HCC patients.
Collapse
|
14
|
Nørgaard K, Müller C, Christensen N, Chiloeches ML, Madsen CL, Nielsen SS, Thingholm TE, Belcheva A. Loss of mismatch repair signaling impairs the WNT-bone morphogenetic protein crosstalk and the colonic homeostasis. J Mol Cell Biol 2021; 12:410-423. [PMID: 31065691 PMCID: PMC7333479 DOI: 10.1093/jmcb/mjz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 03/17/2019] [Indexed: 01/05/2023] Open
Abstract
The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing mutations such as mutations in the DNA mismatch repair (MMR) are present, is unclear. Inactivation of the MMR system has long been linked to colorectal cancer; however, little is known about its role in the regulation of the colonic homeostasis. It has been shown that loss of MMR promotes the proliferation of colon epithelial cells that renders them highly susceptible to transformation. The mechanism through which MMR mediates this effect, yet, remains to be determined. Using an MMR-deficient mouse model, we show that increased methylation of Dickkopf1 impacts its expression, and consequently, the ability to negatively regulate WNT signaling. As a result, excessive levels of active β-catenin promote strong crypt progenitor-like phenotype and abnormal proliferation. Under these settings, the development and function of the goblet cells are affected. MMR-deficient mice have fewer goblet cells with enlarged mucin-loaded vesicles. We further show that MMR inactivation impacts the WNT–BMP signaling crosstalk.
Collapse
Affiliation(s)
- Katrine Nørgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Carolin Müller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nadja Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - María L Chiloeches
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Cesilie L Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sabine S Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Tine E Thingholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5230 Odense M, Denmark
| | - Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
15
|
Liu Z, Wu X, Tian Y, Zhang W, Qiao S, Xu W, Liu Y, Wang S. H. pylori infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4. Mol Carcinog 2021; 60:524-537. [PMID: 34038586 DOI: 10.1002/mc.23309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/24/2022]
Abstract
Tumour-derived CXCL8 facilitates the movement of myeloid-derived suppressor cells, which are able to restrain antitumour immune responses to the tumour microenvironment. Kruppel-like factor 4 (KLF4) is a potential tumour suppressor in gastric cancer (GC). However, knowledge regarding correlations between KLF4 and CXCL8 in GC is limited. We use cellular and molecular biological methods to assess whether these two factors interact in GC. Expression CXCL8 and KLF4 was altered in human GC tissues compared to normal gastric tissues in opposite ways. Additionally, cytotoxin-associated gene A protein (CagA) gene transduction or Helicobacter pylori (H. pylori) infection upregulated CXCL8 expression. Knockdown of KLF4 expression increased CXCL8 protein and RNA expression, whereas its overexpression had the opposite effect. CXCL8-mediated enhancement of GC cell migration and proliferation was reversed by upregulation of KLF4 expression. Further mechanistic research revealed that KLF4 binds the CXCL8 promoter, suppressing CXCL8 transcription. Moreover, CXCL8 stimulation reduced KLF4 protein expression and promoted GC cell proliferation and migration, eventually promoting neoplasm growth in vivo. Together, our findings demonstrate that CagA promotes CXCL8 and inhibits KLF4. CXCL8 is a decisive downstream target gene of KLF4, and KLF4 negatively regulates CXCL8 in GC. Furthermore, CXCL8's negative regulation of KLF4 in vivo and in vitro, indicates that CagA may downregulate KLF4 by inducing CXCL8 expression, low expression of KLF4 further promotes that of CXCL8, forming a vicious circle in GC. Targeted KLF4 activation might improve the immunosuppressive microenvironment through direct negative regulation of CXCL8, providing a new potential target to strengthen the efficacy of immunotherapy in GC patients.
Collapse
Affiliation(s)
- Zhengxia Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Wu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Tian
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Wanchun Zhang
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Siyuan Qiao
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yakun Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Siying Wang
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Pu Y, Song Y, Zhang M, Long C, Li J, Wang Y, Xu Y, Pan F, Zhao N, Zhang X, Xu Y, Cui J, Wang H, Li Y, Zhao Y, Jin D, Zhang H. GOLM1 restricts colitis and colon tumorigenesis by ensuring Notch signaling equilibrium in intestinal homeostasis. Signal Transduct Target Ther 2021; 6:148. [PMID: 33850109 PMCID: PMC8044123 DOI: 10.1038/s41392-021-00535-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelium serves as the first barrier against the infections and injuries that mediate colonic inflammation. Colorectal cancer is often accompanied with chronic inflammation. Differed from its well-known oncogenic role in many malignancies, we present here that Golgi membrane protein 1 (GOLM1, also referred to as GP73) suppresses colorectal tumorigenesis via maintenance of intestinal epithelial barrier. GOLM1 deficiency in mice conferred susceptibility to mucosal inflammation and colitis-induced epithelial damage, which consequently promoted colon cancer. Mechanistically, depletion of GOLM1 in intestinal epithelial cells (IECs) led to aberrant Notch activation that interfered with IEC differentiation, maturation, and lineage commitment in mice. Pharmacological inhibition of Notch pathway alleviated epithelial lesions and restrained pro-tumorigenic inflammation in GOLM1-deficient mice. Therefore, GOLM1 maintains IEC homeostasis and protects against colitis and colon tumorigenesis by modulating the equilibrium of Notch signaling pathway.
Collapse
Affiliation(s)
- Yang Pu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Song
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Mengdi Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Caifeng Long
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinzhe Xu
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Na Zhao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianxin Cui
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Hongying Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhao
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Di Jin
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
18
|
Sayols S, Klassek J, Werner C, Möckel S, Ritz S, Mendez-Lago M, Soshnikova N. Signalling codes for the maintenance and lineage commitment of embryonic gastric epithelial progenitors. Development 2020; 147:dev.188839. [PMID: 32878924 DOI: 10.1242/dev.188839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The identity of embryonic gastric epithelial progenitors is unknown. We used single-cell RNA-sequencing, genetic lineage tracing and organoid assays to assess whether Axin2- and Lgr5-expressing cells are gastric progenitors in the developing mouse stomach. We show that Axin2 + cells represent a transient population of embryonic epithelial cells in the forestomach. Lgr5 + cells generate both glandular corpus and squamous forestomach organoids ex vivo Only Lgr5 + progenitors give rise to zymogenic cells in culture. Modulating the activity of the WNT, BMP and Notch pathways in vivo and ex vivo, we found that WNTs are essential for the maintenance of Lgr5 + epithelial cells. Notch prevents differentiation of the embryonic epithelial cells along all secretory lineages and hence ensures their maintenance. Whereas WNTs promote differentiation of the embryonic progenitors along the zymogenic cell lineage, BMPs enhance their differentiation along the parietal lineage. In contrast, WNTs and BMPs are required to suppress differentiation of embryonic gastric epithelium along the pit cell lineage. Thus, coordinated action of the WNT, BMP and Notch pathways controls cell fate determination in the embryonic gastric epithelium.
Collapse
Affiliation(s)
- Sergi Sayols
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | - Jakub Klassek
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | - Clara Werner
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | | | - Sandra Ritz
- Institute of Molecular Biology gGmbH, Mainz 55128, Germany
| | | | - Natalia Soshnikova
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| |
Collapse
|
19
|
Qiu L, Lu F, Zhang L, Wang G, Geng R, Miao Y. HBXIP Regulates Gastric Cancer Glucose Metabolism and Malignancy Through PI3K/AKT and p53 Signaling. Onco Targets Ther 2020; 13:3359-3374. [PMID: 32368094 PMCID: PMC7183336 DOI: 10.2147/ott.s243250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Introduction Hepatitis B X-interacting protein (HBXIP) overexpression is related to the progression of multiple cancers. However, its role in gastric cancer (GC) remains unclear. Materials and Methods HBXIP expression was determined in human GC specimens and cell lines by quantitative polymerase chain reaction (qRT-PCR) and Western blot. The effects of HBXIP depletion or ectopic expression on GC proliferation were evaluated in vitro using the cell counting kit-8 (CCK-8), 5-ethynyl-2ʹ-deoxyuridine (EdU) incorporation, colony formation, and cell cycle assays. The in vivo effects were investigated using a mouse xenograft model. Apoptosis was evaluated by flow cytometry (in vitro) and immunohistochemistry (IHC; in vivo). Cell migration and invasion were evaluated in vitro using wound healing, transwell migration, and matrigel invasion assays; and in vivo by quantifying distant metastases from injection of GC cells in the lateral tail vein. Results Herein, we reported that HBXIP expression was higher in GC than in normal tissues, and this high expression indicated a poorer prognosis. Gain- and loss-of-function assays showed that HBXIP promoted GC proliferation, migration, and invasion, and inhibited apoptosis. High-performance liquid chromatography (HPLC) quantification of glycolytic metabolites revealed that HBXIP promoted glucose metabolic reprogramming. Investigation of the PI3K/AKT and p53 pathways highlighted their role in this HBXIP-mediated metabolic reprogramming. Conclusion Our results indicate that the up-regulation of HBXIP leads to GC progression by positively regulating glucose metabolism. Therefore, HBXIP is a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Lei Qiu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Feng Lu
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Lili Zhang
- Emergency Department, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Rui Geng
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yongchang Miao
- Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Miao ZF, Adkins-Threats M, Burclaff JR, Osaki LH, Sun JX, Kefalov Y, He Z, Wang ZN, Mills JC. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell 2020; 26:910-925.e6. [PMID: 32243780 DOI: 10.1016/j.stem.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/06/2019] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Cellular metabolism plays important functions in dictating stem cell behaviors, although its role in stomach epithelial homeostasis has not been evaluated in depth. Here, we show that the energy sensor AMP kinase (AMPK) governs gastric epithelial progenitor differentiation. Administering the AMPK activator metformin decreases epithelial progenitor proliferation and increases acid-secreting parietal cells (PCs) in mice and organoids. AMPK activation targets Krüppel-like factor 4 (KLF4), known to govern progenitor proliferation and PC fate choice, and PGC1α, which we show controls PC maturation after their specification. PC-specific deletion of AMPKα or PGC1α causes defective PC maturation, which could not be rescued by metformin. However, metformin treatment still increases KLF4 levels and suppresses progenitor proliferation. Thus, AMPK activates KLF4 in progenitors to reduce self-renewal and promote PC fate, whereas AMPK-PGC1α activation within the PC lineage promotes maturation, providing a potential suggestion for why metformin increases acid secretion and reduces gastric cancer risk in humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph R Burclaff
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Luciana H Osaki
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Yan Kefalov
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zheng He
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Radiation Oncology, First Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, First Hospital of China Medical University, Shenyang, China
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Zhao R, Liu Z, Xu W, Song L, Ren H, Ou Y, Liu Y, Wang S. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism. Cancer Med 2020; 9:2551-2563. [PMID: 32017451 PMCID: PMC7131848 DOI: 10.1002/cam4.2892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) has a tumor suppressor role in the progression of gastric cancer (GC), and inhibition or loss of KLF4 expression was identified in GC. The aim of this study was to explore the new molecular mechanism of KLF4 inactivation in gastric cancer. Herein, we report that Helicobacter pylori infection or Cag pathogenicity island protein A (CagA) gene transduction resulted in KLF4 expression downregulation and promoted gastric epithelial cell and gastric cancel cell proliferation, migration, and colony formation. Mechanistically, we found that CagA gene transduction led to DNA methylation of the KLF4 promoter, an effect that was relevant to the significant downregulation of TET1 expression. Causally, knockdown of TET1 expression decreased KLF4 expression, whereas overexpression of TET1 had the opposite effect. Clinically, we found that KLF4 expression and the 5-hmC levels were lower in GC cells with H pylori infection than in GC cells without H pylori infection. Thus, our study not only sheds new light on how H pylori infection promotes the progression of GC but also elucidates a novel mechanism of KLF4 inactivation in GC pathogenesis. During pathogenesis, an alteration in the H pylori/CagA-TET1-KLF4 signaling pathway plays a critical role, suggesting that this pathway may be a prospective target for gastric carcinoma intervention and therapy.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Le Song
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Ren
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yang Ou
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yakun Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Siying Wang
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
22
|
Zhu M, Zhang N, Lu X, He S. Negative Regulation of Kruppel-Like Factor 4 on microRNA-106a at Upstream Transcriptional Level and the Role in Gastric Cancer Metastasis. Dig Dis Sci 2018; 63:2604-2616. [PMID: 29948558 DOI: 10.1007/s10620-018-5143-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs are classes of endogenous noncoding RNAs that play a substantial role in tumor processes through regulating the targets at posttranscriptional level. However, little is known about the upstream transcription regulatory mechanism although it is a prerequisite for investigation of its aberrant expression and function. AIMS This report evaluates miR-106a's direct transcriptional factor from upstream level to in depth elucidate their communication in gastric cancer development. METHODS Gastric cancer tissues were collected to analyze the miR-106a expression using real-time PCR methods. The combination of Kruppel (or Krüppel)-like factor 4 (KLF4) to miR-106a promoter was testified through bioinformatics followed by construction of luciferase reporter plasmid and chromatin immunoprecipitation assay. Functional experiments and mouse models for evaluating cell growth and metastasis were conducted to observe the biological effect of KLF4 on miR-106a. The interplay between KLF4 and miR-106a was tested with Wnt activator and confirmed in clinical specimens. RESULTS The up-regulated miR-106a linked to gastric cancer metastasis and epithelial-mesenchymal transition. UCSC and JASPAR predicted the promoter sequence of miR-106a and its binding site with transcriptional factor KLF4. Construction of reporter gene further verified their direct combination at upstream level. Moreover, the inhibitory effect of KLF4 on the phenotype of gastric cancer cells could be restored by miR-106a. CHIR-induced experiment and clinical specimens confirmed the negative regulation of KLF4 on miR-106a. CONCLUSIONS Our findings provide novel direct insights into molecular mechanisms for interaction of KLF4 and miR-106a at upstream level and new ways for clinical application of KLF4-miR-106a axis in advanced gastric cancer metastasis.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Ning Zhang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xinlan Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
23
|
Zhang Y, Guo S, Fang J, Peng B, Zhang Y, Cao T. Tanshinone IIA inhibits cell proliferation and tumor growth by downregulating STAT3 in human gastric cancer. Exp Ther Med 2018; 16:2931-2937. [PMID: 30214513 PMCID: PMC6125958 DOI: 10.3892/etm.2018.6562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the third leading cause of cancer-associated deaths worldwide. Research into the underlying mechanisms of gastric cancer is essential for the development of novel therapeutic agents to improve the prognoses of patients with gastric cancer. Tanshinone IIA (Tan IIA) is the pure extract of Danshen root (Salvia miltiorrhiza) and has been report to inhibit the proliferation of gastric cancer cells; however, the intrinsic underlying mechanisms remain unclear. The aim of the present study was to investigate whether Tan IIA has a direct anti-cancer effect in gastric cancer cells and determine the underlying mechanisms responsible. The results revealed that Tan IIA effectively inhibits proliferation in three human gastric cancer cell lines (SNU-638, MKN1 and AGS) in a time- and dose-dependent manner. Furthermore, Tan IIA treatment induced an increase in apoptosis, B-cell lymphoma (Bcl-2)-associated protein X expression and cleaved caspase-3 levels, as well as a decrease in Bcl-2 expression. Treatment with Tan IIA inhibited Furthermore, treatment with Tan IIA significantly inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which may be responsible for the changes in apoptosis gene expression. However, overexpression of STAT3 significantly ameliorated the Tan IIA-induced suppression of cell growth and apoptosis. A nude mouse xenograft model was constructed and the results revealed that intraperitoneal Tan IIA treatment for 28 days significantly inhibited tumor growth and STAT3 activation. The results of the present study suggest that Tan IIA exerts potent anti-cancer activity in gastric cancer cells and this effect is mediated by the downregulation of STAT3 activation.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Gastroenterology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Shuguang Guo
- Physical Examination Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jian Fang
- Department of Pharmacology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bojian Peng
- Department of Gastroenterology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Yuan Zhang
- Department of Gastroenterology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Tiansheng Cao
- Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
24
|
Panatta E, Lena AM, Mancini M, Affinati M, Smirnov A, Annicchiarico-Petruzzelli M, Piro MC, Campione E, Bianchi L, Mazzanti C, Melino G, Candi E. Kruppel-like factor 4 regulates keratinocyte senescence. Biochem Biophys Res Commun 2018; 499:389-395. [DOI: 10.1016/j.bbrc.2018.03.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
|
25
|
Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017; 3:17071. [PMID: 29152378 PMCID: PMC5683310 DOI: 10.1038/cddiscovery.2017.71] [Citation(s) in RCA: 501] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Artem Smirnov
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Flavia Novelli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Consuelo Pitolli
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Michal Malewicz
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, Rome, Italy
| |
Collapse
|
26
|
Wang Z, Chen Y, Lin Y, Wang X, Cui X, Zhang Z, Xian G, Qin C. Novel crosstalk between KLF4 and ZEB1 regulates gemcitabine resistance in pancreatic ductal adenocarcinoma. Int J Oncol 2017; 51:1239-1248. [PMID: 28849150 DOI: 10.3892/ijo.2017.4099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with broad resistance to chemotherapeutic drugs. Krüppel-like factor 4 (KLF4) is a candidate tumor suppressor in PDAC. However, the precise role of KLF4 in gemcitabine resistance of PDAC remains largely unclear. In this study, we demonstrated that gemcitabine inhibited KLF4 expression. Moreover, gemcitabine also reduced the levels of miR‑200b and miR‑183, but promoted ZEB1 expression in PDAC cells. KLF4 knockdown blocked the expression of miR‑200b and miR‑183, and inversely, KLF4 overexpression promoted the expression of miR‑200b and miR‑183, suggesting that KLF4 positively regulated the expression of miR‑200b and miR‑183. Moreover, KLF4 knockdown enhanced ZEB1 expression and gemcitabine resistance while KLF4 overexpression induced the opposite effect. ChIP assays verified that KLF4 positively regulated the expression of miR‑200b and miR‑183 by directly binding to their promoters. Then, miR‑200b and miR‑183 directly inhibited ZEB1 expression by targeting its 3'UTR region. ZEB1 knockdown attenuated gemcitabine resistance in PDAC cells. KLF4 overexpression promoted gemcitabine sensitivity of PDAC in vivo by negatively regulating ZEB1 expression. Our results revealed that novel crosstalk between KLF4 and ZEB1 regulated gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuan Chen
- Department of Paediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yanliang Lin
- Department of Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guozhe Xian
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
27
|
Wang F, Zhang D, Mao J, Ke XX, Zhang R, Yin C, Gao N, Cui H. Morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer. Oncotarget 2017; 8:57187-57200. [PMID: 28915664 PMCID: PMC5593635 DOI: 10.18632/oncotarget.19231] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Morusin is a pure extract from the root bark of Morus australis (Moraceae). In recent years, morusin has been reported to exhibit anti-tumor biological activity in some types of human cancers through different mechanisms. Here, we attempted to investigate the inhibitory effect and mechanism of morusin on gastric cancer. Morusin markedly inhibited gastric cancer cell proliferation by down-regulating CDKs and Cyclins, such as CDK2, CDK4, Cyclin D1 and Cyclin E1. Additionally, morusin suppressed tumor growth in vitro and in vivo. Up-regulation of CDKs and Cyclins in gastric cancer cells was induced by c-Myc binding at the E-Box regions of CDKs and the Cyclin promoter. In addition, compared with the control group, the morusin-treated group showed reduced expression of c-Myc and c-Myc protein binding at the E-Box regions. Based on these results, we overexpressed c-Myc in gastric cancer cells and found that overexpressing c-Myc rescued morusin-induced inhibition of cell proliferation and tumor growth. These results suggest that morusin inhibits cell proliferation and tumor growth by down-regulating c-Myc in human gastric cancer.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Dunke Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Jingxin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Rui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Chao Yin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| | - Ning Gao
- Department of Pharmacognosy, College of Pharmacy, Third Military Medical University, Chongqing, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, P.R. China
| |
Collapse
|
28
|
Ma P, Sun CQ, Wang YF, Pan YT, Chen QN, Liu WT, Liu J, Zhao CH, Shu YQ, Li W. KLF16 promotes proliferation in gastric cancer cells via regulating p21 and CDK4. Am J Transl Res 2017; 9:3027-3036. [PMID: 28670390 PMCID: PMC5489902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Krüppel-like factors (KLFs), such as KLF4, KLF2, KLF5 and KLF15, have been extensively investigated in multi-cancers. However, KLF16, a member of KLFs, hasn't been well identified in cancer, especially in gastric cancer (GC). Here, we investigated the roles of KLF16 in GC. In present study, we found that KLF16 expression levels were significantly up-regulated in GC tissues compared to adjacent normal tissues both in protein and mRNA levels by using immunohistochemistry assays (IHC) and real-time quantitative PCR (qPCR). And KLF16 expression levels were positively correlated to tumor size, invasion depth, lymphatic metastasis and TNM stage. Furthermore, KLF16 expression also could predict prognosis in patients with GC. Moreover, the knock-down of KLF16 could significantly suppress proliferation via increasing p21 expression and decreasing CDK4 expression in GC cell lines. In summary, these findings demonstrate that KLF16 plays a significant role in GC progression and could be a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Chong-Qi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Yan-Fen Wang
- Department of Pathology, Yangzhou No.1 People’s HospitalYangzhou, People’s Republic of China
| | - Yu-Tian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Qin-Nan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei-Tao Liu
- Department of Pathology, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Chen-Hui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical UniversityNanjing, People’s Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
- Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical UniversityNanjing, People’s Republic of China
| |
Collapse
|
29
|
Sun C, Ma P, Wang Y, Liu W, Chen Q, Pan Y, Zhao C, Qian Y, Liu J, Li W, Shu Y. KLF15 Inhibits Cell Proliferation in Gastric Cancer Cells via Up-Regulating CDKN1A/p21 and CDKN1C/p57 Expression. Dig Dis Sci 2017; 62:1518-1526. [PMID: 28421457 DOI: 10.1007/s10620-017-4558-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Krüppel-like factors (KLFs) have been identified in multi-cancers and act as oncogenes or tumor suppressors. The function of KLF15, one member of KLFs, has not been well elucidated, especially in gastric cancer (GC). AIMS This study was designed to investigate the prognostic value and biological functions of KLF15 in GC. METHODS KLF15 protein expression in GC patients was evaluated by immunohistochemistry assays in 50 paired GC tissues and adjacent normal tissues, and correlations between KLF15 expression and clinicopathological characteristics and prognosis were analyzed. Then, we investigated the over-expression of KLF15 on cell proliferation and its mechanism in GC cells. RESULTS KLF15 expression levels were significantly down-regulated in GC tissues compared to adjacent normal tissues. And KLF15 expression was negatively correlated with clinical stage, lymphatic metastasis, and distant metastasis. Furthermore, KLF15 expression could predict prognosis in patients with GC. Moreover, over-expression of KLF15 could inhibit cell proliferation partly via regulating CDKN1A/p21 and CDKN1C/p57. CONCLUSION These findings demonstrate that KLF15 plays a significant role in GC progression and could be a therapeutic target for GC.
Collapse
Affiliation(s)
- Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yanfen Wang
- Department of Pathology, Yangzhou No.1 People's Hospital, Yangzhou, People's Republic of China
| | - Weitao Liu
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qinnan Chen
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Yingchen Qian
- Department of Pathology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300 Guangzhou Road, Nanjing, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Medical Oncology, Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
30
|
Tian C, Yao S, Liu L, Ding Y, Ye Q, Dong X, Gao Y, Yang N, Li Q. Klf4 inhibits tumor growth and metastasis by targeting microRNA-31 in human hepatocellular carcinoma. Int J Mol Med 2016; 39:47-56. [PMID: 27909734 PMCID: PMC5179175 DOI: 10.3892/ijmm.2016.2812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are short, endogenous non-coding RNA molecules, demonstrating abnormal expression in cancer initiation and progression. In this study, we profiled 18 differentially regulated miRNAs, including miRNA-31, using miRNA array. Kruppel (or Krüppel)-like factor 4 (Klf4) is a transcription factor and putative tumor suppressor. Both were found to be significantly downregulated in liver cancer tissues and cells. However, little is known about the correlation between Klf4 and miRNA-31 in hepatocellular carcinoma (HCC). The mRNA expression of Klf4 was decreased and inversely associated with the clinical stage, T classification and hepatitis B in patients with HCC, while the expression of miR-31 was lower (r=0.326, P=0.018). Using cell counting kit 8 (CCK8) and Transwell migration assays, we found that Klf4 and miR-31 inhibited the proliferation and metastasis of liver cancer cells. Moreover, we demonstrated that Klf4 directly binds to the promoter of miR-31 and activates its transcription. In vitro experiments confirmed that Klf4 regulated miR-31 and thereby inhibited HCC cell growth and metastasis. Taken together, our findings indicate that Klf4 directly regulates miR-31 in HCC. Thus, miR-31 may serve as a potential diagnostic marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Shanshan Yao
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Li Liu
- Department of Pharmacy, Guiyang Hospital of Guizhou Aviation Industry Group, Guiyang, Guizhou, P.R. China
| | - Youcheng Ding
- Department of General Surgery, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Qingwang Ye
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Xiao Dong
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, P.R. China
| | - Ning Yang
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Qi Li
- Department of Oncology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, P.R. China
| |
Collapse
|