1
|
Botcha L, Sehar M, Cheng YC, Zhang SC, Khan Jadoon MS, Chuang PK. Drug repurposing of 6-AZA-UTP and itraconazole reveals novel B3GALT5 inhibitors for pancreatic cancer. Bioorg Chem 2025; 160:108464. [PMID: 40273705 DOI: 10.1016/j.bioorg.2025.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
Pancreatic cancer has a poor prognosis with limited therapeutic options, necessitating novel treatment strategies. While B3GALT5 enzyme overexpression has been reported in pancreatic cancer cases, effective mechanisms to suppress its activity remain unexplored. In this study, we utilized bioinformatics and in silico studies to evaluate the relationship between B3GALT5 enzyme and pancreatic cancer. Through molecular docking analysis, FDA-approved drugs 6-AZA-UTP and itraconazole were identified as potential B3GALT5 enzyme inhibitors. Biological evaluation on MIA PaCa-2 and AsPC-1 pancreatic cancer cell lines demonstrated that both compounds significantly reduced cell viability. Flow cytometry analysis revealed that both drugs effectively suppressed B3GALT5 enzyme activation by decreasing SSEA-3 expression. Furthermore, both compounds exhibited potent anti-tumor effects by inhibiting cell adhesion, colony formation, and migration while inducing apoptosis in pancreatic cancer cells. Notably, both drugs demonstrated favorable ADMET profiles with no carcinogenic or toxic effects. Our investigations revealed that 6-AZA-UTP and itraconazole can effectively suppress B3GALT5 enzyme activity, resulting in tumor suppression and metastasis inhibition. These findings suggest that either 6-AZA-UTP or itraconazole can inhibit B3GALT5 enzyme activity and may serve as promising therapeutic options for pancreatic cancer treatment through drug repurposing strategy.
Collapse
Affiliation(s)
- Lavanya Botcha
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Misbah Sehar
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Yi-Chi Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | - Sheng-Cheng Zhang
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC
| | | | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, 804, Taiwan, ROC.
| |
Collapse
|
2
|
Zheng M, Kessler M, Jeschke U, Reichenbach J, Czogalla B, Keckstein S, Schroeder L, Burges A, Mahner S, Trillsch F, Kaltofen T. Necroptosis-Related Gene Signature Predicts Prognosis in Patients with Advanced Ovarian Cancer. Cancers (Basel) 2025; 17:271. [PMID: 39858052 PMCID: PMC11763378 DOI: 10.3390/cancers17020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to construct a risk score (RS) based on necroptosis-associated genes to predict the prognosis of patients with advanced epithelial ovarian cancer (EOC). Methods: EOC data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) series 140082 (GSE140082) were used. Based on known necroptosis-associated genes, clustering was performed to identify molecular subtypes of EOC. A least absolute shrinkage and selection operator (LASSO)-Cox regression analysis identified key genes related to prognosis. The expression of one of them, RIPK3, was analyzed via immunohistochemistry in an EOC cohort. Results: An RS made from ten genes (IDH2, RIPK3, FASLG, BRAF, ITPK1, TNFSF10, ID1, PLK1, MLKL and HSPA4) was developed. Tumor samples were divided into a high-risk group (HRG) and low-risk group (LRG) using the RS. The model is able to predict the overall survival (OS) of EOC and distinguish the prognosis of different clinical subgroups. Immunohistochemical verification of the receptor-interacting serine/threonine-protein kinase (RIPK) 3 confirmed that high nuclear expression is correlated with a longer OS. In addition, the score can predict the response to a programmed death ligand 1 (PD-L1) blockade treatment in selected solid malignancies. Patients from the LRG seem to benefit more from it than patients from the HRG. Conclusions: Our RS based on necroptosis-associated genes might help to predict the prognosis of patients with advanced EOC and gives an idea on how the use of immunotherapy can potentially be guided.
Collapse
Affiliation(s)
- Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
- Department of Gynaecology and Obstetrics, Shengjing Hospital, China Medical University, Sanhao Street 36, Shenyang 110055, China
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Udo Jeschke
- Gynecology, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany;
| | - Juliane Reichenbach
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Simon Keckstein
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Lennard Schroeder
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
| | - Till Kaltofen
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany; (M.Z.); (M.K.); (J.R.); (B.C.); (S.K.); (L.S.); (A.B.); (S.M.); (F.T.)
- Department for Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Hänggi K, Li J, Gangadharan A, Liu X, Celias DP, Osunmakinde O, Keske A, Davis J, Ahmad F, Giron A, Anadon CM, Gardner A, DeNardo DG, Shaw TI, Beg AA, Yu X, Ruffell B. Interleukin-1α release during necrotic-like cell death generates myeloid-driven immunosuppression that restricts anti-tumor immunity. Cancer Cell 2024; 42:2015-2031.e11. [PMID: 39577420 PMCID: PMC11631672 DOI: 10.1016/j.ccell.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Necroptosis can promote antigen-specific immune responses, suggesting induced necroptosis as a therapeutic approach for cancer. Here we sought to determine the mechanism of immune activation but found the necroptosis mediators RIPK3 and MLKL dispensable for tumor growth in genetic and implantable models of breast or lung cancer. Surprisingly, inducing necroptosis within established breast tumors generates a myeloid suppressive microenvironment that inhibits T cell function, promotes tumor growth, and reduces survival. This was dependent upon the release of the nuclear alarmin interleukin-1α (IL-1α) by dying cells. Critically, IL-1α release occurs during chemotherapy and targeting this molecule reduces the immunosuppressive capacity of tumor myeloid cells and promotes CD8+ T cell recruitment and effector function. Neutralizing IL-1α enhances the efficacy of single agent paclitaxel or combination therapy with PD-1 blockade in preclinical models. Low IL1A levels correlates with positive patient outcome in several solid malignancies, particularly in patients treated with chemotherapy.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Jie Li
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Achintyan Gangadharan
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Xiaoxian Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daiana P Celias
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olabisi Osunmakinde
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua Davis
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Auriane Giron
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33620, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Johnson CF, Schafer CM, Burge KY, Coon BG, Chaaban H, Griffin CT. Endothelial RIPK3 minimizes organotypic inflammation and vascular permeability in ischemia-reperfusion injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625188. [PMID: 39651150 PMCID: PMC11623548 DOI: 10.1101/2024.11.25.625188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Recent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury. Here we performed inducible genetic deletion of endothelial Ripk3 ( Ripk iECKO ) in mice, which led to elevated vascular permeability in the small intestine and multiple distal organs after intestinal I/R injury. Mechanistically, this vascular permeability correlated with increased endothelial secretion of IL-6 and organ-specific expression of VCAM-1 and ICAM-1 adhesion molecules. Circulating monocyte depletion with clodronate liposomes reduced permeability in organs with elevated adhesion molecules, highlighting the contribution of monocyte adhesion and extravasation to Ripk iECKO barrier dysfunction. These results elucidate mechanisms by which RIPK3 regulates endothelial inflammation to minimize vascular permeability in I/R injury. GRAPHICAL ABSTRACT
Collapse
|
5
|
Yang Z, Lu H, Gao Q, Yuan X, Hu Y, Qi Z. Enhancing Fat Transplantation Efficiency in a Mouse Model through Pretreatment of Adipose-Derived Stem Cells with RIP3 Inhibitors. Aesthetic Plast Surg 2024; 48:3488-3499. [PMID: 38532201 DOI: 10.1007/s00266-024-03981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Autologous fat transplantation, widely used in cosmetic and reparative surgery for volumetric enhancements, faces challenges with its inconsistent long-term survival rates. The technique's efficacy, crucial for its development, is hindered by unpredictable outcomes. Enriching fat grafts with adipose-derived stem cells (ADSCs) shows promise in improving survival efficiency. OBJECTIVES This study aimed to explore the potential of receptor-interacting protein kinase 3 (RIP3) kinase inhibitors as a pretreatment for ADSCs in enhancing autologous fat graft retention over a long term. METHODS ADSCs were isolated, cultured under normal or oxygen-glucose deprivation conditions, and mixed with particulate fat grafts to form distinct experimental groups in female nude mice. Fat graft mass and volume, along with underlying mechanisms, were evaluated using quantitative reverse transcription polymerase chain reaction (RT-qPCR), immunohistochemistry, and Western blot analysis. RESULTS The experimental group, pretreated with RIP3 kinase inhibitors, had higher graft mass and volume, greater adipocyte integrity, and increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA levels than control groups. Furthermore, the experimental group demonstrated lower expression of necroptosis pathway proteins in the short term and an ameliorated inflammatory response as indicated by interleukin-1 beta (IL-1β), interleukin-10 (IL-10) mRNA levels, and histological analyses. Notably, enhanced neovascularization was evident in the experimental group. CONCLUSIONS These findings suggest that RIP3 kinase inhibitor pretreatment of ADSCs can improve fat graft survival, promote adipocyte integrity, potentially decrease inflammation, and enhance neovascularization. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhenyu Yang
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Haibin Lu
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Qiuni Gao
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Xihang Yuan
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yuling Hu
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zuoliang Qi
- Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, 33 Badachu Road, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
6
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
7
|
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, Zhu L. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol 2024; 15:1410018. [PMID: 39192972 PMCID: PMC11347334 DOI: 10.3389/fimmu.2024.1410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is currently the second most common malignant tumor among gynecological cancers worldwide, primarily due to challenges in early diagnosis, high recurrence rates, and resistance to existing treatments. Current therapeutic options are inadequate for addressing the needs of ovarian cancer patients. Ferroptosis, a novel form of regulated cell death with demonstrated tumor-suppressive properties, has gained increasing attention in ovarian malignancy research. A growing body of evidence suggests that ferroptosis plays a significant role in the onset, progression, and incidence of ovarian cancer. Additionally, it has been found that immunotherapy, an emerging frontier in tumor treatment, synergizes with ferroptosis in the context of ovarian cancer. Consequently, ferroptosis is likely to become a critical target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ke Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianlei Bi
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Zhylkibayev A, Ung TT, Mobley J, Athar M, Gorbatyuk M. The Involvement of Unfolded Protein Response in the Mechanism of Nitrogen Mustard-Induced Ocular Toxicity. J Pharmacol Exp Ther 2024; 388:518-525. [PMID: 37914413 PMCID: PMC10801749 DOI: 10.1124/jpet.123.001814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.
Collapse
Affiliation(s)
- Assylbek Zhylkibayev
- School of Optometry, Department of Optometry and Vision Science (A.Z., T.T.U., M.G.), School of Medicine, Departments of Anesthesiology and Perioperative Medicine (J.M.), and Department of Dermatology (M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Trong Thuan Ung
- School of Optometry, Department of Optometry and Vision Science (A.Z., T.T.U., M.G.), School of Medicine, Departments of Anesthesiology and Perioperative Medicine (J.M.), and Department of Dermatology (M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - James Mobley
- School of Optometry, Department of Optometry and Vision Science (A.Z., T.T.U., M.G.), School of Medicine, Departments of Anesthesiology and Perioperative Medicine (J.M.), and Department of Dermatology (M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- School of Optometry, Department of Optometry and Vision Science (A.Z., T.T.U., M.G.), School of Medicine, Departments of Anesthesiology and Perioperative Medicine (J.M.), and Department of Dermatology (M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| | - Marina Gorbatyuk
- School of Optometry, Department of Optometry and Vision Science (A.Z., T.T.U., M.G.), School of Medicine, Departments of Anesthesiology and Perioperative Medicine (J.M.), and Department of Dermatology (M.A.), University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Ye H, Lu M, Tu C, Min L. Necroptosis in the sarcoma immune microenvironment: From biology to therapy. Int Immunopharmacol 2023; 122:110603. [PMID: 37467689 DOI: 10.1016/j.intimp.2023.110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Apoptosis resistance remains a major obstacle to treatment failure in sarcoma. Necroptosis is a caspase-independent programmed cell death, investigated as a novel strategy to eradicate anti-apoptotic tumor cells. The process is mediated by the receptor-interacting proteins kinase family and mixed lineage kinase domain-like proteins, which is morphologically similar to necrosis. Recent studies suggest that necroptosis in the tumor microenvironment has pro- or anti-tumor effects on immune response and cancer development. Necroptosis-related molecules display a remarkable value in prognosis prediction and therapeutic response evaluation of sarcoma. Furthermore, the induction of tumor necroptosis has been explored as a feasible therapeutic strategy against sarcoma and to synergize with immunotherapy. This review discusses the dual roles of necroptosis in the immune microenvironment and tumor progression, and explores the potential of necroptosis as a new target for sarcoma treatment.
Collapse
Affiliation(s)
- Huali Ye
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Corsetti G, Romano C, Pasini E, Scarabelli T, Chen-Scarabelli C, Dioguardi FS. Essential Amino Acids-Rich Diet Increases Cardiomyocytes Protection in Doxorubicin-Treated Mice. Nutrients 2023; 15:nu15102287. [PMID: 37242170 DOI: 10.3390/nu15102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Doxorubicin (Doxo) is a widely prescribed drug against many malignant cancers. Unfortunately, its utility is limited by its toxicity, in particular a progressive induction of congestive heart failure. Doxo acts primarily as a mitochondrial toxin, with consequent increased production of reactive oxygen species (ROS) and attendant oxidative stress, which drives cardiac dysfunction and cell death. A diet containing a special mixture of all essential amino acids (EAAs) has been shown to increase mitochondriogenesis, and reduce oxidative stress both in skeletal muscle and heart. So, we hypothesized that such a diet could play a favorable role in preventing Doxo-induced cardiomyocyte damage. METHODS Using transmission electron microscopy, we evaluated cells' morphology and mitochondria parameters in adult mice. In addition, by immunohistochemistry, we evaluated the expression of pro-survival marker Klotho, as well as markers of necroptosis (RIP1/3), inflammation (TNFα, IL1, NFkB), and defense against oxidative stress (SOD1, glutathione peroxidase, citrate synthase). RESULTS Diets with excess essential amino acids (EAAs) increased the expression of Klotho and enhanced anti-oxidative and anti-inflammatory responses, thereby promoting cell survival. CONCLUSION Our results further extend the current knowledge about the cardioprotective role of EAAs and provide a novel theoretical basis for their preemptive administration to cancer patients undergoing chemotherapy to alleviate the development and severity of Doxo-induced cardiomyopathy.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Evasio Pasini
- Italian Association of Functional Medicine, 20855 Lesmo (Milan), Italy
| | - Tiziano Scarabelli
- Center for Heart and Vessel Preclinical Studies, St. John Hospital and Medical Center, Wayne State University, Detroit, MI 48236, USA
| | - Carol Chen-Scarabelli
- Division of Cardiology, Richmond Veterans Affairs Medical Center (VAMC), Richmond, VA 23249, USA
| | - Francesco S Dioguardi
- Department of Internal Medicine, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| |
Collapse
|
11
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
12
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
13
|
Zhang J, Tu H, Zheng Z, Zhao X, Lin X. RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis. Oncogene 2023; 42:1585-1596. [PMID: 36997719 DOI: 10.1038/s41388-023-02669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/01/2023]
Abstract
It is well established that interferon (IFN) and tumor necrosis factor (TNF) could synergistically promote antitumor toxicity and avoid resistance of antigen-negative tumors during cancer immunotherapy. The linear ubiquitin chain assembly complex (LUBAC) has been widely known to regulate receptor-interacting protein kinase-1(RIPK1) kinase activity and TNF-mediated cell death during inflammation and embryogenesis. However, whether LUBAC and RIPK1 kinase activity in tumor microenvironment could regulate antitumor immunity are still not very clear. Here, we demonstrated a cancer cell-intrinsic role of LUBAC complex in tumor microenvironment to promote tumorigenesis. Lacking LUBAC component RNF31 in B16 melanoma cells but not immune cells including macrophages or dendritic cells greatly impaired tumor growth by increasing intratumoral CD8+ T cells infiltration. Mechanistically, we found that tumor cells without RNF31 shown severe apoptosis-mediated cell death caused by TNFα/IFNγ in the tumor microenvironment. Most importantly, we found that RNF31 could limit RIPK1 kinase activity and further prevent tumor cell death in a transcription-independent manner, suggesting a crucial role of RIPK1 kinase activity in tumorigenesis. Together, our results demonstrate an essential role of RNF31 and RIPK1 kinase activity in tumorigenesis and imply that RNF31 inhibition could be harnessed to enhance antitumor toxicity during tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Hailin Tu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Zheyu Zheng
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xueqiang Zhao
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, 100084, China.
| |
Collapse
|
14
|
Resistance To Poxvirus Lethality Does Not Require the Necroptosis Proteins RIPK3 or MLKL. J Virol 2023; 97:e0194522. [PMID: 36651749 PMCID: PMC9973014 DOI: 10.1128/jvi.01945-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) are proteins that are critical for necroptosis, a mechanism of programmed cell death that is both activated when apoptosis is inhibited and thought to be antiviral. Here, we investigated the role of RIPK3 and MLKL in controlling the Orthopoxvirus ectromelia virus (ECTV), a natural pathogen of the mouse. We found that C57BL/6 (B6) mice deficient in RIPK3 (Ripk3-/-) or MLKL (Mlkl-/-) were as susceptible as wild-type (WT) B6 mice to ECTV lethality after low-dose intraperitoneal infection and were as resistant as WT B6 mice after ECTV infection through the natural footpad route. Additionally, after footpad infection, Mlkl-/- mice, but not Ripk3-/- mice, endured lower viral titers than WT mice in the draining lymph node (dLN) at three days postinfection and in the spleen or in the liver at seven days postinfection. Despite the improved viral control, Mlkl-/- mice did not differ from WT mice in the expression of interferons or interferon-stimulated genes or in the recruitment of natural killer (NK) cells and inflammatory monocytes (iMOs) to the dLN. Additionally, the CD8 T-cell responses in Mlkl-/- and WT mice were similar, even though in the dLNs of Mlkl-/- mice, professional antigen-presenting cells were more heavily infected. Finally, the histopathology in the livers of Mlkl-/- and WT mice at 7 dpi did not differ. Thus, the mechanism of the increased virus control by Mlkl-/- mice remains to be defined. IMPORTANCE The molecules RIPK3 and MLKL are required for necroptotic cell death, which is widely thought of as an antiviral mechanism. Here we show that C57BL/6 (B6) mice deficient in RIPK3 or MLKL are as susceptible as WT B6 mice to ECTV lethality after a low-dose intraperitoneal infection and are as resistant as WT B6 mice after ECTV infection through the natural footpad route. Mice deficient in MLKL are more efficient than WT mice at controlling virus loads in various organs. This improved viral control is not due to enhanced interferon, natural killer cell, or CD8 T-cell responses. Overall, the data indicate that deficiencies in the molecules that are critical to necroptosis do not necessarily result in worse outcomes following viral infection and may improve virus control.
Collapse
|
15
|
Peng C, Tu G, Wang J, Wang Y, Wu P, Yu L, Li Z, Yu X. MLKL signaling regulates macrophage polarization in acute pancreatitis through CXCL10. Cell Death Dis 2023; 14:155. [PMID: 36828808 PMCID: PMC9958014 DOI: 10.1038/s41419-023-05655-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
Acute pancreatitis (AP) is a disease characterized by local and systemic inflammation with an increasing incidence worldwide. Receptor-interacting serine/threonine protein kinase 3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), and innate immune cell macrophages have been reported to be involved in the pathogenesis of AP. However, the mechanisms by which RIPK3 and MLKL regulate pancreatic injury, as well as the interactions between injured pancreatic acinar cells and infiltrating macrophages in AP, remain poorly defined. In the present study, experimental pancreatitis was induced in C57BL/6J, Ripk3-/- and Mlkl-/- mice by cerulein plus lipopolysaccharide in vivo, and primary pancreatic acinar cells were also isolated to uncover cellular mechanisms during cerulein stimulation in vitro. The results showed that MLKL and its phosphorylated protein p-MLKL were upregulated in the pancreas of the mouse AP model and cerulein-treated pancreatic acinar cells, independent of its canonical upstream molecule Ripk3, and appeared to function in a cell death-independent manner. Knockout of Mlkl attenuated AP in mice by reducing the polarization of pancreatic macrophages toward the M1 phenotype, and this protective effect was partly achieved by reducing the secretion of CXCL10 from pancreatic acinar cells, whereas knockout of Ripk3 did not. In vitro neutralization of CXCL10 impaired the pro-M1 ability of the conditioned medium of cerulein-treated pancreatic acinar cells, whereas in vivo neutralization of CXCL10 reduced the polarization of pancreatic macrophages toward M1 and the severity of AP in mice. These findings suggested that targeting the MLKL-CXCL10-macrophage axis might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiale Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yilin Wang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
16
|
Lyons JD, Mandal P, Otani S, Chihade DB, Easley KF, Swift DA, Burd EM, Liang Z, Koval M, Mocarski ES, Coopersmith CM. The RIPK3 Scaffold Regulates Lung Inflammation During Pseudomonas Aeruginosa Pneumonia. Am J Respir Cell Mol Biol 2023; 68:150-160. [PMID: 36178467 PMCID: PMC9986559 DOI: 10.1165/rcmb.2021-0474oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/29/2022] [Indexed: 02/03/2023] Open
Abstract
RIPK3 (receptor-interacting protein kinase 3) activity triggers cell death via necroptosis, whereas scaffold function supports protein binding and cytokine production. To determine if RIPK3 kinase or scaffold domains mediate pathology during Pseudomonas aeruginosa infection, control mice and those with deletion or mutation of RIPK3 and associated signaling partners were subjected to Pseudomonas pneumonia and followed for survival or killed for biologic assays. Murine immune cells were studied in vitro for Pseudomonas-induced cytokine production and cell death, and RIPK3 binding interactions were blocked with the viral inhibitor M45. Human tissue effects were assayed by infecting airway epithelial cells with Pseudomonas and measuring cytokine production after siRNA inhibition of RIPK3. Deletion of RIPK3 reduced inflammation and decreased animal mortality after Pseudomonas pneumonia. RIPK3 kinase inactivation did neither. In cell culture, RIPK3 was dispensable for cell killing by Pseudomonas and instead drove cytokine production that required the RIPK3 scaffold domain but not kinase activity. Blocking the RIP homotypic interaction motif (RHIM) with M45 reduced the inflammatory response to infection in vitro. Similarly, siRNA knockdown of RIPK3 decreased infection-triggered inflammation in human airway epithelial cells. Thus, the RIPK3 scaffold drives deleterious pulmonary inflammation and mortality in a relevant clinical model of Pseudomonas pneumonia. This process is distinct from kinase-mediated necroptosis, requiring only the RIPK3 RHIM. Inhibition of RHIM signaling is a potential strategy to reduce lung inflammation during infection.
Collapse
Affiliation(s)
| | | | | | | | - Kristen F. Easley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine
| | | | | | - Zhe Liang
- Department of Surgery, Emory Critical Care Center
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | | | | |
Collapse
|
17
|
Long Non-Coding RNAs as Novel Targets for Phytochemicals to Cease Cancer Metastasis. Molecules 2023; 28:molecules28030987. [PMID: 36770654 PMCID: PMC9921150 DOI: 10.3390/molecules28030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metastasis is a multi-step phenomenon during cancer development leading to the propagation of cancer cells to distant organ(s). According to estimations, metastasis results in over 90% of cancer-associated death around the globe. Long non-coding RNAs (LncRNAs) are a group of regulatory RNA molecules more than 200 base pairs in length. The main regulatory activity of these molecules is the modulation of gene expression. They have been reported to affect different stages of cancer development including proliferation, apoptosis, migration, invasion, and metastasis. An increasing number of medical data reports indicate the probable function of LncRNAs in the metastatic spread of different cancers. Phytochemical compounds, as the bioactive agents of plants, show several health benefits with a variety of biological activities. Several phytochemicals have been demonstrated to target LncRNAs to defeat cancer. This review article briefly describes the metastasis steps, summarizes data on some well-established LncRNAs with a role in metastasis, and identifies the phytochemicals with an ability to suppress cancer metastasis by targeting LncRNAs.
Collapse
|
18
|
Song Y, Zhang J, Fang L, Liu W. Prognostic necroptosis-related gene signature aids immunotherapy in lung adenocarcinoma. Front Genet 2022; 13:1027741. [PMID: 36506314 PMCID: PMC9732465 DOI: 10.3389/fgene.2022.1027741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Necroptosis is a phenomenon of cellular necrosis resulting from cell membrane rupture by the corresponding activation of Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL) under programmed regulation. It is reported that necroptosis is closely related to the development of tumors, but the prognostic role and biological function of necroptosis in lung adenocarcinoma (LUAD), the most important cause of cancer-related deaths, is still obscure. Methods: In this study, we constructed a prognostic Necroptosis-related gene signature based on the RNA transcription data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as well as the corresponding clinical information. Kaplan-Meier analysis, receiver operating characteristic (ROC), and Cox regression were made to validate and evaluate the model. We analyzed the immune landscape in LUAD and the relationship between the signature and immunotherapy regimens. Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to construct the prognostic signature, and patients were divided into high and low-risk groups in line with the risk score. Cox regression showed that risk score was an independent prognostic factor. Nomogram was created for predicting the survival rate of LUAD patients. Patients in high and low-risk groups have different tumor purity, tumor immunogenicity, and different sensitivity to common antitumor drugs. Conclusion: Our results highlight the association of necroptosis with LUAD and its potential use in guiding immunotherapy.
Collapse
Affiliation(s)
- Yuqi Song
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Jinming Zhang
- First Hospital of Jilin University, Changchun, China
| | - Linan Fang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| |
Collapse
|
19
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis 2022; 27:697-719. [DOI: 10.1007/s10495-022-01760-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
|
21
|
Jia N, Li G, Wang X, Cao Q, Chen W, Wang C, Chen L, Ma X, Zhang X, Tao Y, Zang J, Mo X, Hu J. Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways. Commun Biol 2022; 5:813. [PMID: 35962126 PMCID: PMC9374677 DOI: 10.1038/s42003-022-03752-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcal aureus (S. aureus) infection can lead to a wide range of diseases such as sepsis and pneumonia. Staphylococcal superantigen-like (SSL) proteins, expressed by all known S. aureus strains, are shown to be involved in immune evasion during S. aureus infection. Here, we show that SSL10, an SSL family protein, exhibits potent cytotoxicity against human cells (HEK293T and HUVEC) by inducing necroptosis upon binding to its receptor TNFR1 on the cell membrane. After binding, two distinct signaling pathways are activated downstream of TNFR1 in a RIPK3-dependent manner, i.e., the RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore (mPTP) pathways. Knockout of ssl10 in S. aureus significantly reduces cytotoxicity of the culture supernatants of S. aureus, indicating that SSL10 is involved in extracellular cytotoxicity during infection. We determined the crystal structure of SSL10 at 1.9 Å resolution and identified a positively charged surface of SSL10 responsible for TNFR1 binding and cytotoxic activity. This study thus provides the description of cytotoxicity through induction of necroptosis by the SSL10 protein, and a potential target for clinical treatment of S. aureus-associated diseases. The Staphylococcal superantigen like protein 10 induces necroptosis in human cells through binding to TNFR1 by both the N- and C-terminal domains and activating RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore pathways.
Collapse
Affiliation(s)
- Nan Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.,The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wanbiao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ling Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jianye Zang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jinfeng Hu
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
22
|
Luo Y, Zhang G. Identification of a Necroptosis-Related Prognostic Index and Associated Regulatory Axis in Kidney Renal Clear Cell Carcinoma. Int J Gen Med 2022; 15:5407-5423. [PMID: 35685693 PMCID: PMC9173730 DOI: 10.2147/ijgm.s367173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Yong Luo
- Department of Urology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, 528000, People’s Republic of China
- Correspondence: Yong Luo, Department of Urology, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, 78 Weiguo Road, Foshan, 528000, People’s Republic of China, Tel +86-15625093895, Fax +86-0757-88032009, Email
| | - Guian Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China
- Guian Zhang, School of Medicine, South China University of Technology, Guangzhou, 510006, People’s Republic of China, Tel +86-13246808932, Email
| |
Collapse
|
23
|
Yang Z, Qi Z, Yang X, Gao Q, Hu Y, Yuan X. Inhibition of RIP3 increased ADSC viability under OGD and modified the competency of adipogenesis, angiogenesis, and inflammation regulation. Biosci Rep 2022; 42:BSR20212808. [PMID: 35302166 PMCID: PMC8965819 DOI: 10.1042/bsr20212808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) showed decreased cell viability and increased cell death under oxygen-glucose deprivation (OGD). Meanwhile, vital necroptotic proteins, including receptor-interacting protein kinase (RIP) 3 (RIP3) and mixed lineage kinase domain-like pseudokinase (MLKL), were expressed in the early stage. The present study aims to explore the effect of necroptosis inhibition on ADSCs. ADSCs were obtained from normal human subcutaneous fat and verified by multidirectional differentiation and flow cytometry. By applying cell counting kit-8 (CCK-8), calcein/propidium iodide (PI) staining and immunostaining, we determined the OGD treatment time of 4 h, a timepoint when the cells showed a significant decrease in viability and increased protein expression of RIP3, phosphorylated RIP3 (pRIP3) and phosphorylated MLKL (pMLKL). After pretreatment with the inhibitor of RIP3, necroptotic protein expression decreased under OGD conditions, and cell necrosis decreased. Transwell assays proved that cell migration ability was retained. Furthermore, the expression of the adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and quantitative analysis of Oil Red O staining increased in the inhibitor group. The expression of vascular endothelial growth factor-A (VEGFA) and fibroblast growth factor 2 (FGF2) and the migration test suggest that OGD increases the secretion of vascular factors, promotes the migration of human umbilical vein endothelial cells (HUVECs), and forms unstable neovascularization. ELISA revealed that inhibition of RIP3 increased the secretion of the anti-inflammatory factor, interleukin (IL)-10 (IL-10) and reduced the expression of the proinflammatory factor IL-1β. Inhibition of RIP3 can reduce the death of ADSCs, retain their migration ability and adipogenic differentiation potential, reduce unstable neovascularization and inhibit the inflammatory response.
Collapse
Affiliation(s)
- Zhenyu Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Zuoliang Qi
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xiaonan Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Qiuni Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Yuling Hu
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| | - Xihang Yuan
- Chinese Academy of Medical Sciences and Peking Union Medical College Plastic Surgery Hospital and Institute, Beijing, China
| |
Collapse
|
24
|
Reduced protection of RIPK3-deficient mice against influenza by matrix protein 2 ectodomain targeted active and passive vaccination strategies. Cell Death Dis 2022; 13:280. [PMID: 35351865 PMCID: PMC8961492 DOI: 10.1038/s41419-022-04710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Abstract
AbstractRIPK3 partially protects against disease caused by influenza A virus (IAV) infection in the mouse model. Here, we compared the immune protection of active vaccination with a universal influenza A vaccine candidate based on the matrix protein 2 ectodomain (M2e) and of passive immunization with anti-M2e IgG antibodies in wild type and Ripk3−/− mice. We observed that the protection against IAV after active vaccination with M2e viral antigen is lost in Ripk3−/− mice. Interestingly, M2e-specific serum IgG levels induced by M2e vaccination were not significantly different between wild type and Ripk3−/− vaccinated mice demonstrating that the at least the humoral immune response was not affected by the absence of RIPK3 during active vaccination. Moreover, following IAV challenge, lungs of M2e vaccinated Ripk3−/− mice revealed a decreased number of immune cell infiltrates and an increased accumulation of dead cells, suggesting that phagocytosis could be reduced in Ripk3−/− mice. However, neither efferocytosis nor antibody-dependent phagocytosis were affected in macrophages isolated from Ripk3−/− mice. Likewise following IAV infection of Ripk3−/− mice, active vaccination and infection resulted in decreased presence of CD8+ T-cells in the lung. However, it is unclear whether this reflects a deficiency in vaccination or an inability following infection. Finally, passively transferred anti-M2e monoclonal antibodies at higher dose than littermate wild type mice completely protected Ripk3−/− mice against an otherwise lethal IAV infection, demonstrating that the increased sensitivity of Ripk3−/− mice could be overcome by increased antibodies. Therefore we conclude that passive immunization strategies with monoclonal antibody could be useful for individuals with reduced IAV vaccine efficacy or increased IAV sensitivity, such as may be expected in patients treated with future anti-inflammatory therapeutics for chronic inflammatory diseases such as RIPK inhibitors.
Collapse
|
25
|
Ashour H, Hashem HA, Khowailed AA, Rashed LA, Hassan RM, Soliman AS. Necrostatin-1 mitigates renal ischemia-reperfusion injury - time dependent- via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response. Clin Exp Pharmacol Physiol 2022; 49:501-514. [PMID: 35090059 DOI: 10.1111/1440-1681.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The recently defined necroptosis process participates in the pathophysiology of several tissue injuries. Targeting the necroptosis mediator receptor-interacting protein kinase (RIPK1) by necrostatin-1 in different phases of ischemia-reperfusion injury (IRI) may provide new insight into the protection against renal IRI. The rat groups included (n= 8 in each group); 1) Sham, 2) Renal IRI, 3) Necrostatin-1 treatment 20 min before ischemia induction in a dose of 1.65 mg/kg/intravenous. 4) Necrostatin-1 injection just before reperfusion, 5) Necrostatin-1 injection 20 min after reperfusion establishment, and 6) drug injection at both the pre-ischemia and at reperfusion time in the same dose. Timing dependent, necrostatin-1 diminished RIPK1 (P < 0.001), and aborted the necroptosis induced renal cell injury. Necrostatin-1 decreased the renal chemokine (CXCL1), interleukin-6, intercellular adhesion molecule (ICAM-1), myeloperoxidase, and the nuclear factor (NFκB), concomitant with reduced inducible nitric oxide synthase (iNOS), inflammatory cell infiltration, and diminished cell death represented by apoptotic cell count and the BAX/Bcl2 protein ratio. In group six, the cell injury was minimum and the renal functions (creatinine, BUN, and creatinine clearance) were almost normalized. The inflammatory markers were diminished (P < 0.001) compared to the IRI group. The results were confirmed by histopathological examination. In conclusion, RIPK1 inhibition ameliorates the inflammatory immune response induced by renal IRI. The use of two doses was more beneficial as the pathophysiology of cell injury is characterized.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, KSA.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Hashem
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ayman S Soliman
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
26
|
Rucker AJ, Chan FKM. Tumor-intrinsic and immune modulatory roles of receptor-interacting protein kinases. Trends Biochem Sci 2022; 47:342-351. [PMID: 34998669 PMCID: PMC8917977 DOI: 10.1016/j.tibs.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are signaling adaptors that critically regulate cell death and inflammation. Tumors have adapted to subvert RIPK-dependent cell death, suggesting that these processes have key roles in tumor regulation. Moreover, RIPK-driven cancer cell death might bolster durable antitumor immunity. By contrast, there are examples in which RIPKs induce inflammation and aid tumor progression. Furthermore, the RIPKs can exert their effects on tumor growth through regulating the activity of immune effectors in the tumor microenvironment, thus highlighting the context-dependent roles of RIPKs. Here, we review recent advances in the regulation of RIPK activity in tumors and immune cells and how these processes coordinate with each other to control tumorigenesis.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA
| | - Francis Ka-Ming Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710-3010, USA.
| |
Collapse
|
27
|
Bolik J, Krause F, Stevanovic M, Gandraß M, Thomsen I, Schacht SS, Rieser E, Müller M, Schumacher N, Fritsch J, Wichert R, Galun E, Bergmann J, Röder C, Schafmayer C, Egberts JH, Becker-Pauly C, Saftig P, Lucius R, Schneider-Brachert W, Barikbin R, Adam D, Voss M, Hitzl W, Krüger A, Strilic B, Sagi I, Walczak H, Rose-John S, Schmidt-Arras D. Inhibition of ADAM17 impairs endothelial cell necroptosis and blocks metastasis. J Exp Med 2022; 219:212921. [PMID: 34919140 PMCID: PMC8689681 DOI: 10.1084/jem.20201039] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.
Collapse
Affiliation(s)
- Julia Bolik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Freia Krause
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Marija Stevanovic
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Monja Gandraß
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ilka Thomsen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Eva Rieser
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Miryam Müller
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Neele Schumacher
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Rielana Wichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Ein Karem, Jerusalem, Israel
| | - Juri Bergmann
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General Surgery and Thoracic Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Adam
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Salzburg, Austria.,Research Program for Experimental Ophthalmology and Glaucoma, Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Achim Krüger
- Institutes for Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Boris Strilic
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom.,Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.,Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, Austria
| |
Collapse
|
28
|
Dan W, Zhong L, Zhang Z, Wan P, Lu Y, Wang X, Liu Z, Chu X, Liu B. RIP1-dependent Apoptosis and Differentiation Regulated by Skp2 and Akt/GSK3β in Acute Myeloid Leukemia. Int J Med Sci 2022; 19:525-536. [PMID: 35370472 PMCID: PMC8964317 DOI: 10.7150/ijms.68385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/22/2022] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous neoplasm characterized by variations in cytogenetics and molecular abnormalities, which result in variable response to therapy. Receptor-interacting serine/threonine kinase 1 (RIP1)-mediated necroptosis has been reported to have a potential role in the treatment of AML. We obtained Skp2 and RIP1 are significantly overexpressed in AML samples using original published data, and identified that Skp2-depletion in AML cells significantly suppressed RIP1. Functional analysis showed that the inhibition of RIP1 caused by necrostatin-1 (Nec-1) inhibited the proliferation, simultaneously facilitate both the apoptosis and differentiation of AML cells. Mechanistical analysis elucidated that knockdown of Skp2 suppresses RIP1 by transcriptional regulation but not by proteasome degradation. Additionally, Skp2 regulated the function of RIP1 by decreasing K63-linked ubiquitin interaction with RIP1. Moreover, the suppression of Akt/GSK3β was observed in Skp2 knockdown stable NB4 cells. Also, GSK3β inactivation via small-molecule inhibitor treatment remarkably decreased RIP1 level. RIP1 regulates differentiation by interacting with RARα, increasing RA signaling targets gene C/EBPα and C/EBPβ. In conclusion, our study provides a novel insight into the mechanism of tumorigenesis and the development of AML, for which the Skp2-Akt/GSK3β-RIP1 pathway can be developed as a promising therapeutic target.
Collapse
Affiliation(s)
- Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghui Zhang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Peng Wan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yang Lu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xiao Wang
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhenyan Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
29
|
Afonso MB, Rodrigues PM, Mateus-Pinheiro M, Simão AL, Gaspar MM, Majdi A, Arretxe E, Alonso C, Santos-Laso A, Jimenez-Agüero R, Eizaguirre E, Bujanda L, Pareja MJ, Banales JM, Ratziu V, Gautheron J, Castro RE, Rodrigues CMP. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut 2021; 70:2359-2372. [PMID: 33361348 PMCID: PMC8588316 DOI: 10.1136/gutjnl-2020-321767] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/22/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Receptor-interacting protein kinase 3 (RIPK3) is a key player in necroptosis execution and an emerging metabolic regulator, whose contribution to non-alcoholic fatty liver disease (NAFLD) is controversial. We aimed to clarify the impact of RIPK3 signalling in the pathogenesis of human and experimental NAFLD. DESIGN RIPK3 levels were evaluated in two large independent cohorts of patients with biopsy proven NAFLD diagnosis and correlated with clinical and biochemical parameters. Wild-type (WT) or Ripk3-deficient (Ripk3-/-) mice were fed a choline-deficient L-amino acid-defined diet (CDAA) or an isocaloric control diet for 32 and 66 weeks. RESULTS RIPK3 increased in patients with non-alcoholic steatohepatitis (NASH) in both cohorts, correlating with hepatic inflammation and fibrosis. Accordingly, Ripk3 deficiency ameliorated CDAA-induced inflammation and fibrosis in mice at both 32 and 66 weeks. WT mice on the CDAA diet for 66 weeks developed preneoplastic nodules and displayed increased hepatocellular proliferation, which were reduced in Ripk3-/- mice. Furthermore, Ripk3 deficiency hampered tumourigenesis. Intriguingly, Ripk3-/- mice displayed increased body weight gain, while lipidomics showed that deletion of Ripk3 shifted hepatic lipid profiles. Peroxisome proliferator-activated receptor γ (PPARγ) was increased in Ripk3-/- mice and negatively correlated with hepatic RIPK3 in patients with NAFLD. Mechanistic studies established a functional link between RIPK3 and PPARγ in controlling fat deposition and fibrosis. CONCLUSION Hepatic RIPK3 correlates with NAFLD severity in humans and mice, playing a key role in managing liver metabolism, damage, inflammation, fibrosis and carcinogenesis. Targeting RIPK3 and its intricate signalling arises as a novel promising approach to treat NASH and arrest disease progression.
Collapse
Affiliation(s)
- Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Mateus-Pinheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André L Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Amine Majdi
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain
| | - Emma Eizaguirre
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain
| | | | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, CIBERehd, San Sebastian, Spain
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Department of Hepatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
- Sorbonne Université, Inserm, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Jeremie Gautheron
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
31
|
Liu M, Wang L, Xia X, Wu Y, Zhu C, Duan M, Wei X, Hu J, Lei L. Regulated lytic cell death in breast cancer. Cell Biol Int 2021; 46:12-33. [PMID: 34549863 DOI: 10.1002/cbin.11705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/18/2021] [Indexed: 01/17/2023]
Abstract
Breast cancer (BC) is a very common cancer among women and one of the primary causes of death in women worldwide. Because BC has different molecular subtypes, the challenges associated with targeted therapy have increased significantly, and the identification of new therapeutic targets has become increasingly urgent. Blocking apoptosis and inhibiting cell death are important characteristics of malignant tumours, including BC. Under adverse conditions, including exposure to antitumour therapy, inhibition of cell death programmes can promote cancerous transformation and the survival of cancer cells. Therefore, inducing cell death in cancer cells is fundamentally important and provides new opportunities for potential therapeutic interventions. Lytic forms of cell death, primarily pyroptosis, necroptosis and ferroptosis, are different from apoptosis owing to their characteristic lysis, that is, the production of cellular components, to guide beneficial immune responses, and the application of lytic cell death (LCD) in the field of tumour therapy has attracted considerable interest from researchers. The latest clinical research results confirm that lytic death signalling cascades involve the BC cell immune response and resistance to therapies used in clinical practice. In this review, we discuss the current knowledge regarding the various forms of LCD, placing a special emphasis on signalling pathways and their implications in BC, which may facilitate the development of novel and optimal strategies for the clinical treatment of BC.
Collapse
Affiliation(s)
- Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lirong Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Chunling Zhu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Duan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
32
|
Fibrillar α-synuclein induces neurotoxic astrocyte activation via RIP kinase signaling and NF-κB. Cell Death Dis 2021; 12:756. [PMID: 34333522 PMCID: PMC8325686 DOI: 10.1038/s41419-021-04049-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopamine neurons. The pathogenesis of PD is poorly understood, though misfolded and/or aggregated forms of the protein α-synuclein have been implicated in several neurodegenerative disease processes, including neuroinflammation and astrocyte activation. Astrocytes in the midbrain play complex roles during PD, initiating both harmful and protective processes that vary over the course of the disease. However, despite their significant regulatory roles during neurodegeneration, the cellular and molecular mechanisms that promote pathogenic astrocyte activity remain mysterious. Here, we show that α-synuclein preformed fibrils (PFFs) induce pathogenic activation of human midbrain astrocytes, marked by inflammatory transcriptional responses, downregulation of phagocytic function, and conferral of neurotoxic activity. These effects required the necroptotic kinases RIPK1 and RIPK3, but were independent of MLKL and necroptosis. Instead, both transcriptional and functional markers of astrocyte activation occurred via RIPK-dependent activation of NF-κB signaling. Our study identifies a previously unknown function for α-synuclein in promoting neurotoxic astrocyte activation, as well as new cell death-independent roles for RIP kinase signaling in the regulation of glial cell biology and neuroinflammation. Together, these findings highlight previously unappreciated molecular mechanisms of pathologic astrocyte activation and neuronal cell death with implications for Parkinsonian neurodegeneration.
Collapse
|
33
|
Lule S, Wu L, Sarro-Schwartz A, Edmiston WJ, Izzy S, Songtachalert T, Ahn SH, Fernandes ND, Jin G, Chung JY, Balachandran S, Lo EH, Kaplan D, Degterev A, Whalen MJ. Cell-specific activation of RIPK1 and MLKL after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2021; 41:1623-1633. [PMID: 33210566 PMCID: PMC8221773 DOI: 10.1177/0271678x20973609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Receptor-interacting protein kinase-1 (RIPK1) is a master regulator of cell death and inflammation, and mediates programmed necrosis (necroptosis) via mixed-lineage kinase like (MLKL) protein. Prior studies in experimental intracerebral hemorrhage (ICH) implicated RIPK1 in the pathogenesis of neuronal death and cognitive outcome, but the relevant cell types involved and potential role of necroptosis remain unexplored. In mice subjected to autologous blood ICH, early RIPK1 activation was observed in neurons, endothelium and pericytes, but not in astrocytes. MLKL activation was detected in astrocytes and neurons but not endothelium or pericytes. Compared with WT controls, RIPK1 kinase-dead (RIPK1D138N/D138N) mice had reduced brain edema (24 h) and blood-brain barrier (BBB) permeability (24 h, 30 d), and improved postinjury rotarod performance. Mice deficient in MLKL (Mlkl-/-) had reduced neuronal death (24 h) and BBB permeability at 24 h but not 30d, and improved post-injury rotarod performance vs. WT. The data support a central role for RIPK1 in the pathogenesis of ICH, including cell death, edema, BBB permeability, and motor deficits. These effects may be mediated in part through the activation of MLKL-dependent necroptosis in neurons. The data support development of RIPK1 kinase inhibitors as therapeutic agents for human ICH.
Collapse
Affiliation(s)
- Sevda Lule
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Aliyah Sarro-Schwartz
- Department of Neurology, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Edmiston
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Saef Izzy
- Department of Neurology, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Songtachalert
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - So Hee Ahn
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Neil D Fernandes
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gina Jin
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Joon Yong Chung
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eng H Lo
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
34
|
Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, Wang D. Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J Dermatol 2021; 48:1129-1138. [PMID: 34109676 DOI: 10.1111/1346-8138.15929] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Regulated necrosis, also termed necroptosis, is another programmed cell death depending on a unique molecular pathway that does not overlap with apoptosis. Tumor necrosis factor and Toll-like receptor family members, interferon, and other mediators are the factors that mainly cause necroptosis. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting proteins 1 and 3, and a mixed lineage kinase domain-like protein, which is a critical downstream mediator of necroptosis. Increasing evidence has revealed that necroptosis does not only involve physiological regulation but also the occurrence, development, and prognosis of certain diseases, such as septicemia, neurodegenerative diseases, and ischemic-reperfusion injury. Many excellent documented systematic discussions of necroptosis and its role in various skin diseases. In this review, we summarize the molecular mechanism of necroptosis, as well as the current knowledge on the contribution of necroptosis, in infection-related, immune-mediated, autoimmune skin diseases, and malignant skin tumors.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Lomphithak T, Akara-Amornthum P, Murakami K, Hashimoto M, Usubuchi H, Iwabuchi E, Unno M, Cai Z, Sasano H, Jitkaew S. Tumor necroptosis is correlated with a favorable immune cell signature and programmed death-ligand 1 expression in cholangiocarcinoma. Sci Rep 2021; 11:11743. [PMID: 34083572 PMCID: PMC8175514 DOI: 10.1038/s41598-021-89977-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Necroptosis, a regulated form of necrosis, has emerged as a novel therapeutic strategy that could enhance cancer immunotherapy. However, its role in tumorigenesis is still debated because recent studies have reported both anti- and pro-tumoral effects. Here, we aimed to systematically evaluate the associations between tumor necroptosis (mixed lineage kinase domain-like protein, MLKL; phosphorylated MLKL, pMLKL; and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3, RIPK1-RIPK3 interaction) and tumor-infiltrating immune cells (CD8+ and FOXp3+ T cells and CD163+ M2 macrophages) and tumor PD-L1 by immunohistochemistry in 88 cholangiocarcinoma (CCA) patients who had undergone surgical resection. Their associations with clinicopathological characteristics, survival data, and prognosis were evaluated. MLKL was found to be an unfavorable prognostic factor (p-value = 0.023, HR = 2.070) and was inversely correlated with a clinically favorable immune cell signature (high CD8+/high FOXp3+/low CD163+). Both pMLKL and RIPK1-RIPK3 interaction were detected in CCA primary tissues. In contrast to MLKL, pMLKL status was significantly positively correlated with a favorable immune signature (high CD8+/high FOXp3+/low CD163+) and PD-L1 expression. Patients with high pMLKL-positive staining were significantly associated with an increased abundance of CD8+ T cell intratumoral infiltration (p-value = 0.006). Patients with high pMLKL and PD-L1 expressions had a longer overall survival (OS). The results from in vitro experiments showed that necroptosis activation in an RMCCA-1 human CCA cell line selectively promoted proinflammatory cytokine and chemokine expression. Jurkat T cells stimulated with necroptotic RMCCA-1-derived conditioned medium promoted PD-L1 expression in RMCCA-1. Our findings demonstrated the differential associations of necroptosis activation (pMLKL) and MLKL with a clinically favorable immune signature and survival rates and highlighted a novel therapeutic possibility for combining a necroptosis-based therapeutic approach with immune checkpoint inhibitors for more efficient treatment of CCA patients.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Perawatt Akara-Amornthum
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Keigo Murakami
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Masatoshi Hashimoto
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Hajime Usubuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University School of Medicine, Sendai, Miyagi, 98-8075, Japan
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Siriporn Jitkaew
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
36
|
Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 2021; 28:1757-1772. [PMID: 33953348 PMCID: PMC8184805 DOI: 10.1038/s41418-021-00785-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) emerged as executioner of necroptosis, a RIPK3-dependent form of regulated necrosis. Cell death evasion is one of the hallmarks of cancer. Besides apoptosis, some cancers suppress necroptosis-associated mechanisms by for example epigenetic silencing of RIPK3 expression. Conversely, necroptosis-elicited inflammation by cancer cells can fuel tumor growth. Recently, necroptosis-independent functions of MLKL were unraveled in receptor internalization, ligand-receptor degradation, endosomal trafficking, extracellular vesicle formation, autophagy, nuclear functions, axon repair, neutrophil extracellular trap (NET) formation, and inflammasome regulation. Little is known about the precise role of MLKL in cancer and whether some of these functions are involved in cancer development and metastasis. Here, we discuss current knowledge and controversies on MLKL, its structure, necroptosis-independent functions, expression, mutations, and its potential role as a pro- or anti-cancerous factor. Analysis of MLKL expression patterns reveals that MLKL is upregulated by type I/II interferon, conditions of inflammation, and tissue injury. Overall, MLKL may affect cancer development and metastasis through necroptosis-dependent and -independent functions.
Collapse
Affiliation(s)
- Sofie Martens
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Bridelance
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Nozomi Takahashi
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Mabe NW, Garcia NMG, Wolery SE, Newcomb R, Meingasner RC, Vilona BA, Lupo R, Lin CC, Chi JT, Alvarez JV. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-inflammatory Program. Cell Rep 2021; 33:108341. [PMID: 33147463 PMCID: PMC7656293 DOI: 10.1016/j.celrep.2020.108341] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Dysregulated gene expression is a common feature of cancer and may underlie some aspects of tumor progression, including tumor relapse. Here, we show that recurrent mammary tumors exhibit global changes in gene expression and histone modifications and acquire dependence on the G9a histone methyltransferase. Genetic ablation of G9a delays tumor recurrence, and pharmacologic inhibition of G9a slows the growth of recurrent tumors. Mechanistically, G9a activity is required to silence pro-inflammatory cytokines, including tumor necrosis factor (TNF), through H3K9 methylation at gene promoters. G9a inhibition induces re-expression of these cytokines, leading to p53 activation and necroptosis. Recurrent tumors upregulate receptor interacting protein kinase-3 (RIPK3) expression and are dependent upon RIPK3 activity. High RIPK3 expression renders recurrent tumors sensitive to necroptosis following G9a inhibition. These findings demonstrate that G9a-mediated silencing of pro-necroptotic proteins is a critical step in tumor recurrence and suggest that G9a is a targetable dependency in recurrent breast cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Nina Marie G Garcia
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Shayna E Wolery
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Rachel Newcomb
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan C Meingasner
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Brittany A Vilona
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan Lupo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Chao-Chieh Lin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC 27710, USA
| | - James V Alvarez
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Tisch N, Ruiz de Almodóvar C. Contribution of cell death signaling to blood vessel formation. Cell Mol Life Sci 2021; 78:3247-3264. [PMID: 33783563 PMCID: PMC8038986 DOI: 10.1007/s00018-020-03738-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.
Collapse
Affiliation(s)
- Nathalie Tisch
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carmen Ruiz de Almodóvar
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
39
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2021; 10:616952. [PMID: 33665167 PMCID: PMC7921719 DOI: 10.3389/fonc.2020.616952] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.
Collapse
Affiliation(s)
- Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mindi Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Della Torre L, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. The Role of Necroptosis: Biological Relevance and Its Involvement in Cancer. Cancers (Basel) 2021; 13:cancers13040684. [PMID: 33567618 PMCID: PMC7914991 DOI: 10.3390/cancers13040684] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary A new form of programmed necrosis called necroptosis has emerged. This new and well-documented type of programmed cell death is involved in several human diseases, including cancer. RIPK1, the main mediator of necroptosis, in response to different stimuli, activates several molecular pathways leading to inflammation, cell survival, or cell death. Targeting necroptosis could be a new strategy for advanced therapies. In this review, we focus on the biological relevance of this type of programmed cell death and its main executor RIPK1 in pathogenesis to find novel potential clinical intervention strategies. Abstract Regulated cell death mechanisms are essential for the maintenance of cellular homeostasis. Evasion of cell death is one of the most important hallmarks of cancer. Necroptosis is a caspase independent form of regulated cell death, investigated as a novel therapeutic strategy to eradicate apoptosis resistant cancer cells. The process can be triggered by a variety of stimuli and is controlled by the activation of RIP kinases family as well as MLKL. The well-studied executor, RIPK1, is able to modulate key cellular events through the interaction with several proteins, acting as strategic crossroads of several molecular pathways. Little evidence is reported about its involvement in tumorigenesis. In this review, we summarize current studies on the biological relevance of necroptosis, its contradictory role in cancer and its function in cell fate control. Targeting necroptosis might be a novel therapeutic intervention strategy in anticancer therapies as a pharmacologically controllable event.
Collapse
Affiliation(s)
- Laura Della Torre
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| | - Joost H. A. Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Vincenzo Carafa
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, Università Degli Studi Della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.T.); (A.N.)
- Correspondence: (J.H.A.M.); (V.C.); (L.A.); Tel.: +31-024-3610525 (J.H.A.M.); +39-0815665682 (V.C.); +39-0815667569 (L.A.)
| |
Collapse
|
42
|
RIPK3 modulates growth factor receptor expression in endothelial cells to support angiogenesis. Angiogenesis 2021; 24:519-531. [PMID: 33449298 DOI: 10.1007/s10456-020-09763-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is a multifunctional intracellular protein that was first recognized as an important component of the necroptosis programmed cell death pathway. RIPK3 is also highly expressed in non-necroptotic murine embryonic endothelial cells (ECs) during vascular development, indicating its potential contribution to angiogenesis. To test this hypothesis, we generated mice lacking endothelial RIPK3 and found non-lethal embryonic and perinatal angiogenesis defects in multiple vascular beds. Our in vitro data indicate that RIPK3 supports angiogenesis by regulating growth factor receptor degradation in ECs. We found that RIPK3 interacted with the membrane trafficking protein myoferlin to sustain expression of vascular endothelial growth factor receptor 2 (VEGFR2) in cultured ECs following vascular endothelial growth factor A (VEGFA) stimulation. Restoration of myoferlin, which was diminished after RIPK3 knockdown, rescued decreased VEGFR2 expression and vascular sprouting in RIPK3-deficient ECs after VEGFA treatment. In addition, we found that RIPK3 modulated expression of genes involved in endothelial identity by inhibiting ERK signaling independently of growth factor receptor turnover. Altogether, our data reveal unexpected non-necroptotic roles for RIPK3 in ECs and evidence that RIPK3 promotes developmental angiogenesis in vivo.
Collapse
|
43
|
Germanova D, Keirsse J, Köhler A, Hastir JF, Demetter P, Delbauve S, Elkrim Y, Verset L, Larbanoix L, Preyat N, Laurent S, Nedospasov S, Donckier V, Van Ginderachter JA, Flamand V. Myeloid tumor necrosis factor and heme oxygenase-1 regulate the progression of colorectal liver metastases during hepatic ischemia-reperfusion. Int J Cancer 2020; 148:1276-1288. [PMID: 33038274 DOI: 10.1002/ijc.33334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
The liver ischemia-reperfusion (IR) injury that occurs consequently to hepatic resection performed in patients with metastases can lead to tumor relapse for not fully understood reasons. We assessed the effects of liver IR on tumor growth and the innate immune response in a mouse model of colorectal (CR) liver metastasis. Mice subjected to liver ischemia 2 days after intrasplenic injection of CR carcinoma cells displayed a higher metastatic load in the liver, correlating with Kupffer cells (KC) death through the activation of receptor-interating protein 3 kinase (RIPK3) and caspase-1 and a recruitment of monocytes. Interestingly, the immunoregulatory mediators, tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) were strongly upregulated in recruited monocytes and were also expressed in the surviving KC following IR. Using TNFflox/flox LysMcre/wt mice, we showed that TNF deficiency in macrophages and monocytes favors tumor progression after IR. The antitumor effect of myeloid cell-derived TNF involved direct tumor cell apoptosis and a reduced expression of immunosuppressive molecules such as transforming growth factor-β, interleukin (IL)-10, inducible nitric oxyde synthase (iNOS), IL-33 and HO-1. Conversely, a monocyte/macrophage-specific deficiency in HO-1 (HO-1flox/flox LysMcre/wt ) or the blockade of HO-1 function led to the control of tumor progression post-liver IR. Importantly, host cell RIPK3 deficiency maintains the KC number upon IR, inhibits the IR-induced innate cell recruitment, increases the TNF level, decreases the HO-1 level and suppresses the tumor outgrowth. In conclusion, tumor recurrence in host undergoing liver IR is associated with the death of antitumoral KC and the recruitment of monocytes endowed with immunosuppressive properties. In both of which HO-1 inhibition would reinforce their antitumoral activity.
Collapse
Affiliation(s)
- Desislava Germanova
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Jiri Keirsse
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Arnaud Köhler
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Jean-François Hastir
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Peter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandrine Delbauve
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| | - Yvon Elkrim
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging, Université de Mons, Belgium
| | - Nicolas Preyat
- Laboratory of Immunobiology, Université Libre de Bruxelles, Belgium
| | - Sophie Laurent
- Center for Microscopy and Molecular Imaging, Université de Mons, Belgium
| | - Sergei Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Vincent Donckier
- Service de Chirurgie, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Véronique Flamand
- Institut d'Immunologie Médicale, Université Libre de Bruxelles, Belgium.,ULB Center for Research in Immunology (U-CRI), Belgium
| |
Collapse
|
44
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
45
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
46
|
Tisch N, Freire-Valls A, Yerbes R, Paredes I, La Porta S, Wang X, Martín-Pérez R, Castro L, Wong WWL, Coultas L, Strilic B, Gröne HJ, Hielscher T, Mogler C, Adams RH, Heiduschka P, Claesson-Welsh L, Mazzone M, López-Rivas A, Schmidt T, Augustin HG, Ruiz de Almodovar C. Caspase-8 modulates physiological and pathological angiogenesis during retina development. J Clin Invest 2020; 129:5092-5107. [PMID: 31454332 DOI: 10.1172/jci122767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/20/2019] [Indexed: 12/29/2022] Open
Abstract
During developmental angiogenesis, blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether, how, cell death signaling molecules contribute to blood vessel formation is still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death-signaling pathway, regulates cell death via both apoptosis and necroptosis. Here, we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal retina angiogenesis. EC-specific Casp-8-KO pups (Casp-8ECKO) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting, and migration independently of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 MAPK downstream of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and destabilization of vascular endothelial cadherin (VE-cadherin) at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR) resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECKO pups. Taking these data together, we show that Casp-8 acts in a cell death-independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.
Collapse
Affiliation(s)
- Nathalie Tisch
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| | - Aida Freire-Valls
- Biochemistry Center.,Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Rosario Yerbes
- Biochemistry Center.,Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla and Universidad Pablo de Olavide, Sevilla, Spain
| | - Isidora Paredes
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| | - Silvia La Porta
- European Center for Angioscience (ECAS).,Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | | | - Rosa Martín-Pérez
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (VIB), Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Wendy Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leigh Coultas
- Development and Cancer Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine and
| | - Peter Heiduschka
- Research Laboratory, Department of Ophthalmology, University Medical Center, University of Münster, Münster, Germany
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Massimiliano Mazzone
- Lab of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (VIB), Leuven, Belgium.,Lab of Tumor Inflammation and Angiogenesis, Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla and Universidad Pablo de Olavide, Sevilla, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Hellmut G Augustin
- European Center for Angioscience (ECAS).,Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Biochemistry Center.,European Center for Angioscience (ECAS).,Institute for Transfusion Medicine and Immunology, Medical Faculty Mannheim, and
| |
Collapse
|
47
|
A necroptotic-independent function of MLKL in regulating endothelial cell adhesion molecule expression. Cell Death Dis 2020; 11:282. [PMID: 32332696 PMCID: PMC7181788 DOI: 10.1038/s41419-020-2483-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023]
Abstract
Mixed-lineage kinase domain-like protein (MLKL) is known as the terminal executor of necroptosis. However, its function outside of necroptosis is still not clear. Herein, we demonstrate that MLKL promotes vascular inflammation by regulating the expression of adhesion molecules ICAM1, VCAM1, and E-selectin in endothelial cells (EC). MLKL deficiency suppresses the expression of these adhesion molecules, thereby reducing EC-leukocyte interaction in vitro and in vivo. Mechanistically, we show that MLKL interacts with RBM6 to promote the mRNA stability of adhesion molecules. In conclusion, this study identified a novel role of MLKL in regulating endothelial adhesion molecule expression and local EC-leukocyte interaction during acute inflammation.
Collapse
|
48
|
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036368. [PMID: 31427374 DOI: 10.1101/cshperspect.a036368] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor-interacting serine threonine kinase 1 (RIPK1) is a widely expressed kinase that is essential for limiting inflammation in both mice and humans. Mice lacking RIPK1 die at birth from multiorgan inflammation and aberrant cell death, whereas humans lacking RIPK1 are immunodeficient and develop very early-onset inflammatory bowel disease. In contrast to complete loss of RIPK1, inhibiting the kinase activity of RIPK1 genetically or pharmacologically prevents cell death and inflammation in several mouse disease models. Indeed, small molecule inhibitors of RIPK1 are in phase I clinical trials for amyotrophic lateral sclerosis, and phase II clinical trials for psoriasis, rheumatoid arthritis, and ulcerative colitis. This review focuses on which signaling pathways use RIPK1, how activation of RIPK1 is regulated, and when activation of RIPK1 appears to be an important driver of inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
49
|
Molecular mechanisms of necroptosis and relevance for neurodegenerative diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 353:31-82. [PMID: 32381178 DOI: 10.1016/bs.ircmb.2019.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Necroptosis is a regulated cell death pathway morphologically similar to necrosis that depends on the kinase activity of receptor interacting protein 3 (RIP3) and the subsequent activation of the pseudokinase mixed lineage kinase domain-like protein (MLKL), being also generally dependent on RIP1 kinase activity. Necroptosis can be recruited during pathological conditions, usually following the activation of death receptors under specific cellular contexts. In this regard, necroptosis has been implicated in the pathogenesis of multiple disorders, including acute and chronic neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, and multiple sclerosis. Here, we summarize the molecular mechanisms regulating the induction of necroptosis and downstream effectors of this form of cell death, besides exploring non-necroptotic roles for necroptosis-related proteins that may impact on alternative cell death pathways and inflammatory mechanisms in disease. Finally, we outline the recent evidence implicating necroptosis in neurodegenerative conditions and the emerging therapeutic perspectives targeting necroptosis in these diseases.
Collapse
|
50
|
RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death Differ 2020; 27:2234-2247. [PMID: 31988496 DOI: 10.1038/s41418-020-0499-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The molecular and genetic basis of tumor recurrence is complex and poorly understood. RIPK3 is a key effector in programmed necrotic cell death and, therefore, its expression is frequently suppressed in primary tumors. In a transcriptome profiling between primary and recurrent breast tumor cells from a murine model of breast cancer recurrence, we found that RIPK3, while absent in primary tumor cells, is dramatically reexpressed in recurrent breast tumor cells by an epigenetic mechanism. Unexpectedly, we found that RIPK3 knockdown in recurrent tumor cells reduced clonogenic growth, causing cytokinesis failure, p53 stabilization, and repressed the activities of YAP/TAZ. These data uncover a surprising role of the pro-necroptotic RIPK3 kinase in enabling productive cell cycle during tumor recurrence. Remarkably, high RIPK3 expression also rendered recurrent tumor cells exquisitely dependent on extracellular cystine and undergo necroptosis upon cystine deprivation. The induction of RIPK3 in recurrent tumors unravels an unexpected mechanism that paradoxically confers on tumors both growth advantage and necrotic vulnerability, providing potential strategies to eradicate recurrent tumors.
Collapse
|