1
|
Mehrabadi S, Izadi FS, Pasha S, Pourali R, Khazaei M, Hassanian SM, Ferns GA, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in the Treatment of Gastrointestinal Cancers. Curr Mol Med 2025; 25:278-288. [PMID: 38243923 DOI: 10.2174/0115665240243076231116080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 01/22/2024]
Abstract
Gastrointestinal (GI) cancer is one the most prevalent types of cancer. Despite current chemotherapy's success, patients with GI cancer continue to have a dismal outcome. The onset and progression of cancer are caused by alterations and the abnormal expression of several families of genes, like tumor-suppressor genes, oncogenes, and chemotherapy-resistant genes. The final purpose of tumor therapy is to inhibit cellular development by modifying mutations and editing the irregular expression of genes It has been reported that CDH1, TP53, KRAS, ARID1A, PTEN, and HLA-B are the commonly mutated genes in GI cancer. Gene editing has become one potential approach for cases with advanced or recurrent CRC, who are nonresponsive to conventional treatments and a variety of driver mutations along with progression cause GI progression. CRISPR/Cas9 technique is a reliable tool to edit the genome and understand the functions of mutations driving GI cancer development. CRISPR/Cas9 can be applied to genome therapy for GI cancers, particularly with reference to molecular-targeted medicines and suppressors. Moreover, it can be used as a therapeutic approach by knocking in/out multiple genes. The use of CRISPR/ Cas9 gene editing method for GI cancer therapy has therefore resulted in some improvements. There are several research works on the role of CRISPR/Cas9 in cancer treatment that are summarized in the following separate sections. Here, the use of CRISPR/Cas9-based genome editing in GI and the use of CRISPR/Cas9 is discussed in terms of Targeting Chemotherapy Resistance-related Genes like; KRAS, TP53, PTEN, and ARID1A.
Collapse
Affiliation(s)
- Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Salmani Izadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Pasha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roozbeh Pourali
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| |
Collapse
|
2
|
Madeswaran A, Tamilazhagan S, Mohan S. In silico evaluation, characterization, and in vitro anticancer activity of curcumin-nimbin loaded nanoformulation in HCT-116 cell lines. BIOTECHNOLOGIA 2024; 105:355-365. [PMID: 39844869 PMCID: PMC11748221 DOI: 10.5114/bta.2024.145256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/20/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Colorectal cancer is one of the most prevalent malignancies worldwide and a leading cause of mortality. Chemotherapy medications are often limited in use due to issues like drug resistance, P-glycoprotein efflux, and relapse of chemotherapy. In this study, we formulated a nanosuspension with curcumin and nimbin to address these limitations and assessed its anticancer potential using in silico molecular docking and in vitro MTT assay. METHODS In silico docking and ADMET analyses targeted proteins implicated in colorectal cancer, with doxorubicin as the standard. The docking studies were conducted using AutoDock 4.2, while in vitro anticancer activity was assessed through the MTT assay in HCT 116 cell lines. RESULTS In silico docking of curcumin and nimbin showed significant interactions with target proteins compared to the standard. ADMET analysis indicated favorable Caco-2 permeability and intestinal absorption of the selected phytoconstituents. The MTT assay demonstrated concentration-dependent cell viability inhibition in HCT 116 cell lines treated with the nanosuspension, with an IC50 value of 30%. CONCLUSION The curcumin-nimbin loaded nanosuspension demonstrated promising anticancer activity against HCT 116 cell lines in both in silico and in vitro studies. Further studies are required to evaluate the anticancer effect of curcumin-nimbin loaded nanosupension through clinical and preclinical studies for the progress of potential formulation in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Arumugam Madeswaran
- Department of Pharmacology, Karpagam College of Pharmacy, affiliated to the Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Selvam Tamilazhagan
- Department of Pharmacology, Karpagam College of Pharmacy, affiliated to the Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Sellappan Mohan
- Department of Pharmacology, Karpagam College of Pharmacy, affiliated to the Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024; 43:1257-1277. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
4
|
Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol 2024; 66:3092-3116. [PMID: 38012525 DOI: 10.1007/s12033-023-00932-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Hazrat-e Rasool General Hospital, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Niyayesh St, Sattar Khan St, Tehran, 1445613131, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
6
|
Ni D, Qi Z, Wang Y, Man Y, Pang J, Tang W, Chen J, Li J, Li G. KLF15-activated MARCH2 boosts cell proliferation and epithelial-mesenchymal transition and presents diagnostic significance for hepatocellular carcinoma. Exp Cell Res 2024; 440:114117. [PMID: 38848952 DOI: 10.1016/j.yexcr.2024.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
PURPOSE Membrane associated ubiquitin ligase MARCH2 majorly involves in inflammation response and protein trafficking. However, its comprehensive role in hepatocellular carcinoma (HCC) is largely unknown. METHODS Firstly, multiple bioinformatic analyses were applied to determine MARCH2 mRNA level, its expression comparison in diverse molecular and immune subtypes, and diagnostic value in HCC. Subsequently, RNA-seq, real-time quantitative PCR, immunohistochemistry and cell proliferation assay are used to explore the epithelial-mesenchymal transition (EMT) and proliferation by gene-silencing or overexpressing in cultured HCC cells or in vivo xenograft. Moreover, dual luciferase reporter assay and immunoblotting are delved into verify the transcription factor that activating MARCH2 promoter. RESULTS Multiple bioinformatic analyses demonstrate that MARCH2 is upregulated in multiple cancer types and exhibits startling diagnostic value as well as distinct molecular and immune subtypes in HCC. RNA-seq analysis reveals MARCH2 may promote EMT, cell proliferation and migration in HepG2 cells. Furthermore, overexpression of MARCH2 triggers EMT and significantly enhances HCC cell migration, proliferation and colony formation in a ligase activity-dependent manner. Additionally, above observations are validated in the HepG2 mice xenografts. For up-stream mechanism, transcription factor KLF15 is highly expressed in HCC and activates MARCH2 expression. CONCLUSION KLF15 activated MARCH2 triggers EMT and serves as a fascinating biomarker for precise diagnosis of HCC. Consequently, MARCH2 emerges as a promising candidate for target therapy in cancer management.
Collapse
Affiliation(s)
- Dongsheng Ni
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Zhaolai Qi
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China
| | - Yuefeng Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Yong Man
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, PR China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, PR China; Graduate School of Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
7
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
Zhuang J, Zhang L, Zhang S, Zhang Z, Xie T, Zhao W, Liu Y. Membrane-associated RING-CH 7 inhibits stem-like capacities of bladder cancer cells by interacting with nucleotide-binding oligomerization domain containing 1. Cell Biosci 2024; 14:32. [PMID: 38462600 PMCID: PMC10926635 DOI: 10.1186/s13578-024-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Cancer stem-like capacities are major factors contributing to unfavorable prognosis. However, the associated molecular mechanisms underlying cancer stem-like cells (CSCs) maintain remain unclear. This study aimed to investigate the role of the ubiquitin E3 ligase membrane-associated RING-CH 7 (MARCH7) in bladder cancer cell CSCs. METHODS Male BALB/c nude mice aged 4-5 weeks were utilized to generate bladder xenograft model. The expression levels of MARCHs were checked in online databases and our collected bladder tumors by quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). Next, we evaluated the stem-like capacities of bladder cancer cells with knockdown or overexpression of MARCH7 by assessing their spheroid-forming ability and spheroid size. Additionally, we conducted proliferation, colony formation, and transwell assays to validate the effects of MARCH7 on bladder cancer CSCs. The detailed molecular mechanism of MARCH7/NOD1 was validated by immunoprecipitation, dual luciferase, and in vitro ubiquitination assays. Co-immunoprecipitation experiments revealed that nucleotide-binding oligomerization domain-containing 1 (NOD1) is a substrate of MARCH7. RESULTS We found that MARCH7 interacts with NOD1, leading to the ubiquitin-proteasome degradation of NOD1. Furthermore, our data suggest that NOD1 significantly enhances stem-like capacities such as proliferation and invasion abilities. The overexpressed MARCH7 counteracts the effects of NOD1 on bladder cancer CSCs in both in vivo and in vitro models. CONCLUSION Our findings indicate that MARCH7 functions as a tumor suppressor and inhibits the stem-like capacities of bladder tumor cells by promoting the ubiquitin-proteasome degradation of NOD1. Targeting the MARCH7/NOD1 pathway could be a promising therapeutic strategy for bladder cancer patients.
Collapse
Affiliation(s)
- Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Urology, Nanjing University, Nanjing, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhongqing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Yantao Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Sahranavard T, Mehrabadi S, Pourali G, Maftooh M, Akbarzade H, Hassanian SM, Mobarhan MG, Ferns GA, Khazaei M, Avan A. The Potential Therapeutic Applications of CRISPR/Cas9 in Colorectal Cancer. Curr Med Chem 2024; 31:5768-5778. [PMID: 37724673 DOI: 10.2174/0929867331666230915103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
The application of the CRISPR-associated nuclease 9 (Cas9) system in tumor studies has led to the discovery of several new treatment strategies for colorectal cancer (CRC), including the recognition of novel target genes, the construction of animal mass models, and the identification of genes related to chemotherapy resistance. CRISPR/Cas9 can be applied to genome therapy for CRC, particularly regarding molecular-targeted medicines and suppressors. This review summarizes some aspects of using CRISPR/- Cas9 in treating CRC. Further in-depth and systematic research is required to fully realize the potential of CRISPR/Cas9 in CRC treatment and integrate it into clinical practice.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
10
|
Du X, Zou R, Du K, Huang D, Miao C, Qiu B, Ding W, Li C. Modeling Colorectal Cancer-Induced Liver Portal Vein Microthrombus on a Hepatic Lobule Chip. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38033197 DOI: 10.1021/acsami.3c14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Colorectal cancer is one of the most common malignant tumors. At the advanced stage of colorectal cancer, cancer cells migrate with the blood to the liver from the hepatic portal vein, eventually resulting in a portal vein tumor thrombus (PVTT). To date, the progression of the early onset of PVTT [portal vein microthrombus (PVmT) induced by tumors] is unclear. Herein, we developed an on-chip PVmT model by loading the spheroid of colorectal cancer cells into the portal vein of a hepatic lobule chip (HLC). On the HLC, the progression of PVmT was presented, and early changes in metabolites of hepatic cells and in structures of hepatic plates and sinusoids induced by PVmT were analyzed. We replicated intrahepatic angiogenesis, thickened blood vessels, an increased number of hepatocytes, disordered hepatic plates, and decreased concentrations of biomarkers of hepatic cell functions in PVmT progression on a microfluidic chip for the first time. In addition, the combined therapy of thermo-ablation and chemo-drug for PVmT was preliminarily demonstrated. This study provides a promising method for understanding PVTT evolution and offers a valuable reference for PVTT therapy.
Collapse
Affiliation(s)
- Xiaofang Du
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rong Zou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Du
- Department of Medical Equipment, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Dabing Huang
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Bensheng Qiu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
11
|
Taha RI, Alghamdi MA, Alshehri Hanan Hassan, Al Qahtani EA, Al-Khater KM, Aldahhan RA, El Nashar EM. Streptozotocin- induced changes in aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands and the possible ameliorative effect of intermittent fasting on these changes. Tissue Cell 2023; 85:102242. [PMID: 39491403 DOI: 10.1016/j.tice.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Salivary glands are highly responsible for maintaining oral tissue homeostasis by secreting saliva. This study was designed to investigate aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands of diabetic rats and the possible ameliorative effect of intermittent fasting on these changes. Fifty adult male rats were divided into control and experimental groups. Experimental diabetes was induced by a single intraperitoneal injection of streptozotocin. After induction of diabetics, the experimental group was divided into two groups (diabetic without intermittent fasting and diabetic with intermittent fasting). The animals were sacrificed two and four weeks after induction of diabetes. Intermittent fasting significantly decreased malondialdehyde and significantly elevated reduced glutathione (GSH) in the submandibular and parotid glands compared to those of diabetic rats. The salivary secretions were also significantly histologically spared in diabetics with intermittent fasting groups. Furthermore, intermittent fasting increased aquaporin 1 in both glands, while aquaporin 4 was only elevated in the submandibular gland. The immunolocalization and gene expression of Lc3-II was higher in the diabetic salivary glands than in the fasting glands. In conclusion, these findings highlight the pathological role of autophagy in diabetic submandibular and parotid glands and provide potential target for the therapeutic role of intermittent fasting to ameliorate the dysfunction of the submandibular and parotid glands in type I diabetes mellitus.
Collapse
Affiliation(s)
- Reham Ismail Taha
- Anatomy and embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalised Medicine Unit, college of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Eman Ali Al Qahtani
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
12
|
Villaman D, Vega A, Santa Maria de la Parra L, León IE, Levín P, Toro PM. Anticancer activity of Ni(II) and Zn(II) complexes based on new unsymmetrical salophen-type ligands: synthesis, characterization and single-crystal X-ray diffraction. Dalton Trans 2023; 52:10855-10868. [PMID: 37486008 DOI: 10.1039/d3dt00800b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The discovery of new coordination compounds with anticancer properties is an active field of research due to the severe side effects of platinum-based compounds currently used in chemotherapy. In the search for new agents for the treatment of cancer, unsymmetrical N2O2-tetradentate ligand (H2L1 and H2L2) and their Ni(II) and Zn(II) asymmetric complexes (NiII-L1-2 and ZnII-L1-2) have been synthesized and fully characterized. 1H NMR studies revealed that the ligands and complexes were stable in mixtures of DMSO : D2O (9 : 1). Complementary UV-Vis studies confirmed that ZnII derivatives also exhibit high stability in mixtures DMSO : buffer (6 : 4) after 24 h. Single-crystal X-ray diffraction studies confirmed the molecular structures of H2L1, H2L2, NiII-L1, and NiII-L2. At the molecular level, complexes were completely planar without significant distortions of the square-planar geometry according to τ4 parameter. Furthermore, the crystalline structures revealed non-classical intermolecular interactions of the C-H⋯O and the Ni⋯Ni type. The ligands and complexes were screened against the human osteosarcoma (MG-63), human colon cancer (HCT-116), breast cancer (MDA-MB-231) cell lines, and non-cancerous cells (L929). H2L1 and H2L2 ligands not caused cytotoxic effects at a concentration of 100 μM, while NiII-L2, ZnII-L1, and ZnII-L2 complexes induce cytotoxic effects in all cell lines. NiII-L2 was a more active complex against MG-63 (3.9 ± 1.5) and HCT-116 (3.4 ± 1.7) cell lines with IC50 values in the low micromolar range. In addition, this compound was 10-, 5-, and 11-fold more potent than cisplatin in MG-63 (39 ± 1.8), HCT-116 (17.2), and MDA-MB-231 (131 ± 18), respectively. Three complexes exhibited great selectivity for tumoral cells with SI values ranging from 1.6 to 7.4.
Collapse
Affiliation(s)
- David Villaman
- Laboratorio de Química Inorgánica y Organometálica, Facultad de Cs. Química, Universidad de Concepción, Chile.
| | - Andrés Vega
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Av. República 498, Santiago, Chile
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata 1900, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina
| | - Pedro Levín
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile
| | - Patricia M Toro
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
13
|
Ichihara M, Takahashi H, Nishida N, Ivan C, Okuzaki D, Yokoyama Y, Ohtsuka M, Miyoshi N, Uemura M, Tanaka S, Calin GA, Mori M, Doki Y, Eguchi H, Yamamoto H. Long noncoding RNA 01534 maintains cancer stemness by downregulating endoplasmic reticulum stress response in colorectal cancer. Ann Gastroenterol Surg 2023; 7:458-470. [PMID: 37152770 PMCID: PMC10154865 DOI: 10.1002/ags3.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Studies have shown that cancer stemness and the endoplasmic reticulum (ER) stress response are inversely regulated in colorectal cancer (CRC), but the mechanism has not been fully clarified. Long noncoding RNAs (lncRNAs) play key roles in cancer progression and metastasis. In this study we investigated lncRNA 01534 (LINC01534) as a possible modulator between cancer stemness and ER stress response. METHODS In vitro experiments using CRC cell lines were performed to explore a possible role of LINC01534. The expression of LINC01534 in clinical CRC samples was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization. RESULTS Silencing LINC01534 led to suppression of cell proliferation, invasiveness, and cell cycle progression at the G2-M phase, and promoted apoptosis. Moreover, we found that silencing LINC01534 suppressed cancer stemness, while it activated the ER stress response, especially through the PERK/eIF2α signaling pathway. In situ hybridization revealed LINC01534 was expressed in tumor cells and upregulated in CRC tissues compared with normal epithelium. A survival survey indicated that high LINC01534 expression was significantly associated with shorter overall survival in 187 CRC patients. CONCLUSION This is the first report on LINC01534 in human cancer. Our findings suggest that LINC01534 may be an important modulator of the maintenance of cancer stemness and suppression of the ER stress response, and that it could be a novel prognostic factor in CRC.
Collapse
Affiliation(s)
- Momoko Ichihara
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Naohiro Nishida
- Department of Medical OncologyOsaka International Cancer InstituteOsakaOsakaJapan
| | - Cristina Ivan
- Department of Experimental TherapeuticsThe University of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Daisuke Okuzaki
- Genome Information Research CentreResearch Institute for Microbial Diseases, Osaka UniversitySuitaOsakaJapan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Masahisa Ohtsuka
- Department of SurgeryKindai University Nara HospitalIkomaNaraJapan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Shinji Tanaka
- Departments of Molecular Oncology, Graduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
| | - George Adrian Calin
- Department of Experimental TherapeuticsThe University of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Masaki Mori
- Tokai University, Graduate School of MedicineIseharaKanagawaJapan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
14
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
15
|
Liu H, Chen B, Liu LL, Cong L, Cheng Y. The role of MARCH9 in colorectal cancer progression. Front Oncol 2022; 12:906897. [PMID: 36185211 PMCID: PMC9523723 DOI: 10.3389/fonc.2022.906897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer with a high global incidence and mortality. Mutated genes or dysregulated pathways responsible for CRC progression have been identified and employed as biomarkers for diagnosis and prognosis. In this study, a ubiquitination regulator, MARCH9, was shown to accelerate CRC progression both in vitro and in vivo. CRC samples from The Cancer Genome Atlas (TCGA) showed significantly upregulated MARCH9 expression by individual cancer stage, histological subtype, and nodal metastasis status. Knockdown of MARCH9 inhibited, while MARCH9 overexpression promoted, CRC cell proliferation and migration. Knockdown of MARCH9 also induced CRC cell apoptosis and caused cell cycle arrest. Further investigation showed that MARCH9 promoted CRC progression by downregulating the expression of a deubiquitinase cylindromatosis (CYLD) gene and activating p65, a member of the nuclear factor-κB (NF-κB) protein family. Finally, in vivo xenograft studies confirmed that MARCH9 knockdown suppressed tumor growth in nude mice. Thus, this study demonstrated that MARCH9 may be a novel and effective therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Biao Chen
- Department of General Surgery, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Lian-Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lin Cong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
- *Correspondence: Lin Cong, ; Yong Cheng,
| |
Collapse
|
16
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
17
|
Huang Y, Huang Z, Tang Z, Chen Y, Huang M, Liu H, Huang W, Ye Q, Jia B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front Cell Dev Biol 2021; 9:740574. [PMID: 34869324 PMCID: PMC8635113 DOI: 10.3389/fcell.2021.740574] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/28/2021] [Indexed: 01/14/2023] Open
Abstract
Traditional cell lines and xenograft models have been widely recognized and used in research. As a new research model, organoids have made significant progress and development in the past 10 years. Compared with traditional models, organoids have more advantages and have been applied in cancer research, genetic diseases, infectious diseases, and regenerative medicine. This review presented the advantages and disadvantages of organoids in physiological development, pathological mechanism, drug screening, and organ transplantation. Further, this review summarized the current situation of vascularization, immune microenvironment, and hydrogel, which are the main influencing factors of organoids, and pointed out the future directions of development.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Huang
- Department of stomatology, Guangdong Provincial Corps Hospital, Chinese People's Armed Police Force, Guangzhou, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.,School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Fu X, Zhao W, Li K, Zhou J, Chen X. Cryptotanshinone Inhibits the Growth of HCT116 Colorectal Cancer Cells Through Endoplasmic Reticulum Stress-Mediated Autophagy. Front Pharmacol 2021; 12:653232. [PMID: 34220498 PMCID: PMC8248532 DOI: 10.3389/fphar.2021.653232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Among cancers, colorectal cancer (CRC) has one of the highest annual incidence and death rates. Considering severe adverse reactions associated with classical chemotherapy medications, traditional Chinese medicines have become potential drug candidates. In the current study, the effects of cryptotanshinone (CPT), a major component of Salvia miltiorrhiza Bunge (Danshen) on CRC and underlying mechanism were explored. First of all, data from in vitro experiments and in vivo zebrafish models indicated that CPT selectively inhibited the growth and proliferation of HCT116 and SW620 cells while had little effect on SW480 cells. Secondly, both ER stress and autophagy were associated with CRC viability regulation. Interestingly, ER stress inhibitor and autophagy inhibitor merely alleviated cytotoxic effects on HCT116 cells in response to CPT stimulation, while have little effect on SW620 cells. The significance of apoptosis, autophagy and ER stress were verified by clinical data from CRC patients. In summary, the current study has revealed the anti-cancer effects of CPT in CRC by activating autophagy signaling mediated by ER stress. CPT is a promising drug candidate for CRC treatment.
Collapse
Affiliation(s)
- Xiaojing Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
19
|
Chathuranga K, Kim TH, Lee H, Park JS, Kim JH, Chathuranga WAG, Ekanayaka P, Choi YJ, Lee CH, Kim CJ, Jung JU, Lee JS. Negative regulation of NEMO signaling by the ubiquitin E3 ligase MARCH2. EMBO J 2020; 39:e105139. [PMID: 32935379 PMCID: PMC7604578 DOI: 10.15252/embj.2020105139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
NF‐κB essential modulator (NEMO) is a key regulatory protein that functions during NF‐κB‐ and interferon‐mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO‐mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K‐48‐linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2−/− mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.
Collapse
Affiliation(s)
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Jun-Seol Park
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | | | - Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
20
|
Saber A, Liu B, Ebrahimi P, Haisma HJ. CRISPR/Cas9 for overcoming drug resistance in solid tumors. Daru 2020; 28:295-304. [PMID: 30666557 PMCID: PMC7214581 DOI: 10.1007/s40199-019-00240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES In this review, we focus on the application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome editing system, in the identification of resistance mechanisms and in overcoming drug resistance in the most frequent solid tumors. DATA ACQUISITION Data were collected by conducting systematic searching of scientific English literature using specific keywords such as "cancer", "CRISPR" and related combinations. RESULTS The review findings revealed the importance of CRISPR/Cas9 system in understanding drug resistance mechanisms and identification of resistance-related genes such as PBRM1, SLFN11 and ATPE1 in different cancers. We also provided an overview of genes, including RSF1, CDK5, and SGOL1, whose disruption can synergize with the currently available drugs such as paclitaxel and sorafenib. CONCLUSION The data suggest CRISPR/Cas9 system as a useful tool in elucidating the molecular basis of drug resistance and improving clinical outcomes. Graphical abstract The mechanisms of CRISPR/Cas9-mediated genome editing and double-strand breaks (DSBs) repair.
Collapse
Affiliation(s)
- Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Pirooz Ebrahimi
- Universal Scientific Education and Research Network, Tehran, Iran
- Parseh Medical Genetics Clinic, Tehran, Iran
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Yu S, Li Y, Liao Z, Wang Z, Wang Z, Li Y, Qian L, Zhao J, Zong H, Kang B, Zou WB, Chen K, He X, Meng Z, Chen Z, Huang S, Wang P. Plasma extracellular vesicle long RNA profiling identifies a diagnostic signature for the detection of pancreatic ductal adenocarcinoma. Gut 2020; 69:540-550. [PMID: 31562239 DOI: 10.1136/gutjnl-2019-318860] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose at resectable stage. Recent studies have suggested that extracellular vesicles (EVs) contain long RNAs. The aim of this study was to develop a diagnostic (d-)signature for the detection of PDAC based on EV long RNA (exLR) profiling. DESIGN We conducted a case-control study with 501 participants, including 284 patients with PDAC, 100 patients with chronic pancreatitis (CP) and 117 healthy subjects. The exLR profile of plasma samples was analysed by exLR sequencing. The d-signature was identified using a support vector machine algorithm and a training cohort (n=188) and was validated using an internal validation cohort (n=135) and an external validation cohort (n=178). RESULTS We developed a d-signature that comprised eight exLRs, including FGA, KRT19, HIST1H2BK, ITIH2, MARCH2, CLDN1, MAL2 and TIMP1, for PDAC detection. The d-signature showed high accuracy, with an area under the receiver operating characteristic curve (AUC) of 0.960, 0.950 and 0.936 in the training, internal validation and external validation cohort, respectively. The d-signature was able to identify resectable stage I/II cancer with an AUC of 0.949 in the combined three cohorts. In addition, the d-signature showed superior performance to carbohydrate antigen 19-9 in distinguishing PDAC from CP (AUC 0.931 vs 0.873, p=0.028). CONCLUSION This study is the first to characterise the plasma exLR profile in PDAC and to report an exLR signature for the detection of pancreatic cancer. This signature may improve the prognosis of patients who would have otherwise missed the curative treatment window.
Collapse
Affiliation(s)
- Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhuan Liao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huajie Zong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of General Surgery, Huashan Hospital, Fudan University, Fudan University, Shanghai, China
| | - Bin Kang
- Fudan University Shanghai Cancer Center - InstitutMerieux Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianghuo He
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China .,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Michaletti A, Mancini M, Smirnov A, Candi E, Melino G, Zolla L. Multi-omics profiling of calcium-induced human keratinocytes differentiation reveals modulation of unfolded protein response signaling pathways. Cell Cycle 2019; 18:2124-2140. [PMID: 31291818 DOI: 10.1080/15384101.2019.1642066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By proteomic, metabolomic and transcriptomic approaches we shed light on the molecular mechanism by which human keratinocytes undergo to terminal differentiation upon in vitro calcium treatment. Proteomic analysis revealed a selective induction of the ribosomal proteins RSSA, an inhibitor of cell proliferation and inducer of differentiation, HSP 60, a protein folding chaperone and GRP78, an unfolding protein response signal. Additionally, we observed an induction of EF1D, a transcription factor for genes that contain heat-shock responsive elements. Conversely, RAD23, a protein involved in regulating ER-associated protein degradation was down-regulated. All these modifications indicated an ER stress response, which in turn activated the unfolded protein response signaling pathway through ATF4, as confirmed both by the modulation of amino acids metabolism genes, such as XBP1, PDI and GPR78, and by the metabolomic analysis. Finally, we detected a reduction of PDI protein, as confirmed by the increase of oxidized glutathione. Metabolome analysis indicated that glycolysis failed to fuel the Krebs cycle, which continued to decrease during differentiation, at glance with the PPP pathway, allowing NADH production and glutathione reduction. Since unfolded protein response is linked to keratinization, these results may be useful for studying pathological mechanisms as well as potential treatments for different pathological conditions. Abbreviation: UPR, unfolded protein response; HEK, human epidermal keratinocytes; HKGS, human keratinocytes growth factor.
Collapse
Affiliation(s)
- Anna Michaletti
- a Department of Ecological and Biological Sciences (DEB), University of Tuscia , Viterbo , Italy
| | - Mara Mancini
- b Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS , Rome , Italy
| | - Artem Smirnov
- c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Eleonora Candi
- b Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS , Rome , Italy.,c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Gerry Melino
- c Department of Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy.,d MRC Toxicology Unit, Cambridge University , Leicester , UK
| | - Lello Zolla
- e Agriculture and Forest Sciences (DAFNE), University of Tuscia , Viterbo , Italy
| |
Collapse
|
23
|
Jiang C, Meng L, Yang B, Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet 2019; 97:73-88. [PMID: 31231788 DOI: 10.1111/cge.13589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
In recent years, gene editing, especially that using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9, has made great progress in the field of gene function. Rapid development of gene editing techniques has contributed to their significance in the field of medicine. Because the CRISPR/Cas9 gene editing tool is not only powerful but also has features such as strong specificity and high efficiency, it can accurately and rapidly screen the whole genome, facilitating the administration of gene therapy for specific diseases. In the field of tumor research, CRISPR/Cas9 can be used to edit genomes to explore the mechanisms of tumor occurrence, development, and metastasis. In these years, this system has been increasingly applied in tumor treatment research. CRISPR/Cas9 can be used to treat tumors by repairing mutations or knocking out specific genes. To date, numerous preliminary studies have been conducted on tumor treatment in related fields. CRISPR/Cas9 holds great promise for gene-level tumor treatment. Personalized and targeted therapy based on CRISPR/Cas9 will possibly shape the development of tumor therapy in the future. In this study, we review the findings of CRISPR/Cas9 for tumor treatment research to provide references for related future studies on the pathogenesis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Chunyang Jiang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Lingxiang Meng
- Department of Anorectal Surgery, Anorectal Surgery Center, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Bingjun Yang
- Department of Thoracic Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xin Luo
- Department of Radiotherapy, The Second Hospital of PingLiang City, Second Affiliated Hospital of Gansu Medical College, PingLiang, People's Republic of China
| |
Collapse
|
24
|
|
25
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
26
|
The Expression of TMEM74 in Liver Cancer and Lung Cancer Correlating With Survival Outcomes. Appl Immunohistochem Mol Morphol 2018; 27:618-625. [PMID: 29629952 DOI: 10.1097/pai.0000000000000659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transmembrane 74 (TMEM74), a transmembrane protein as an autophagy inducer, has been proven to promote tumor cell (including cervical cancer cell line HeLa and hepatic carcinoma cell line HepG2) proliferation by triggering autophagy. To further determine the role of TMEM74 in cancer, we performed immunohistochemical staining on tissue array, and the results showed that TMEM74 exhibited significantly higher expression in several tumor types, especially in hepatocellular carcinoma, lung adenocarcinoma, and squamous carcinoma. Furthermore, higher expression level of TMEM74 in HepG2, A549, and H1299 cell lines were also detected compared with the corresponding normal cell lines, as detected by western blot. Meanwhile, further analysis showed that the levels of TMEM74 expression were closely correlated to survival period of patients-the higher expression of TMEM74 was correlated with shorter survival period. Moreover, the in vitro experiments showed that overexpression of TMEM74 led to accelerated proliferation of A549 and H1299 cells, while knockdown of TMEM74 reversed the outcomes. In conclusion, the results suggested that TMEM74 acts as an oncogene and a potential diagnostic marker and a therapeutic target for liver cancer and lung cancer.
Collapse
|