1
|
Gomes MC, Brokatzky D, Mostowy S. Shigella-trained pro-inflammatory macrophages protect zebrafish from secondary infection. Cell Rep 2025; 44:115601. [PMID: 40266847 DOI: 10.1016/j.celrep.2025.115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Shigella is an important human pathogen that has no licensed vaccine. Despite decades of seminal work suggesting that its pathogenicity relies on inflammatory cell death of macrophages, the in vivo role of macrophages in controlling Shigella infection remains poorly understood. Here, we use a zebrafish model of innate immune training to investigate the antibacterial role of macrophages following a non-lethal Shigella infection. We found that macrophages are crucial for zebrafish larvae survival during secondary Shigella infection. Consistent with signatures of trained immunity, we demonstrate that bacteria are cleared during training and that protection is independent of the secondary infection site. We show that following Shigella training, macrophages have altered mono- and tri-methylation on lysine 4 in histone 3 (H3K4me1/me3) deposition and shift toward a pro-inflammatory state, characterized by increased tumor necrosis factor alpha (TNF-α) expression and antibacterial reactive oxygen species (ROS) production. We conclude that macrophages are epigenetically reprogrammed by Shigella infection to enhance pro-inflammatory and protective responses.
Collapse
Affiliation(s)
- Margarida C Gomes
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Luz RBDS, Paula AGP, Czaikovski AP, Nunes BSF, De Lima JD, Paredes LC, Bastos TSB, Richardson R, Braga TT. Macrophages and cardiac lesion in zebrafish: what can single-cell RNA sequencing reveal? Front Cardiovasc Med 2025; 12:1570582. [PMID: 40290186 PMCID: PMC12022510 DOI: 10.3389/fcvm.2025.1570582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Unlike mammals, zebrafish can regenerate their heart after cardiac insult. There are several ways to perform cardiac injury in zebrafish, but cryoinjury most closely resembles human myocardial infarction (MI). Studies demonstrated that macrophages are essential cells from the beginning to later stages of cardiac injury throughout the regenerative process in zebrafish. These cells have phenotypic plasticity; hence, overly sensitive techniques, such as single-cell RNA sequencing (scRNAseq), are essential for uncovering the phenotype needed for zebrafish cardiac injury regeneration, from inflammatory profile initiation to scar resolution. This technique enables the RNA sequencing of individual cells, thus generating clusters of cells with similar gene expression and allowing the study of a particular cell population. Therefore, in this review, we focused on discussing data obtained by scRNAseq of macrophages in the context of cardiac injury. We found that from 1 to 7 days post-injury (dpi), macrophages are present with inflammatory and reparative functions in either cryoinjury or ventricular resection. At 14 dpi, there were differences between the injury models, especially in the expression profile of inflammatory cytokines, and studies with later time points are needed to understand the gene expression that enrolls the collagen scar resorption dynamic.
Collapse
Affiliation(s)
| | | | | | - Bruno Sime Ferreira Nunes
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| | - Jordana Dinora De Lima
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Rebecca Richardson
- School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Tarcio Teodoro Braga
- Basic Pathology Department, Biological Sciences Sector, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Du L, Zhang X, Huang L, Yang M, Zhang W, Xu J, Liu J, Xie W, Zhang X, Liu K, Zhai W, Wen L, Zhang B, Ye R, Liu L, Wang H, Sun H, Li D. Dual-Action flavonol carbonized polymer dots spray: Accelerating burn wound recovery through immune responses modulation and EMT induction. Mater Today Bio 2025; 31:101572. [PMID: 40034983 PMCID: PMC11872610 DOI: 10.1016/j.mtbio.2025.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
Effective immune homeostasis modulation and re-epithelialization promotion are crucial for accelerating burn wound healing. Cell migration is fundamental to re-epithelialization, with epithelial-mesenchymal transition (EMT) as a key mechanism. A sustained inflammatory environment or impaired macrophage transition to M2 phenotype can hinder pro-resolving cytokine activation, further delaying the recruitment, migration, and re-epithelialization of epidermal cells to the injury site, ultimately compromising wound healing. Herein, the bioactive flavonol quercetin is transformed into pharmacologically active carbonized polymer dots (Qu-CDs) spray with high water dispersibility, permeability and biocompatibility for full-thickness skin burns treatment. Qu-CDs spray can efficiently initiate macrophage reprogramming and promote the transition of macrophages from M1 to M2 phenotype, modulating immune responses and facilitating the shift from the inflammatory phase to re-epithelialization. Additionally, Qu-CDs spray can promote cell migration and re-epithelialization of wound edge epithelial cells by inducing an EMT process without growth factors, further accelerating the reconstruction of the normal epidermal barrier. Mechanistically, Qu-CDs spray activates the smad1/5 signaling pathway for promoting the EMT phenotype of wound edge epithelial cells. Overall, this study facilitates the construction of novel spray dosage form of pharmacologically active carbonized polymer dots with desired bioactivities for effective wound healing.
Collapse
Affiliation(s)
- Liuyi Du
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Xu Zhang
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Soochow University, Suzhou, 215000, PR China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Mingxi Yang
- Orthopedics Central Laboratory, Institute of Translational Medicine, The First Hospital of Jilin University, Jilin University, Changchun, 130021, PR China
| | - Wenbin Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Jiaqi Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Junguang Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Xue Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Wenhao Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Linlin Wen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Rongrong Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| |
Collapse
|
4
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
5
|
Jia L, Zheng H, Feng J, Ding Y, Sun X, Yu Y, Hao X, Wang J, Zhang X, Tian Y, Chen F, Cui J. Upregulation of Protein O-GlcNAcylation Levels Promotes Zebrafish Fin Regeneration. Mol Cell Proteomics 2025; 24:100936. [PMID: 40044042 PMCID: PMC12002929 DOI: 10.1016/j.mcpro.2025.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
As one of the most important posttranslational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects the liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that N-acetylglucosamine (O-GlcNAc) expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of thiamet-G or glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, liquid chromatography-tandem mass spectrometry technology was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as thrombospondin 4 and heparan sulfate proteoglycans, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, extracellular matrix-receptor interaction pathway, tissue remodeling, and so on. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.
Collapse
Affiliation(s)
- Liyuan Jia
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Juantao Feng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yi Ding
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xiaotian Sun
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuan Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Junxiang Wang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xinyu Zhang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuanfeng Tian
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Fulin Chen
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| | - Jihong Cui
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| |
Collapse
|
6
|
Sacchi S, Malagoli D, Franchi N. The Invertebrate Immunocyte: A Complex and Versatile Model for Immunological, Developmental, and Environmental Research. Cells 2024; 13:2106. [PMID: 39768196 PMCID: PMC11674123 DOI: 10.3390/cells13242106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The knowledge of comparative and developmental immunobiology has grown over the years and has been strengthened by the contributions of multi-omics research. High-performance microscopy, flow cytometry, scRNA sequencing, and the increased capacity to handle complex data introduced by machine learning have allowed the uncovering of aspects of great complexity and diversity in invertebrate immunocytes, i.e., immune-related circulating cells, which until a few years ago could only be described in terms of morphology and basic cellular functions, such as phagocytosis or enzymatic activity. Today, invertebrate immunocytes are recognized as sophisticated biological entities, involved in host defense, stress response, wound healing, organ regeneration, but also in numerous functional aspects of organismal life not directly related to host defense, such as embryonic development, metamorphosis, and tissue homeostasis. The multiple functions of immunocytes do not always fit the description of invertebrate organisms as simplified biological systems compared to those represented by vertebrates. However, precisely the increasing complexity revealed by immunocytes makes invertebrate organisms increasingly suitable models for addressing biologically significant and specific questions, while continuing to present the undeniable advantages associated with their ethical and economic sustainability.
Collapse
Affiliation(s)
- Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.S.); (N.F.)
| |
Collapse
|
7
|
Rumford JE, Grieshaber A, Lewiston S, Reed JL, Long SS, Mitchell DM. Forced MyD88 signaling in microglia impacts the production and survival of regenerated retinal neurons. Front Cell Dev Biol 2024; 12:1495586. [PMID: 39633708 PMCID: PMC11614808 DOI: 10.3389/fcell.2024.1495586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Inflammation and microglia appear to be key factors influencing the outcome of retinal regeneration following acute retinal damage. Despite such findings, direct connection of microglia-specific inflammatory factors as drivers of regenerative responses in the retina are still not defined, and intracellular pathways activated to stimulate such signals from microglia are currently unknown. We became interested in MyD88 regulation in microglia because transcriptomic datasets suggest myd88 could be regulated temporally in zebrafish microglia responding to damage in the central nervous system. MyD88 is an intracellular molecular adaptor that initiates signaling cascades downstream of several innate immune receptors, and probably most well-known for inducing gene expression of pro-inflammatory factors. Using zebrafish, which spontaneously regenerate retinal neurons after acute retinal damage, we studied the effects of overactivation of MyD88 signaling in microglia and macrophages on the Müller glia-mediated regenerative response. Our results indicate that increased MyD88 signaling in microglia/macrophages impacts the initial response of Müller glia entering a regenerative response after acute, neurotoxin-induced retinal damage to inner retinal neurons. In addition, increased MyD88 signaling in microglia/macrophages resulted in reduced survival of inner retinal neurons in regenerated retinas. This work supports the idea that temporal control of inflammatory signaling is a key component in the production of MG-derived progenitors yet further indicates that such control is important for differentiation and survival of regenerated neurons.
Collapse
Affiliation(s)
- Jordan E. Rumford
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Ailis Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Samantha Lewiston
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jordan L. Reed
- Department of Computer Science, University of Idaho, Moscow, ID, United States
- Formerly North Idaho College, Coeur d’Alene, ID, United States
| | - Samuel S. Long
- Business and Computer Science Division, Lewis-Clark State College, Lewiston, ID, United States
| | - Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
8
|
Arroyo AB, Tyrkalska SD, Bastida-Martínez E, Monera-Girona AJ, Cantón-Sandoval J, Bernal-Carrión M, García-Moreno D, Elías-Arnanz M, Mulero V. Peds1 deficiency in zebrafish results in myeloid cell apoptosis and exacerbated inflammation. Cell Death Discov 2024; 10:388. [PMID: 39209813 PMCID: PMC11362147 DOI: 10.1038/s41420-024-02141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond that confers unique properties. Recent identification of the gene encoding PEDS1, the desaturase generating the vinyl ether bond, enables evaluation of the role of plasmalogens in health and disease. Here, we report that Peds1-deficient zebrafish larvae display delayed development, increased basal inflammation, normal hematopoietic stem and progenitor cell emergence, and cell-autonomous myeloid cell apoptosis. In a sterile acute inflammation model, Peds1-deficient larvae exhibited impaired inflammation resolution and tissue regeneration, increased interleukin-1β and NF-κB expression, and elevated ROS levels at the wound site. Abnormal immune cell recruitment, neutrophil persistence, and fewer but predominantly pro-inflammatory macrophages were observed. Chronic skin inflammation worsened in Peds1-deficient larvae but was mitigated by exogenous plasmalogen, which also alleviated hyper-susceptibility to bacterial infection, as did pharmacological inhibition of caspase-3 and colony-stimulating factor 3-induced myelopoiesis. Overall, our results highlight an important role for plasmalogens in myeloid cell biology and inflammation.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sylwia D Tyrkalska
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio J Monera-Girona
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer. Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, 30120, Murcia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
9
|
Martínez-López MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech 2024; 17:dmm050693. [PMID: 39114912 PMCID: PMC11554267 DOI: 10.1242/dmm.050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 11/13/2024] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.
Collapse
Affiliation(s)
| | | | - Márcia Fontes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Raquel Valente Mendes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| |
Collapse
|
10
|
Doyle EH, Vaughan HJ, Mariani SA. From drosophila to humans: a journey through macrophage development. Exp Hematol 2024; 136:104272. [PMID: 38972565 DOI: 10.1016/j.exphem.2024.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Macrophages are fascinating immune cells involved in a variety of processes in both health and disease. Although they were first discovered and characterized by their functions as professional phagocytes and antigen-presenting cells, it is now clear that macrophages have multiple roles within embryonic development, tissue homeostasis, regulation of inflammation, and host response to pathogens and tissue insults. Interestingly, macrophages, or macrophage-like cells, exist in a variety of organisms, from echinoderms to humans, and are present also in species that lack an adaptive immune system or hematopoietic stem cells (HSCs). In mammals, macrophages can be generated from bone marrow precursors through a monocyte intermediate, but it is now known that they are also generated during earlier hematopoietic waves in the embryo. Seeding a variety of tissues at different times, macrophages contribute to embryonic organogenesis and tissue homeostasis. Interestingly, in species where embryonic macrophages are generated before HSC specification, they seem to be an important component of the HSC generative microenvironment. There are many excellent reviews reporting the current knowledge on the ontogeny and functions of macrophages in adult tissues. Here, we aim to summarize the current knowledge on the development and functions of embryonic macrophages across the most used animal models, with a special focus on developmental hematopoiesis.
Collapse
Affiliation(s)
- Eva H Doyle
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hollie J Vaughan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Samanta A Mariani
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19:e0304335. [PMID: 38959219 PMCID: PMC11221653 DOI: 10.1371/journal.pone.0304335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.
Collapse
Affiliation(s)
- Iriawati Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Safira Vitasasti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
12
|
Liu L, Zhong Y, Zheng T, Zhao J, Ding S, Lv J, Xu Q, Zhang Y. Epimedin B exerts an anti-inflammatory effect by regulating the MAPK/NF-κB/NOD-like receptor signalling pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109657. [PMID: 38801842 DOI: 10.1016/j.fsi.2024.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Epimedin B (EB), a predominant compound found in Herba Epimedii, has been shown to be effective in the treatment of osteoporosis and peripheral neuropathy. However, the anti-inflammatory effect of EB has not yet been reported. The anti-inflammatory activity of EB was evaluated in a zebrafish inflammation model induced by copper sulfate (CuSO4) and tail cutting. Our findings demonstrated that EB effectively inhibited acute inflammation, mitigated the accumulation of reactive oxygen species (ROS), and ameliorated the neuroinflammation-associated impairment of locomotion in zebrafish. Moreover, EB regulates several genes related to the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB)/Nod-like receptor signalling pathways (mapk8b, src, mmp9, akt1, mapk14a, mapk14b, mapk1, egfra, map3k4, nfκb2, iκbαa, pycard, nlrp3 and caspase1) and inflammatory cytokine (stat6, arg1, irfɑ, stat1ɑ, il-1β, il-4, il-6, il-8, cox-2, ptges, tnf-α and tgf-β). Therefore, our findings indicate that EB could serve as a promising therapeutic candidate for treating inflammation.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yayun Zhong
- School of Pharmacy, Changzhou University, Changzhou, 213164, China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Shumin Ding
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| |
Collapse
|
13
|
Hu D, Li R, Li Y, Wang M, Wang L, Wang S, Cheng H, Zhang Q, Fu C, Qian Z, Wei Q. Inflammation-Targeted Nanomedicines Alleviate Oxidative Stress and Reprogram Macrophages Polarization for Myocardial Infarction Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308910. [PMID: 38582507 DOI: 10.1002/advs.202308910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Myocardial infarction (MI) is a critical global health challenge, with current treatments limited by the complex MI microenvironment, particularly the excessive oxidative stress and intense inflammatory responses that exacerbate cardiac dysfunction and MI progression. Herein, a mannan-based nanomedicine, Que@MOF/Man, is developed to target the inflammatory infarcted heart and deliver the antioxidative and anti-inflammatory agent quercetin (Que), thereby facilitating a beneficial myocardial microenvironment for cardiac repair. The presence of mannan on the nanoparticle surface enables selective internalization by macrophages rather than cardiomyocytes. Que@MOF/Man effectively neutralizes reactive oxygen species in macrophages to reduce oxidative stress and promote their differentiation into a reparative phenotype, reconciling the inflammatory response and enhancing cardiomyocyte survival through intercellular communication. Owing to the recruitment of macrophages into inflamed myocardium post-MI, in vivo, administration of Que@MOF/Man in MI rats revealed the specific distribution into the injured myocardium compared to free Que. Furthermore, Que@MOF/Man exhibited favorable results in resolving inflammation and protecting cardiomyocytes, thereby preventing further myocardial remodeling and improving cardiac function in MI rats. These findings collectively validate the rational design of an inflammation-targeted delivery strategy to mitigate oxidative stress and modulate the inflammation response in the injured heart, presenting a therapeutic avenue for MI treatment.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shiqi Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Hongxin Cheng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qing Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
14
|
Xiao G, Li X, Yang H, Zhang R, Huang J, Tian Y, Nie M, Sun X. mTOR mutation disrupts larval zebrafish tail fin regeneration via regulating proliferation of blastema cells and mitochondrial functions. J Orthop Surg Res 2024; 19:321. [PMID: 38812038 PMCID: PMC11134885 DOI: 10.1186/s13018-024-04802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The larval zebrafish tail fin can completely regenerate in 3 days post amputation. mTOR, the main regulator of cell growth and metabolism, plays an essential role in regeneration. Lots of studies have documented the role of mTOR in regeneration. However, the mechanisms involved are still not fully elucidated. MATERIALS AND RESULTS This study aimed to explore the role and mechanism of mTOR in the regeneration of larval zebrafish tail fins. Initially, the spatial and temporal expression of mTOR signaling in the larval fin was examined, revealing its activation following tail fin amputation. Subsequently, a mTOR knockout (mTOR-KO) zebrafish line was created using CRISPR/Cas9 gene editing technology. The investigation demonstrated that mTOR depletion diminished the proliferative capacity of epithelial and mesenchymal cells during fin regeneration, with no discernible impact on cell apoptosis. Insight from SMART-seq analysis uncovered alterations in the cell cycle, mitochondrial functions and metabolic pathways when mTOR signaling was suppressed during fin regeneration. Furthermore, mTOR was confirmed to enhance mitochondrial functions and Ca2 + activation following fin amputation. These findings suggest a potential role for mTOR in promoting mitochondrial fission to facilitate tail fin regeneration. CONCLUSION In summary, our results demonstrated that mTOR played a key role in larval zebrafish tail fin regeneration, via promoting mitochondrial fission and proliferation of blastema cells.
Collapse
Affiliation(s)
- Gongyi Xiao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, China
| | - Xiangwei Li
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, China
| | - Huiping Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, China
| | - Ruobin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu Tian
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Mao Nie
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, China.
| | - Xianding Sun
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
15
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Joven Araus A, Wang H, Simon A, Yun MH, Del Rio-Tsonis K. Macrophages modulate fibrosis during newt lens regeneration. Stem Cell Res Ther 2024; 15:141. [PMID: 38745238 PMCID: PMC11094960 DOI: 10.1186/s13287-024-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maximina H Yun
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA.
- Center for Visual Sciences at, Miami University, Oxford, OH, USA.
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
16
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
17
|
Araújo BDL, Serantoni Moyses CR, Spadacci-Morena DD, Xavier JG, Lallo MA. White spots amidst the gold: ultrastructural and histological aspects of the chronic inflammatory response of goldfish with ichthyophthiriasis. J Comp Pathol 2024; 211:21-25. [PMID: 38759508 DOI: 10.1016/j.jcpa.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Ichthyophthirius multifiliis, the causative agent of white spot disease, is a ciliated protozoan parasite that infects freshwater fish and induces high mortality. Outbreaks occur both in natural and production sites. The aim of the present study was to describe the lesions caused by chronic infection by I. multifiliis in goldfish (Carassius auratus) from an ornamental fish farm, highlighting important ultrastructural aspects of this protozoan. Damaged skin and gills, collected from fish with white or ulcerative skin lesions, were routinely processed for histological analysis and transmission electron microscopy. The parasitic forms present in the skin were associated with an inflammatory infiltrate consisting of macrophages, lymphocytes and other polymorphonuclear cells. The lesions associated with the presence of the parasite were organized in the form of granulomas, with macrophages in the layers closest to the parasites. A trophont-thickened membrane and induction of granulomatous inflammation were identified in this study as mechanisms for evasion of the immune response. We concluded that the presence of I. multifiliis trophonts resulted in the formation of granulomatous inflammation, whether associated or not with pathogen lysis, suggesting that the parasite can use an inflammatory response to evade the immune response.
Collapse
Affiliation(s)
- Bruno de Lima Araújo
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil.
| | - Carla Renata Serantoni Moyses
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| | | | - José Guilherme Xavier
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| | - Maria Anete Lallo
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| |
Collapse
|
18
|
Peterson EA, Sun J, Chen X, Wang J. Neutrophils facilitate the epicardial regenerative response after zebrafish heart injury. Dev Biol 2024; 508:93-106. [PMID: 38286185 PMCID: PMC10923159 DOI: 10.1016/j.ydbio.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Despite extensive studies on endogenous heart regeneration within the past 20 years, the players involved in initiating early regeneration events are far from clear. Here, we assessed the function of neutrophils, the first-responder cells to tissue damage, during zebrafish heart regeneration. We detected rapid neutrophil mobilization to the injury site after ventricular amputation, peaking at 1-day post-amputation (dpa) and resolving by 3 dpa. Further analyses indicated neutrophil mobilization coincides with peak epicardial cell proliferation, and recruited neutrophils associated with activated, expanding epicardial cells at 1 dpa. Neutrophil depletion inhibited myocardial regeneration and significantly reduced epicardial cell expansion, proliferation, and activation. To explore the molecular mechanism of neutrophils on the epicardial regenerative response, we performed scRNA-seq analysis of 1 dpa neutrophils and identified enrichment of the FGF and MAPK/ERK signaling pathways. Pharmacological inhibition of FGF signaling indicated its' requirement for epicardial expansion, while neutrophil depletion blocked MAPK/ERK signaling activation in epicardial cells. Ligand-receptor analysis indicated the EGF ligand, hbegfa, is released from neutrophils and synergizes with other FGF and MAPK/ERK factors for induction of epicardial regeneration. Altogether, our studies revealed that neutrophils quickly motivate epicardial cells, which later accumulate at the injury site and contribute to heart regeneration.
Collapse
Affiliation(s)
- Elizabeth A Peterson
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jisheng Sun
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xin Chen
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
19
|
Elsaid R, Mikdache A, Castillo KQ, Salloum Y, Diabangouaya P, Gros G, Feijoo CG, Hernández PP. Definitive hematopoiesis is dispensable to sustain erythrocytes and macrophages during zebrafish ontogeny. iScience 2024; 27:108922. [PMID: 38327794 PMCID: PMC10847700 DOI: 10.1016/j.isci.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
In all organisms studied, from flies to humans, blood cells emerge in several sequential waves and from distinct hematopoietic origins. However, the relative contribution of these ontogenetically distinct hematopoietic waves to embryonic blood lineages and to tissue regeneration during development is yet elusive. Here, using a lineage-specific "switch and trace" strategy in the zebrafish embryo, we report that the definitive hematopoietic progeny barely contributes to erythrocytes and macrophages during early development. Lineage tracing further shows that ontogenetically distinct macrophages exhibit differential recruitment to the site of injury based on the developmental stage of the organism. We further demonstrate that primitive macrophages can solely maintain tissue regeneration during early larval developmental stages after selective ablation of definitive macrophages. Our findings highlight that the sequential emergence of hematopoietic waves in embryos ensures the abundance of blood cells required for tissue homeostasis and integrity during development.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Keinis Quintero Castillo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Yazan Salloum
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
20
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
21
|
Hsu WL, Lin YC, Lin MJ, Wang YW, Lee SJ. Macrophages enhance regeneration of lateral line neuromast derived from interneuromast cells through TGF-β in zebrafish. Dev Growth Differ 2024; 66:133-144. [PMID: 38281811 DOI: 10.1111/dgd.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Li S, Wu Y, Peng X, Chen H, Zhang T, Chen H, Yang J, Xie Y, Qi H, Xiang W, Huang B, Zhou S, Hu Y, Tan Q, Du X, Huang J, Zhang R, Li X, Luo F, Jin M, Su N, Luo X, Huang S, Yang P, Yan X, Lian J, Zhu Y, Xiong Y, Xiao G, Liu Y, Shen C, Kuang L, Ni Z, Chen L. A Novel Cargo Delivery System-AnCar-Exo LaIMTS Ameliorates Arthritis via Specifically Targeting Pro-Inflammatory Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306143. [PMID: 38083984 PMCID: PMC10870055 DOI: 10.1002/advs.202306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.
Collapse
|
23
|
Viana Silva M, Valente RS, Annes K, Marsico TV, Oliveira AM, Maiollo BAP, Lopes NJ, Tannura JH, Sudano MJ. Effect of IL-10 and TNF-α on the competence and cryosurvival of in vitro produced Bos indicus embryos. Theriogenology 2024; 215:170-176. [PMID: 38071763 DOI: 10.1016/j.theriogenology.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
In vitro-produced embryos are constantly exposed to stressful conditions that can lead to the activation of the apoptotic pathway. The nuclear Kappa B factor (NF-κB) is an inflammatory mediator that induces the expression of tumor necrosis factor (TNF-α), a pro-inflammatory cytokine, while interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits NF-κB activity. This study aimed to investigate the effects of IL-10 and TNF-α on the competence and cryosurvival of in vitro-produced bovine embryos. Embryos were produced in vitro using standard protocols, and Grade I blastocysts were vitrified using the Cryotop method. Non-vitrified and vitrified blastocysts were subjected to the TUNEL assay. In Experiment I, on day 6.5 (156 h post-insemination), the embryos were treated with PBS (control), 50 ng/mL of IL-10, or a combination of 25 ng/mL of TNF-α and 50 ng/mL of IL-10. Embryonic development and apoptotic rates were monitored. In Experiment II, the same groups were set up, with the addition of a group treated with 25 ng/mL of TNF-α alone. Grade I blastocysts were vitrified 5 h after treatment, and cryosurvival was monitored at until 48 h post-warming. The apoptosis rate and total cell number were investigated in the vitrified-hatched blastocysts. IL-10 alone did not affect developmental competence or cryosurvival (P > 0.05). The IL-10-treated embryos, when exposed in combination with TNF-α, presented a detrimental effect (P < 0.05) in the embryonic development of non-vitrified embryos. However, vitrified blastocysts had no negative effect (P > 0.05). The TNF-α treatment reduced (P < 0.05) the re-expansion rate at 6 h post-warming and increased (P < 0.05) the apoptosis rate in vitrified hatched blastocysts, whereas no effect (P > 0.05) of the treatments was detected in the hatching rate and total cell number post-warming. In conclusion, TNF-α has a detrimental effect on embryonic developmental competence and cryosurvival by compromising the development of non-vitrified embryos and apoptotic-related events of vitrified blastocysts, whereas IL-10, when in combination with TNF-α, appears to attenuate the detrimental effects of TNF-α.
Collapse
Affiliation(s)
- Mara Viana Silva
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Roniele Santana Valente
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Thamiris Vieira Marsico
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil.
| | - Andressa Minozzo Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| | | | | | | | - Mateus José Sudano
- Center of Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, Rod. Washington Luis - Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
24
|
Ollewagen T, Benecke R, Smith C. High species homology potentiates quantitative inflammation profiling in zebrafish using immunofluorescence. Heliyon 2024; 10:e23635. [PMID: 38187273 PMCID: PMC10770569 DOI: 10.1016/j.heliyon.2023.e23635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Due to substantial homology between the human and zebrafish genome and a high level of conservation of the innate immune system across species, zebrafish larvae have become an invaluable research tool for studying inflammation and modelling inflammatory disease. However, further microscopy techniques need to be developed for better profiling of inflammation and in particular, integrated cytokine responses to different stimuli - approaches are currently largely limited to assessment of changes in cytokine gene transcription and in vivo visualisation using transgenics, which is limited in terms of the number of cytokines that may be assessed at once. In this study, after confirming substantial homology of human vs zebrafish cytokine amino acid sequences, immunofluorescence staining using antibodies directed at human cytokines was performed. Inflammatory cytokine signalling responses to experimental tailfin transection was assessed over 24 h (1 hpi (hours post injury), 2 hpi, 4 hpi, 24 hpi) in zebrafish larvae, with experimental end point at 120 h post fertilization (hpf). When immunofluorescence results were compared to responses observed in rodent and human literature, it is clear that the cytokines follow a similar response, albeit with a condensed total time course. Notably, tumor necrosis factor-α and monocyte chemoattractant protein-1 increased and remained elevated over the 24-h period. In contrast, interleukin-1β and interleukin-6 peaked at 4 hpi and 2 hpi respectively but had both returned to baseline levels by 24 hpi. Macrophage migration inhibitory factor was lowest at 1 hpi, potentially encouraging macrophage movement into the site of injury, followed by a sharp increase. This protocol provides valuable insight into inflammation over a time course and more so, provides an affordable and accessible method to comprehensively assess inflammation in zebrafish disease models.
Collapse
Affiliation(s)
| | - R.M. Benecke
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - C. Smith
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
25
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquive EL, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. RESEARCH SQUARE 2023:rs.3.rs-3603645. [PMID: 38045376 PMCID: PMC10690311 DOI: 10.21203/rs.3.rs-3603645/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Methods Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Results Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Conclusions Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maximina H Yun
- Dresden University of Technology: Technische Universitat Dresden
| | | |
Collapse
|
27
|
Chang WC, Chen MJ, Hsiao CD, Hu RZ, Huang YS, Chen YF, Yang TH, Tsai GY, Chou CW, Chen RS, Chuang YJ, Liu YW. The anti-platelet drug cilostazol enhances heart rate and interrenal steroidogenesis and exerts a scant effect on innate immune responses in zebrafish. PLoS One 2023; 18:e0292858. [PMID: 37903128 PMCID: PMC10615288 DOI: 10.1371/journal.pone.0292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 10/01/2023] [Indexed: 11/01/2023] Open
Abstract
RATIONALE Cilostazol, an anti-platelet phosphodiesterase-3 inhibitor used for the treatment of intermittent claudication, is known for its pleiotropic effects on platelets, endothelial cells and smooth muscle cells. However, how cilostazol impacts the endocrine system and the injury-induced inflammatory processes remains unclear. METHODS We used the zebrafish, a simple transparent model that demonstrates rapid development and a strong regenerative ability, to test whether cilostazol influences heart rate, steroidogenesis, and the temporal and dosage effects of cilostazol on innate immune cells during tissue damage and repair. RESULTS While dosages of cilostazol from 10 to 100 μM did not induce any noticeable morphological abnormality in the embryonic and larval zebrafish, the heart rate was increased as measured by ImageJ TSA method. Moreover, adrenal/interrenal steroidogenesis in larval zebrafish, analyzed by whole-mount 3β-Hsd enzymatic activity and cortisol ELISA assays, was significantly enhanced. During embryonic fin amputation and regeneration, cilostazol treatments led to a subtle yet significant effect on reducing the aggregation of Mpx-expressing neutrophil at the lesion site, but did not affect the immediate injury-induced recruitment and retention of Mpeg1-expressing macrophages. CONCLUSIONS Our results indicate that cilostazol has a significant effect on the heart rate and the growth as well as endocrine function of steroidogenic tissue; with a limited effect on the migration of innate immune cells during tissue damage and repair.
Collapse
Affiliation(s)
- Wei-Chun Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Feng Yuan Hospital of the Ministry of Health and Welfare, Taichung, Taiwan
| | - Mei-Jen Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Rong-Ze Hu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yu-Shan Huang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yu-Fu Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Tsai-Hua Yang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Guan-Yi Tsai
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chih-Wei Chou
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ren-Shiang Chen
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Wen Liu
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
28
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Araus AJ, Wang H, Simon A, Yun MH, Rio-Tsonis KD. Macrophages modulate fibrosis during newt lens regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543633. [PMID: 37333184 PMCID: PMC10274724 DOI: 10.1101/2023.06.04.543633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Previous studies indicated that macrophages play a role during lens regeneration in newts, but their function has not been tested experimentally. Here we generated a transgenic newt reporter line in which macrophages can be visualized in vivo. Using this new tool, we analyzed the location of macrophages during lens regeneration. We uncovered early gene expression changes using bulk RNAseq in two newt species, Notophthalmus viridescens and Pleurodeles waltl. Next, we used clodronate liposomes to deplete macrophages, which inhibited lens regeneration in both newt species. Macrophage depletion induced the formation of scar-like tissue, an increased and sustained inflammatory response, an early decrease in iris pigment epithelial cell (iPEC) proliferation and a late increase in apoptosis. Some of these phenotypes persisted for at least 100 days and could be rescued by exogenous FGF2. Re-injury alleviated the effects of macrophage depletion and re-started the regeneration process. Together, our findings highlight the importance of macrophages in facilitating a pro-regenerative environment in the newt eye, helping to resolve fibrosis, modulating the overall inflammatory landscape and maintaining the proper balance of early proliferation and late apoptosis.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Andras Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Maximina H Yun
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
29
|
Tian H, Xing J, Tang X, Sheng X, Chi H, Zhan W. Cytokine networks provide sufficient evidence for the differentiation of CD4 + T cells in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104627. [PMID: 36587713 DOI: 10.1016/j.dci.2022.104627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Cytokines, a class of small molecular proteins with a wide range of biological activities, are secreted mainly by immune cells and function by binding to the corresponding receptors to regulate cell growth, differentiation and effects. CD4+ T cells can be defined into different lineages based on the unique set of signature cytokines and transcription factors, including helper T cells (Th1, Th2, Th17) and regulatory T cells (Treg). In teleost, CD4+ T cells have been identified in a variety of fish species, thought to play roles as Th cells, and shown to be involved in the immune response following specific antigen stimulation. With the update of sequencing technologies, a variety of cytokines and transcription factors capable of characterizing CD4+ T cell subsets also have been described in fish, including hallmark cytokines such as IFN-γ, TNF-α, IL-4, IL-17, IL-10, TGF-β and unique transcription factors such as T-bet, GATA3, RORγt, and Foxp3. Hence, there is increasing evidence that the subpopulation of Th and Treg cells present in mammals may also exist in teleost fish. However, the differentiation, plasticity and precise roles of Th cell subsets in mammals remain controversial. Research on the identification and differentiation of fish Th cells is still in its infancy and requires more significant effort. Here we will review recent research advances in characterizing the differentiation of fish CD4+ T cells by cytokines and transcription factors, mainly including the identification of Th and Treg cell hallmark cytokines and transcription factors, the regulatory role of cytokines on Th cell differentiation, and the function of Th and Treg cells in the immune response. The primary purpose of this review is to deepen our understanding of cytokine networks in characterizing the differentiation of CD4+ T cells in teleost.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
30
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
31
|
de Lima FMR, Abrahão I, Pentagna N, Carneiro K. Gradual specialization of phagocytic ameboid cells may have impaired regenerative capacities in metazoan lineages. Dev Dyn 2023; 252:343-362. [PMID: 36205096 DOI: 10.1002/dvdy.543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Animal regeneration is a fascinating field of research that has captured the attention of many generations of scientists. Among the cellular mechanisms underlying tissue and organ regeneration, we highlight the role of phagocytic ameboid cells (PACs). Beyond their ability to engulf nutritional particles, microbes, and apoptotic cells, their involvement in regeneration has been widely documented. It has been extensively described that, at least in part, animal regenerative mechanisms rely on PACs that serve as a hub for a range of critical physiological functions, both in health and disease. Considering the phylogenetics of PAC evolution, and the loss and gain of nutritional, immunological, and regenerative potential across Metazoa, we aim to discuss when and how phagocytic activity was first co-opted to regenerative tissue repair. We propose that the gradual specialization of PACs during metazoan derivation may have contributed to the loss of regenerative potential in animals, with critical impacts on potential translational strategies for regenerative medicine.
Collapse
Affiliation(s)
- Felipe Matheus Ribeiro de Lima
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Abrahão
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Laboratory of Cellular Proliferation and Differentiation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Developmental Biology, Postgraduate Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Postgraduate Program in Medicine (Pathological Anatomy), Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Zhong D, Jiang H, Zhou C, Ahmed A, Li H, Wei X, Lian Q, Tastemel M, Xin H, Ge M, Zhang C, Jing L. The microbiota regulates hematopoietic stem and progenitor cell development by mediating inflammatory signals in the niche. Cell Rep 2023; 42:112116. [PMID: 36795566 DOI: 10.1016/j.celrep.2023.112116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
The commensal microbiota regulates the self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) in bone marrow. Whether and how the microbiota influences HSPC development during embryogenesis is unclear. Using gnotobiotic zebrafish, we show that the microbiota is necessary for HSPC development and differentiation. Individual bacterial strains differentially affect HSPC formation, independent of their effects on myeloid cells. Early-life dysbiosis in chd8-/- zebrafish impairs HSPC development. Wild-type microbiota promote HSPC development by controlling basal inflammatory cytokine expression in kidney niche, and chd8-/- commensals elicit elevated inflammatory cytokines that reduce HSPCs and enhance myeloid differentiation. We identify an Aeromonas veronii strain with immuno-modulatory activities that fails to induce HSPC development in wild-type fish but selectively inhibits kidney cytokine expression and rebalances HSPC development in chd8-/- zebrafish. Our studies highlight the important roles of a balanced microbiome during early HSPC development that ensure proper establishment of lineal precursor for adult hematopoietic system.
Collapse
Affiliation(s)
- Dan Zhong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China
| | - Haowei Jiang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengzhuo Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abrar Ahmed
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongji Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaona Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyu Lian
- UM-SJTU Joint Institute, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hongyi Xin
- Global Institute of Future Technology, Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Ge
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lili Jing
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China.
| |
Collapse
|
33
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
34
|
George A, Martin P. Wound Healing Insights from Flies and Fish. Cold Spring Harb Perspect Biol 2022; 14:a041217. [PMID: 35817511 PMCID: PMC9620851 DOI: 10.1101/cshperspect.a041217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms from single-cell amoebae through to Homo sapiens have evolved strategies for repairing wounds as an essential homeostatic mechanism for rebuilding their outer barrier layers after damage. In multicellular animals, this outer barrier layer is the skin, and, for more than a century, scientists have been attempting to unravel the mechanisms underpinning skin repair because of its clear clinical relevance to pathologies that range from chronic nonhealing wounds, through to excessive scarring. Most of these studies have been in rabbits and rodents, or in in vitro scratch wound models, but in the last decades, two newcomer model organisms to wound healing studies-flies and fish-have brought genetic tractability and unparalleled opportunities for live imaging to the field. These two models are complementary to one another, and to mouse and in vitro approaches, and thus offer different insights into various aspects of the wound repair process.
Collapse
Affiliation(s)
- Anne George
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Paul Martin
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
35
|
Sipka T, Park SA, Ozbilgic R, Balas L, Durand T, Mikula K, Lutfalla G, Nguyen-Chi M. Macrophages undergo a behavioural switch during wound healing in zebrafish. Free Radic Biol Med 2022; 192:200-212. [PMID: 36162743 DOI: 10.1016/j.freeradbiomed.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
In response to wound signals, macrophages are immediately recruited to the injury where they acquire distinct phenotypes and functions, playing crucial roles both in host defense and healing process. Although macrophage phenotypes have been intensively studied during wound healing, mostly using markers and expression profiles, the impact of the wound environment on macrophage shape and behaviour, and the underlying mechanisms deserve more in-depth investigation. Here, we sought to characterize the dynamics of macrophage recruitment and behaviour during aseptic wounding of the caudal fin fold of the zebrafish larva. Using a photo-conversion approach, we demonstrated that macrophages are recruited to the wounded fin fold as a single wave where they switch their phenotype. Intravital imaging of macrophage shape and trajectories revealed that wound-macrophages display a highly stereotypical set of behaviours and change their shape from amoeboid to elongated shape as wound healing proceeds. Using a pharmacological inhibitor of 15-lipoxygenase and protectin D1, a specialized pro-resolving lipid, we investigated the role of polyunsaturated fatty acid metabolism in macrophage behaviour. While inhibition of 15-lipoxygenase using PD146176 or Nordihydroguaiaretic acid (NDGA) decreases the switch from amoeboid to elongated shape, protectin D1 accelerates macrophage reverse migration and favours elongated morphologies. Altogether, our findings suggest that individual macrophages at the wound switch their phenotype leading to important changes in behaviour and shape to adapt to changing environment, and highlight the crucial role of lipid metabolism in the control of macrophage behaviour plasticity during inflammation in vivo.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Seol Ah Park
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Karol Mikula
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | | |
Collapse
|
36
|
Cao Z, Guo C, Chen G, Liu J, Ni H, Liu F, Xiong G, Liao X, Lu H. Shikonin Inhibits Fin Regeneration in Zebrafish Larvae. Cells 2022; 11:cells11203187. [PMID: 36291055 PMCID: PMC9601185 DOI: 10.3390/cells11203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.
Collapse
Affiliation(s)
- Zigang Cao
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| | | | | | | | | | | | | | | | - Huiqiang Lu
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| |
Collapse
|
37
|
Galili U, Goldufsky JW, Schaer GL. α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment. Int J Mol Sci 2022; 23:ijms231911490. [PMID: 36232789 PMCID: PMC9569695 DOI: 10.3390/ijms231911490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all humans, and it binds the multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) presented on α-gal nanoparticles. In situ binding of anti-Gal to α-gal nanoparticles activates the complement system and generates complement cleavage chemotactic-peptides that rapidly recruit macrophages. Macrophages reaching anti-Gal coated α-gal nanoparticles bind them via Fc/Fc receptor interaction and polarize into M2 pro-reparative macrophages. These macrophages secrete various cytokines that orchestrate regeneration of the injured tissue, including VEGF inducing neo-vascularization and cytokines directing homing of stem-cells to injury sites. Homing of stem-cells is also directed by interaction of complement cleavage peptides with their corresponding receptors on the stem-cells. Application of α-gal nanoparticles to skin wounds of anti-Gal producing mice results in decrease in healing time by half. Furthermore, α-gal nanoparticles treated wounds restore the normal structure of the injured skin without fibrosis or scar formation. Similarly, in a mouse model of occlusion/reperfusion myocardial-infarction, near complete regeneration after intramyocardial injection of α-gal nanoparticles was demonstrated, whereas hearts injected with saline display ~20% fibrosis and scar formation of the left ventricular wall. It is suggested that recruitment of stem-cells following anti-Gal/α-gal nanoparticles interaction in injured tissues may result in induction of localized regeneration facilitated by conducive microenvironments generated by pro-reparative macrophage secretions and “cues” provided by the extracellular matrix in the injury site.
Collapse
|
38
|
Iribarne M, Hyde DR. Different inflammation responses modulate Müller glia proliferation in the acute or chronically damaged zebrafish retina. Front Cell Dev Biol 2022; 10:892271. [PMID: 36120571 PMCID: PMC9472244 DOI: 10.3389/fcell.2022.892271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike mammals, zebrafish regenerate in response to retinal damage. Because microglia are activated by retinal damage, we investigated their role during regeneration following either acute or chronic damage. At three weeks post-fertilization (wpf), both wild-type fish exhibiting NMDA-induced acute ganglion and amacrine cell death and gold rush (gosh) mutant fish possessing chronic cone photoreceptor degeneration displayed reactive microglia/macrophages and Müller glia proliferation. Dexamethasone-treated retinas, to inhibit the immune response, lacked reactive microglia/macrophages and possessed fewer PCNA-positive cells, while LPS treatment increased microglia/macrophages and PCNA-labeled cells. NMDA-injured retinas upregulated expression of il-1β and tnfα pro-inflammatory cytokine genes, followed by increased expression of il-10 and arg1 anti-inflammatory/remodeling cytokine genes. A transient early TNFα pro-inflammatory microglia/macrophage population was visualized in NMDA-damaged retinas. In contrast, gosh mutant retinas exhibited a slight increase of pro-inflammatory cytokine gene expression concurrently with a greater increased anti-inflammatory/remodeling cytokine gene expression. Few TNFα pro-inflammatory microglia/macrophages were observed in the gosh retina. Understanding why acute and chronic damage results in different inflammation profiles and their effects on regulating zebrafish retinal regeneration would provide important clues toward improving therapeutic strategies for repairing injured mammalian tissues.
Collapse
Affiliation(s)
- Maria Iribarne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R. Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: David R. Hyde,
| |
Collapse
|
39
|
Molecular Characterization, Evolution and Expression Analysis of TNFSF14 and Three TNFSF Receptors in Spotted Gar Lepisosteus oculatus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor necrosis superfamily (TNFSF) and their receptors (TNFRs) play an essential role in inflammatory responses. In this study, tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 were identified in spotted gar. All the genes have conserved genomic organization and synteny with their respective homologs in zebrafish and humans. The putative TNFSF protein contains a typical TNF homology domain in the extracellular region. All three TNFRSFs possess characteristic cysteine-rich domains. TNFRSF1a has a death domain in the cytosolic region which is absent in the TNFRSF1b and TNFRSF14. Notably, TNFRSF14 lacks a transmembrane domain and is predicted to be secreted. Protein structure modeling revealed that the key residues involved in the interaction between TNFSF14 and TNFRSF14 are well conserved in spotted gar. All four genes were ubiquitously expressed in the spleen, liver, kidney, gills and intestine. Infection with Klebsiella pneumoniae resulted in remarkable downregulation of tnfsf14 and tnfrsf14 in tissues but upregulation of tnfrsf1a and tnfrsf1b. The results indicate that tnfsf14, tnfrsf1a, tnfrsf1b and tnfrsf14 are involved in the immune response to bacterial infection, and expand knowledge on the TNF system in the primitive ray-finned fish.
Collapse
|
40
|
Lin MJ, Lee CM, Hsu WL, Chen BC, Lee SJ. Macrophages Break Interneuromast Cell Quiescence by Intervening in the Inhibition of Schwann Cells in the Zebrafish Lateral Line. Front Cell Dev Biol 2022; 10:907863. [PMID: 35846366 PMCID: PMC9285731 DOI: 10.3389/fcell.2022.907863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
In the zebrafish lateral line system, interneuromast cells (INCs) between neuromasts are kept quiescent by underlying Schwann cells (SWCs). Upon severe injuries that cause the complete loss of an entire neuromast, INCs can occasionally differentiate into neuromasts but how they escape from the inhibition by SWCs is still unclear. Using a genetic/chemical method to ablate a neuromast precisely, we found that a small portion of larvae can regenerate a new neuromast. However, the residual regeneration capacity was hindered by inhibiting macrophages. Using in toto imaging, we further discovered heterogeneities in macrophage behavior and distribution along the lateral line. We witnessed the crawling of macrophages between the injured lateral line and SWCs during regeneration and between the second primordium and the first mature lateral line during development. It implies that macrophages may physically alleviate the nerve inhibition to break the dormancy of INCs during regeneration and development in the zebrafish lateral line.
Collapse
Affiliation(s)
- Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, R.O.C.
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, R.O.C.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, R.O.C.
- *Correspondence: Shyh-Jye Lee,
| |
Collapse
|
41
|
Bohaud C, Cruz JDL, Terraza C, Barthelaix A, Laplace-Builhé B, Jorgensen C, Arribat Y, Djouad F. Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics 2022; 12:3995-4009. [PMID: 35664055 PMCID: PMC9131269 DOI: 10.7150/thno.65235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, F-34295 France
| | - Yoan Arribat
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
42
|
Arinda BN, Innabi YA, Grasis JA, Oviedo NJ. Non-traditional roles of immune cells in regeneration: an evolutionary perspective. Development 2022; 149:275269. [PMID: 35502784 PMCID: PMC9124569 DOI: 10.1242/dev.199903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Beryl N Arinda
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Yacoub A Innabi
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Juris A Grasis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
43
|
Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Development 2022; 149:272181. [PMID: 34523672 PMCID: PMC8601713 DOI: 10.1242/dev.199636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022]
Abstract
Sustained neutrophilic inflammation is detrimental for cardiac repair and associated with adverse outcomes following myocardial infarction (MI). An attractive therapeutic strategy to treat MI is to reduce or remove infiltrating neutrophils to promote downstream reparative mechanisms. CDK9 inhibitor compounds enhance the resolution of neutrophilic inflammation; however, their effects on cardiac repair/regeneration are unknown. We have devised a cardiac injury model to investigate inflammatory and regenerative responses in larval zebrafish using heartbeat-synchronised light-sheet fluorescence microscopy. We used this model to test two clinically approved CDK9 inhibitors, AT7519 and flavopiridol, examining their effects on neutrophils, macrophages and cardiomyocyte regeneration. We found that AT7519 and flavopiridol resolve neutrophil infiltration by inducing reverse migration from the cardiac lesion. Although continuous exposure to AT7519 or flavopiridol caused adverse phenotypes, transient treatment accelerated neutrophil resolution while avoiding these effects. Transient treatment with AT7519, but not flavopiridol, augmented wound-associated macrophage polarisation, which enhanced macrophage-dependent cardiomyocyte number expansion and the rate of myocardial wound closure. Using cdk9−/− knockout mutants, we showed that AT7519 is a selective CDK9 inhibitor, revealing the potential of such treatments to promote cardiac repair/regeneration. Summary: This study is the first to show that resolving neutrophilic inflammation using a clinically approved immunomodulatory drug (AT7519) improves heart regeneration in zebrafish.
Collapse
Affiliation(s)
- Aryan Kaveh
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Finnius A Bruton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Magdalena E M Oremek
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Carl S Tucker
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | - John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Martin A Denvir
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
44
|
Geurtzen K, López-Delgado AC, Duseja A, Kurzyukova A, Knopf F. Laser-mediated osteoblast ablation triggers a pro-osteogenic inflammatory response regulated by reactive oxygen species and glucocorticoid signaling in zebrafish. Development 2022; 149:275194. [DOI: 10.1242/dev.199803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/22/2022] [Indexed: 12/31/2022]
Abstract
ABSTRACT
In zebrafish, transgenic labeling approaches, robust regenerative responses and excellent in vivo imaging conditions enable precise characterization of immune cell behavior in response to injury. Here, we monitored osteoblast-immune cell interactions in bone, a tissue which is particularly difficult to in vivo image in tetrapod species. Ablation of individual osteoblasts leads to recruitment of neutrophils and macrophages in varying numbers, depending on the extent of the initial insult, and initiates generation of cathepsin K+ osteoclasts from macrophages. Osteoblast ablation triggers the production of pro-inflammatory cytokines and reactive oxygen species, which are needed for successful macrophage recruitment. Excess glucocorticoid signaling as it occurs during the stress response inhibits macrophage recruitment, maximum speed and changes the macrophage phenotype. Although osteoblast loss is compensated for within a day by contribution of committed osteoblasts, macrophages continue to populate the region. Their presence is required for osteoblasts to fill the lesion site. Our model enables visualization of bone repair after microlesions at single-cell resolution and demonstrates a pro-osteogenic function of tissue-resident macrophages in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Alejandra Cristina López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Ankita Duseja
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Department of Oncology and Metabolism, Metabolic Bone Centre, Sorby Wing, Northern General Hospital, Sheffield S5 7AU, UK
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
- Faculty of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany
- Center for Healthy Aging, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
45
|
Nakamura A, Wong YF, Venturato A, Michaut M, Venkateswaran S, Santra M, Gonçalves C, Larsen M, Leuschner M, Kim YH, Brickman J, Bradley M, Grapin-Botton A. Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation. Stem Cell Reports 2022; 17:1215-1228. [PMID: 35452596 PMCID: PMC9133655 DOI: 10.1016/j.stemcr.2022.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
With the aim of producing β cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to β cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to β cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive β cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production. hPSC-derived pancreatic progenitors can be expanded long term without feeders Expansion can be achieved on fibronectin or on a polymer identified by screening Expansion enables increased NKX6-1 expression, which is crucial for β cell generation Expansion potentiates glucose-responsive β-like cells and decreases α cells
Collapse
Affiliation(s)
- Akiko Nakamura
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Yan Fung Wong
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Magali Michaut
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Mithun Santra
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Carla Gonçalves
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Michael Larsen
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Marit Leuschner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Yung Hae Kim
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Joshua Brickman
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; The Paul Langerhans Institute of the Helmholtz Zentrum München at the University Hospital Carl Gustav Carus and The Medical Faculty of TU Dresden (PLID), Dresden, Germany.
| |
Collapse
|
46
|
Le Moigne V, Rodriguez Rincon D, Glatigny S, Dupont CM, Langevin C, Ait Ali Said A, Renshaw SA, Floto RA, Herrmann JL, Bernut A. Roscovitine Worsens Mycobacterium abscessus Infection by Reducing DUOX2-mediated Neutrophil Response. Am J Respir Cell Mol Biol 2022; 66:439-451. [PMID: 35081328 PMCID: PMC8990120 DOI: 10.1165/rcmb.2021-0406oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Persistent neutrophilic inflammation associated with chronic pulmonary infection causes progressive lung injury and, eventually, death in individuals with cystic fibrosis (CF), a genetic disease caused by biallelic mutations in the CF transmembrane conductance regulator (CFTR) gene. Therefore, we examined whether roscovitine, a cyclin-dependent kinase inhibitor that (in other conditions) reduces inflammation while promoting host defense, might provide a beneficial effect in the context of CF. Herein, using CFTR-depleted zebrafish larvae as an innovative vertebrate model of CF immunopathophysiology, combined with murine and human approaches, we sought to determine the effects of roscovitine on innate immune responses to tissue injury and pathogens in the CF condition. We show that roscovitine exerts antiinflammatory and proresolution effects in neutrophilic inflammation induced by infection or tail amputation in zebrafish. Roscovitine reduces overactive epithelial reactive oxygen species (ROS)-mediated neutrophil trafficking by reducing DUOX2/NADPH-oxidase activity and accelerates inflammation resolution by inducing neutrophil apoptosis and reverse migration. It is important to note that, although roscovitine efficiently enhances intracellular bacterial killing of Mycobacterium abscessus in human CF macrophages ex vivo, we found that treatment with roscovitine results in worse infection in mouse and zebrafish models. By interfering with DUOX2/NADPH oxidase-dependent ROS production, roscovitine reduces the number of neutrophils at infection sites and, consequently, compromises granuloma formation and maintenance, favoring extracellular multiplication of M. abscessus and more severe infection. Our findings bring important new understanding of the immune-targeted action of roscovitine and have significant therapeutic implications for safely targeting inflammation in CF.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Daniela Rodriguez Rincon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon Glatigny
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Christian M. Dupont
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, UMR 9004, Montpellier, France
| | - Christelle Langevin
- Inrae, Infectiologie Expérimentale des Rongeurs et des Poissons, UE 0907, Jouy-en-Josas, France
| | - Amel Ait Ali Said
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom; and
| | - Jean-Louis Herrmann
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Hôpital Raymond Poincaré, AP-HP, Groupe Hospitalo-universitaire Paris-Saclay, Garches, France
| | - Audrey Bernut
- Infection et Inflammation, Inserm/UVSQ, UMR 1173, Université Paris-Saclay, Montigny-le-Bretonneux, France
- Department of Infection, Immunity and Cardiovascular Disease, Sheffield Medical School, and
- Firth Court, Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
47
|
Shandilya UK, Lamers K, Zheng Y, Moran N, Karrow NA. Ginsenoside Rb1 selectively improved keratinocyte functions in vitro without affecting tissue regeneration in zebrafish larvae tail regrowth. In Vitro Cell Dev Biol Anim 2022; 58:269-277. [PMID: 35501555 DOI: 10.1007/s11626-022-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kristen Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yashi Zheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicole Moran
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
48
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
49
|
Bohaud C, Johansen MD, Varga B, Contreras-Lopez R, Barthelaix A, Hamela C, Sapède D, Cloitre T, Gergely C, Jorgensen C, Kremer L, Djouad F. Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Front Immunol 2022; 13:838425. [PMID: 35401552 PMCID: PMC8987025 DOI: 10.3389/fimmu.2022.838425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.
Collapse
Affiliation(s)
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Dora Sapède
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- *Correspondence: Farida Djouad,
| |
Collapse
|
50
|
Gence L, Fernezelian D, Bringart M, Veeren B, Christophe A, Brion F, Meilhac O, Bascands JL, Diotel N. Hypericum lanceolatum Lam. Medicinal Plant: Potential Toxicity and Therapeutic Effects Based on a Zebrafish Model. Front Pharmacol 2022; 13:832928. [PMID: 35359845 PMCID: PMC8963451 DOI: 10.3389/fphar.2022.832928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Hypericum lanceolatum Lam. (H. lanceolatum) is a traditional medicinal plant from Reunion Island used for its pleiotropic effects mainly related to its antioxidant activity. The present work aimed to 1) determine the potential toxicity of the plant aqueous extract in vivo and 2) investigate its putative biological properties using several zebrafish models of oxidative stress, regeneration, estrogenicity, neurogenesis and metabolic disorders. First, we characterized the polyphenolic composition by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and identified chlorogenic acid isomers, quercetin and kaempferol derivatives as the major compounds. We then evaluated for the first time the toxicity of an aqueous extract of H. lanceolatum and determined a maximum non-toxic concentration (MNTC) in zebrafish eleutheroembryos from 0 to 96 hpf following OECD (Organization for Economic Cooperation and Development) guidelines. This MNTC test was also determined on hatched eleutheroembryos after 2 days of treatment (from 3 to 5 dpf). In our study, the anti-estrogenic effects of H. lanceolatum are supported by the data from the EASZY assay. In a tail amputation model, we showed that H. lanceolatum at its MNTC displays antioxidant properties, favors immune cell recruitment and tissue regeneration. Our results also highlighted its beneficial effects in metabolic disorders. Indeed, H. lanceolatum efficiently reduces lipid accumulation and body mass index in overfed larva- and adult-models, respectively. In addition, we show that H. lanceolatum did not improve fasting blood glucose levels in a hyperglycemic zebrafish model but surprisingly inhibited neurogenesis impairment observed in diabetic conditions. In conclusion, our study highlights the antioxidant, pro-regenerative, anti-lipid accumulation and pro-neurogenic effects of H. lanceolatum in vivo and supports the use of this traditional medicinal plant as a potential alternative in the prevention and/or treatment of metabolic disorders.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Matthieu Bringart
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Armelle Christophe
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Unité D’Écotoxicologie des Substances et des Milieux (ESMI), Institut National de L’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| | - Nicolas Diotel
- Université de La Réunion, INSERM, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- *Correspondence: Jean-Loup Bascands, ; Nicolas Diotel,
| |
Collapse
|