1
|
Putri PHL, Alamudi SH, Dong X, Fu Y. Extracellular vesicles in age-related diseases: disease pathogenesis, intervention, and biomarker. Stem Cell Res Ther 2025; 16:263. [PMID: 40437603 PMCID: PMC12121224 DOI: 10.1186/s13287-025-04374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Aging is a multifactorial biological process characterized by the irreversible accumulation of molecular damage, leading to an increased risk of age-related diseases. With the global prominent rise in aging populations, elucidating the mechanisms underlying the aging process and developing strategies to combat age-related diseases have become a pressing priority. Extracellular vesicles (EVs) have gained significant attention due to their role in intercellular communication. EVs are known for their ability to deliver biocargoes, such as miRNA, proteins, and lipids, implicating their involvement in disease pathogenesis and intervention. In this review article, we explore the dual role of EVs in age-related diseases: contributing to the pathogenesis of diseases by transferring deleterious molecules, while also offering therapeutic ability by transferring beneficial molecules. We also highlight the application of EVs as biomarkers for early diagnosis of age-related diseases, paving the way for early intervention and precision medicine. Additionally, we discuss how analysing the composition of EVs cargo can provide insights into disease progression. Finally, we address the challenges and future perspectives of EV-based-therapy in clinical translation, including standardization of EVs isolation methods and improving cargo specificity.
Collapse
Affiliation(s)
- Puan Haliza Lintang Putri
- BGI Research, Hangzhou, 310030, China
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16242, Indonesia
| | - Xuan Dong
- BGI Research, Hangzhou, 310030, China
| | - Ying Fu
- BGI Research, Hangzhou, 310030, China.
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Yang YZ, Li JD, Zhang JG, Zhang K, Zhang AR, Li PP, Li QJ, Guo HZ. Mechanism of action and new developments in the study of curcumin in the treatment of osteoarthritis: a narrative review. Inflammopharmacology 2025; 33:929-940. [PMID: 40009345 DOI: 10.1007/s10787-025-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025]
Abstract
Osteoarthritis is a degenerative joint disease that affects the aging population worldwide. It has an underlying inflammatory cause that leads to loss of chondrocytes, reducing the cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential therapeutic agents for osteoarthritis. Curcumin, derived from species of the Curcuma, is an anti-inflammatory compound. The purpose of this review is to summarize the anti-osteoarthritic effects of curcumin from clinical and preclinical studies. Many clinical trials have been conducted to determine curcumin's effectiveness in osteoarthritis patients. Available studies have shown that curcumin prevents chondrocyte apoptosis and inhibits the release of proteoglycans and metalloproteinases as well as the expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. The mechanism of action of curcumin also involves multiple cell signaling pathways, including Nuclear factor kappa-B(NF-κB), Mitogen-activated protein kinase (MAPK), Wnt/β-catenin pathway (Wnt/β-catenin), The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear factor erythroid 2-related factor 2/antioxidant response elements/heme oxygenase-1(Nrf2/ARE/HO-1), and Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathways. Curcumin further reduced the release of inflammatory factors and apoptosis by inhibiting the activation of NF-κB. In addition, curcumin modulates the MAPK, Nrf2/ARE/HO-1, and PI3K/Akt/mTOR signaling pathways and affects cell proliferation and apoptosis processes, a series of effects that together promote the healthy state of chondrocytes. In conclusion, curcumin, as a natural plant compound, exhibits significant anti-inflammatory potential by modulating inflammatory factors associated with articular osteoarthritis through multiple mechanisms. Its protective effects on articular cartilage and synovium make it a promising candidate for the treatment of OA. Future studies should further explore the mechanism of action of curcumin and its optimal dosage and therapeutic regimen in clinical applications, to provide more effective therapeutic options for osteoarthritis patients.
Collapse
Affiliation(s)
- Yong-Ze Yang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - Ji-Dong Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | | | - Kai Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - An-Ren Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, Lanzhou, China
| | - Peng-Peng Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Qing-Jun Li
- Gansu University of Chinese Medicine, Lanzhou, China
| | | |
Collapse
|
3
|
Karim A, Qaisar R, Suresh S, Jagal J, Rawas-Qalaji M. Nanoparticle-delivered quercetin exhibits enhanced efficacy in eliminating iron-overloaded senescent chondrocytes. Nanomedicine (Lond) 2024; 19:2159-2170. [PMID: 39229808 PMCID: PMC11485748 DOI: 10.1080/17435889.2024.2393074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: The therapeutic potential of senolytic drugs in osteoarthritis (OA) is poorly known. Quercetin, a senolytic agent exhibits promising potential to treat OA, having limited bioavailability. We investigated the effects of Quercetin-loaded nanoparticles (Q-NP) with enhanced bioavailability in human chondrocytes mimicking OA phenotype.Materials & methods: The C-20/A4 chondrocytes were exposed to ferric ammonium citrate to induce OA phenotype, followed by treatment with free Quercetin/Q-NP for 24 and 48-h. Q-NP were synthesized by nanoprecipitation method. Following treatment chondrocytes were assessed for drug cellular bioavailability, viability, cell cycle, apoptosis, oxidative stress and expression of key senescence markers.Results: Q-NP exhibited 120.1 ± 1.2 nm particle size, 81 ± 2.4% encapsulation efficiency, increased cellular bioavailability and selective apoptosis of senescent chondrocytes compared with free Quercetin. Q-NP treatment also induced oxidative stress and reduced the expressions of senescence markers, including TRB3, p16, p62 and p21 suggesting their ability to eliminate senescent cells. Last, Q-NP arrested the cell cycle in the sub-G0 phase, potentially creating a beneficial environment for tissue repair.Conclusion: Q-NP propose a promising delivery system for treating OA by eliminating senescent chondrocytes through apoptosis. Furthermore, their enhanced cellular bioavailability and capacity to modify cell cycle and senescent pathways warrant further investigations.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Savitha Suresh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Ossendorff R, Wang S, Kurth S, Jaenisch M, Assaf E, Strauss AC, Bertheloot D, Welle K, Burger C, Wirtz DC, Schildberg FA. TNFα-Induced Inflammation Model-Evaluation of Concentration and Passage-Dependent Effects on Bovine Chondrocytes. Int J Mol Sci 2024; 25:9136. [PMID: 39273085 PMCID: PMC11395278 DOI: 10.3390/ijms25179136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation models are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis. TNFα (tumor necrosis factor alpha) plays an important role in the inflammatory process. Current inflammation models lack uniformity and make comparisons difficult. Therefore, this study aimed to systematically investigate whether the effects of TNFα are concentration-dependent and whether chondrocyte expansion has an effect on the inflammatory model. Bovine chondrocytes were enzymatically isolated, expanded to passages 1-3, and transferred into a 3D pellet culture. Chondrocyte pellets were stimulated with recombinant bovine TNFα at different concentrations for 48 h to induce inflammation. Gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein (COMP)), catabolic (matrix metalloproteinases (MMP3, MMP13)), dedifferentiation (collagen 1) markers, inflammation markers (interleukin-6 (IL-6), nuclear factor kappa B (NFkB), cyclooxygenase-2 (COX), prostaglandin-E-synthase-2 (PTGES2)), and the apoptosis marker caspase 3 was determined. At the protein level, concentrations of IL-6, nitric oxide (NO), and sulfated glycosaminoglycans (GAG) were evaluated. Statistical analysis was performed using the independent t-test, and significance was defined as p < 0.05. In general, TNFα caused a decrease in anabolic markers and an increase in the expression of catabolic and inflammatory markers. There was a concentration-dependent threshold of 10 ng/mL to induce significant inflammatory effects. Most of the markers analyzed showed TNFα concentration-dependent effects (COMP, PRG4, AGN, Col1, MMP3, and NFkB). There was a statistical influence of selected gene expression markers from different passages on the TNFα chondrocyte inflammation model, including Col2, MMP13, IL-6, NFkB, COX2, and PTGES2. Considering the expression of collagen 2 and MMP3, passage 3 chondrocytes showed a higher sensitivity to TNFα stimulation compared to passages 1 and 2. On the other hand, MMP13, IL-6, NFkB, and caspase 3 gene expression were lower in P3 chondrocytes compared to the other passages. On the protein level, inflammatory effects showed a similar pattern, with cytokine effects starting at 10 ng/mL and differences between the passages. TNFα had a detrimental effect on cartilage, with a clear threshold observed at 10 ng/mL. Although TNFα effects showed concentration-dependent patterns, this was not consistent for all markers. The selected passage showed a clear influence, especially on inflammation markers. Further experiments were warranted to explore the effects of TNFα concentration and passage in long-term stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Yang T, Ma H, Lai H, Lu Y, Ni K, Hu X, Zhou Y, Zhou Z, Li W, Fang J, Zhang Y, Chen Z, He D. Nitisinone attenuates cartilage degeneration and subchondral osteoclastogenesis in osteoarthritis and concomitantly inhibits the cGAS/STING/NF-κB pathway. Eur J Pharmacol 2024; 965:176326. [PMID: 38220141 DOI: 10.1016/j.ejphar.2024.176326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage degeneration and subchondral bone remodelling. Currently, conservative treatment strategies cannot effectively alleviate the progression of OA. In this study, we used computer network analysis to show that Nitisinone (NTBC) is closely related to extracellular matrix degradation in OA and mainly interferes with the TNF-α signaling pathway. NTBC is an orphan drug used to treat hereditary type I tyrosinemia by altering phenylalanine/tyrosine metabolic flow. In this study, we found that NTBC effectively reduced chondrocyte inflammation and extracellular matrix degradation induced by TNF-α. Mechanistically, NTBC inhibited the cGAS/STING signaling pathway and reduced activation of the STING-dependent NF-κB pathway to alleviate inflammation. In addition, NTBC inhibited osteoclastogenesis and delayed the occurrence of subchondral bone remodelling. In mice with ACLT-induced osteoarthritis, intra-articular injection of NTBC significantly reduced cartilage degradation and subchondral bone remodelling. NTBC showed impressive therapeutic efficacy as a potential pharmaceutical intervention for the treatment of OA.
Collapse
Affiliation(s)
- Tao Yang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Haiwei Ma
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Hehuan Lai
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Kainan Ni
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Xingyu Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Yang Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Zhiguo Zhou
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Weiqing Li
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Jiawei Fang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Yejin Zhang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000
| | - Zhenzhong Chen
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000.
| | - Dengwei He
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Lishui, Zhejiang, PR China, 323000.
| |
Collapse
|
6
|
Ji Y, Xiong L, Zhang G, Xu M, Qiu W, Xiu C, Kuang G, Rui Y. Synovial fluid exosome-derived miR-182-5p alleviates osteoarthritis by downregulating TNFAIP8 and promoting autophagy through LC3 signaling. Int Immunopharmacol 2023; 125:111177. [PMID: 37948986 DOI: 10.1016/j.intimp.2023.111177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To investigate the role of exosomal miRNAs from synovial fluid (SF) in osteoarthritis (OA) patients and investigate the underlying molecular mechanism. METHODS Degenerated knee tissues were collected from male and female OA patients. Enzyme-linked immunosorbent assay (ELISA) was used to detect the differences in the expression of inflammatory indicators, including TNF-α, IL-6, and IL-10, between the degenerative and injury groups. Exosomes were isolated from SF using the Exoquick kit, and a microarray was used to identify differentially expressed miRNAs (DEmiRNAs), which were analyzed using bioinformatics. The predicted relationship between DEmiRNAs and target genes was verified using a luciferase reporter gene assay. CCK-8 and transwell assays were used to assess cell viability and migration. Immunofluorescence and TUNEL assay were used to detect cell autophagy and apoptosis. The interaction between proteins was detected by immunoprecipitation and verified by Mab rescue assay. RESULTS The relative expression of TNF-α/IL6 was significantly higher in the degeneration group than in the injury group. The OA degeneration group released significantly more and smaller exosomes than the injury group. The expression of miR-182-5p was markedly reduced in OA patients and had a higher correlation with inflammatory indicators. Tumor necrosis factor α-induced protein 8 (TNFAIP8) was a target of miR-182-5p, and its overexpression promoted chondrocyte proliferation, migration, and invasion and enhanced the wound healing efficiency. We also found a direct interaction of TNFAIP8 with autophagy-related gene 3 (ATG3). TNFAIP8 triggered ATG3 LC3-mediated autophagy. CONCLUSION The downregulation of exosomal miR-182-5p inhibits OA degeneration by targeting TNFAIP8 via the ATG/LC3 pathway.
Collapse
Affiliation(s)
- Yunhan Ji
- Suzhou Medical College of Soochow University, Jiangsu, Suzhou 215000, China; Department of Orthopedic, Wuxi 9th Affiliated Hospital of Soochow University, Jiangsu, Wuxi 214062, China; Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Li Xiong
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Gonghao Zhang
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Mingze Xu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Wenjun Qiu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Chaoyang Xiu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Gaixia Kuang
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Yongjun Rui
- Department of Orthopedic, Wuxi 9th Affiliated Hospital of Soochow University, Jiangsu, Wuxi 214062, China.
| |
Collapse
|
7
|
Patnaik R, Jannati S, Sivani BM, Rizzo M, Naidoo N, Banerjee Y. Efficient Generation of Chondrocytes From Bone Marrow-Derived Mesenchymal Stem Cells in a 3D Culture System: Protocol for a Practical Model for Assessing Anti-Inflammatory Therapies. JMIR Res Protoc 2023; 12:e42964. [PMID: 37505889 PMCID: PMC10437129 DOI: 10.2196/42964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chondrocytes are the primary cells responsible for maintaining cartilage integrity and function. Their role in cartilage homeostasis and response to inflammation is crucial for understanding the progression and potential therapeutic interventions for various cartilage-related disorders. Developing an accessible and cost-effective model to generate viable chondrocytes and to assess their response to different bioactive compounds can significantly advance our knowledge of cartilage biology and contribute to the discovery of novel therapeutic approaches. OBJECTIVE We developed a novel, streamlined protocol for generating chondrocytes from bone marrow-derived mesenchymal stem cells (BMSCs) in a 3D culture system that offers significant implications for the study of cartilage biology and the discovery of potential therapeutic interventions for cartilage-related and associated disorders. METHODS We developed a streamlined protocol for generating chondrocytes from BMSCs in a 3D culture system using an "in-tube" culture approach. This simple pellet-based 3D culture system allows for cell aggregation and spheroid formation, facilitating cell-cell and cell-extracellular matrix interactions that better mimic the in vivo cellular environment compared with 2D monolayer cultures. A proinflammatory chondrocyte model was created by treating the chondrocytes with lipopolysaccharide and was subsequently used to evaluate the anti-inflammatory effects of vitamin D, curcumin, and resveratrol. RESULTS The established protocol successfully generated a large quantity of viable chondrocytes, characterized by alcian blue and toluidine blue staining, and demonstrated versatility in assessing the anti-inflammatory effects of various bioactive compounds. The chondrocytes exhibited reduced inflammation, as evidenced by the decreased tumor necrosis factor-α levels, in response to vitamin D, curcumin, and resveratrol treatment. CONCLUSIONS Our novel protocol offers an accessible and cost-effective approach for generating chondrocytes from BMSCs and for evaluating potential therapeutic leads in the context of inflammatory chondrocyte-related diseases. Although our approach has several advantages, further investigation is required to address its limitations, such as the potential differences between chondrocytes generated using our protocol and those derived from other established methods, and to refine the model for broader applicability and clinical translation.
Collapse
Affiliation(s)
- Rajashree Patnaik
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shirin Jannati
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- Department of Molecular Biology, Lund University, Lund, Lund, Sweden
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nerissa Naidoo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
8
|
El-Boghdady NA, El-Hakk SA, Abd-Elmawla MA. The lncRNAs UCA1 and CRNDE target miR-145/TLR4/NF-қB/TNF-α axis in acetic acid-induced ulcerative colitis model: The beneficial role of 3,3-Diindolylmethane. Int Immunopharmacol 2023; 121:110541. [PMID: 37390564 DOI: 10.1016/j.intimp.2023.110541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic disease that alters the colonic and rectal mucosa. The high prevalence rates of UC make it a worldwide healthcare problem. However, its underlying molecular mechanisms remain vague. AIM OF THE STUDY To investigate the molecular mechanisms underlying UC and to study the cross-talk among the regulatory role of the lncRNAs UCA1, CRNDE, and miR-145 on TLR4/NF-κB/TNF-α signaling pathway. Moreover, the study was extended to examine the beneficial effects of 3,3-Diindolylmethane (DIM) on relieving UC. METHODS UC was induced in rats by injecting 2 ml of 4% acetic acid (AA) solution transrectally. After 24 h, rats were treated with either DIM (20 mg/kg) or sulphasalazine (SSZ) (500 mg/kg) orally for 7 days. RESULTS The present study revealed that the gene expression of the lncRNAs UCA1 and CRNDE were significantly upregulated in the AA-induced UC model compared with the control group, whereas miR-145 was significantly downregulated. There was a significant association between the expression of these non-coding RNAs and TLR4/ NF-κB/TNF-α axis as well as malondialdehyde and glutathione levels. Favorably, the DIM-treated group showed significant downregulation of the lncRNAs UCA1 and CRNDE along with upregulated miR-145 compared with the AA-induced UC model. Furthermore, DIM showed remarkable inhibition of the TLR4/ NF-κB /TNF-α cascade compared with non-treated UC rats. CONCLUSIONS The present study is the first to document the interrelated role of the lncRNAs UCA1 and CRNDE in UC via orchestrating miR-145/TLR4/ NF-κB /TNF-α inflammatory cascade. Furthermore, the study demonstrated a new molecular basis for the pleiotropic activities of DIM in relieving UC.
Collapse
Affiliation(s)
- Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Yassin AM, AbuBakr HO, Abdelgalil AI, Farid OA, El-Behairy AM, Gouda EM. Circulating miR-146b and miR-27b are efficient biomarkers for early diagnosis of Equidae osteoarthritis. Sci Rep 2023; 13:7966. [PMID: 37198318 PMCID: PMC10192321 DOI: 10.1038/s41598-023-35207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
One of the most orthopedic problems seen in the equine is osteoarthritis (OA). The present study tracks some biochemical, epigenetic, and transcriptomic factors along different stages of monoiodoacetate (MIA) induced OA in donkeys in serum and synovial fluid. The aim of the study was the detection of sensitive noninvasive early biomarkers. OA was induced by a single intra-articular injection of 25 mg of MIA into the left radiocarpal joint of nine donkeys. Serum and synovial samples were taken at zero-day and different intervals for assessment of total GAGs and CS levels as well as miR-146b, miR-27b, TRAF-6, and COL10A1 gene expression. The results showed that the total GAGs and CS levels increased in different stages of OA. The level of expression of both miR-146b and miR-27b were upregulated as OA progressed and then downregulated at late stages. TRAF-6 gene was upregulated at the late stage while synovial fluid COL10A1 was over-expressed at the early stage of OA and then decreased at the late stages (P < 0.05). In conclusion, both miR-146b and miR-27b together with COL10A1 could be used as promising noninvasive biomarkers for the very early diagnosis of OA.
Collapse
Affiliation(s)
- Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omar A Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Adel M El-Behairy
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
10
|
Meert L, Mertens MGCAM, Meeus M, Vervullens S, Baert I, Beckwée D, Verdonk P, Smeets RJEM. Identification of Metabolic Factors and Inflammatory Markers Predictive of Outcome after Total Knee Arthroplasty in Patients with Knee Osteoarthritis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5796. [PMID: 37239524 PMCID: PMC10218133 DOI: 10.3390/ijerph20105796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To identify metabolic factors and inflammatory markers that are predictive of postoperative total knee arthroplasty (TKA) outcome. METHOD A systematic search of the existing literature was performed using the electronic databases PubMed, Web of Science and Embase until the 1st of August 2022. Studies that evaluated the influence of metabolic or inflammatory markers (I) on postsurgical outcome (O) in end-stage knee osteoarthritis patients awaiting primary TKA (P) were included in this review. RESULTS In total, 49 studies were included. Risk of bias of the included studies was low for one study, moderate for 10 studies and high for the remaining 38 studies. Conflicting evidence was found for the influence of body mass index, diabetes, cytokine levels and dyslipidaemia on pain, function, satisfaction and quality of life at more than six months after TKA. CONCLUSIONS Several limitations such as not taking into account known confounding factors, the use of many different outcome measures and a widely varying follow-up period made it challenging to draw firm conclusions and clinical implications. Therefore large-scaled longitudinal studies assessing the predictive value of metabolic and inflammatory factors pre-surgery in addition to the already evidenced risk factors with follow-up of one year after TKA are warranted.
Collapse
Affiliation(s)
- Lotte Meert
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Pain in Motion, International Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Michel GCAM Mertens
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Pain in Motion, International Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Mira Meeus
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Pain in Motion, International Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Sophie Vervullens
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Pain in Motion, International Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Isabel Baert
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Pain in Motion, International Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - David Beckwée
- Research Group MOVANT, Department of Rehabilitation Sciences and Physiotherapy (REVAKI), University of Antwerp, 2610 Wilrijk, Belgium
- Rehabilitation Research (RERE) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy (KIMA), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Peter Verdonk
- Antwerp Orthopaedic Center, AZ Monica Hospitals, 2018 Antwerp, Belgium
| | - Rob J. E. M. Smeets
- Department of Rehabilitation Medicine, Research School CAPHRI, Maastricht University and CIR Revalidatie, 5628 WB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Katzengruber L, Sander P, Laufer S. MKK4 Inhibitors-Recent Development Status and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087495. [PMID: 37108658 PMCID: PMC10144091 DOI: 10.3390/ijms24087495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase) and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration. Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-associated diseases, offering an alternative to liver transplantation. The recent reports on new inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials, show the importance and interest of MKK4 in drug discovery. In this review, we highlight the significance of MKK4 in cancer development and other diseases, as well as its unique role in liver regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future challenges in the development of MKK4-targeting drugs.
Collapse
Affiliation(s)
- Leon Katzengruber
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Kwok HF, Yamamoto K, de Groot R, Scilabra SD, Santamaria S. Editorial: ADAM, ADAMTS and astacin proteases: Challenges and breakthroughs in the -Omics era-Volume II. Front Mol Biosci 2023; 10:1172288. [PMID: 37091874 PMCID: PMC10119388 DOI: 10.3389/fmolb.2023.1172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, China
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rens de Groot
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, Palermo, Italy
| | - Salvatore Santamaria
- Department of Biochemical Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
13
|
Huang L, Jin M, Gu R, Xiao K, Lu M, Huo X, Sun M, Yang Z, Wang Z, Zhang W, Zhi L, Meng Z, Ma J, Ma J, Zhang R. miR-199a-5p Reduces Chondrocyte Hypertrophy and Attenuates Osteoarthritis Progression via the Indian Hedgehog Signal Pathway. J Clin Med 2023; 12:jcm12041313. [PMID: 36835852 PMCID: PMC9959662 DOI: 10.3390/jcm12041313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Osteoarthritis (OA), the most common type of arthritis, is an age-associated disease, characterized by the progressive degradation of articular cartilage, synovial inflammation, and degeneration of subchondral bone. Chondrocyte proliferation is regulated by the Indian hedgehog (IHH in humans, Ihh in animals) signaling molecule, which regulates hypertrophy and endochondral ossification in the development of the skeletal system. microRNAs (miRNAs, miRs) are a family of about 22-nucleotide endogenous non-coding RNAs, which negatively regulate gene expression. In this study, the expression level of IHH was upregulated in the damaged articular cartilage tissues among OA patients and OA cell cultures, while that of miR-199a-5p was the opposite. Further investigations demonstrated that miR-199a-5p could directly regulate IHH expression and reduce chondrocyte hypertrophy and matrix degradation via the IHH signal pathway in the primary human chondrocytes. The intra-articular injection of synthetic miR-199a-5p agomir attenuated OA symptoms in rats, including the alleviation of articular cartilage destruction, subchondral bone degradation, and synovial inflammation. The miR-199a-5p agomir could also inhibit the Ihh signaling pathway in vivo. This study might help in understanding the role of miR-199a-5p in the pathophysiology and molecular mechanisms of OA and indicate a potential novel therapeutic strategy for OA patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ruiying Gu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Kunlin Xiao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Mengnan Lu
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Xinyu Huo
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Mengyao Sun
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weijie Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Ziang Meng
- Department of Mathematics and Computing Science, Simon Fraser University, Vancouver, BC V6B 5K3, Canada
| | - Jie Ma
- School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710049, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (J.M.); (R.Z.)
| |
Collapse
|
14
|
Stevioside attenuates osteoarthritis via regulating Nrf2/HO-1/NF-κB pathway. J Orthop Translat 2023; 38:190-202. [DOI: 10.1016/j.jot.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
|
15
|
Gu J, Rao W, Huo S, Fan T, Qiu M, Zhu H, Chen D, Sheng X. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis. Front Cell Dev Biol 2022; 10:1092776. [PMID: 36582467 PMCID: PMC9793335 DOI: 10.3389/fcell.2022.1092776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
During the last decade, osteoarthritis (OA) has become one of the most prevalent musculoskeletal diseases worldwide. OA is characterized by progressive loss of articular cartilage, abnormal remodeling of subchondral bone, hyperplasia of synovial cells, and growth of osteophytes, which lead to chronic pain and disability. The pathological mechanisms underlying OA initiation and progression are still poorly understood. Non-coding RNAs (ncRNAs) constitute a large portion of the transcriptome that do not encode proteins but function in numerous biological processes. Cumulating evidence has revealed a strong association between the changes in expression levels of ncRNA and the disease progression of OA. Moreover, loss- and gain-of-function studies utilizing transgenic animal models have demonstrated that ncRNAs exert vital functions in regulating cartilage homeostasis, degeneration, and regeneration, and changes in ncRNA expression can promote or decelerate the progression of OA through distinct molecular mechanisms. Recent studies highlighted the potential of ncRNAs to serve as diagnostic biomarkers, prognostic indicators, and therapeutic targets for OA. MiRNAs and lncRNAs are two major classes of ncRNAs that have been the most widely studied in cartilage tissues. In this review, we focused on miRNAs and lncRNAs and provided a comprehensive understanding of their functional roles as well as molecular mechanisms in cartilage homeostasis and OA pathogenesis.
Collapse
Affiliation(s)
- Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tianyou Fan
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minlei Qiu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haixia Zhu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deta Chen
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Sheng
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Que W, Liu H, Yang Q. CircPRKCH modulates extracellular matrix formation and metabolism by regulating the miR-145/HGF axis in osteoarthritis. Arthritis Res Ther 2022; 24:216. [PMID: 36068644 PMCID: PMC9447342 DOI: 10.1186/s13075-022-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 08/12/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic degenerative joint disease. Extracellular matrix (ECM) degradation is essential for OA progression. Previous studies have shown that circular RNAs (circRNAs) are involved in the pathological process of OA. CircPRKCH has been shown to be upregulated in OA chondrocytes. The present study was aimed to explore the roles of circPRKCH in vivo and in vitro models of OA and its underlying molecular mechanisms. METHODS IL-1β-induced chondrocytes and mice injected with monosodium iodoacetate were used as OA models in vitro and in vivo, respectively. RT-qPCR was performed to measure the expression of circPRKCH, miR-145, and HGF in cartilage tissues and chondrocytes. The interaction between miR-145 and circPRKCH or HGF was verified by a dual-luciferase reporter assay. Chondrocyte apoptosis, viability, and ECM-related proteins were examined by flow cytometry, MTT assay, and Western blotting, respectively. Histopathological changes were detected by HE and Safranin O-fast green staining. RESULTS The expression of circPRKCH and HGF was increased in OA cartilage tissues and IL-1β-treated chondrocytes, while miR-145 expression was decreased. IL-1β induced chondrocyte apoptosis and ECM degradation in chondrocytes. Moreover, circPRKCH promoted HGF expression and activated HGF/c-MET by directly binding to miR-145. miR-145 knockdown or HGF overexpression significantly reversed circPRKCH knockdown-mediated inhibition of apoptosis and ECM degradation in IL-1β-induced chondrocytes. Besides, miR-145 overexpression alleviated IL-1β-induced chondrocyte apoptosis and ECM degradation by inhibiting HGF/c-MET. Finally, circPRKCH knockdown reduced ECM degradation by regulating the miR-145/HGF axis in an experimental OA model in mice. CONCLUSION Our study demonstrated that circPRKCH promoted chondrocyte apoptosis and ECM degradation via the miR-145/HGF axis in OA, which may provide a novel target for OA treatment.
Collapse
Affiliation(s)
- Wenzhong Que
- Department of Rheumatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Taijiang District, Fuzhou, 350000, Fujian Province, China.
| | - Huili Liu
- Department of Medical Technology, Zhangzhou Health Vocational College, Zhangzhou, 363000, Fujian Province, China
| | - Qinqin Yang
- College of Pharmacy, Fujian Medical University, Fuzhou, 350005, Fujian Province, China
| |
Collapse
|
17
|
Xiao F, Wang C, Peng J, Zhou X, Ma D, Wang Y, Li Y, Chen X, Wang C. Changes in Small Noncoding RNA Expression during Chondrocyte Senescence. Cartilage 2022; 13:19476035221118165. [PMID: 35993268 PMCID: PMC9403477 DOI: 10.1177/19476035221118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by the chronic and progressive deterioration of articular cartilage. Chondrocyte senescence could lead to a shift in the balance between extracellular matrix (ECM) component synthesis and degradation. Small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), P-element-induced wimpy testis-(PIWI-) interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), and repeat-associated siRNAs (rasiRNAs), are a class of important epigenetic molecules. We aimed to gain insights into the changes and roles of sncRNA in chondrocyte senescence. DESIGN Healthy mouse postnatal chondrocytes were isolated, and a replicative aging model was constructed. We used small RNA sequencing (small RNA-seq) to generate extensive small RNA data. We identified differentially expressed sncRNAs and performed tissue-specific analysis using real-time quantitative polymerase chain reaction (qRT-PCR). β-galactosidase staining was used to detect chondrocyte senescence. The results showed that the expression profiles of sncRNA in passage 5 chondrocytes were significantly different from those in passage 0 chondrocytes. The expression of sncRNA was tissue specific. We found that 40 miRNAs were upregulated and 70 miRNAs were downregulated during chondrocyte senescence, and that miR-132-5p expression inhibition prevented chondrocyte senescence. We found that 8 piRNAs were upregulated and 17 piRNAs were downregulated during chondrocyte senescence, and that piRNA piR_025576 overexpression delayed chondrocyte senescence. We found that 24 snoRNAs were upregulated and 28 snoRNAs were downregulated during chondrocyte senescence, and that snoRNA ENSMUSG00000087935 overexpression delayed chondrocyte senescence. We found that 5 snRNAs were upregulated and 6 snRNAs were downregulated during chondrocyte senescence, and that snRNA ENSMUSG00000064682 overexpression delayed chondrocyte senescence. We found that 1 rasiRNA was upregulated and 4 rasiRNAs were downregulated during chondrocyte senescence. CONCLUSIONS These findings might provide novel insights into OA pathogenesis and contribute to the development of candidates for targeted therapeutics in OA.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Xing Zhou
- Guangxi Collaborative Innovation Center
for Biomedicine, Guangxi Medical University, Nanning, China
| | - Ding Ma
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong
Hospital, Shanghai, China
| | - Yanpeng Li
- Department of Spine Surgery, Affiliated
Hospital of Jining Medical University, Jining, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery,
Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China,Xiaodong Chen, Department of Orthopedic
Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of
Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
18
|
Li T, Peng J, Li Q, Shu Y, Zhu P, Hao L. The Mechanism and Role of ADAMTS Protein Family in Osteoarthritis. Biomolecules 2022; 12:959. [PMID: 35883515 PMCID: PMC9313267 DOI: 10.3390/biom12070959] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Osteoarthritis (OA) is a principal cause of aches and disability worldwide. It is characterized by the inflammation of the bone leading to degeneration and loss of cartilage function. Factors, including diet, age, and obesity, impact and/or lead to osteoarthritis. In the past few years, OA has received considerable scholarly attention owing to its increasing prevalence, resulting in a cumbersome burden. At present, most of the interventions only relieve short-term symptoms, and some treatments and drugs can aggravate the disease in the long run. There is a pressing need to address the safety problems due to osteoarthritis. A disintegrin-like and metalloprotease domain with thrombospondin type 1 repeats (ADAMTS) metalloproteinase is a kind of secretory zinc endopeptidase, comprising 19 kinds of zinc endopeptidases. ADAMTS has been implicated in several human diseases, including OA. For example, aggrecanases, ADAMTS-4 and ADAMTS-5, participate in the cleavage of aggrecan in the extracellular matrix (ECM); ADAMTS-7 and ADAMTS-12 participate in the fission of Cartilage Oligomeric Matrix Protein (COMP) into COMP lyase, and ADAMTS-2, ADAMTS-3, and ADAMTS-14 promote the formation of collagen fibers. In this article, we principally review the role of ADAMTS metalloproteinases in osteoarthritis. From three different dimensions, we explain how ADAMTS participates in all the following aspects of osteoarthritis: ECM, cartilage degeneration, and synovial inflammation. Thus, ADAMTS may be a potential therapeutic target in osteoarthritis, and this article may render a theoretical basis for the study of new therapeutic methods for osteoarthritis.
Collapse
Affiliation(s)
- Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330000, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330000, China; (T.L.); (J.P.); (Q.L.); (Y.S.); (P.Z.)
| |
Collapse
|
19
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
20
|
Fan R, Cheng Y, Wang R, Zhang T, Zhang H, Li J, Song S, Zheng A. Thermosensitive Hydrogels and Advances in Their Application in Disease Therapy. Polymers (Basel) 2022; 14:polym14122379. [PMID: 35745954 PMCID: PMC9227257 DOI: 10.3390/polym14122379] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Thermosensitive hydrogels, having unique sol–gel transition properties, have recently received special research attention. These hydrogels exhibit a phase transition near body temperature. This feature is the key to their applications in human medicine. In addition, hydrogels can quickly gel at the application site with simple temperature stimulation and without additional organic solvents, cross-linking agents, or external equipment, and the loaded drugs can be retained locally to improve the local drug concentration and avoid unexpected toxicity or side effects caused by systemic administration. All of these features have led to thermosensitive hydrogels being some of the most promising and practical drug delivery systems. In this paper, we review thermosensitive hydrogel materials with biomedical application potential, including natural and synthetic materials. We describe their structural characteristics and gelation mechanism and briefly summarize the mechanism of drug release from thermosensitive hydrogels. Our focus in this review was to summarize the application of thermosensitive hydrogels in disease treatment, including the postoperative recurrence of tumors, the delivery of vaccines, the prevention of postoperative adhesions, the treatment of nervous system diseases via nasal brain targeting, wound healing, and osteoarthritis treatment.
Collapse
Affiliation(s)
- Ranran Fan
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
| | - Yi Cheng
- College of Pharmacy, Yanbian University, Jilin 133002, China;
| | - Rongrong Wang
- School of Pharmacy, North China University of Science and Technology, Hebei 063210, China;
| | - Ting Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Anhui 233030, China;
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Shenghan Song
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Correspondence: (H.Z.); (J.L.); (S.S.)
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
| |
Collapse
|
21
|
Wang B, Zhong JL, Jiang N, Shang J, Wu B, Chen YF, Lu HD. Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue. Comb Chem High Throughput Screen 2022; 25:53-63. [PMID: 33292128 DOI: 10.2174/1386207323666201207100905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA. METHODS The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA. RESULTS We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA. CONCLUSION In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jun-Long Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Ning Jiang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Jie Shang
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Biao Wu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Yu-Feng Chen
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong,China
| |
Collapse
|
22
|
Kwon DG, Kim MK, Jeon YS, Nam YC, Park JS, Ryu DJ. State of the Art: The Immunomodulatory Role of MSCs for Osteoarthritis. Int J Mol Sci 2022; 23:1618. [PMID: 35163541 PMCID: PMC8835711 DOI: 10.3390/ijms23031618] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton's jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, 22332 Inhang-ro 27, Jung-gu, Incheon 22332, Korea; (D.G.K.); (M.K.K.); (Y.S.J.); (Y.C.N.); (J.S.P.)
| |
Collapse
|
23
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
24
|
Deng J, Zong Z, Su Z, Chen H, Huang J, Niu Y, Zhong H, Wei B. Recent Advances in Pharmacological Intervention of Osteoarthritis: A Biological Aspect. Front Pharmacol 2021; 12:772678. [PMID: 34887766 PMCID: PMC8649959 DOI: 10.3389/fphar.2021.772678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the musculoskeletal system with a relatively high incidence and disability rate in the elderly. It is characterized by the degradation of articular cartilage, inflammation of the synovial membrane, and abnormal structure in the periarticular and subchondral bones. Although progress has been made in uncovering the molecular mechanism, the etiology of OA is still complicated and unclear. Nevertheless, there is no treatment method that can effectively prevent or reverse the deterioration of cartilage and bone structure. In recent years, in the field of pharmacology, research focus has shifted to disease prevention and early treatment rather than disease modification in OA. Biologic agents become more and more attractive as their direct or indirect intervention effects on the initiation or development of OA. In this review, we will discuss a wide spectrum of biologic agents ranging from DNA, noncoding RNA, exosome, platelet-rich plasma (PRP), to protein. We searched for key words such as OA, DNA, gene, RNA, exosome, PRP, protein, and so on. From the pharmacological aspect, stem cell therapy is a very special technique, which is not included in this review. The literatures ranging from January 2016 to August 2021 were included and summarized. In this review, we aim to help readers have a complete and precise understanding of the current pharmacological research progress in the intervention of OA from the biological aspect and provide an indication for the future translational studies.
Collapse
Affiliation(s)
- Jinxia Deng
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhixian Zong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Zhanpeng Su
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haicong Chen
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- College of Dentistry, Yonsei University, Seoul, South Korea.,Department of Stomatology, Guangdong Medical University, Zhanjiang, China
| | - Yanru Niu
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Huan Zhong
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
25
|
Da-wa ZX, Jun M, Chao-Zheng L, Sen-Lin Y, Chuan L, De-chun L, Zu-Nan D, Hong-tao Z, Shu-qing W, Xian-wei P, Wenbo L, Ke-wen L. Exosomes Derived from M2 Macrophages Exert a Therapeutic Effect via Inhibition of the PI3K/AKT/mTOR Pathway in Rats with Knee Osteoarthritic. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7218067. [PMID: 34926690 PMCID: PMC8683166 DOI: 10.1155/2021/7218067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
Macrophages are commonly classified as M1 macrophages or M2 macrophages. M2 macrophages are obtained by stimulation of IL-4 with anti-inflammatory and tissue repair effects. Exosomes are 30-150 nm lipid bilayer membrane vesicles derived from most living cells and have a variety of biological functions. Previous studies have shown that macrophage exosomes can influence the course of some autoimmune diseases, but their effect on knee osteoarthritis (KOA) has not been reported. Here, we analyze the roles of exosomes derived from M2 macrophage phenotypes in KOA rats. Exosomes were isolated from the supernatant of M2 macrophages and identified via transmission electron microscopy (TEM), Western blotting, and DLS. The results showed that M2 macrophage exosomes significantly attenuated the inflammatory response and pathological damage of articular cartilage in KOA rats. In addition, a key protein associated with KOA including Aggrecan, Col-10, SOX6, and Runx2 was significantly increased, while MMP-13 was significantly suppressed following treatment with M2 macrophage exosomes. The present study indicated that M2 macrophage exosomes exerted protective effects on KOA rats mainly mediated by the PI3K/AKT/mTOR signal pathway. These findings provide a novel approach for the treatment of KOA.
Collapse
Affiliation(s)
- Zha Xi Da-wa
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Ma Jun
- Qinghai University Affiliated Hospital, Department of Spine Surgery, China
| | - Liu Chao-Zheng
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Yang Sen-Lin
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Lu Chuan
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Li De-chun
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | | | - Zhao Hong-tao
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Wei Shu-qing
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| | - Pei Xian-wei
- Suzhou Municipal Hospital of Anhui Province, Department of Orthopedics, China
| | - Liu Wenbo
- Translational Research Institute of Intensive Care Medicine, School of Anesthesiology, Weifang Medical University, China
| | - Li Ke-wen
- Qinghai University Affiliated Hospital, Department of Joint Surgery, China
| |
Collapse
|
26
|
Zeng J, Zhang Z, Liao Q, Lu Q, Liu J, Yuan L, Liu G. CircPan3 Promotes the Ghrelin System and Chondrocyte Autophagy by Sponging miR-667-5p During Rat Osteoarthritis Pathogenesis. Front Cell Dev Biol 2021; 9:719898. [PMID: 34869311 PMCID: PMC8640465 DOI: 10.3389/fcell.2021.719898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the potential roles of circRNAs in regulating osteoarthritis (OA)-related ghrelin synthesis, autophagy induction, and the relevant molecular mechanisms. Results showed that Col2a1, Acan, ghrelin, and autophagy-related markers expression were downregulated, while matrix metalloproteinase 13 (MMP13) and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) expressions increased in both IL-1β-induced rat chondrocytes and cartilage tissues of OA rats. A total of 130 circRNAs and 731 mRNAs were differentially expressed in IL-1β-induced rat chondrocytes. Among them, we found that circPan3 expression was significantly decreased in both cellular and animal OA models. CircPan3 directly targeted miR-667-5p. CircPan3 overexpression promoted Col2a1, Acan, ghrelin, beclin 1, and LC3-II expression but reduced MMP13 and ADAMTS5 expression in rat chondrocytes, whereas overexpression of miR-667-5p exhibited opposite effects on the above markers. Furthermore, we found that miR-667-5p bound directly to the 3′-UTR sequence of ghrelin gene. Moreover, the circPan3-induced alterations in chondrocytes were antagonized by miR-667-5p overexpression. Taken together, our findings demonstrate that circPan3 promotes ghrelin synthesis and chondrocyte autophagy via targeting miR-667-5p, protecting against OA injury. This study provided experimental evidence that circPan3/miR-667-5p/ghrelin axis might serve as targets of drug development for the treatment of OA.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Nanfang University of Science and Technology Hospital, Shenzhen, China
| | - Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Hankou Hospital, Wuhan, China
| | - Qing Liao
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Qijin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Southern Medical University, Foshan, China
| |
Collapse
|
27
|
Jia Z, Wei QJ. CircRNA-MSR Regulates LPS-Induced C28/I2 Chondrocyte Injury through miR-643/MAP2K6 Signaling Pathway. Cartilage 2021; 13:785S-795S. [PMID: 34581623 PMCID: PMC8804801 DOI: 10.1177/19476035211044826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease characterized by deterioration of articular cartilage functions. Previous studies have confirmed the role of circular RNAs (circRNAs) in OA, but the role of mechanical stress-related circRNA (circRNA-MSR) in OA is unknown. DESIGN The human chondrocytes C28/I2 were cultured and treated with lipopolysaccharide (LPS) to establish the OA model. The mRNA and protein levels were measured by qRT-PCR or Western blot. Cell viability was analyzed by MTT assay. Flow cytometry was carried out to detect cell apoptosis. The levels of TNF-α, IL-1β, and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). Pull-down assay was conducted to measure circRNA-MSR-related miRNA. Dual-luciferase reporter gene detection was performed to detect the target relationships between miR-643 and circRNA-MSR or Mitogen-activated protein kinase kinase 6 (MAP2K6). The RNA-fluorescence in situ hybridization (RNA-FISH) assay was conducted to verify the localization of circRNA-MSR and miR-643. RESULTS The expressions of circRNA-MSR were upregulated in LPS stimulated C28/I2 cells. Knockdown of circRNA-MSR can inhibit LPS-induced apoptosis, inflammatory response, and extracellular matrix (ECM) degradation, and promote cell C28/I2 cells proliferation. Moreover, circRNA-MSR directly targeted miR-643. RNA-FISH exhibited that circRNA-MSR may act as a competing endogenous RNA (ceRNA) of miR-643. Over-expression of miR-643 could alleviate LPS-induced C28/I2 chondrocyte injury and promote cell proliferation. Besides, miR-643 directly bound to MAP2K6 mRNA. MiR-643 inhibition or MAP2K6 overexpression can reverse the role of circRNA-MSR knockdown on LPS-treated chondrocytes. CONCLUSION circRNA-MSR can upregulate MAP2K6 by targeting miR-643, thereby inhibiting cell proliferation and promoting apoptosis of C28/I2 cells.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Orthopedic Trauma and
Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi Zhuang Autonomous Region, China
| | - Qing-Jun Wei
- Department of Orthopedic Trauma and
Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi Zhuang Autonomous Region, China,Qing-Jun Wei, Department of Orthopedic
Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical
University, No. 6, Shuangyong Road, Qingxiu District, Nanning 530021, Guangxi
Zhuang Autonomous Region, China.
| |
Collapse
|
28
|
Li M, Lu H, Wang X, Duan C, Zhu X, Zhang Y, Ge X, Ji F, Wang X, Su J, Zhang D. Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Mol Immunol 2021; 140:250-266. [PMID: 34798593 DOI: 10.1016/j.molimm.2021.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Pyruvate kinase M2 (PKM2), a glycolytic rate-limiting enzyme, reportedly plays an important role in tumorigenesis and the inflammatory response by regulating the metabolic reprogramming. However, its contribution to microglial activation during neuroinflammation is still unknown. In this study, we observed an enhanced glycolysis level in the lipopolysaccharide (LPS)-activated microglia. Utilizing the glycolysis inhibitor 2-DG, we proved that LPS requires glycolysis to induce microglial pyroptosis. Moreover, the protein expression, dimer/monomer formation, phosphorylation and nuclear translocation of PKM2 were all increased by LPS. Silencing PKM2 or preventing its nuclear translocation by TEPP-46 significantly alleviated the LPS-induced inflammatory response and pyroptosis in microglia. Employing biological mass spectrometry combined with immunoprecipitation technology, we identified for the first time that PKM2 interacts with activating transcription factor 2 (ATF2) in microglia. Inhibition of glycolysis or preventing PKM2 nuclear aggregation significantly reduced the phosphorylation and activation of ATF2. Furthermore, knocking down ATF2 reduced the LPS-induced pyroptosis of microglia. In vivo, we showed the LPS-induced pyroptosis in the cerebral cortex tissues of mice, and first found that an increased PKM2 expression was co-localized with ATF2 in the inflamed mice brain. Collectively, our data suggested for the first time that PKM2, a key rate-limiting enzyme of the Warburg effect, directly interacts with the pro-inflammatory transcription factor ATF2 to bridge glycolysis and pyroptosis in microglia, which might be a pivotal crosstalk between metabolic reprogramming and neuroinflammation in the CNS.
Collapse
Affiliation(s)
- Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Hongjian Lu
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueyan Wang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chengwei Duan
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiangyang Zhu
- Neurology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Yi Zhang
- Neurosurgery Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xin Ge
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xueqin Wang
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Jianbin Su
- Endocrinology Department, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China; Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
29
|
Cho Y, Jeong S, Kim H, Kang D, Lee J, Kang SB, Kim JH. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53:1689-1696. [PMID: 34848838 PMCID: PMC8640059 DOI: 10.1038/s12276-021-00710-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. It is characterized by progressive destruction of articular cartilage and the development of chronic pain and constitutes a considerable socioeconomic burden. Currently, pharmacological treatments mostly aim to relieve the OA symptoms associated with inflammation and pain. However, with increasing understanding of OA pathology, several potential therapeutic targets have been identified, enabling the development of disease-modifying OA drugs (DMOADs). By targeting inflammatory cytokines, matrix-degrading enzymes, the Wnt pathway, and OA-associated pain, DMOADs successfully modulate the degenerative changes in osteoarthritic cartilage. Moreover, regenerative approaches aim to counterbalance the loss of cartilage matrix by stimulating chondrogenesis in endogenous stem cells and matrix anabolism in chondrocytes. Emerging strategies include the development of senolytic drugs or RNA therapeutics to eliminate the cellular or molecular sources of factors driving OA. This review describes the current developmental status of DMOADs and the corresponding results from preclinical and clinical trials and discusses the potential of emerging therapeutic approaches to treat OA.
Collapse
Affiliation(s)
- Yongsik Cho
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Sumin Jeong
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.31501.360000 0004 0470 5905Department of Business Administration, Business School, Seoul National University, Seoul, 08826 South Korea
| | - Hyeonkyeong Kim
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Donghyun Kang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Jeeyeon Lee
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea ,grid.410720.00000 0004 1784 4496Center for RNA Research, Institute for Basic Science, Seoul, 08826 South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Boramae Hospital, Seoul, 07061, South Korea.
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
30
|
Ding N, Zeng MY, Song WJ, Xiao CX, Li EM, Wei B. SP600125 Restored TNF-α-Induced Impaired Chondrogenesis in Bone Mesenchymal Stem Cells and Its Antiosteoarthritis Effect in Mice. Stem Cells Dev 2021; 30:1028-1036. [PMID: 34486378 DOI: 10.1089/scd.2021.0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inflammation, the main factor in the progression of osteoarthritis (OA), impairs the chondrogenesis of bone mesenchymal stem cells (BMSCs), which is an appealing process to target to regenerate impaired articular cartilage. This article aimed to investigate whether SP600125, a competitive ATP-specific inhibitor of the JNK pathway, could promote the chondrogenesis of BMSCs by enhancing their anti-inflammatory capacity. Chondrogenic differentiation was assessed by Alcian blue staining, immunofluorescence staining, and Western blot. The inflammation level was associated with the expression of matrix metalloproteinases (Mmp), evaluated by Western blot. Intra-articular injection of BMSCs pretreated with or without SP600125 was carried out on C57BL/6 mice after inducing OA by surgical destabilization of the medial meniscus. Safranin O-fast green (SO) and hematoxylin-eosin staining were employed to evaluate the cartilage destruction and immunohistochemical analysis was adopted to detect the expression of Col2 and Mmp-13 proteins in the mouse knee joint. We showed that SP600125 could inhibit inflammation induced by tumor necrosis factor-α (TNF-α) and promote the chondrogenesis of BMSCs. In the presence of TNF-α, the expression of aggrecan (Agc) and collagen type II alpha 1 (Col2) was significantly decreased compared with that in the control group and increased with the addition of SP600125. Moreover, the expression of Mmp-1, Mmp-3, and Mmp-13 was increased in BMSCs treated only with TNF-α and downregulated in SP600125-treated BMSCs. In vivo study showed that SP600125 could enhance protective effects of BMSCs on OA mice. Our results indicated that SP600125 rescued the chondrogenesis of BMSCs by inhibiting inflammation induced by TNF-α, which provides a theoretical basis for solving the problem of cartilage repair under inflammatory conditions.
Collapse
Affiliation(s)
- Nan Ding
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Pathogenic Biology Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Mei-Yu Zeng
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jin Song
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Chu-Xiong Xiao
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Er-Mao Li
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Wei
- Research Lab of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Key Laboratory for Arteriosclerology of Hunan Province, Human International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Institute of Cardiovascular Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
31
|
Wang QS, Xu BX, Fan KJ, Fan YS, Teng H, Wang TY. Dexamethasone-loaded thermo-sensitive hydrogel attenuates osteoarthritis by protecting cartilage and providing effective pain relief. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1120. [PMID: 34430561 PMCID: PMC8350682 DOI: 10.21037/atm-21-684] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Background We utilized the destabilization of medial meniscus (DMM)-induced mice to illustrate the osteoarthritis (OA) suppressing and pain-relieving effects of a novel prolonged-release intra-articular (IA)-dexamethasone-loaded thermo-sensitive hydrogel (DLTH). Methods The effects of temperature and pH on DLTH formation and in vitro DLTH release profile were assessed. C57BL/6J mice were randomly divided into three groups: Ctrl group, Model group and DLTH group. The DLTH group received joint injections of 10 µL DLTH (1 mg/kg) into the right knee once a week from week 2 to week 11. We performed micro-computed tomography (Micro-CT) and histological analyses of safranin O-fast green, hematoxylin and eosin, and tartrate-resistant acid phosphatase in knee joints. We also carried out immunohistochemical (IHC) staining for matrix metalloproteinase-9 (MMP-9), MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5) in cartilage and Ki-67 in synovia. Pain behavioral testing was carried out in all mice. The serum content of prostaglandin E2 (PGE2) and real-time polymerase chain reaction (PCR) of inflammatory cytokines and pain-related factors in dorsal root ganglia (DRGs) were evaluated. Results It took 20 minutes to form DLTH at pH 7.0 and 37 °C. The cumulative release profiles of dexamethasone (Dex) from DLTH at 37 °C revealed a rapid release in the first 24 h and a sustained slow release for 7 days. In vivo study illustrated that DLTH attenuated OA bone destruction and ameliorated synovitis and progression of OA in DMM-induced mice. The chondroprotective effects of DLTH were mediated by decreased expressions of MMP-9, MMP-13, and ADAMTS-5. The results showed that IA-DLTH exerted pain-relieving effects in OA mice. Upregulation of nociceptive response time (NRT) and downregulations of serum PGE2, inflammatory factors, and pain-related mediators in DRGs of mice in the DLTH group were recorded. Conclusions Data presented in this study elucidated that DLTH exhibited a long and lasting Dex release and it is a potential sustainable drug delivery system (DDS) to treat OA locally. IA-DLTH injection exerted chondroprotective and pain-relieving effects in DMM-induced arthritis. The involvement of MMP-9, MMP-13, ADAMTS-5, and inflammatory and pain-related factors, may account for the suppression of OA progression and pain.
Collapse
Affiliation(s)
- Qi-Shan Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Xin Xu
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai-Jian Fan
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Shan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Hui Teng
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Yu Wang
- Departments of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Ding B, Xu S, Sun X, Gao J, Nie W, Xu H. miR-18a-3p Encourages Apoptosis of Chondrocyte in Osteoarthritis via HOXA1 Pathway. Curr Mol Pharmacol 2021; 13:328-341. [PMID: 32013856 DOI: 10.2174/1874467213666200204143740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Osteoarthritis is a disorder of joints featuring inflammation and degeneration of articular cartilage. Recently, miRs have been found to be associated in the regulation of chondrocytes and their apoptosis. miR-18a-3p has been found to be associated in the pathogenesis of rheumatoid arthritis, however, its role in articular cartilage tissues remains unclear. METHODS C57BL/6 strain of mice and human cartilage tissue were used for the study. Histological analysis was done on isolated cartilage samples followed by TUNEL assay and immunohistochemical analysis. The chondrocytes were isolated from mouse and human cartilage tissues, RNA was isolated and subjected for qRT-PCR analysis. The chondrocytes were transfected with miR-18a-3p agomir, antagomir and siHOXA-1. Luciferase assay was done in 293T cells. Flow cytometry analysis was done and western blot analysis for studying the expression of proteins. RESULTS The expression of miR-18a-3p was upregulated in chondrocytes after exposing them to interlukin- 1β (IL-1β) in vitro. The transfection of miR-18a-3p antagomir halted the IL-1β mediated apoptosis. The luciferase assay suggested that miR-18a-3p targets the 3'UTR region of HOXA1 gene thus blocking its expression. The treatment of HOXA1 siRNA demonstrated the rescuing effect of miR- 18a-3p antagomir on the apoptosis of chondrocytes. Treatment of miR-18a-3p antagomir attenuated the surface of cartilage in osteoarthritis mice and the agomir worsened it. TUNEL assay suggested decreased apoptosis and over-expression of HOAX1 in osteoarthritis mice post miR-18a-3p knockdown. CONCLUSION The findings confirmed the involvement of miR-18a-3p/HOXA1 pathway as a potential mechanism in the regulation of Osteoarthritis.
Collapse
Affiliation(s)
- Baiyang Ding
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Shujuan Xu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Xiumin Sun
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Jianming Gao
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Wenlei Nie
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Hongguang Xu
- Spine Research Center of Wannan Medical College, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Department of Spine Surgery, Yijishan hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| |
Collapse
|
33
|
Dai Y, Zhang L, Yan Z, Li Z, Fu M, Xue C, Wang J. A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill ( Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct 2021; 12:6766-6779. [PMID: 34160515 DOI: 10.1039/d1fo00056j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by cartilage destruction, and its incidence is much higher in the osteoporotic population. There is increasing evidence that the occurrence and development of OA are modulated by the dietary intake of polyunsaturated fatty acids (PUFA). This study investigated the effects of dietary PUFA, including n-3/n-6 PUFA proportion and the molecular form of n-3 PUFA, on OA using osteoporotic osteoarthritis dual model mice, where phospholipid type n-3 PUFA were specifically examined. The results revealed that a low proportion of n-6/n-3 PUFA in diets from 1 : 1 to 6 : 1 significantly improved the cartilage structure and inhibited articular cartilage polysaccharide loss. Furthermore, the low proportion n-6/n-3 PUFA diets inhibited the NF-κB signaling pathway by activating G-protein coupled receptor 120 (GPR120) to reduce inflammation and inhibit catabolism. Antarctic krill (Euphausia superba) oil (AKO), rich in phospholipid-type n-3 PUFA, had a better effect on OA than linseed oil (plant-derived n-3 PUFA), which may be due to peroxisome proliferator-activated receptor-gamma (PPAR γ). These findings suggested that the low proportion n-6/n-3 PUFA diets, particularly with AKO, alleviated inflammation and inhibited articular cartilage degeneration. Therefore, dietary intervention can be a potential treatment for OA.
Collapse
Affiliation(s)
- Yufeng Dai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Giordano R, Petersen KK, Andersen HH, Lichota J, Valeriani M, Simonsen O, Arendt-Nielsen L. Preoperative serum circulating microRNAs as potential biomarkers for chronic postoperative pain after total knee replacement. Mol Pain 2021; 16:1744806920962925. [PMID: 33021154 PMCID: PMC7543153 DOI: 10.1177/1744806920962925] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chronic postoperative pain affects approximately 20% of patients with knee
osteoarthritis after total knee replacement. Circulating microRNAs can be
found in serum and might act as biomarkers in a variety of diseases. The
current study aimed to investigate the preoperative expression of
circulating microRNAs as potential predictive biomarkers for the development
of chronic postoperative pain in the year following total knee
replacement. Methods Serum samples, collected preoperatively from 136 knee osteoarthritis
patients, were analyzed for 21 circulatory microRNAs. Pain intensity was
assessed using a visual analog scale before and one year after total knee
replacement. Patients were divided into a low-pain relief group (pain relief
percentage <30%) and a high-pain relief group (pain relief percentage
>30%) based on their pain relief one year after total knee replacement,
and differences in microRNAs expression were analyzed between the two
groups. Results We found that three microRNAs were preoperatively dysregulated in serum in
the low-pain relief group compared with the high-pain relief group.
MicroRNAs hsa-miR-146a-5p, -145-5p, and -130 b-3p exhibited fold changes of
1.50, 1.55, and 1.61, respectively, between the groups (all P
values < 0.05). Hsa-miR-146a-5p and preoperative pain intensity
correlated positively with postoperative pain relief (respectively,
R = 0.300, P = 0.006; R = 0.500, P < 0.001). Discussion This study showed that patients with a low postoperative pain relief present
a dysregulation of circulating microRNAs. Altered circulatory microRNAs
expression correlated with postoperative pain relief, indicating that
microRNAs can serve as predictive biomarkers of pain outcome after surgery
and hence may foster new strategies for preventing chronic postoperative
pain after total knee replacement (TKR).
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Kjær Petersen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Hjalte Holm Andersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jacek Lichota
- Laboratory of Metabolism Modifying Medicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Massimiliano Valeriani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Child Neurology Unit, Department of Neuroscience and Neurorehabilitation, Headache Center, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Ole Simonsen
- Orthopedic Surgery Research Unit, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
35
|
Oligonucleotide Therapies in the Treatment of Arthritis: A Narrative Review. Biomedicines 2021; 9:biomedicines9080902. [PMID: 34440106 PMCID: PMC8389545 DOI: 10.3390/biomedicines9080902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.
Collapse
|
36
|
Wan J, Zhang G, Li X, Qiu X, Ouyang J, Dai J, Min S. Matrix Metalloproteinase 3: A Promoting and Destabilizing Factor in the Pathogenesis of Disease and Cell Differentiation. Front Physiol 2021; 12:663978. [PMID: 34276395 PMCID: PMC8283010 DOI: 10.3389/fphys.2021.663978] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cells must alter their expression profiles and morphological characteristics but also reshape the extracellular matrix (ECM) to fulfill their functions throughout their lifespan. Matrix metalloproteinase 3 (MMP-3) is a member of the matrix metalloproteinase (MMP) family, which can degrade multiple ECM components. MMP-3 can activate multiple pro-MMPs and thus initiates the MMP-mediated degradation reactions. In this review, we summarized the function of MMP-3 and discussed its effects on biological activities. From this point of view, we emphasized the positive and negative roles of MMP-3 in the pathogenesis of disease and cell differentiation, highlighting that MMP-3 is especially closely involved in the occurrence and development of osteoarthritis. Then, we discussed some pathways that were shown to regulate MMP-3. By writing this review, we hope to provide new topics of interest for researchers and attract more researchers to investigate MMP-3.
Collapse
Affiliation(s)
- Jiangtao Wan
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guowei Zhang
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Li
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianshuai Qiu
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaoxiong Min
- Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Wang C, Li N, Liu Q, Su L, Wang S, Chen Y, Liu M, Lin H. The role of circRNA derived from RUNX2 in the serum of osteoarthritis and its clinical value. J Clin Lab Anal 2021; 35:e23858. [PMID: 34165827 PMCID: PMC8274987 DOI: 10.1002/jcla.23858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Circular RNA (circRNA) has been shown to affect the pathological process of osteoarthritis (OA) and is expected to become a potential marker for disease diagnosis. This study aimed to investigate the association between circRNA derived from the gene of runt‐related transcription factor 2 (RUNX2) and OA risk. Methods The expression profile of RUNX2‐derived circRNAs in serum of OA patients was detected. Then, the cytological localization of screened differential circRNAs was studied. Luciferase (LUC) reporter assay was used to identify the microRNA (miRNA) sponge capacity of the circRNAs. Bioinformatics analysis was used to construct the functional pathway of this circRNA‐miRNAs network. And then, the diagnostic value of RUNX2‐derived circRNAs in OA was evaluated. Results RUNX2‐derived hsa_circ_0005526 (circ_RUNX2) is significantly highly expressed in OA serum and mainly located in the cytoplasm within the cartilage cell by sponging multiple miRNAs (miR‐498, miR‐924, miR‐361‐3p, and miR‐665). Bioinformatics analysis showed ECM‐receptor interaction pathway ranked the most significant pathway of circ_RUNX2‐miRNAs regulatory network in KEGG database. The ROC curve showed that there may be good diagnostic value of serum circ_RUNX2 in OA. Conclusion RUNX2‐derived circ_RUNX2 may be involved in OA development via ECM‐receptor interaction pathways and may be used as potential clinical indicator of OA.
Collapse
Affiliation(s)
- Chengyun Wang
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Nanzhu Li
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Qi Liu
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lianbin Su
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Sisheng Wang
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yongfa Chen
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Maosheng Liu
- Department of Pediatric Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huirong Lin
- Institute of Chemical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
38
|
Zacharjasz J, Mleczko AM, Bąkowski P, Piontek T, Bąkowska-Żywicka K. Small Noncoding RNAs in Knee Osteoarthritis: The Role of MicroRNAs and tRNA-Derived Fragments. Int J Mol Sci 2021; 22:5711. [PMID: 34071929 PMCID: PMC8198041 DOI: 10.3390/ijms22115711] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Knee osteoarthritis (OA) is a degenerative knee joint disease that results from the breakdown of joint cartilage and underlying bone, affecting about 3.3% of the world's population. As OA is a multifactorial disease, the underlying pathological process is closely associated with genetic changes in articular cartilage and bone. Many studies have focused on the role of small noncoding RNAs in OA and identified numbers of microRNAs that play important roles in regulating bone and cartilage homeostasis. The connection between other types of small noncoding RNAs, especially tRNA-derived fragments and knee osteoarthritis is still elusive. The observation that there is limited information about small RNAs different than miRNAs in knee OA was very surprising to us, especially given the fact that tRNA fragments are known to participate in a plethora of human diseases and a portion of them are even more abundant than miRNAs. Inspired by these findings, in this review we have summarized the possible involvement of microRNAs and tRNA-derived fragments in the pathology of knee osteoarthritis.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Anna M. Mleczko
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, 61-614 Poznan, Poland;
| | - Paweł Bąkowski
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
| | - Tomasz Piontek
- Department of Orthopedic Surgery, Rehasport Clinic, 60-201 Poznan, Poland; (P.B.); (T.P.)
- Department of Spine Disorders and Pediatric Orthopedics, University of Medical Sciences Poznan, 61-854 Poznan, Poland
| | | |
Collapse
|
39
|
Zhou S, Wen H, Han X, Li H. Phillygenin protects against osteoarthritis by repressing inflammation via PI3K/Akt/NF-κB signaling: In vitro and vivo studies. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
40
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
41
|
Hemmings KE, Riches-Suman K, Bailey MA, O’Regan DJ, Turner NA, Porter KE. Role of MicroRNA-145 in DNA Damage Signalling and Senescence in Vascular Smooth Muscle Cells of Type 2 Diabetic Patients. Cells 2021; 10:cells10040919. [PMID: 33923614 PMCID: PMC8073820 DOI: 10.3390/cells10040919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38α. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38α signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.
Collapse
Affiliation(s)
- Karen E. Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Kirsten Riches-Suman
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| | - Marc A. Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - David J. O’Regan
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Department of Cardiac Surgery, Yorkshire Heart Centre, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Neil A. Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
| | - Karen E. Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, UK; (K.E.H.); (K.R.-S.); (M.A.B.); (N.A.T.)
- Multidisciplinary Cardiovascular Research Centre (MCRC), University of Leeds, Leeds LS2 9JT, UK;
- Correspondence:
| |
Collapse
|
42
|
Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22073594. [PMID: 33808364 PMCID: PMC8036705 DOI: 10.3390/ijms22073594] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) of the knee is a disease that significantly decreases the quality of life due to joint deformation and pain caused by degeneration of articular cartilage. Since the degeneration of cartilage is irreversible, intervention from an early stage and control throughout life is important for OA treatment. For the treatment of early OA, the development of a disease-modifying osteoarthritis drug (DMOAD) for intra-articular (IA) injection, which is attracting attention as a point-of-care therapy, is desired. In recent years, the molecular mechanisms involved in OA progression have been clarified while new types of drug development methods based on gene sequences have been established. In addition to conventional chemical compounds and protein therapeutics, the development of DMOAD from the new modalities such as gene therapy and oligonucleotide therapeutics is accelerating. In this review, we have summarized the current status and challenges of DMOAD for IA injection, especially for protein therapeutics, gene therapy, and oligonucleotide therapeutics.
Collapse
|
43
|
Wang XP, Xie WP, Bi YF, Wang BA, Song HB, Wang SL, Bi RX. Quercetin suppresses apoptosis of chondrocytes induced by IL-1β via inactivation of p38 MAPK signaling pathway. Exp Ther Med 2021; 21:468. [PMID: 33767763 PMCID: PMC7976442 DOI: 10.3892/etm.2021.9899] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The objective of the present study was to investigate the effect of quercetin and evaluate its protective effect on articular cartilage in patients with osteoarthritis (OA), by intervening the p38 pathway. The target factors of quercetin protecting articular cartilage in patients with OA were predicted scientifically and analyzed to predict the possible pathways by using network pharmacology. A pathway predicted to be closely associated with osteoarthritis was chosen for experimental verification in in vitro cells. The optimal intervention drug concentrations were selected by the of Cell Cycle Kit-8 assay, osteoarthritis and inflammatory factors relevant to osteoarthritis, interleukin-1β and tumor necrosis factor-α, were tested by of enzyme-linked immunosorbent assay, and the expression of relevant proteins and mRNA of the p38 signaling pathway was tested by reverse transcription-quantitative PCR and western blotting, following quercetin intervention. It was found that quercetin, at the concentration of 100 umol/l, can decrease inflammatory factors relevant to OA, inhibit the expression of p38, matrix metalloprotease 13 and ADAMTS in the pathway, and promote the expression of collagen Ⅱ. Therefore, it is postulated that quercetin can lower the expression of inflammatory factors in cartilage for the prevention and treatment of OA, and the expression level of relevant factors can be changed positively by blocking the p38 MAPK signaling pathway. Thus, quercetin can promote the repair of degenerative chondrocytes and protect articular chondrocytes.
Collapse
Affiliation(s)
- Xiang-Peng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Wen-Peng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yi-Fei Bi
- Special Inspection Department, Affiliated Ophthalmic Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Bao-An Wang
- Shandong Institute of Commerce and Technology, Jinan, Shandong 250103, P.R. China
| | - Hong-Bo Song
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355 P.R. China
| | - Shi-Lu Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong-Xiu Bi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
44
|
Protective effect of SIRT6 on cholesterol crystal-induced endothelial dysfunction via regulating ACE2 expression. Exp Cell Res 2021; 402:112526. [PMID: 33631165 DOI: 10.1016/j.yexcr.2021.112526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/31/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022]
Abstract
Sirtuins are a family of highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes. Among the sirtuins, SIRT1 and SIRT6 participate in the regulation of endothelial functions and play significant roles in the physiological and pathological processes of cardiovascular diseases (CVD). Recently, our study found that minute cholesterol crystals (CC) can be endocytosed by endothelial cells and further impair endothelial functions. Since previous studies have reported that angiotensin-converting enzyme (ACE2) involves Angiotensin (Ang) II-induced inflammation in endothelial cells, this study was designed to investigate the role of SIRT1 and SIRT6 in CC-induced variation of ACE2 expression and the related mechanism between SIRT6 and ACE2. We found that ACE2 is involved in CC-induced endothelial dysfunction, which inhibits decreases in nitric oxide (NO) level and endothelial nitric oxide synthase (eNOS) activity and increases in inflammatory factors and adhesion molecules. Besides, SIRT1 and SIRT6 regulated the protein expression of ACE2 in CC-stimulated human umbilical vein endothelial cells (HUVECs). Moreover, bioinformatics analysis from the Enrichr database indicated that activating transcription factor 2 (ATF2), is highly correlated with genes that significantly upregulated after infection with the SIRT6 adenovirus vector. In CC-induced HUVECs, ACE2 expression was up-regulated in cells transfected with ATF2 siRNA. However, further mechanism studies revealed that overexpression of SIRT6 decreases the accumulation of p-ATF2 in the nucleus, but did not affect p-ATF2 expression in the cytoplasm. Taken together, these data indicated that SIRT6 regulates ACE2 might via inhibiting the accumulation of nucleus p-ATF2 in CC-induced endothelial dysfunction.
Collapse
|
45
|
Xiang Q, Wang J, Wang T, Zuo H. Combination of baicalein and miR-106a-5p mimics significantly alleviates IL-1β-induced inflammatory injury in CHON-001 cells. Exp Ther Med 2021; 21:345. [PMID: 33732318 PMCID: PMC7903477 DOI: 10.3892/etm.2021.9776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) induces inflammation and degeneration of all joint components, and as such, is a considerable source of disability, pain and socioeconomic burden worldwide. Baicalein (BAI) and microRNA (miR)-106a-5p suppress the progression of OA; however, the effects of BAI and miR-106a-5p for the combined treatment of OA are not completely understood. An in vitro OA model was established by treating CHON-001 cells with 20 ng/ml interleukin (IL)-1β. Cell Counting Kit-8 and flow cytometry assays were conducted to evaluate cell viability and apoptosis, respectively. Western blotting was performed to determine the expression levels of Bax, active caspase-3, Bcl-2, collagen I, collagen III, aggrecan, matrix metallopeptidase (MMP)-13, MMP-9, active Notch1 and transcription factor hes family bHLH transcription factor 1 (Hes1). The levels of IL-6 and tumor necrosis factor-α in the cell culture medium were quantified via ELISA. The present study revealed that treatment with BAI or miR-106a-5p mimic alleviated IL-1β-induced apoptosis, and BAI + miR-106a-5p combination treatment exerted enhanced anti-inflammatory effects compared with monotherapy. Furthermore, IL-1β-induced accumulation of collagen, collagen III, MMP-13 and MMP-9 in CHON-001 cells was reversed to a greater degree following combination treatment compared with monotherapy. Likewise, IL-1β-induced aggrecan degradation was markedly reversed by combination treatment. IL-1β-induced upregulation of active Notch1 and Hes1 in CHON-001 cells was also significantly attenuated by combined BAI + miR-106a-5p treatment. In conclusion, the results of the present study revealed that the combination of BAI and miR-106a-5p mimic significantly decreased IL-1β-induced inflammatory injury in CHON-001 cells, which may serve as a novel therapeutic strategy for OA.
Collapse
Affiliation(s)
- Qingtian Xiang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Jijun Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Tongwei Wang
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| | - Hongguang Zuo
- Department of Orthopedic Surgery, Xiang Shui County People's Hospital, Yancheng, Jiangsu 224600, P.R. China
| |
Collapse
|
46
|
DUSP5 suppresses interleukin-1β-induced chondrocyte inflammation and ameliorates osteoarthritis in rats. Aging (Albany NY) 2020; 12:26029-26046. [PMID: 33361528 PMCID: PMC7803505 DOI: 10.18632/aging.202252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by deterioration of articular cartilage. Dual specificity phosphatase 5 (DUSP5), a member of the DUSP subfamily, is known to regulate cellular inflammation. Here, we studied the relationship between DUSP5 and OA by knockdown and overexpression DUSP5, respectively. Results from in vitro experiments demonstrated that the knockdown of DUSP5 increased interleukin-1β (IL-1β)-induced expression of inflammatory genes, such as inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), and matrix metalloproteinases (MMPs) in chondrocytes, whereas it decreased the expression of anti-inflammatory genes, such as tissue inhibitor of metalloproteinase 3 (TIMP3) and IL-10. Conversely, the overexpression of DUSP5 suppressed the IL-1β-induced expression of iNOS, COX-2, and MMPs, and upregulated the expression of TIMP3 and IL-10. Moreover, knockdown of DUSP5 enhanced the IL-1β-induced activation of NF-κB and ERK pathways, whereas its overexpression inhibited these pathways. DUSP5 overexpression prevented cartilage degeneration in a rat OA model, while its knockdown reversed that effect. Our findings reveal that DUSP5 suppresses IL-1β-induced chondrocyte inflammation by inhibiting the NF-κB and ERK signaling pathways and ameliorates OA.
Collapse
|
47
|
Zhao Y, Yang X, Meng F, Li W. SET8 participates in lipopolysaccharide-mediated BV2 cell inflammation via modulation of TICAM-2 expression. Can J Physiol Pharmacol 2020; 98:818-825. [PMID: 32176860 DOI: 10.1139/cjpp-2019-0699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microglial inflammation, involved in the occurrence and development of sepsis-associated encephalopathy, exhibits upregulation of proinflammatory cytokine and proinflammatory enzyme expression, leading to inflammation-induced neuronal cell apoptosis. TIR domain containing adaptor molecule-2 (TICAM-2) participates in lipopolysaccharide (LPS) mediated BV2 cell inflammation. SET8 plays a crucial role in a variety of cellular signal pathways. In this study, we hypothesize that SET8 participates in LPS-mediated microglial inflammation via modulation of TICAM-2 expression. Our data indicated that LPS induced BV2 inflammation via upregulation of TICAM-2 expression. Moreover, LPS treatment inhibited SET8 expression, while it increased activating transcription factor 2 (ATF2) expression. The effects of sh-SET8 and ATF2 overexpression were similar to that of LPS treatments. Inhibition of TICAM-2 expression counteracted sh-SET8-mediated and ATF2 overexpression mediated BV2 cell inflammation. Further, SET8 was found to interact with ATF2. A mechanistic study found that H4K20me1, a downstream target of SET8, and ATF2 enriched at the TICAM-2 promoter region. Luciferase reporter assays indicated that sh-SET8 increased TICAM-2 promoter activity but augmented the effect of ATF2 overexpression on TICAM-2 promoter activity as well. Co-transfection of sh-SET8 with ATF2 overexpression more dramatically increased TICAM-2 expression in BV2 cells. The present study indicated that SET8 interacted with ATF2 to modulate TICAM-2 expression, which participated in LPS-mediated BV2 cell inflammation.
Collapse
Affiliation(s)
- Yanjun Zhao
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Xijun Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fufen Meng
- Department of Anesthesiology, the third hospital, affiliated to the Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
48
|
Zhang Y, Yang Y, Wang C, Wan S, Yao Z, Zhang Y, Liu J, Zhang C. Identification of Diagnostic Biomarkers of Osteoarthritis Based on Multi-Chip Integrated Analysis and Machine Learning. DNA Cell Biol 2020; 39:2245-2256. [PMID: 33064574 DOI: 10.1089/dna.2020.5552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of osteoarthritis (OA) is still unclear. It is therefore important to identify relevant diagnostic marker genes for OA. We performed an integrated analysis with multiple microarray data cohorts to identify potential transcriptome markers of OA development. Further, to identify OA diagnostic markers, we established gene regulatory networks based on the protein-protein interaction network involved in these differentially expressed genes (DEGs). Using support vector machine (SVM) pattern recognition, a diagnostic model for OA prediction and prevention was established. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that 190 DEGs were mainly enriched in pathways like the tumor necrosis factor signaling pathway, interleukin-17 signaling pathway, mitogen-activated protein kinase signaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, and osteoclast differentiation. Eight hub genes (POSTN, MMP2, CTSG, ELANE, COL3A1, MPO, COL1A1, and COL1A2) were considered potential diagnostic biomarkers for OA, the area under curve (AUC) was >0.95, which showed high accuracy. The sensitivity and specificity of the SVM model of OA based on these eight genes reached 100% in multiple external verification cohorts. Our research provides a theoretical basis for OA diagnosis for clinicians.
Collapse
Affiliation(s)
- Yueqi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenzhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengcheng Wan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenjun Yao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyu Liu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Yan Z, Qi W, Zhan J, Lin Z, Lin J, Xue X, Pan X, Zhou Y. Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J Cell Mol Med 2020; 24:13046-13057. [PMID: 32965793 PMCID: PMC7701566 DOI: 10.1111/jcmm.15905] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), which is characterized by proliferation of subchondral bone and the degeneration of articular cartilage, is the most prevalent human arthritis. Nod-like receptor pyrin domain 3 (NLRP3) inflammasome is a hot spot in recent year and has been reported to be associated with OA synovial inflammation. However, there are few studies on NLRP3 inflammasome in chondrocyte. Licochalcone A (Lico A), a compound extracted from Glycyrrhiza species, has various biological effects such as anti-inflammation, anti-apoptotic, anti-cancer and anti-oxidation. In this study, we investigated the protective effect of Lico A on chondrocytes stimulated by lipopolysaccharide (LPS) and surgically induced OA models. In vitro, Lico A could reduce the expression of NLRP3, apoptosis-associated speck-like protein (ASC), Gasdermin D (GSDMD), caspase-1, interleukin-1beta (IL-1β) and IL-18, which indicated that Lico A attenuates LPS-induced chondrocytes pyroptosis. In addition, Lico A ameliorates the degradation of extracellular matrix (ECM) by enhancing the expression of aggrecan and collagen-II. Meanwhile, we found that Lico A inhibits NLRP3 inflammasome via nuclear factor erythroid-2-related factor 2 (Nrf2)/haeme oxygenase-1(HO-1)/nuclear factor kappa-B (NF-κB) axis. And the Nrf2 small interfering RNA (siRNA) could reverse the anti-pyroptosis effects of Lico A in mouse OA chondrocytes. In vivo, Lico A mitigates progression OA in a mouse model and reduces OA Research Society International (OARSI) scores. Thus, Lico A may have therapeutic potential in OA.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weihui Qi
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yulong Zhou
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
50
|
Chunlei H, Chang Z, Sheng L, Yanchun Z, Lulin L, Daozhang C. Down-regulation of MiR-138-5p Protects Chondrocytes ATDC5 and CHON-001 from IL-1 β-induced Inflammation Via Up-regulating SOX9. Curr Pharm Des 2020; 25:4613-4621. [PMID: 31486753 DOI: 10.2174/1381612825666190905163046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) pertains to a chronic disease of degenerative joints distinguished by articular cartilage destruction, subchondral bone remodeling, osteophyte formation, and inflammatory changes. Chondrocyte apoptosis is inextricably linked to cartilage degeneration. SRY-related high-mobility-group-box 9 (SOX9) is a well-acknowledged transcription factor in the chondrogenesis. Nevertheless, the detailed function of miR-138-5p/SOX9 in OA remains to be fully clarified. MATERIALS AND METHODS qRT-PCR was performed to measure the expressions of miR-138-5p and SOX9 mRNA in OA and normal cartilage tissues and cells. Human chondrocyte cell lines, CHON-001 and ATDC5, were treated with different doses of interleukin-1β (IL-1β) to simulate the inflammatory response environment of OA. miR-138-5p mimics, miR-138-5p inhibitors, and SOX9 small interfering RNA (siRNA) were constructed and transfected into CHON-001 and ATDC5 cells. CCK-8 was conducted to determine the cell viability and transwell assay was used to monitor the migration of cells. Western blot was carried out to detect the expressions of apoptosis- related factors. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the contents of inflammatory factors. TargetScan predicted SOX9 was a target gene of miR-138-5p, which was then verified by luciferase assay. RESULTS miR-138-5p expression was down-regulated in OA and regulated SOX9 expression. The downregulation of miR-138-5p facilitated the proliferation and migration of CHON-001 and ATDC5 cells, while impeded their apoptosis and inflammatory response. Besides, down-regulated SOX9 can counteract the promoting effect of down-regulated miR-138-5p on the proliferation and migration of chondrocytes. CONCLUSION miR-138-5p can arrest the proliferation and migration of CHON-001 and ATDC5 via restraining SOX9, and facilitate the apoptosis and inflammation. This study revealed the protective effect of down-regulated miR-138-5p on the inflammatory injury of chondrocytes caused by IL-1β.
Collapse
Affiliation(s)
- He Chunlei
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China.,Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Zhao Chang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Liu Sheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Zhong Yanchun
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Liu Lulin
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Cai Daozhang
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| |
Collapse
|