1
|
Abo Qoura L, Morozova E, Ramaa СS, Pokrovsky VS. Smart nanocarriers for enzyme-activated prodrug therapy. J Drug Target 2024; 32:1029-1051. [PMID: 39045650 DOI: 10.1080/1061186x.2024.2383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies. The current review highlights the potential of enzyme-activated prodrug therapy as a promising anticancer treatment. Different microbial, plant, or viral enzymes and their corresponding prodrugs that advanced to clinical trials have been listed. Additionally, we discuss new trends in the field of enzyme-activated prodrug nanocarriers, including nanobubbles combined with ultrasound (NB/US), mesoscopic-sized polyion complex vesicles (PICsomes), nanoparticles, and extracellular vesicles (EVs), with special emphasis on smart stimuli-triggered drug release, hybrid nanocarriers, and the main application of nanotechnology in improving prodrugs.
Collapse
Affiliation(s)
- Louay Abo Qoura
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the, Russian Academy of Sciences, Moscow, Russia
| | - С S Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Mumbai, India
| | - Vadim S Pokrovsky
- Research Institute of Molecular and Cellular Medicine, People's Friendship University of Russia (RUDN University), Moscow, Russia
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
2
|
Davis A, Morris KV, Shevchenko G. Hypoxia-directed tumor targeting of CRISPR-Cas9 and HSV-TK suicide gene therapy using lipid nanoparticles. Mol Ther Methods Clin Dev 2022; 25:158-169. [PMID: 35402634 PMCID: PMC8971340 DOI: 10.1016/j.omtm.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is a characteristic feature of solid tumors that contributes to tumor aggressiveness and is associated with resistance to cancer therapy. The hypoxia inducible factor-1 (HIF-1) transcription factor complex mediates hypoxia-specific gene expression by binding to hypoxia-responsive element (HRE) sequences within the promoter of target genes. HRE-driven expression of therapeutic cargo has been widely explored as a strategy to achieve cancer-specific gene expression. By utilizing this system, we achieve hypoxia-specific expression of two therapeutically relevant cargo elements: the herpes simplex virus thymidine kinase (HSV-tk) suicide gene and the CRISPR-Cas9 nuclease. Using an expression vector containing five copies of the HRE derived from the vascular endothelial growth factor gene, we are able to show high transgene expression in cells in a hypoxic environment, similar to levels achieved using the cytomegalovirus (CMV) and CBh promoters. Furthermore, we are able to deliver our therapeutic cargo to tumor cells with high efficiency using plasmid-packaged lipid nanoparticles (LNPs) to achieve specific killing of tumor cells in hypoxic conditions while maintaining tight regulation with no significant changes to cell viability in normoxia.
Collapse
Affiliation(s)
- Alicia Davis
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Galina Shevchenko
- Center for Gene Therapy, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Optimization of Thymidine Kinase-Based Safety Switch for Neural Cell Therapy. Cells 2022; 11:cells11030502. [PMID: 35159311 PMCID: PMC8834506 DOI: 10.3390/cells11030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Cell therapies based on pluripotent stem cells (PSC), have opened new therapeutic strategies for neurodegenerative diseases. However, insufficiently differentiated PSC can lead to tumor formation. Ideally, safety switch therapies should selectively kill proliferative transplant cells while preserving post-mitotic neurons. In this study, we evaluated the potential of nucleoside analogs and thymidine kinase-based suicide genes. Among tested thymidine kinase variants, the humanized SR39 (SR39h) variant rendered cells most sensitive to suicide induction. Unexpectedly, post-mitotic neurons with ubiquitous SR39h expression were killed by ganciclovir, but were spared when SR39h was expressed under the control of the cell cycle-dependent Ki67 promoter. The efficacy of six different nucleoside analogs to induce cell death was then evaluated. Penciclovir (PCV) showed the most interesting properties with an efficiency comparable to ganciclovir (GCV), but low toxicity. We tested three nucleoside analogs in vivo: at concentrations of 40 mg/kg/day, PCV and GCV prevented tumor formation, while acyclovir (ACV) did not. In summary, SR39h under the control of a cell cycle-dependent promoter appears most efficient and selective as safety switch for neural transplants. In this setting, PCV and GCV are efficient inducers of cell death. Because of its low toxicity, PCV might become a preferred alternative to GCV.
Collapse
|
4
|
Li A, Zhang T, Huang T, Lin R, Mu J, Su Y, Sun H, Jiang X, Wu H, Xu D, Cao H, Sun X, Ling D, Gao J. Iron Oxide Nanoparticles Promote Cx43-Overexpression of Mesenchymal Stem Cells for Efficient Suicide Gene Therapy during Glioma Treatment. Theranostics 2021; 11:8254-8269. [PMID: 34373740 PMCID: PMC8344020 DOI: 10.7150/thno.60160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) have been applied as a promising vehicle for tumour-targeted delivery of suicide genes in the herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) suicide gene therapy against malignant gliomas. The efficiency of this strategy is largely dependent on the bystander effect, which relies on high suicide gene expression levels and efficient transportation of activated GCV towards glioma cells. However, up to now, the methods to enhance the bystander effect of this strategy in an efficient and safe way are still lacking and new approaches to improve this therapeutic strategy are required. Methods: In this study, MSCs were gene transfected using magnetosome-like ferrimagnetic iron oxide nanochains (MFIONs) to highly express HSV-tk. Both the suicide and bystander effects of HSV-tk expressed MSCs (MSCs-tk) were quantitatively evaluated. Connexin 43 (Cx43) expression by MSCs and glioma cells was measured under different treatments. Intercellular communication between MSCs and C6 glioma cells was examined using a dye transfer assay. Glioma tropism and the bio-distribution of MSCs-tk were observed. Anti-tumour activity was investigated in the orthotopic glioma of rats after intravenous administration of MSCs-tk followed by intraperitoneal injection of GCV. Results: Gene transfection using MFIONs achieved sufficient expression of HSV-tk and triggered Cx43 overexpression in MSCs. These Cx43 overexpressing MSCs promoted gap junction intercellular communication (GJIC) between MSCs and glioma cells, resulting in significantly inhibited growth of glioma through an improved bystander effect. Outstanding tumour targeting and significantly prolonged survival with decreased tumour size were observed after the treatment using MFION-transfected MSCs in glioma model rats. Conclusion: Our results show that iron oxide nanoparticles have the potential to improve the suicide gene expression levels of transfected MSCs, while promoting the GJIC formation between MSCs and tumour cells, which enhances the sensitivity of glioma cells to HSV-tk/GCV suicide gene therapy.
Collapse
Affiliation(s)
- Ai Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Lin
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiafu Mu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Sun
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Honghui Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Novel Semi-Replicative Retroviral Vector Mediated Double Suicide Gene Transfer Enhances Antitumor Effects in Patient-Derived Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11081090. [PMID: 31370279 PMCID: PMC6721803 DOI: 10.3390/cancers11081090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
As glioblastomas are mostly localized infiltrative lesions, gene therapy based on the retroviral replicating vector (RRV) system is considered an attractive strategy. Combinations of multiple suicide genes can circumvent the limitations associated with each gene, achieving direct and synergistic cytotoxic effects, along with bystander cell killing. In this study, we constructed a semi-and pseudotyped-RRV (sp-RRV) system harboring two suicide genes—herpes simplex virus type 1 thymidine kinase (TK) and yeast cytosine deaminase (CD)—to verify the dissemination and antitumor efficacy of our sp-RRV system (spRRVe-sEF1α-TK/sRRVgp-sEF1α-CD) in seven patient-derived glioblastoma stem-like cells (GSCs). Flow cytometry and high-content analysis revealed a wide range of transduction efficiency and good correlation between the delivery of therapeutic genes and susceptibility to the prodrugs ganciclovir and 5-fluorocytosine in patient-derived GSCs in vitro. Intra-tumoral delivery of spRRVe-sEF1α-TK/sRRVgp-sEF1α-CD, combined with prodrug treatment, synergistically inhibited cell proliferation and angiogenesis while increasing apoptosis and the depletion of tumor-associated macrophages in orthotopic glioblastoma xenografts. Genomic profiling of patient-derived GSCs revealed that the key genes preventing sp-RRV infection and transmission were associated with cell adhesion, migration, development, differentiation, and proliferation. This is the first report demonstrating that a novel sp-RRV-mediated TK/CD double suicide gene transfer system has high oncolytic power against extremely heterogeneous and treatment-refractory glioblastomas.
Collapse
|
6
|
Neschadim A, Medin JA. Engineered Thymidine-Active Deoxycytidine Kinase for Bystander Killing of Malignant Cells. Methods Mol Biol 2019; 1895:149-163. [PMID: 30539536 DOI: 10.1007/978-1-4939-8922-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Suicide transgenes encode proteins that are either capable of activating specific prodrugs into cytotoxic antimetabolites that can trigger cancer cell apoptosis or are capable of directly inducing apoptosis. Suicide gene therapy of cancer (SGTC) involves the targeted or localized delivery of suicide transgene sequences into tumor cells by means of various gene delivery vehicles. SGTC that operates via the potentiation of small-molecule pharmacologic agents can elicit the elimination of cancer cells within a tumor beyond only those cells successfully transduced. Such "bystander effects ", typically mediated by the spread of activated cytotoxic antimetabolites from the transduced cells expressing the suicide transgene to adjacent cells in the tumor, can lead to a significant reduction of the tumor mass without the requirement of transduction of a high percentage of cells within the tumor. The spread of activated cytotoxic molecules to adjacent cells is mediated primarily by diffusion and normally involves gap junctional intercellular communications (GJIC). We have developed a novel SGTC system based on viral vector-mediated delivery of an engineered variant of human deoxycytidine kinase (dCK), which is capable of phosphorylating uridine- and thymidine-based nucleoside analogues that are not substrates for wild-type dCK, such as bromovinyl deoxyuridine (BVdU) and L-deoxythymidine (LdT). Since our dCK-based SGTC system is capable of mediating strong bystander cell killing, it holds promise for clinical translation. In this chapter, we detail the key procedures for the preparation of recombinant lentivectors for the delivery of engineered dCK, transduction of tumor cells, and evaluation of bystander cell killing effects in vitro and in vivo.
Collapse
Affiliation(s)
- Anton Neschadim
- Centre for Innovation, Canadian Blood Services, Toronto, ON, Canada
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Mooney R, Abdul Majid A, Batalla J, Annala AJ, Aboody KS. Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 2017; 118:35-51. [PMID: 28916493 DOI: 10.1016/j.addr.2017.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023]
Abstract
Cell-directed gene therapy is a promising new frontier for the field of targeted cancer therapies. Here we discuss the current pre-clinical and clinical use of cell-mediated enzyme prodrug therapy (EPT) directed against solid tumors and avenues for further development. We also discuss some of the challenges encountered upon translating these therapies to clinical trials. Upon sufficient development, cell-mediated enzyme prodrug therapy has the potential to maximize the distribution of therapeutic enzymes within the tumor environment, localizing conversion of prodrug to active drug at the tumor sites thereby decreasing off-target toxicities. New combinatorial possibilities are also promising. For example, when combined with viral gene-delivery vehicles, this may result in new hybrid vehicles that attain heretofore unmatched levels of therapeutic gene expression within the tumor.
Collapse
|
8
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
9
|
Zhang Y, Wang J, Cheng H, Sun Y, Liu M, Wu Z, Pei R. Conditional control of suicide gene expression in tumor cells with theophylline-responsive ribozyme. Gene Ther 2016; 24:84-91. [DOI: 10.1038/gt.2016.78] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
|
10
|
Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 2016; 99:113-128. [PMID: 26004498 DOI: 10.1016/j.addr.2015.05.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/19/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
Among various gene therapy methods for cancer, suicide gene therapy attracts a special attention because it allows selective conversion of non-toxic compounds into cytotoxic drugs inside cancer cells. As a result, therapeutic index can be increased significantly by introducing high concentrations of cytotoxic molecules to the tumor environment while minimizing impact on normal tissues. Despite significant success at the preclinical level, no cancer suicide gene therapy protocol has delivered the desirable clinical significance yet. This review gives a critical look at the six main enzyme/prodrug systems that are used in suicide gene therapy of cancer and familiarizes readers with the state-of-the-art research and practices in this field. For each enzyme/prodrug system, the mechanisms of action, protein engineering strategies to enhance enzyme stability/affinity and chemical modification techniques to increase prodrug kinetics and potency are discussed. In each category, major clinical trials that have been performed in the past decade with each enzyme/prodrug system are discussed to highlight the progress to date. Finally, shortcomings are underlined and areas that need improvement in order to produce clinical significance are delineated.
Collapse
|
11
|
Nouri FS, Wang X, Hatefi A. Genetically engineered theranostic mesenchymal stem cells for the evaluation of the anticancer efficacy of enzyme/prodrug systems. J Control Release 2015; 200:179-87. [PMID: 25575867 DOI: 10.1016/j.jconrel.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 12/27/2022]
Abstract
Over the past decade, various enzyme/prodrug systems such as thymidine kinase/ganciclovir (TK/GCV), yeast cytosine deaminase/5-fluorocytosine (yCD/5-FC) and nitroreductase/CB1954 (NTR/CB1954) have been used for stem cell mediated suicide gene therapy of cancer. Yet, no study has been conducted to compare and demonstrate the advantages and disadvantages of using one system over another. Knowing that each enzyme/prodrug system has its own strengths and weaknesses, we utilized mesenchymal stem cells (MSCs) as a medium to perform for the first time a comparative study that illustrated the impact of subtle differences among these systems on the therapeutic outcome. For therapeutic purposes, we first genetically modified MSCs to stably express a panel of four suicide genes including TK (TK007 and TK(SR39) mutants), yeast cytosine deaminase:uracil phosphoribosyltransferase (yCD:UPRT) and nitroreductase (NTR). Then, we evaluated the anticancer efficacies of the genetically engineered MSCs in vitro and in vivo by using SKOV3 cell line which is sensitive to all four enzyme/prodrug systems. In addition, all MSCs were engineered to stably express luciferase gene making them suitable for quantitative imaging and dose-response relationship studies in animals. Considering the limitations imposed by the prodrugs' bystander effects, our findings show that yCD:UPRT/5-FC is the most effective enzyme/prodrug system among the ones tested. Our findings also demonstrate that theranostic MSCs are a reliable medium for the side-by-side evaluation and screening of the enzyme/prodrug systems at the preclinical level. The results of this study could help scientists who utilize cell-based, non-viral or viral vectors for suicide gene therapy of cancer make more informed decisions when choosing enzyme/prodrug systems.
Collapse
Affiliation(s)
- Faranak Salman Nouri
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xing Wang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
12
|
Evaluation of Bystander Cell Killing Effects in Suicide Gene Therapy of Cancer: Engineered Thymidylate Kinase (TMPK)/AZT Enzyme-Prodrug Axis. Methods Mol Biol 2015; 1317:55-67. [PMID: 26072401 DOI: 10.1007/978-1-4939-2727-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Suicide gene therapy of cancer (SGTC) entails the introduction of a cDNA sequence into tumor cells whose polypeptide product is capable of either directly activating apoptotic pathways itself or facilitating the activation of pharmacologic agents that do so. The latter class of SGTC approaches is of the greater utility in cancer therapy owing to the ability of some small, activated cytotoxic compounds to diffuse from their site of activation into neighboring malignant cells, where they can also mediate destruction. This phenomenon, termed "bystander killing", can be highly advantageous in driving significant tumor regression in vivo without the requirement of transduction of each and every tumor cell with the suicide gene. We have developed a robust suicide gene therapy enzyme/prodrug system based on an engineered variant of the human thymidylate kinase (TMPK), which has been endowed with the ability to drive azidothymidine (AZT) activation. Delivery of this suicide gene sequence into tumors by means of recombinant lentivirus-mediated transduction embodies an SGTC strategy that successfully employs bystander cell killing as a mechanism to achieve significant ablation of solid tumors in vivo. Thus, this engineered TMPK/AZT suicide gene therapy axis holds great promise for clinical application in the treatment of inoperable solid tumors in the neoadjuvant setting. Here we present detailed procedures for the preparation of recombinant TMPK-based lentivirus, transduction of target cells, and various approaches for the evaluation of bystander cell killing effects in SGCT in both in vitro and in vivo models.
Collapse
|
13
|
Hagen S, Baumann T, Wagner HJ, Morath V, Kaufmann B, Fischer A, Bergmann S, Schindler P, Arndt KM, Müller KM. Modular adeno-associated virus (rAAV) vectors used for cellular virus-directed enzyme prodrug therapy. Sci Rep 2014; 4:3759. [PMID: 24457557 PMCID: PMC3901000 DOI: 10.1038/srep03759] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022] Open
Abstract
The pre-clinical and clinical development of viral vehicles for gene transfer increased in recent years, and a recombinant adeno-associated virus (rAAV) drug took center stage upon approval in the European Union. However, lack of standardization, inefficient purification methods and complicated retargeting limit general usability. We address these obstacles by fusing rAAV-2 capsids with two modular targeting molecules (DARPin or Affibody) specific for a cancer cell-surface marker (EGFR) while simultaneously including an affinity tag (His-tag) in a surface-exposed loop. Equipping these particles with genes coding for prodrug converting enzymes (thymidine kinase or cytosine deaminase) we demonstrate tumor marker specific transduction and prodrug-dependent apoptosis of cancer cells. Coding terminal and loop modifications in one gene enabled specific and scalable purification. Our genetic parts for viral production adhere to a standardized cloning strategy facilitating rapid prototyping of virus directed enzyme prodrug therapy (VDEPT).
Collapse
Affiliation(s)
- Sven Hagen
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Tobias Baumann
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Hanna J. Wagner
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Volker Morath
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Beate Kaufmann
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Adrian Fischer
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Stefan Bergmann
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Patrick Schindler
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Institut für Biologie III, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Katja M. Arndt
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Kristian M. Müller
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwig University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
- Zelluläre und Molekulare Biotechnologie, Technische Fakultät, Universität Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
14
|
Sato T, Neschadim A, Lavie A, Yanagisawa T, Medin JA. The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer. PLoS One 2013; 8:e78711. [PMID: 24194950 PMCID: PMC3806853 DOI: 10.1371/journal.pone.0078711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/16/2013] [Indexed: 11/22/2022] Open
Abstract
We previously described a novel suicide (or ‘cell fate control’) gene therapy enzyme/prodrug system based on an engineered variant of human thymidylate kinase (TMPK) that potentiates azidothymidine (AZT) activation. Delivery of a suicide gene sequence into tumors by lentiviral transduction embodies a cancer gene therapy that could employ bystander cell killing as a mechanism driving significant tumor regression in vivo. Here we present evidence of a significant bystander cell killing in vitro and in vivo mediated by the TMPK/AZT suicide gene axis that is reliant on the formation of functional gap-junctional intercellular communications (GJICs). Potentiation of AZT activation by the engineered TMPK expressed in the human prostate cancer cell line, PC-3, resulted in effective bystander killing of PC-3 cells lacking TMPK expression – an effect that could be blocked by the GJIC inhibitor, carbenoxolone. Although GJICs are mainly formed by connexins, a new family of GJIC molecules designated pannexins has been recently identified. PC-3 cells expressed both connexin43 (Cx43) and Pannexin1 (Panx1), but Panx1 expression predominated at the plasma membrane, whereas Cx43 expression was primarily localized to the cytosol. The contribution of bystander effects to the reduction of solid tumor xenografts established by the PC-3 cell line was evaluated in an animal model. We demonstrate the contribution of bystander cell killing to tumor regression in a xenograft model relying on the delivery of expression of the TMPK suicide gene into tumors via direct intratumoral injection of recombinant therapeutic lentivirus. Taken together, our data underscore that the TMPK/AZT enzyme-prodrug axis can be effectively utilized in suicide gene therapy of solid tumors, wherein significant tumor regression can be achieved via bystander effects mediated by GJICs.
Collapse
Affiliation(s)
- Takeya Sato
- Molecular Pharmacology, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| | - Anton Neschadim
- Research & Development, Canadian Blood Services, Toronto, Ontario, Canada
| | - Arnon Lavie
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | | - Jeffrey A. Medin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate. J Control Release 2013; 170:414-20. [PMID: 23791977 DOI: 10.1016/j.jconrel.2013.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/06/2013] [Accepted: 06/08/2013] [Indexed: 12/11/2022]
Abstract
Anti-herpes simplex virus (HSV) drug acyclovir (ACV) is phosphorylated by the viral thymidine kinase (TK), but not the cellular TK. Phosphorylated ACV inhibits cellular DNA synthesis and kills the infected cells. We hypothesize that ACV monophosphate (ACVP), which is an activated metabolite of ACV, should be efficient in killing cells independent of HSV-TK. If so, ACVP should be a cytotoxic agent if properly delivered to the cancer cells. The Lipid/Calcium/Phosphate (LCP) nanoparticles (NPs) with a membrane/core structure were used to encapsulate ACVP to facilitate the targeted delivery of ACVP to the tumor. The LCP NPs showed entrapment efficiency of ~70%, the nano-scaled particle size and positive zeta potential. Moreover, ACVP-loaded LCP NPs (A-LCP NPs) exhibited concentration-dependent cytotoxicity against H460 cells and increased S-phase arrest. More importantly, a significant reduction of the tumor volume over 4 days following administration (p<0.05-0.005) of A-LCP NPs, suggests excellent in vivo efficacy. Whereas, two free drugs (ACV and ACVP) and blank LCP NPs showed little or no therapeutic effect. It was also found that the high efficacy of A-LCP NPs was associated with the ability to induce dramatic apoptosis of the tumor cells, as well as significantly inhibit tumor cell proliferation and cell cycle progression. In conclusion, with the help of LCP NPs, monophosphorylation modification of ACV can successfully modify an HSV-TK-dependent antiviral drug into an anti-tumor drug.
Collapse
|
16
|
Yu CF, Hong JH, Chiang CS. The roles of macrophages and nitric oxide in interleukin-3-enhanced HSV-Sr39tk-mediated prodrug therapy. PLoS One 2013; 8:e56508. [PMID: 23441198 PMCID: PMC3575414 DOI: 10.1371/journal.pone.0056508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/10/2013] [Indexed: 11/24/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV-sr39tk/GCV) system is a well-established prodrug system used in cancer gene therapy. However, this system is currently not effective enough to eradicate malignant tumors completely. This study aimed to evaluate whether co-expression of interleukin-3 (IL-3) could enhance the anti-tumor activity of HSV-sr39tk/GCV prodrug gene therapy using a murine TRAMP-C1 prostate tumor model. In vitro results demonstrated that HSV-sr39tk-transfected cells exhibited enhanced sensitivity to the GCV prodrug, which was not affected by co-expression of the mIL-3 gene. However, in vivo studies showed that co-expression of the mIL-3 gene significantly increased the HSV-sr39tk/GCV-induced tumor growth delay and even cured the tumor. The TRAMP-C1-specific immune response of spleen lymphocytes from mice bearing HSV-sr39tk- and IL-3-expressing TRAMP-C1 tumors was measured by ELISA. Results showed that IL-3-activated IL-4-dominant lymphocytes became IFN-γ- dominant lymphocytes after combined HSV-sr39tk/GCV therapy. The efficacy of combined therapies on tumor regression was reduced when macrophages populations were depleted by carrageenan or NO production was inhibited by administration of the iNOS inhibitor, L-NAME. These results suggest that utilizing a bicistronic vector to express HSV-sr39tk and the IL-3 gene induced an enhanced macrophage- or NO-dependent anti-tumor effect.
Collapse
Affiliation(s)
- Ching-Fang Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ji-Hong Hong
- Department of Radiation Oncology, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Ardiani A, Johnson AJ, Ruan H, Sanchez-Bonilla M, Serve K, Black ME. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr Gene Ther 2012; 12:77-91. [PMID: 22384805 DOI: 10.2174/156652312800099571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | | | | | | | |
Collapse
|
18
|
Neschadim A, Wang JCM, Lavie A, Medin JA. Bystander killing of malignant cells via the delivery of engineered thymidine-active deoxycytidine kinase for suicide gene therapy of cancer. Cancer Gene Ther 2012; 19:320-7. [PMID: 22388453 DOI: 10.1038/cgt.2012.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activity and specificity of chemotherapeutic agents against solid tumors can be augmented via the targeted or localized delivery of 'suicide' genes. Selective activation of specific prodrugs in cells expressing the 'suicide' gene drives their elimination by apoptosis, while also enabling the killing of adjacent bystander cells. Strong bystander effects can compensate for poor 'suicide' gene delivery, and depend on the prodrugs used and mechanisms for the acquisition of activated drug by the bystander population, such as the presence of gap junctional intercellular communications. Although a number of 'suicide' gene therapies for cancer have been developed and characterized, such as herpes simplex virus-derived thymidine kinase (HSV-tk)-based activation of ganciclovir, their limited success highlights the need for the development of more robust approaches. Limiting activation kinetics and evolution of chemoresistance are major obstacles. Here we describe 'suicide' gene therapy of cancer based on the lentivirus-mediated delivery of a thymidine-active human deoxycytidine kinase variant. This enzyme possesses substrate plasticity that enables it to activate a multitude of prodrugs, some with distinct mechanisms of action. We evaluated the magnitude and mechanisms of bystander effects induced by different prodrugs, and show that when used in combination, they can synergistically enhance the bystander effect while avoiding off-target toxicity.
Collapse
Affiliation(s)
- A Neschadim
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
19
|
Cell fate control gene therapy based on engineered variants of human deoxycytidine kinase. Mol Ther 2012; 20:1002-13. [PMID: 22273576 DOI: 10.1038/mt.2011.298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The safety of cell therapy applications can be enhanced by the introduction of Cell Fate Control (CFC) elements, which encode pharmacologically controlled cellular suicide switches. CFC Gene Therapy (CFCGT) offers the possibility of establishing control over gene-modified cells (GMCs) with regards to their proliferation, differentiation, or function. However, enzymes commonly employed in these approaches often possess poor kinetics and high immunogenicity. We describe a novel CFCGT system based on engineered variants of human deoxyCytidine Kinase (dCK) that overcomes limitations of current modalities. Mutants of dCK with rationally designed active sites that make them thymidine-activating were stably introduced into cells by recombinant lentiviral vectors (LVs). Transduced cells maintained growth kinetics and function. These dCK mutants efficiently activate bromovinyl-deoxyuridine (BVdU), L-deoxythymidine (LdT), and L-deoxyuridine (LdU), which are otherwise not toxic to wild-type cells. We show that mutant dCK-expressing Jurkat, Molt-4, and U87mg cells could be efficiently eliminated in vitro and in xenogeneic leukemia and tumor models in vivo. We also describe a fusion construct of the thymidine-activating dCK to the cytoplasmic tail-truncated LNGFR molecule and applications to in vivo eradication of primary human T cells. This novel CFCGT system offers unique plasticity with respect to the wide range of prodrugs it can potentiate, and can be used as a reliable safety switch in cell and gene therapy.
Collapse
|
20
|
Engineered human Tmpk fused with truncated cell-surface markers: versatile cell-fate control safety cassettes. Gene Ther 2012; 20:24-34. [PMID: 22241175 DOI: 10.1038/gt.2011.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-fate control gene therapy (CFCGT)-based strategies can augment existing gene therapy and cell transplantation approaches by providing a safety element in the event of deleterious outcomes. Previously, we described a novel enzyme/prodrug combination for CFCGT. Here, we present results employing novel lentiviral constructs harboring sequences for truncated surface molecules (CD19 or low-affinity nerve growth factor receptor) directly fused to that CFCGT cDNA (TmpkF105Y). This confers an enforced one-to-one correlation between cell marking and eradication functions. In-vitro analysis demonstrated the full functionality of the fusion product. Next, low-dose 3'-azido-3'-deoxythymidine (AZT) administration to non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice injected with transduced clonal K562 cells suppressed tumor growth; furthermore, one integrated vector on average was sufficient to mediate cytotoxicity. Further, in a murine xenogeneic leukemia-lymphoma model we also demonstrated in-vivo control over transduced Raji cells. Finally, in a proof-of-principle study to examine the utility of this cassette in combination with a therapeutic cDNA, we integrated this novel CFCGT fusion construct into a lentivector designed for treatment of Fabry disease. Transduction with this vector restored enzyme activity in Fabry cells and retained AZT sensitivity. In addition, human Fabry patient CD34(+) cells showed high transduction efficiencies and retained normal colony-generating capacity when compared with the non-transduced controls. These collective results demonstrated that this novel and broadly applicable fusion system may enhance general safety in gene- and cell-based therapies.
Collapse
|
21
|
Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity. Biochem Biophys Res Commun 2011; 416:199-204. [PMID: 22093835 DOI: 10.1016/j.bbrc.2011.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/04/2011] [Indexed: 11/22/2022]
Abstract
While gemcitabine (2'-2'-difluoro-2'-deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhance dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.
Collapse
|
22
|
van Putten EH, Dirven CM, van den Bent MJ, Lamfers ML. Sitimagene ceradenovec: a gene-based drug for the treatment of operable high-grade glioma. Future Oncol 2011; 6:1691-710. [PMID: 21142657 DOI: 10.2217/fon.10.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The field of gene therapy for malignant glioma has made important advances since the first gene transfer studies were performed 20 years ago. Multiple Phase I/II trials and two Phase III trials have been performed and have demonstrated the feasibility and safety of intratumoral vector delivery in the brain. Sitimagene ceradenovec is an adenoviral vector encoding the herpes simplex thymidine kinase gene, developed by Ark Therapeutics Group plc (UK and Finland) for the treatment of patients with operable high-grade glioma. In preclinical and Phase I/II clinical studies, sitimagene ceradenovec exhibited a significant increase in survival. Although the preliminary results of a Phase III clinical study demonstrated a significant positive effect of sitimagene ceradenovec treatment on time to reintervention or death when compared with standard care treatment (hazard ratio: 1.43; 95% CI: 1.06-1.93; p < 0.05), the European Committee for Medicinal Products for Human Use did not consider the data to provide sufficient evidence of clinical benefit. Further clinical evaluation, powered to demonstrate a benefit on a robust end point, is required. This article focuses on sitimagene ceradenovec and provides an overview of the developments in the field of gene therapy for malignant glioma.
Collapse
Affiliation(s)
- Erik Hp van Putten
- Department of Neurosurgery, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
24
|
Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14:4517-45. [PMID: 19924084 PMCID: PMC6255103 DOI: 10.3390/molecules14114517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/12/2022] Open
Abstract
Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.
Collapse
Affiliation(s)
- Gabi U. Dachs
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Michelle A. Hunt
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Sophie Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| |
Collapse
|