1
|
Qin S, He G, Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J Mater Chem B 2024; 12:9795-9820. [PMID: 39225508 DOI: 10.1039/d4tb00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer remains the leading cause of human death worldwide. Compared to traditional therapies, tumor immunotherapy has received a lot of attention and research focus due to its potential to activate both innate and adaptive immunity, low toxicity to normal tissue, and long-term immune activity. However, its clinical effectiveness and large-scale application are limited due to the immunosuppression microenvironment, lack of spatiotemporal control, expensive cost, and long manufacturing time. Recently, nanomaterial combined engineered bacteria have emerged as a promising solution to the challenges of tumor immunotherapy, which offers spatiotemporal control, reversal of immunosuppression, and scalable production. Therefore, we summarize the latest research on nanomaterial-assisted engineered bacteria for precise tumor immunotherapies, including the cross-talk of nanomaterials and bacteria as well as their application in different immunotherapies. In addition, we further discuss the advantages and challenges of nanomaterial-engineered bacteria and their future prospects, inspiring more novel and intelligent tumor immunotherapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
3
|
Wei Y, Zhang Z, Xue T, Lin Z, Chen X, Tian Y, Li Y, Jing Z, Fang W, Fang T, Li B, Chen Q, Lan T, Meng F, Zhang X, Liang X. In Situ Synthesis of an Immune-Checkpoint Blocker from Engineered Bacteria Elicits a Potent Antitumor Response. ACS Synth Biol 2024; 13:1679-1693. [PMID: 38819389 DOI: 10.1021/acssynbio.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Immune-checkpoint blockade (ICB) reinvigorates T cells from exhaustion and potentiates T-cell responses to tumors. However, most patients do not respond to ICB therapy, and only a limited response can be achieved in a "cold" tumor with few infiltrated lymphocytes. Synthetic biology can be used to engineer bacteria as controllable bioreactors to synthesize biotherapeutics in situ. We engineered attenuated Salmonella VNP20009 with synthetic gene circuits to produce PD-1 and Tim-3 scFv to block immunosuppressive receptors on exhausted T cells to reinvigorate their antitumor response. Secreted PD-1 and Tim-3 scFv bound PD-1+ Tim-3+ T cells through their targeting receptors in vitro and potentiated the T-cell secretion of IFN-γ. Engineered bacteria colonized the hypoxic core of the tumor and synthesized PD-1 and Tim-3 scFv in situ, reviving CD4+ T cells and CD8+ T cells to execute an antitumor response. The bacteria also triggered a strong innate immune response, which stimulated the expansion of IFN-γ+ CD4+ T cells within the tumors to induce direct and indirect antitumor immunity.
Collapse
Affiliation(s)
- Yuting Wei
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianyuan Xue
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xinyu Chen
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yishi Tian
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Zhangyan Jing
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Tianliang Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Baoqi Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Qi Chen
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Xin Liang
- Department of Physiology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
4
|
Goubet AG. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment? Front Oncol 2023; 13:1185163. [PMID: 37287916 PMCID: PMC10242102 DOI: 10.3389/fonc.2023.1185163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Microorganisms have been identified in tumor specimens for over a century. It is only in recent years that tumor-associated microbiota has become a rapidly expanding field. Assessment techniques encompass methods at the frontiers of molecular biology, microbiology, and histology, requiring a transdisciplinary process to carefully decipher this new component of the tumor microenvironment. Due to the low biomass, the study of tumor-associated microbiota poses technical, analytical, biological, and clinical challenges and must be approached as a whole. To date, several studies have begun to shed light on the composition, functions, and clinical relevance of the tumor-associated microbiota. This new piece of the tumor microenvironment puzzle could potentially change the way we think about and treat patients with cancer.
Collapse
Affiliation(s)
- Anne-Gaëlle Goubet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| |
Collapse
|
5
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
6
|
Gorobets S, Gorobets O, Kovalova S. Bioinformatic Analysis of the Genetic Mechanism of Biomineralization of Biogenic Magnetic Nanoparticles in Bacteria Capable of Tumor-Specific Accumulation. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2022. [DOI: 10.20535/ibb.2022.6.2.260183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background. Current methods of targeted cancer therapy are not always effective enough and can lead to side effects, such as an increased risk of autoimmune diseases. It is known that some bacteria are capable of specific accumulation in malignant tumors, and therefore can be used as an alternative means of targeted drug delivery. However, the genetic mechanism of tumor-specific accumulation of bacteria is not fully understood and needs to be studied in more detail.
Objective. This work aims to identify, by methods of comparative genomics methods, magnetically controlled bacteria among those for which tumor-specific accumulation has already been experimentally shown.
Methods. To identify magnetically controlled bacterial strains, i.e., bacteria that biomineralize biogenic magnetic nanoparticles (BMN), the method of comparative genomics was used, namely: pairwise alignment of proteomes with amino acid sequences of Mam-proteins of required for biomineralization of BMN in magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. Sequence alignments were performed in the BLAST program of the US National Center for Biotechnology Information (NCBI).
Results. The conducted bioinformatic analysis showed that strains of bacteria in which the ability to accumulate specifically in tumors has been experimentally proven are potential producers of BMN of different types. Among them there are potential producers of intracellular crystalline BMN, potential producers of intracellular amorphous BMN, and extracellular crystalline BMN
Conclusions. It is expedient to use bacteria-producing BMN as gene vectors and systems of targeted drug delivery to tumors that biomineralize BMN.
Collapse
|
7
|
Rommasi F. Bacterial-Based Methods for Cancer Treatment: What We Know and Where We Are. Oncol Ther 2022; 10:23-54. [PMID: 34780046 PMCID: PMC9098760 DOI: 10.1007/s40487-021-00177-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
A severe disease, cancer is caused by the exponential and uncontrolled growth of cells, leading to organ dysfunction as well as disorders. This disease has been recognized as one of the significant challenges to health and medicine. Various treatment procedures for cancer are associated with diverse side effects; the most conventional cancer treatments include chemotherapy, surgery, and radiotherapy, among others. Numerous adverse and side effects, low specificity and sensitivity, narrow therapeutic windows, and, recently, the emergence of tumor cells resistant to such treatments have been documented as the shortcomings of conventional treatment strategies. As a group of prokaryotic microorganisms, bacteria have great potential for use in cancer therapy. Currently, utilizing bacteria for cancer treatment has attracted the attention of scientists. The high potential of bacteria to become non-pathogenic by genetic manipulation, their distinguished virulence factors (which can be used as weapons against tumors), their ability to proliferate in tissues, and the contingency to control their population by administrating antibiotics, etc., have made bacteria viable candidates and live micro-medication for cancer therapies. However, the possible cytotoxicity impacts of bacteria, their inability to entirely lyse cancerous cells, as well as the probability of mutations in their genomes are among the significant challenges of bacteria-based methods for cancer treatment. In this article, various available data on bacterial therapeutics, along with their pros and cons, are discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Escherichiacoli Nissle 1917 as a Novel Microrobot for Tumor-Targeted Imaging and Therapy. Pharmaceutics 2021; 13:pharmaceutics13081226. [PMID: 34452187 PMCID: PMC8401140 DOI: 10.3390/pharmaceutics13081226] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023] Open
Abstract
Highly efficient drug delivery systems with excellent tumor selectivity and minimal toxicity to normal tissues remain challenging for tumor treatment. Although great effort has been made to prolong the blood circulation and improve the delivery efficiency to tumor sites, nanomedicines are rarely approved for clinical application. Bacteria have the inherent properties of homing to solid tumors, presenting themselves as promising drug delivery systems. Escherichia coli Nissle 1917 (EcN) is a commonly used probiotic in clinical practice. Its facultative anaerobic property drives it to selectively colonize in the hypoxic area of the tumor for survival and reproduction. EcN can be engineered as a bacteria-based microrobot for molecular imaging, drug delivery, and gene delivery. This review summarizes the progress in EcN-mediated tumor imaging and therapy and discusses the prospects and challenges for its clinical application. EcN provides a new idea as a delivery vehicle and will be a powerful weapon against cancer.
Collapse
|
9
|
Yang M, Yang F, Chen W, Liu S, Qiu L, Chen J. Bacteria-mediated cancer therapies: opportunities and challenges. Biomater Sci 2021; 9:5732-5744. [PMID: 34313267 DOI: 10.1039/d1bm00634g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, cancer therapy strategies utilizing live tumor-targeting bacteria have presented unique advantages. Engineered bacteria have the particular ability to distinguish tumors from normal tissues with less toxicity. Live bacteria are naturally capable of homing to tumors, resulting in high levels of local colonization because of insufficient oxygen and low pH in the tumor microenvironment. Bacteria initiate their antitumor effects by directly killing the tumor or by activating innate and adaptive antitumor immune responses. The bacterial vectors can be reprogrammed following advanced DNA synthesis, sophisticated genetic bioengineering, and biosensors to engineer microorganisms with complex functions, and then produce and deliver anticancer agents based on clinical needs. However, because of the lack of knowledge on the mechanisms and side effects of microbial cancer therapy, developing such smart microorganisms to treat or prevent cancer remains a significant challenge. In this review, we summarized the potential, status, opportunities and challenges of this growing field. We illustrated the mechanism of tumor regression induced by engineered bacteria and discussed the recent advances in the application of bacteria-mediated cancer therapy to improve efficacy, safety and drug delivery. Finally, we shared our insights into the future directions of tumor-targeting bacteria in cancer therapy.
Collapse
Affiliation(s)
- Meiyang Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | |
Collapse
|
10
|
Wei B, Pan J, Yuan R, Shao B, Wang Y, Guo X, Zhou S. Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy. NANO LETTERS 2021; 21:4231-4240. [PMID: 33998789 DOI: 10.1021/acs.nanolett.1c00209] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tumor immunosuppressive microenvironment greatly limits the efficacy of immunotherapy. Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the tumor microenvironment, which can inhibit the tumor after converting it to an M1-like phenotype. In addition, immunogenic cell death (ICD) can increase the amount of T lymphocytes in tumors, activating antineoplastic immunity. Herein, tumor-associated macrophage polarization therapy supplemented with PLGA-DOX (PDOX)-induced ICD is developed for cancer treatment. The nanoparticles/bacteria complex (Ec-PR848) is fabricated for tumor targeting and TAM polarization, and PLGA-R848 (PR848) are attached to the surface of Escherichia coli (E. coli) MG1655 via electrostatic absorption. The toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) and E. coli can greatly polarize M2 macrophages to M1 macrophages, while PDOX-induced ICD can also impair the immunosuppression of the tumor microenvironment. This strategy shows that tumor-associated macrophage polarization therapy combined with ICD induced by low-dose chemotherapeutic drugs can commendably enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Baicheng Wei
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Ruiting Yuan
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Binfen Shao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
11
|
Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003572. [PMID: 33854892 PMCID: PMC8025040 DOI: 10.1002/advs.202003572] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.
Collapse
Affiliation(s)
- Xuehui Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Binfen Shao
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Wang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
12
|
Zhao Y, Tang R. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification. Acta Biomater 2021; 120:57-80. [PMID: 32629191 DOI: 10.1016/j.actbio.2020.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Biomineralization, a bio-organism controlled mineral formation process, plays an important role in linking biological organisms and mineral materials in nature. Inspired by biomineralization, biomimetic mineralization is used as a bridge tool to integrate biological organisms and functional materials together, which can be beneficial for the development of diversified functional organism-material hybrids. In this review, recent progresses on the techniques of biomimetic mineralization for organism-material combinations are summarized and discussed. Based upon these techniques, the preparations and applications of virus-, prokaryotes-, and eukaryotes-material hybrids have been presented and they demonstrate the great potentials in the fields of vaccine improvement, cell protection, energy production, environmental and biomedical treatments, etc. We suggest that more researches about functional organism and material combination with more biocompatible techniques should be developed to improve the design and applications of specific organism-material hybrids. These rationally designed organism-material hybrids will shed light on the production of "live materials" with more advanced functions in future. STATEMENT OF SIGNIFICANCE: This review summaries the recent attempts on improving biological organisms by their integrations with functional materials, which can be achieved by biomimetic mineralization as the combination tool. The integrated materials, as the artificial shells or organelles, confer diversified functions on the enclosed organisms. The successful constructions of various virus-, prokaryotes-, and eukaryotes-material hybrids have demonstrated the great potentials of the material incorporation strategy in vaccine development, cancer treatment, biological photosynthesis and environment protection etc. The suggested challenges and perspectives indicate more inspirations for the future development of organism-material hybrids.
Collapse
Affiliation(s)
- Yueqi Zhao
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou 310027 China; Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
13
|
Pofali P, Mondal A, Londhe V. Exosome as a Natural Gene Delivery Vector for Cancer Treatment. Curr Cancer Drug Targets 2020; 20:821-830. [DOI: 10.2174/1568009620666200924154149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Background:
Current gene therapy vectors such as viral, non-viral, and bacterial vectors,
which are used for cancer treatment, but there are certain safety concerns and stability issues
of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular
bodies into the extracellular environment by most of the cell types in-vivo and in-vitro.
As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological
barriers like the blood-brain barrier, intestinal barrier, and placental barrier.
Objective:
This review focusses on the role of exosome as a carrier to efficiently deliver a gene for
cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages
of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as
a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article.
Methods:
Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes.
Results:
Exosome-mediated delivery is highly promising and advantageous in comparison to the
current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic
nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects.
Conclusion:
In the near future, exosomes can become an efficient gene carrier for delivery and a
biomarker for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Prasad Pofali
- National Institute of Immunohematology, Parel, Mumbai 400012, India
| | - Adrita Mondal
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle West, Mumbai 400056, Maharashtra, India
| | - Vaishali Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle West, Mumbai 400056, Maharashtra, India
| |
Collapse
|
14
|
Gunzburg WH, Aung MM, Toa P, Ng S, Read E, Tan WJ, Brandtner EM, Dangerfield J, Salmons B. Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation. Microb Cell Fact 2020; 19:216. [PMID: 33243224 PMCID: PMC7691082 DOI: 10.1186/s12934-020-01465-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough. RESULTS We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS), that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for at least 4 h without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase at concentrations found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract. CONCLUSION Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.
Collapse
Affiliation(s)
- Walter H Gunzburg
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore. .,Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210, Vienna, Austria.
| | - Myo Myint Aung
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Pauline Toa
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Shirelle Ng
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Eliot Read
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Wee Jin Tan
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Eva Maria Brandtner
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore.,VIVIT - Vorarlberg Institute for Vascular Investigation and Treatment, Feldkirch, Austria
| | - John Dangerfield
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| | - Brian Salmons
- Austrianova Singapore, 41 Science Park Road, #03-15 The Gemini, Singapore, 117610, Singapore
| |
Collapse
|
15
|
Oral delivery of bacteria: Basic principles and biomedical applications. J Control Release 2020; 327:801-833. [DOI: 10.1016/j.jconrel.2020.09.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/05/2020] [Indexed: 12/18/2022]
|
16
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Wang Y, Chen C, Luo Y, Xiong J, Tang Y, Yang H, Wang L, Jiang F, Gao X, Xu D, Li H, Wang Q, Zou J. Experimental Study of Tumor Therapy Mediated by Multimodal Imaging Based on a Biological Targeting Synergistic Agent. Int J Nanomedicine 2020; 15:1871-1888. [PMID: 32256065 PMCID: PMC7085950 DOI: 10.2147/ijn.s238398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The high-intensity focused ultrasound (HIFU) ablation of tumors is inseparable from synergistic agents and image monitoring, but the existing synergistic agents have the defects of poor targeting and a single imaging mode, which limits the therapeutic effects of HIFU. The construction of a multifunctional biological targeting synergistic agent with high biosafety, multimodal imaging and targeting therapeutic performance has great significance for combating cancer. Methods Multifunctional biological targeting synergistic agent consisting of Bifidobacterium longum (B. longum), ICG and PFH coloaded cationic lipid nanoparticles (CL-ICG-PFH-NPs) were constructed for targeting multimode imaging, synergistic effects with HIFU and imaging-guided ablation of tumors, which was evaluated both in vitro and in vivo. Results Both in vitro and in vivo systematical studies validated that the biological targeting synergistic agent can simultaneously achieve tumor-biotargeted multimodal imaging, HIFU synergism and multimodal image monitoring in HIFU therapy. Importantly, the electrostatic adsorption method and the targeting of B. longum to tumor tissues allow the CL-ICG-PFH-NPs to be retained in the tumor tissue, achieve the targeting ability of synergistic agent. Multimodal imaging chose the best treatment time according to the distribution of nanoparticles in the body to guide the efficient and effective treatment of HIFU. CL-ICG-PFH-NPs could serve as a phase change agent and form microbubbles that can facilitate HIFU ablation by mechanical effects, acoustic streaming and shear stress. This lays a foundation for the imaging and treatment of tumors. Conclusion In this work, a biological targeting synergistic agent was successfully constructed with good stability and physicochemical properties. This biological targeting synergistic agent can not only provide information for early diagnosis of tumors but also realize multimodal imaging monitoring during HIFU ablation simultaneously with HIFU treatment, which improves the shortcomings of HIFU treatment and has broad application prospects.
Collapse
Affiliation(s)
- Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Die Xu
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
18
|
Alizadeh S, Esmaeili A, Barzegari A, Rafi MA, Omidi Y. Bioengineered smart bacterial carriers for combinational targeted therapy of solid tumours. J Drug Target 2020; 28:700-713. [PMID: 32116051 DOI: 10.1080/1061186x.2020.1737087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite many endeavours for the development of new anticancer drugs, effective therapy of solid tumours remains a challenging issue. The current cancer chemotherapies may associate with two important limitations, including the lack/trivial specificity of treatment modalities towards diseased cells/tissues resulting in undesired side effects, and the emergence of drug-resistance mechanisms by tumour cells causing the failure of the treatment. Much attention, therefore, has currently been paid to develop smart and highly specific anticancer agents with maximal therapeutic impacts and minimal side effects. Among various strategies used to target cancer cells, bacteria-based cancer therapies (BCTs) have been validated as potential gene/drug delivery carriers, which can also be engineered to be used in diagnosis processes. They can be devised to selectively target the tumour microenvironment (TME), within which they may preferentially proliferate in the necrotic and anaerobic parts - often inaccessible to other therapeutics. BCTs are capable to sense and respond to the environmental signals, upon which they are considered as smart microrobots applicable in the controlled delivery of therapeutic agents to the TME. In this review, we aimed to provide comprehensive insights into the potentials of the bioengineered bacteria as smart and targeted bio-carriers and discuss their applications in cancer therapy.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Walker SP, Tangney M, Claesson MJ. Sequence-Based Characterization of Intratumoral Bacteria-A Guide to Best Practice. Front Oncol 2020; 10:179. [PMID: 32154174 PMCID: PMC7046755 DOI: 10.3389/fonc.2020.00179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Tumors are hospitable environments to bacteria and several recent studies on cancer patient samples have introduced the concept of an endogenous tumor microbiome. For a variety of reasons, this putative tumor microbiome is particularly challenging to investigate, and a failure to account for the various potential pitfalls will result in erroneous results and claims. Before this potentially extremely medically-significant habitat can be accurately characterized, a clear understanding of all potential confounding factors is required, and a best-practice approach should be developed and adopted. This review summarizes all of the potential issues confounding accurate bacterial DNA sequence analysis of the putative tumor microbiome, and offers solutions based on related research with the hope of assisting in the progression of research in this field.
Collapse
Affiliation(s)
- Sidney P Walker
- Cancer Research at UCC, University College Cork, Cork, Ireland
- SynBioCentre, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Mark Tangney
- Cancer Research at UCC, University College Cork, Cork, Ireland
- SynBioCentre, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Jiang X, Zhao C, Fan X, Wu G. Gold Biomineralization on Bacterial Biofilms for Leaching of Au 3+ Damages Eukaryotic Cells. ACS OMEGA 2019; 4:16667-16673. [PMID: 31616849 PMCID: PMC6788037 DOI: 10.1021/acsomega.9b02601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/13/2019] [Indexed: 05/24/2023]
Abstract
Heavy metals not only pollute the environment but also are health and environmental hazard. Bacteria constitute inexpensive and eco-friendly material to eliminate and recycle heavy metals via biomineralization and biosorption. However, the effect of metal biomineralization in bacterial biofilms on the ecological balance of bacteria and infectious diseases is unclear. This study aimed to explore the interaction between a eukaryotic cell line HEK293T and mineralized Escherichia coli, using a model of gold biomineralization on E. coli biofilms (E. coli-Au). In our present model, bacterial activity was not disrupted and bacterial adhesion and invasion were enhanced. E. coli-Au invaded the cytoplasm and nuclei of HEK293T cells and damaged them via intracellular growth and multiplication. The present findings indicate that metal biomineralization in bacterial biofilms for leaching of heavy metal ions is hazardous to eukaryotic cells and even human health.
Collapse
Affiliation(s)
- Xinglu Jiang
- Medical School
of Southeast University, Nanjing 210009, People’s Republic
of China
| | - Chenggui Zhao
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic of China
| | - Xiaobo Fan
- Medical School
of Southeast University, Nanjing 210009, People’s Republic
of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
21
|
Peters L, Weidenfeld I, Klemm U, Loeschcke A, Weihmann R, Jaeger KE, Drepper T, Ntziachristos V, Stiel AC. Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nat Commun 2019; 10:1191. [PMID: 30867430 PMCID: PMC6416252 DOI: 10.1038/s41467-019-09081-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism. Current optoacoustic probes for cancer imaging have limitations including background noise, long-term toxicity and scarce imaging depth in living tissue. Here the authors use Rhodobacter, purple bacteria rich in bacteriochlorophyll a, as an optoacoustic reporter to image tumor-associated macrophages in mice in vivo.
Collapse
Affiliation(s)
- Lena Peters
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Robin Weihmann
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München, München, 81675, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.
| |
Collapse
|
22
|
Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J Control Release 2018; 289:158-170. [DOI: 10.1016/j.jconrel.2018.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
23
|
Kocijancic D, Leschner S, Felgner S, Komoll RM, Frahm M, Pawar V, Weiss S. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget 2018; 8:36492-36508. [PMID: 28445131 PMCID: PMC5482671 DOI: 10.18632/oncotarget.16906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
The potential of bacteria-mediated tumor therapy (BMTT) is highlighted by more than a century of investigation. Attenuated Salmonella has prevailed as promising therapeutic agents. For BMTT - categorized as an immune therapy - the exact contribution of particular immune reactions to the therapeutic effect remains ambiguous. In addition, one could argue for or against the requirement of bacterial viability and tumor targeting. Herein we evaluate the isolated therapeutic efficacy of purified LPS and TNF-α, which together account for a dominant immunogenic pathway of gram negative bacteria like Salmonella. We show that therapeutic efficacy against CT26 tumors does not require bacterial viability. Analogous to viable Salmonella SL7207, tumor regression by a specific CD8+ T cell response can be induced by purified LPS or recombinant TNF-α (rTNF-α). Conversely, therapeutic effects against RenCa tumors were abrogated upon bacterial avitalization and limited using isolated adjuvants. This argues for an alternative mechanistic explanation for SL7207 against RenCa that depends on viability and persistence. Unable to boost bacterial therapies by co-injection of rTNF-α suggested therapeutic effects along this axis are exhausted by the intrinsic adjuvanticity of bacteria alone. However, the importance of TNF-α for BMTT was highlighted by its support of tumor invasion and colonization in concert with lower infective doses of Salmonella. In consideration, bacterial therapeutic effectiveness along the axis of LPS and TNF-α appears limited, and does not offer the necessary plasticity for different tumors. This emphasizes a need for recombinant strengthening and vehicular exploitation to accommodate potency, plasticity and distinctiveness in BMTT.
Collapse
Affiliation(s)
- Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronja-Melinda Komoll
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
24
|
Kocijancic D, Felgner S, Frahm M, Komoll RM, Iljazovic A, Pawar V, Rohde M, Heise U, Zimmermann K, Gunzer F, Hammer J, Crull K, Leschner S, Weiss S. Therapy of solid tumors using probiotic Symbioflor-2: restraints and potential. Oncotarget 2017; 7:22605-22. [PMID: 26981777 PMCID: PMC5008385 DOI: 10.18632/oncotarget.8027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
To date, virulent bacteria remain the basis of most bacteria mediated cancer therapies. For clinical application attenuation is required. However, this might result in a drastically lowered therapeutic capacity. Herein we argue that the E. coli probiotic Symbioflor-2, with a history of safe application may constitute a viable tumor therapeutic candidate. We demonstrate that Symbioflor-2 displays a highly specific tumor targeting ability as determined in murine CT26 and RenCa tumor models. The excellent specificity was ascribed to reduced levels of adverse colonization. A high safety standard was demonstrated in WT and Rag1−/− mice. Thus, Symbioflor-2 may represent an ideal tumor targeting delivery system for therapeutic molecules. Moreover, Symbioflor-2 was capable of inducing CT26 tumor clearance as result of an adjuvant effect on tumor specific CD8+ T cells analogous to the Salmonella variant SL7207. However, lower therapeutic efficacy against RenCa tumors suggested a generally reduced therapeutic potency for probiotics. Interestingly, concurrent depletion of Gr-1+ or Ly6G+ cells installed therapeutic efficacy equal to SL7207, thus highlighting the role of innate effector cells in restraining the anti-tumor effects of Symbioflor-2. Collectively, our findings argue for a strategy of safe strain application and a more sustainable use of bacteria as a delivery system for therapeutic molecules.
Collapse
Affiliation(s)
- Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronja-Melinda Komoll
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Aida Iljazovic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ulrike Heise
- Mouse-Pathology Service Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Florian Gunzer
- Institute of Medical Microbiology and Hygiene, Dresden University of Technology, Dresden, Germany
| | - Juliane Hammer
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katja Crull
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
25
|
Ur Rahman S, Stanton M, Casey PG, Spagnuolo A, Bensi G, Hill C, Francis KP, Tangney M, Gahan CGM. Development of a Click Beetle Luciferase Reporter System for Enhanced Bioluminescence Imaging of Listeria monocytogenes: Analysis in Cell Culture and Murine Infection Models. Front Microbiol 2017; 8:1797. [PMID: 29018414 PMCID: PMC5622934 DOI: 10.3389/fmicb.2017.01797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is widely used as a model organism for the analysis of infection biology. In this context, there is a current need to develop improved reporters for enhanced bioluminescence imaging (BLI) of the pathogen in infection models. We have developed a click beetle red luciferase (CBR-luc) based vector (pPL2CBRopt) expressing codon optimized CBR-luc under the control of a highly expressed Listerial promoter (PHELP) for L. monocytogenes and have compared this to a lux-based system expressing bacterial luciferase for BLI of the pathogen using in vitro growth experiments and in vivo models. The CBR-luc plasmid stably integrates into the L. monocytogenes chromosome and can be used to label field isolates and laboratory strains of the pathogen. Growth experiments revealed that CBR-luc labeled L. monocytogenes emits a bright signal in exponential phase that is maintained during stationary phase. In contrast, lux-labeled bacteria produced a light signal that peaked during exponential phase and was significantly reduced during stationary phase. Light from CBR-luc labeled bacteria was more efficient than the signal from lux-labeled bacteria in penetrating an artificial tissue depth assay system. A cell invasion assay using C2Bbe1 cells and a systemic murine infection model revealed that CBR-luc is suited to BLI approaches and demonstrated enhanced sensitivity relative to lux in the context of Listeria infection models. Overall, we demonstrate that this novel CBR reporter system provides efficient, red-shifted light production relative to lux and may have significant applications in the analysis of L. monocytogenes pathogenesis.
Collapse
Affiliation(s)
- Sadeeq Ur Rahman
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Pat G Casey
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | | | | | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Mark Tangney
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Cork Cancer Research Centre, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,SynBio Centre, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Lehouritis P, Hogan G, Tangney M. Designer bacteria as intratumoural enzyme biofactories. Adv Drug Deliv Rev 2017; 118:8-23. [PMID: 28916496 DOI: 10.1016/j.addr.2017.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Bacterial-directed enzyme prodrug therapy (BDEPT) is an emerging form of treatment for cancer. It is a biphasic variant of gene therapy in which a bacterium, armed with an enzyme that can convert an inert prodrug into a cytotoxic compound, induces tumour cell death following tumour-specific prodrug activation. BDEPT combines the innate ability of bacteria to selectively proliferate in tumours, with the capacity of prodrugs to undergo contained, compartmentalised conversion into active metabolites in vivo. Although BDEPT has undergone clinical testing, it has received limited clinical exposure, and has yet to achieve regulatory approval. In this article, we review BDEPT from the system designer's perspective, and provide detailed commentary on how the designer should strategize its development de novo. We report on contemporary advancements in this field which aim to enhance BDEPT in terms of safety and efficacy. Finally, we discuss clinical and regulatory barriers facing BDEPT, and propose promising approaches through which these hurdles may best be tackled.
Collapse
|
27
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol 2017; 233:2019-2031. [PMID: 28198007 DOI: 10.1002/jcp.25859] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022]
Abstract
Hypoxia, a characteristic feature of tumors, is indispensable to tumor angiogenesis, metastasis, and multi drug resistance. Hypoxic avascular regions, deeply embedded inside the tumors significantly hinder delivery of therapeutic agents. The low oxygen tension results in resistance to the current applied anti-cancer therapeutics including radiotherapy, chemotherapy, and photodynamic therapy, the efficacy of which is firmly tied to the level of tumor oxygen supply. However, emerging data indicate that nanocarriers/nanodrugs can offer substantial benefits to improve the efficacy of current therapeutics, through modulation of tumor hypoxia. This review aims to introduce the most recent advances made in nanocarrier mediated targeting of tumor hypoxia. The first part is dedicated to the approaches by which nanocarriers could be designed to target/leverage hypoxia. These approaches include i) inhibiting Hypoxia Inducer Factor (HIF-1α); ii) hypoxia activated prodrugs/linkers; and iii) obligate anaerobe mediated targeting of tumor hypoxia. The second part, details novel nanosystems proposed to modulate tumor hypoxia through tumor oxygenation. These methods seek to lessen tumor hypoxia through vascular normalization, or reoxygenation therapy. The reoxygenation of tumor could be accomplished by: i) generation of oxygen filled nanocarriers; ii) natural/artificial oxygen nanocarriers; and iii) oxygen generators. The efficacy of each approach and their potential in cancer therapy is further discussed.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Delshad Ahmadi
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Targeting Therapy Research Group, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Zhang Z, Ju E, Bing W, Wang Z, Ren J, Qu X. Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. Chem Commun (Camb) 2017; 53:8415-8418. [DOI: 10.1039/c7cc03794e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A chemically engineered mesoporous silica armour is developed for simultaneously improving bioreporter bacterial vitality and shielding infectivity.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Wei Bing
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhenzhen Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
29
|
Wang Y, He T, Liu J, Liu H, Zhou L, Hao W, Sun Y, Wang X. Synergistic effects of overexpression of BMP‑2 and TGF‑β3 on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Med Rep 2016; 14:5514-5520. [PMID: 27878265 PMCID: PMC5355709 DOI: 10.3892/mmr.2016.5961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein 2 (BMP-2) and transforming growth factor β (TGF-β) isoforms are important in advancing bone regeneration. The aim of the present study was to investigate the positive and reciprocal effect of TGF-β3, one of the three TGF-β isoforms, on BMP-2 in promoting osteogenic differentiation. Exogenous BMP-2 and TGF-β3 genes were separately, and in combination, overexpressed in rabbit bone marrow-derived mesenchymal stem cells (rBMSCs). Expression levels of BMP-2 and TGF-β3 were evaluated using reverse-transcription-polymerase chain reaction (RT-PCR) and Western blotting assays. Furthermore, the osteogenic differentiation capacities of BMSCs were assessed by measuring Alizarin Red S staining, an alkaline phosphatase activity assay, and quantification of the osteogenic-specific genes, Runt-related transcription factor 2 (Runx2) and Osterix (Osx). Using lentiviral-mediated transfection, robust co-transfection efficiency of >90% was achieved. RT-PCR and immunoblotting results indicated a marked elevated expression of BMP-2 and TGF-β3 in rBMSCs undergoing co-transfection, compared with transfection with BMP-2 or TGF-β3 alone, indicating that BMP-2 and TGF-β3 are synergistically expressed in rBMSCs. Furthermore, enhanced osteogenic differentiation was observed in rBMSCs co-transfected with BMP-2/TGF-β3. The present study successfully delivered BMP-2 together with TGF-β3 into rBMSCs with high efficiency for the first time. Furthermore, TGF-β3 overexpression was demonstrated to enhance the osteogenic efficacy of BMP-2 in rBMSCs, and vice versa. This provides a potential clinical therapeutic approach for regenerating the function of osseous tissue, and may present a promising strategy for bone defect healing.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Tian He
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Jie Liu
- Department of Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Hongzhi Liu
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Lugang Zhou
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Wei Hao
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Yujie Sun
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong 264400, P.R. China
| |
Collapse
|
30
|
Mercado-Lubo R, Zhang Y, Zhao L, Rossi K, Wu X, Zou Y, Castillo A, Leonard J, Bortell R, Greiner DL, Shultz LD, Han G, McCormick BA. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat Commun 2016; 7:12225. [PMID: 27452236 PMCID: PMC5512628 DOI: 10.1038/ncomms12225] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.
Collapse
Affiliation(s)
- Regino Mercado-Lubo
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Yuanwei Zhang
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Liang Zhao
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Kyle Rossi
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Xiang Wu
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Yekui Zou
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Antonio Castillo
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Jack Leonard
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, 55 Lake Avenue North Worcester, Massachusetts 01655, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, 55 Lake Avenue North Worcester, Massachusetts 01655, USA
| | | | - Gang Han
- Department of Biochemistry &Molecular Pharmacology, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, 368 Plantation Street, Worcester, Massachusetts 01655, USA
| |
Collapse
|
31
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
32
|
Diagnosis of cancer multidrug resistance by bacterium-mediated imaging. Med Hypotheses 2016; 89:11-5. [DOI: 10.1016/j.mehy.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/07/2015] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
|
33
|
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality in which a photosensitizing dye is administered and exposed to light to kill tumor cells via the production of reactive oxygen species (ROS). A fundamental obstacle for PDT is the low specificity for staining solid tumors with dyes. Recently, a tumor targeting system guided by anaerobic bacteria was proposed for tumor imaging and treatment. Here, we explore the feasibility of the genetically encoded photosensitizer KillerRed, which is expressed in Escherichia coli, to treat tumors. Using nitroblue tetrazolium (NBT), we detected a lengthy ROS diffusion from the bodies of KillerRed-expressing bacteria in vitro, which demonstrated the feasibility of using bacteria to eradicate cells in their surroundings. In nude mice, Escherichia coli (E. coli) expressing KillerRed (KR-E. coli) were subcutaneously injected into xenografts comprising CNE2 cells, a human nasopharyngeal carcinoma cell line, and HeLa cells, a human cervical carcinoma cell line. KR-E. coli seemed to proliferate rapidly in the tumors as observed under an imaging system. When the intensity of fluorescence increased and the fluorescent area became as large as the tumor one day after KR-E. coli injection, the KR-E. coli-bearing tumor was irradiated with an orange light (λ = 540 − 580 nm). In all cases, the tumors became necrotic the next day and were completely eliminated in a few days. No necrosis was observed after the irradiation of tumors injected with a vehicle solution or a vehicle carrying the E. coli without KillerRed. In successfully treated mice, no tumor recurrence was observed for more than two months. E. coli genetically engineered for KillerRed expression are highly promising for the diagnosis and treatment of tumors when the use of bacteria in patients is cleared for infection safety.
Collapse
Affiliation(s)
- Libo Yan
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Masamitsu Kanada
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Jinyan Zhang
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Shigetoshi Okazaki
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
| | - Susumu Terakawa
- Medical Photonics Research Center, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Japan
- * E-mail:
| |
Collapse
|
34
|
Vorobyeva AG, Stanton M, Godinat A, Lund KB, Karateev GG, Francis KP, Allen E, Gelovani JG, McCormack E, Tangney M, Dubikovskaya EA. Development of a Bioluminescent Nitroreductase Probe for Preclinical Imaging. PLoS One 2015; 10:e0131037. [PMID: 26110789 PMCID: PMC4482324 DOI: 10.1371/journal.pone.0131037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Bacterial nitroreductases (NTRs) have been widely utilized in the development of novel antibiotics, degradation of pollutants, and gene-directed enzyme prodrug therapy (GDEPT) of cancer that reached clinical trials. In case of GDEPT, since NTR is not naturally present in mammalian cells, the prodrug is activated selectively in NTR-transformed cancer cells, allowing high efficiency treatment of tumors. Currently, no bioluminescent probes exist for sensitive, non-invasive imaging of NTR expression. We therefore developed a "NTR caged luciferin" (NCL) probe that is selectively reduced by NTR, producing light proportional to the NTR activity. Here we report successful application of this probe for imaging of NTR in vitro, in bacteria and cancer cells, as well as in vivo in mouse models of bacterial infection and NTR-expressing tumor xenografts. This novel tool should significantly accelerate the development of cancer therapy approaches based on GDEPT and other fields where NTR expression is important.
Collapse
Affiliation(s)
- Anzhelika G. Vorobyeva
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Michael Stanton
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Aurélien Godinat
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Kjetil B. Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Grigory G. Karateev
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | | | - Elizabeth Allen
- School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
| | - Juri G. Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Mark Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Elena A. Dubikovskaya
- School of Basic Sciences, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
35
|
A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria. PLoS One 2015; 10:e0128802. [PMID: 26086721 PMCID: PMC4472781 DOI: 10.1371/journal.pone.0128802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.
Collapse
|
36
|
Sun Z, Westermann C, Yuan J, Riedel CU. Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17. Bioengineered 2014; 5:371-7. [PMID: 25482086 DOI: 10.4161/bioe.34423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The DNA sequence upstream of the glyceraldehyde 3-phosphate dehydrogenase gene (gap) of various strains of bifidobacteria is used in a number of vector systems for homologous and heterologous expression in this group of bacteria. To date none of the bifidobacterial gap promoters (Pgap) have been verified experimentally. Here, we probe a range of putative bifidobacterial promoters hypothesized to show high constitutive transcriptional activity using a β-glucuronidase reporter system. In silico analysis revealed a predicted bacterial promoter upstream of the gap gene of Bifidobacterium bifidum S17. The corresponding DNA sequences was cloned into the promoter probe vector pMDY23 and yielded highest reporter activities among the promoter sequences tested confirming previous studies. Using rapid amplification of cDNA ends (5'-RACE), we identified the transcription start site (TSS) of Pgap of B. bifidum S17. The experimentally determined TSS and the associated -10 and -35 regions do not match with the promoter predicted in silico. Moreover, a potential ribosome-binding site (RBS) was identified upstream of the ATG start codon of the gap gene, which is complementary to the 3'-end of the 16S rRNA with only 1 mismatch suggesting efficient initiation of translation. Alignment of the Pgap sequences of a number of representative bifidobacteria showed a high level of conservation and the presence of -35 and -10 regions, which are similar but not identical to the consensus promoter sequences of house-keeping genes of Escherichia coli and Bacillus subtilis. Collectively, these results confirm the suitability of Pgap for high level, constitutive expression in bifidobacteria.
Collapse
Affiliation(s)
- Zhongke Sun
- a Institute of Microbiology and Biotechnology ; University of Ulm ; Ulm , Germany
| | | | | | | |
Collapse
|
37
|
Cronin M, Le Boeuf F, Murphy C, Roy DG, Falls T, Bell JC, Tangney M. Bacterial-mediated knockdown of tumor resistance to an oncolytic virus enhances therapy. Mol Ther 2014; 22:1188-1197. [PMID: 24569832 DOI: 10.1038/mt.2014.23] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/12/2014] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) and bacteria share the property of tumor-selective replication following systemic administration. In the case of nonpathogenic bacteria, tumor selectivity relates to their ability to grow extracellularly within tumor stroma and is therefore ideally suited to restricting the production of bacterially produced therapeutic agents to tumors. We have previously shown the ability of the type 1 interferon antagonist B18R to enhance the replication and spread of vesicular stomatitis virus (VSV) by overcoming related cellular innate immunity. In this study, we utilized nonpathogenic bacteria (E. coli) expressing B18R to facilitate tumor-specific production of B18R, resulting in a microenvironment depleted of bioactive antiviral cytokine, thus "preconditioning" the tumor to enhance subsequent tumor destruction by the OV. Both in vitro and in vivo infection by VSVΔ51 was greatly enhanced by B18R produced from E. coli. Moreover, a significant increase in therapeutic efficacy resulted from intravenous (i.v.) injection of bacteria to tumor-bearing mice 5 days prior to i.v. VSVΔ51 administration, as evidenced by a significant reduction in tumor growth and increased survival in mice. Our strategy is the first example where two such diverse microorganisms are rationally combined and demonstrates the feasibility of combining complementary microorganisms to improve therapeutic outcome.
Collapse
Affiliation(s)
- Michelle Cronin
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carola Murphy
- Cork Cancer Research Centre, University College Cork, Cork, Ireland
| | - Dominic G Roy
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Theresa Falls
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mark Tangney
- Cork Cancer Research Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
38
|
Cummins J, Cronin M, van Pijkeren JP, Gahan CGM, Tangney M. Bacterial systems for gene delivery to systemic tumors. Methods Mol Biol 2014; 1141:201-209. [PMID: 24567141 DOI: 10.1007/978-1-4939-0363-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Certain bacteria have emerged as biological gene vectors with natural tumor specificity, capable of specifically delivering genes or gene products to the tumor environment when intravenously (i.v.) administered to rodent models. Here, we describe procedures for studying this phenomenon in vitro and in vivo for both invasive and noninvasive bacteria suitable for exploitation as tumor-specific therapeutic delivery vehicles, due to their ability to replicate specifically within tumors and/or mediate bacterial-mediated transfer of plasmid DNA to mammalian cells (bactofection).
Collapse
Affiliation(s)
- Joanne Cummins
- Cork Cancer Research Centre, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
39
|
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5:1642-61. [PMID: 24106209 PMCID: PMC3840483 DOI: 10.1002/emmm.201202287] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023] Open
Abstract
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders.
Collapse
Affiliation(s)
| | - Hildegard Büning
- Department I of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of CologneCologne, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical SchoolHannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - Manuel Grez
- Institute for Biomedical ResearchGeorg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|
40
|
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120-31. [DOI: 10.1016/j.jconrel.2013.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
41
|
Byrne WL, DeLille A, Kuo C, de Jong JS, van Dam GM, Francis KP, Tangney M. Use of optical imaging to progress novel therapeutics to the clinic. J Control Release 2013; 172:523-34. [PMID: 23680286 DOI: 10.1016/j.jconrel.2013.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023]
Abstract
There is an undisputed need for employment and improvement of robust technology for real-time analyses of therapeutic delivery and responses in clinical translation of gene and cell therapies. Over the past decade, optical imaging has become the in vivo imaging modality of choice for many preclinical laboratories due to its efficiency, practicality and affordability, while more recently, the clinical potential for this technology is becoming apparent. This review provides an update on the current state of the art in in vivo optical imaging and discusses this rapidly improving technology in the context of it representing a translation enabler or indeed a future clinical imaging modality in its own right.
Collapse
Affiliation(s)
- William L Byrne
- Cork Cancer Research Centre, BioScience Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Lam P, Khan G, Stripecke R, Hui KM, Kasahara N, Peng KW, Guinn BA. The innovative evolution of cancer gene and cellular therapies. Cancer Gene Ther 2013; 20:141-9. [PMID: 23370333 DOI: 10.1038/cgt.2012.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We provide an overview of the latest developments in cancer gene therapy--from the bench to early-stage clinical trials. We describe the most recent work of worldwide teams including experienced scientists and clinicians, reflecting the recent emergence of gene therapy from the 'Valley of Death'. The treatment efficacy of clinical gene therapy has now been shown in a number of diseases including cancer and we are observing a renewed interest by big pharmaceutical and biotechnology companies most obviously demonstrated by Amgen's acquisition of Biovex for up to USD$1 billion. There is an opportunity to be cautiously hopeful regarding the future of gene therapy in the clinic and we review here some of the most recent progress in the field.
Collapse
Affiliation(s)
- P Lam
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|