1
|
Shammas T, Peiris MN, Meyer AN, Donoghue DJ. BCR-ABL: The molecular mastermind behind chronic myeloid leukemia. Cytokine Growth Factor Rev 2025:S1359-6101(25)00047-4. [PMID: 40360311 DOI: 10.1016/j.cytogfr.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
The chromosomal translocation t(9;22)(q34;q11), known as the Philadelphia (Ph) chromosome, results in the BCR-ABL gene fusion which gives rise to Chronic Myeloid Leukemia (CML), a slowly progressing hematopoietic cancer that begins in the bone marrow of the patient. Making up about 15 % of all new leukemia cases, CML remains a critical focus of cancer research and treatment due to its distinctive genetic hallmark, the BCR-ABL fusion gene. The BCR-ABL fusion protein is a constitutively active tyrosine kinase which signals to multiple pathways including the Ras/MAPK, PI3K/AKT, JAK/STAT and NF-kappaB pathways which promote uncontrolled cell proliferation and survival. While multiple tyrosine kinase inhibitors (TKIs) are used to specifically target the fusion in the treatment of CML, new therapies are becoming available to overcome the resistance that occurs during TKI treatments of the disease. The discovery of the Philadelphia chromosome and the subsequent elucidation of the BCR-ABL fusion protein have since become a paradigm for understanding the genetic basis of cancer and developing precision medicine approaches. This review highlights the etiology and historical discovery of the BCR-ABL fusion, recent advances in understanding its regulatory mechanisms, and emerging strategies for its therapeutic targeting.
Collapse
Affiliation(s)
- Tara Shammas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02115, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
2
|
Zehtabcheh S, Yousefi AM, Momeny M, Bashash D. C-Myc inhibition intensified the anti-leukemic properties of Imatinib in chronic myeloid leukemia cells. Mol Biol Rep 2023; 50:10157-10167. [PMID: 37924446 DOI: 10.1007/s11033-023-08832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shiri Heris R, Pourbagheri-Sigaroodi A, Yousefi AM, Bashash D. The Superior Cytotoxicity of Dual Targeting of BCR/ABL and PI3K in K562 Cells: Proposing a Novel Therapeutic Potential for the Treatment of CML. Indian J Hematol Blood Transfus 2022; 38:51-60. [PMID: 35125711 PMCID: PMC8804072 DOI: 10.1007/s12288-021-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/27/2021] [Indexed: 01/03/2023] Open
Abstract
Apart from BCR/ABL which is the main player in the pathogenesis of chronic myeloid leukemia (CML), the role of other signaling cascades should not be underestimated especially for the maintenance of leukemic cells survival. The results of the present study indicate that either an isoform-specific or a pan-PI3K inhibitor could potently reduce the survival of CML-derived K562 cells, shedding more light on the involvement of the PI3K axis in the pathogenesis of CML. Of particular interest, the importance of the PI3K pathway in this disease became more evident when we found that there was a more remarkable reduction in the viability of K562 cells when BKM120 was used in combination with imatinib. Moreover, BKM120 robustly enhanced the growth-suppressive effect of imatinib through p21-mediated induction of G2/M cell cycle arrest and induction of apoptotic cell death. Despite the favorable anti-survival effects of the drug combination, these agents failed to induce inhibitory effects on the expression of c-Myc and NF-κB anti-apoptotic target genes. However, the ability of combinational therapy in diminishing K562 cell survival was potentiated either in the presence of 10058-F4 (c-Myc inhibitor) or Bortezomib (proteasome inhibitor), suggestive of the role of both NF-κB and c-Myc in overshadowing the therapeutic value of drugs combination. Taken together, the results of this study showed that inhibition of the PI3K pathway is a suitable approach to enhance the therapeutic value of imatinib in the treatment of CML.
Collapse
Affiliation(s)
- Reza Shiri Heris
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.449862.50000 0004 0518 4224Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Atieh Pourbagheri-Sigaroodi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI Era in Chronic Leukemias. Pharmaceutics 2021; 13:2201. [PMID: 34959482 PMCID: PMC8709313 DOI: 10.3390/pharmaceutics13122201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases are proteins involved in physiological cell functions including proliferation, differentiation, and survival. However, the dysregulation of tyrosine kinase pathways occurs in malignancy, including hematological leukemias such as chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Particularly, the fusion oncoprotein BCR-ABL1 in CML and the B-cell receptor (BCR) signaling pathway in CLL are critical for leukemogenesis. Therapeutic management of these two hematological conditions was fundamentally changed in recent years, making the role of conventional chemotherapy nearly obsolete. The first, second, and third generation inhibitors (imatinib, dasatinib, nilotinib, bosutinib, and ponatinib) of BCR-ABL1 and the allosteric inhibitor asciminib showed deep genetic and molecular remission rates in CML, leading to the evaluation of treatment discontinuation in prospective trials. The irreversible BTK inhibitors (ibrutinib, acalabrutinib, zanubrutinib, tirabrutinib, and spebrutinib) covalently bind to the C481 amino acid of BTK. The reversible BTK inhibitor pirtobrutinib has a different binding site, overcoming resistance associated with mutations at C481. The PI3K inhibitors (idelalisib and duvelisib) are also effective in CLL but are currently less used because of their toxicity profiles. These tyrosine kinase inhibitors are well-tolerated, do have some associated in-class side effects that are manageable, and have remarkably improved outcomes for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Danilo De Novellis
- Hematology and Transplant Center, University “Hospital San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Fabiana Cacace
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - Valeria Caprioli
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kris M. Mahadeo
- Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Francesco Paolo Tambaro
- Unità Operativa di Trapianto di Cellule Staminali Ematopoietiche e Terapie Cellulari, Azienda Ospedaliera di Rilievo Nazionale Santobono-Pausilipon, 80123 Napoli, Italy; (F.C.); (V.C.); (F.P.T.)
| |
Collapse
|
5
|
Hussein Kamareddine M, Ghosn Y, Tawk A, Elia C, Alam W, Makdessi J, Farhat S. Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia. Technol Cancer Res Treat 2020; 18:1533033819879902. [PMID: 31865865 PMCID: PMC6928535 DOI: 10.1177/1533033819879902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative neoplasm that occurs more prominently in the older population, with a peak incidence at ages 45 to 85 years and a median age at diagnosis of 65 years. This disease comprises roughly 15% of all leukemias in adults. It is a clonal stem cell disorder of myeloid cells characterized by the presence of t(9;22) chromosomal translocation, also known as the Philadelphia chromosome, or its byproducts BCR-ABL fusion protein/messenger RNA, leading to the expression of a protein with enhanced tyrosine kinase activity. This fusion protein has become the main therapeutic target in chronic myeloid leukemia therapy, with imatinib displaying superior antileukemic effects, placing it at the forefront of current treatment protocols and displaying great efficacy. Alternatively, nanomedicine and employing nanoparticles as drug delivery systems may represent new approaches in future anticancer therapy. This review focuses primarily on the use of organic nanoparticles aimed at chronic myeloid leukemia therapy in both in vitro and in vivo settings, by going through a thorough survey of published literature. After a brief introduction on the pathogenesis of chronic myeloid leukemia, a description of conventional, first- and second-line, treatment modalities of chronic myeloid leukemia is presented. Finally, some of the general applications of nanostrategies in medicine are presented, with a detailed focus on organic nanocarriers and their constituents used in chronic myeloid leukemia treatment from the literature.
Collapse
Affiliation(s)
| | - Youssef Ghosn
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Antonios Tawk
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, El-Koura, Lebanon
| | - Walid Alam
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- Department of Hematology-Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
6
|
Identifying Dysregulated lncRNA-Associated ceRNA Network Biomarkers in CML Based on Dynamical Network Biomarkers. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5189549. [PMID: 32149112 PMCID: PMC7049421 DOI: 10.1155/2020/5189549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/04/2020] [Indexed: 11/17/2022]
Abstract
The incidence of chronic myeloid leukemia (CML) is increasing year by year, which is a serious threat to human health. Early diagnosis can reduce mortality and improve prognosis. LncRNAs have been shown to be effective biomarkers for a variety of diseases and can act as competitive endogenous RNA (ceRNA). In this study, the dysregulated lncRNA-associated ceRNA networks (DLCN) of the chronic phase (CP), accelerated phase (AP), and blastic crisis (BC) for CML are constructed. Then, based on dynamic network biomarkers (DNB), some dysregulated lncRNA-associated ceRNA network biomarkers of CP, AP, and BC for CML are identified according to DNB criteria. Thus, a lncRNA (SNHG5) is identified from DLCN_CP, a lncRNA (DLEU2) is identified from DLCN_AP, and two lncRNAs (SNHG3, SNHG5) are identified from DLCN_BC. In addition, the critical index (CI) used to detect disease outbreaks shows that CML occurs in CP, which is consistent with clinical medicine. By analyzing the functions of the identified ceRNA network biomarkers, it has been found that they are effective lncRNA biomarkers directly or indirectly related to CML. The result of this study will help deepen the understanding of CML pathology from the perspective of ceRNA and help discover the effective biomarkers of CP, AP, and BC for CML in the future, so as to help patients get timely treatment and reduce the mortality of CML.
Collapse
|
7
|
Liu X, Mai H, Jiang H, Xing Z, Peng D, Kong Y, Zhu C, Chen Y. FAM168A participates in the development of chronic myeloid leukemia via BCR-ABL1/AKT1/NFκB pathway. BMC Cancer 2019; 19:679. [PMID: 31291942 PMCID: PMC6617578 DOI: 10.1186/s12885-019-5898-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although the prognosis of chronic myeloid leukemia (CML) has dramatically improved, the pathogenesis of CML remains elusive. Studies have shown that sustained phosphorylation of AKT1 plays a crucial role in the proliferation of CML cells. Evidence indicates that in tongue cancer cells, FAM168A, also known as tongue cancer resistance-associated protein (TCRP1), can directly bind to AKT1 and regulate AKT1/NFκB signaling pathways. This study aimed to investigate the role of FAM168A in regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Methods FAM168A interference was performed, and the expression and phosphorylation of FAM168A downstream proteins were measured in K562 CML cell line. The possible roles of FAM168A in the proliferation of CML cells were investigated using in vitro cell culture, in vivo animal models and clinical specimens. Results We found that the expression of FAM168A significantly increased in the peripheral blood mononuclear cells of CML patients, compared with normal healthy controls. FAM168A interference did not change AKT1 protein expression, but significantly decreased AKT1 phosphorylation, significantly increased IκB-α protein level, and significantly reduced nuclear NFκB protein level. Moreover, there was a significant increase of G2/M phase cells and Cyclin B1 level. Immunoprecipitation results showed that FAM168A interacts with breakpoint cluster region (BCR) -Abelson murine leukemia (ABL1) fusion protein and AKT1, respectively. Animal experiments confirmed that FAM168A interference prolonged the survival and reduced the tumor formation in mice inoculated with K562 cells. The results of clinical specimens showed that FAM168A expression and AKT1 phosphorylation were significantly elevated in CML patients. Conclusion This study demonstrates that FAM168A may act as a linker protein that binds to BCR-ABL1 and AKT1, which further mediates the downstream signaling pathways in CML. Our findings demonstrate that FAM168A may be involved in the regulation of AKT1/NFκB signaling pathway and cell cycle in CML. Electronic supplementary material The online version of this article (10.1186/s12885-019-5898-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaorong Liu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Huirong Mai
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Hanfang Jiang
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Zhihao Xing
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Dong Peng
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yuan Kong
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Chunqing Zhu
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China
| | - Yunsheng Chen
- Clinical laboratory, Shenzhen Children's Hospital, No. 7019, Yitian Road, Shenzhen, Guangdong, 518038, People's Republic of China.
| |
Collapse
|
8
|
Cai H, Li L, Jiang J, Zhao C, Yang C. Costunolide enhances sensitivity of K562/ADR chronic myeloid leukemia cells to doxorubicin through PI3K/Akt pathway. Phytother Res 2019; 33:1683-1688. [PMID: 30937974 DOI: 10.1002/ptr.6355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/18/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Costunolide, a sesquiterpene lactone, a small molecular monomer extracted from Inula helenium, has been reported to possess antiproliferative effects on several cancer cell lines. The current study was designed to evaluate the effect of costunolide on sensitivity of K562/ADR chronic myeloid leukemia cells to doxorubicin. The antiproliferative effect of costunolide was assessed by CCK-8 assay. Flow cytometry and Western blot were used to examine the mechanisms of antileukemia action. Costunolide dramatically enhanced doxorubicin-induced antiproliferative activity against K562/ADR cells through inhibition of PI3K/Akt pathway, activation of caspases 3, cleavage of poly (ADP-ribose) polymerase, and downregulation of p-glycoprotein expression. These results demonstrate that costunolide may be a potent therapeutic agent against CML.
Collapse
Affiliation(s)
- Hong Cai
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Liangjun Li
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jie Jiang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chengyan Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chunhui Yang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
9
|
The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 2017; 129:1595-1606. [PMID: 28159740 DOI: 10.1182/blood-2016-09-696013] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic myeloid leukemia (CML) is caused by the acquisition of the tyrosine kinase BCR-ABL1 in a hemopoietic stem cell, transforming it into a leukemic stem cell (LSC) that self-renews, proliferates, and differentiates to give rise to a myeloproliferative disease. Although tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL1 have transformed CML from a once-fatal disease to a manageable one for the vast majority of patients, only ∼10% of those who present in chronic phase (CP) can discontinue TKI treatment and maintain a therapy-free remission. Strong evidence now shows that CML LSCs are resistant to the effects of TKIs and persist in all patients on long-term therapy, where they may promote acquired TKI resistance, drive relapse or disease progression, and inevitably represent a bottleneck to cure. Since their discovery in patients almost 2 decades ago, CML LSCs have become a well-recognized exemplar of the cancer stem cell and have been characterized extensively, with the aim of developing new curative therapeutic approaches based on LSC eradication. This review summarizes our current understanding of many of the pathways and mechanisms that promote the survival of the CP CML LSCs and how they can be a source of new gene coding mutations that impact in the clinic. We also review recent preclinical approaches that show promise to eradicate the LSC, and future challenges on the path to cure.
Collapse
|
10
|
Hong CA, Cho SK, Edson JA, Kim J, Ingato D, Pham B, Chuang A, Fruman D, Kwon YJ. Viral/Nonviral Chimeric Nanoparticles To Synergistically Suppress Leukemia Proliferation via Simultaneous Gene Transduction and Silencing. ACS NANO 2016; 10:8705-14. [PMID: 27472284 PMCID: PMC5602606 DOI: 10.1021/acsnano.6b04155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Single modal cancer therapy that targets one pathological pathway often turns out to be inefficient. For example, relapse of chronic myelogenous leukemia (CML) after inhibiting BCR-ABL fusion protein using tyrosine kinase inhibitors (TKI) (e.g., Imatinib) is of significant clinical concern. This study developed a dual modal gene therapy that simultaneously tackles two key BCR-ABL-linked pathways using viral/nonviral chimeric nanoparticles (ChNPs). Consisting of an adeno-associated virus (AAV) core and an acid-degradable polymeric shell, the ChNPs were designed to simultaneously induce pro-apoptotic BIM expression by the AAV core and silence pro-survival MCL-1 by the small interfering RNA (siRNA) encapsulated in the shell. The resulting BIM/MCL-1 ChNPs were able to efficiently suppress the proliferation of BCR-ABL+ K562 and FL5.12/p190 cells in vitro and in vivo via simultaneously expressing BIM and silencing MCL-1. Interestingly, the synergistic antileukemic effects generated by BIM/MCL-1 ChNPs were specific to BCR-ABL+ cells and independent of a proliferative cytokine, IL-3. The AAV core of ChNPs was efficiently shielded from inactivation by anti-AAV serum and avoided the generation of anti-AAV serum, without acute toxicity. This study demonstrates the development of a synergistically efficient, specific, and safe therapy for leukemia using gene carriers that simultaneously manipulate multiple and interlinked pathological pathways.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Soo Kyung Cho
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA
| | - Julius A. Edson
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA
| | - Jane Kim
- Department of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Dominique Ingato
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA
| | - Bryan Pham
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Anthony Chuang
- Division of Hematology/Oncology, University of California, Irvine, CA 92697, USA
| | - David Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Chemical Engineering & Materials Science, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|
12
|
CHEN JIERU, JIA XIUHONG, WANG HONG, YI YINGJIE, WANG JIANYONG, LI YOUJIE. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway. Int J Oncol 2016; 48:2063-70. [DOI: 10.3892/ijo.2016.3423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/14/2016] [Indexed: 11/06/2022] Open
|
13
|
DNA Repair--A Double-Edged Sword in the Genomic Stability of Cancer Cells--The Case of Chronic Myeloid Leukemia. Int J Mol Sci 2015; 16:27535-49. [PMID: 26593906 PMCID: PMC4661907 DOI: 10.3390/ijms161126049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Genomic instability is a common feature of cancer cells, which can result from aberrant DNA damage reaction (DDR). We and others showed that the well-known BCR-ABL1 fusion oncogene, the cause of chronic myeloid leukemia, induced an increased production of reactive oxygen species (ROS) and conferred therapeutic drug resistance by suppression of apoptotic signaling, prolonged G2/M arrest and stimulation of several pathways of DNA repair. However, to protect from apoptosis, cancer cells may tolerate some DNA lesions, which may increase genomic instability. Moreover, BCR/ABL1-stimulated DNA repair might be faulty, especially non-homologous end joining in its alternative forms. Normal DNA repair can remove DNA damage and prevent mutations, reducing genome instability, but on the other hand, due to its imprecise nature, it may increase genomic instability by increasing the ratio of mutagenic DNA lesions. The example of BCR-ABL1-expressing cells shows that DNA repair can both increase and decrease genomic instability of cancer cells and understanding the mechanism of the regulation of these opposite effects would be helpful in anticancer strategies.
Collapse
|