1
|
Sun J, Du B, Chen M, Jia J, Wang X, Hong J. FBXO28 reduces high-fat diet-induced hyperlipidemia in mice by alleviating abnormal lipid metabolism and inflammatory responses. J Endocrinol Invest 2024; 47:2757-2774. [PMID: 38696123 DOI: 10.1007/s40618-024-02376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/12/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Hyperlipidemia is a lipid metabolism disorder with increasing incidence and prevalence worldwide. Abnormal lipid metabolism and inflammation are two significant characteristics of hyperlipidemia. The purpose of this study was to explore the role and mechanism of F-box only protein 28 (FBXO28) in hyperlipidemia. METHODS Mice were fed with high-fat diet (HFD) to elicit obesity, and 3T3-L1 preadipocytes were stimulated with MDI cocktail (IBMX, DEX and insulin) to evoke differentiation. In vivo and in vitro role of FBXO28 in hyperlipidemia was investigated by hematoxylin-eosin and oil Red O staining, the lipid biochemistry measurement, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blotting assays. The mechanism of FBXO28 explored by co-immunoprecipitation, immunofluorescence, ubiquitination and cycloheximide assays. RESULTS Low expression of FBXO28 was found in hyperlipidemia in silico, in vivo and in vitro. Upregulation of FBXO28 declined the body weight, fat accumulation, and serum lipid content in HFD-fed mice. Abnormal lipid accumulation, and the level of liposynthetic genes and beta-oxidation related genes were improved by overexpression of FBXO28 both in HFD-elicited mice and MDI-treated 3T3-L1 preadipocytes. Besides, overexpression of FBXO28 declined HFD-induced the level of proinflammatory factors and F4/80. Mechanically, FBXO28 directly bound RAB27A and promoted its ubiquitinated degradation. Thus, upregulation of RAB27A inverted the improved role of FBXO28 in abnormal lipid metabolism and inflammation in vivo and in vitro. CONCLUSION FBXO28 ameliorated abnormal lipid metabolism and inflammation through the ubiquitinated degradation of RAB27A, thereby attenuating HFD-induced hyperlipidemia. The results could promote the treatment of hyperlipidemia, and the relevant diseases.
Collapse
Affiliation(s)
- J Sun
- Cadre's Ward, The Fourth Clinical College of Xinjiang Medical University, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - B Du
- Department of Neurology, Urumqi Midong District Hospital of Traditional Chinese Medicine, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - M Chen
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - J Jia
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - X Wang
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - J Hong
- Cadre's Ward, Traditional Chinese Medicine Hospital of Xinjiang Medical University, No.116, Huanghe Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Roshani M, Molavizadeh D, Sadeghi S, Jafari A, Dashti F, Mirazimi SMA, Ahmadi Asouri S, Rajabi A, Hamblin MR, Anoushirvani AA, Mirzaei H. Emerging roles of miR-145 in gastrointestinal cancers: A new paradigm. Biomed Pharmacother 2023; 166:115264. [PMID: 37619484 DOI: 10.1016/j.biopha.2023.115264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Gastrointestinal (GI) carcinomas are a group of cancers affecting the GI tract and digestive organs, such as the gastric, liver, bile ducts, pancreas, small intestine, esophagus, colon, and rectum. MicroRNAs (miRNAs) are small functional non-coding RNAs (ncRNAs) which are involved in regulating the expression of multiple target genes; mainly at the post-transcriptional level, via complementary binding to their 3'-untranslated region (3'-UTR). Increasing evidence has shown that miRNAs have critical roles in modulating of various physiological and pathological cellular processes and regulating the occurrence and development of human malignancies. Among them, miR-145 is recognized for its anti-oncogenic properties in various cancers, including GI cancers. MiR-145 has been implicated in diverse biological processes of cancers through the regulation of target genes or signaling, including, proliferation, differentiation, tumorigenesis, angiogenesis, apoptosis, metastasis, and therapy resistance. In this review, we have summarized the role of miR-145 in selected GI cancers and also its downstream molecules and cellular processes targets, which could lead to a better understanding of the miR-145 in these cancers. In conclusion, we reveal the potential diagnostic, prognostic, and therapeutic value of miR-145 in GI cancer, and hope to provide new ideas for its application as a biomarker as well as a therapeutic target for the treatment of these cancer.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for BasicSciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Ali Arash Anoushirvani
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p. Anticancer Drugs 2023; 34:144-154. [PMID: 36539367 DOI: 10.1097/cad.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNA taurine-upregulated gene1 (TUG1) has been reported to be implicated in the chemo-resistance of bladder cancer. Hence, this study aimed to survey regulatory mechanism by which TUG1 regulates the chemo-resistance of bladder cancer cells to doxorubicin (DOX). Relative expression of TUG1, miR-582-5p, and karyopherin alpha 2 (KPNA2) was detected by qRT-PCR. The viability and proliferation of DOX-resistant bladder cancer cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Protein levels were measured by western blot analysis. The apoptosis, migration, and invasion of DOX-resistant bladder cancer cells were determined by flow cytometry or transwell assays. The relationship between TUG1 or KPNA2 and miR-582-5p was verified by dual-luciferase reporter assay. TUG1 and KPNA2 were upregulated while miR-582-5p was downregulated in resistant bladder cancer tissues and cells. TUG1 inhibition elevated cell chemo-sensitivity, facilitated cell apoptosis, and curbed proliferation, migration, invasion, and autophagy of DOX-resistant bladder cancer cells. Also, TUG1 acted as a sponge for miR-582-5p, and miR-582-5p inhibitor reversed TUG1 knockdown-mediated influence on DOX chemo-sensitivity and malignant behaviors in DOX-resistant bladder cancer cells. Furthermore, miR-582-5p targeted KPNA2, and KPNA2 overexpression counteracted the inhibitory impact of miR-582-5p mimic on DOX chemo-resistance and malignant behaviors in DOX-resistant bladder cancer cells. Additionally, TUG1 silencing inactivated the PI3K/AKT pathway through sponging miR-582-5p. TUG1 sponged miR-582-5p to increase KPNA2 expression and activated the KPNA2/PI3K/AKT pathway, thereby elevating DOX chemo-resistance and malignant behaviors in bladder cancer cells.
Collapse
|
4
|
Li Q, Zhao H, Dong W, Guan N, Hu Y, Zeng Z, Zhang H, Zhang F, Li Q, Yang J, Xiao W. RAB27A promotes the proliferation and invasion of colorectal cancer cells. Sci Rep 2022; 12:19359. [PMID: 36371494 PMCID: PMC9653419 DOI: 10.1038/s41598-022-23696-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancer types worldwide. Despite significant advances in prevention and diagnosis, CRC is still one of the leading causes of cancer-related mortality globally. RAB27A, the member of RAB27 family of small GTPases, is the critical protein for intracellular secretion and has been reported to promote tumor progression. However, it is controversial for the role of RAB27A in CRC progression, so we explored the exact function of RAB27A in CRC development in this study. Based on the stable colon cancer cell lines of RAB27A knockdown and ectopic expression, we found that RAB27A knockdown inhibited proliferation and clone formation of SW480 colon cancer cells, whereas ectopic expression of RAB27A in RKO colon cancer cells facilitated cell proliferation and clone formation, indicating that RAB27A is critical for colon cancer cell growth. In addition, our data demonstrated that the migration and invasion of colon cancer cells were suppressed by RAB27A knockdown, but promoted by RAB27A ectopic expression. Therefore, RAB27A is identified as an onco-protein in mediating CRC development, which may be a valuable prognostic indicator and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Qingyan Li
- grid.454145.50000 0000 9860 0426Graduate School of Jinzhou Medical University, Liaoning, 121001 China ,grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China ,Department of Oncology, Suining Central Hospital, Sichuan, 629300 China
| | - Huixia Zhao
- grid.414252.40000 0004 1761 8894Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Weiwei Dong
- grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| | - Na Guan
- grid.454145.50000 0000 9860 0426Graduate School of Jinzhou Medical University, Liaoning, 121001 China ,grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| | - Yanyan Hu
- grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| | - Zhiyan Zeng
- grid.414252.40000 0004 1761 8894Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, 100048 China
| | - He Zhang
- grid.414252.40000 0004 1761 8894Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Fengyun Zhang
- grid.414252.40000 0004 1761 8894Department of Oncology, 4th Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Qiuwen Li
- grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| | - Jingwen Yang
- grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| | - Wenhua Xiao
- grid.454145.50000 0000 9860 0426Graduate School of Jinzhou Medical University, Liaoning, 121001 China ,grid.414252.40000 0004 1761 8894Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, 100071 China
| |
Collapse
|
5
|
Playfoot CJ, Sheppard S, Planet E, Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development. RNA (NEW YORK, N.Y.) 2022; 28:1157-1171. [PMID: 35732404 PMCID: PMC9380744 DOI: 10.1261/rna.079100.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs, and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously nonannotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the "Brain miRTExplorer" web application freely accessible for the community.
Collapse
Affiliation(s)
- Christopher J Playfoot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel) 2022; 14:3217. [PMID: 35804989 PMCID: PMC9265057 DOI: 10.3390/cancers14133217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor that develops from neuroglial stem cells and represents a highly heterogeneous group of neoplasms. These tumors are predominantly correlated with a dismal prognosis and poor quality of life. In spite of major advances in developing novel and effective therapeutic strategies for patients with glioblastoma, multidrug resistance (MDR) is considered to be the major reason for treatment failure. Several mechanisms contribute to MDR in GBM, including upregulation of MDR transporters, alterations in the metabolism of drugs, dysregulation of apoptosis, defects in DNA repair, cancer stem cells, and epithelial-mesenchymal transition. MicroRNAs (miRNAs) are a large class of endogenous RNAs that participate in various cell events, including the mechanisms causing MDR in glioblastoma. In this review, we discuss the role of miRNAs in the regulation of the underlying mechanisms in MDR glioblastoma which will open up new avenues of inquiry for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 175-14115, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran;
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj 7591994799, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.M.); (B.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Zhang YF, Li XX, Cao XL, Ji CC, Gao XY, Gao D, Han H, Yu F, Zheng MH. MicroRNA-582-5p Contributes to the Maintenance of Neural Stem Cells Through Inhibiting Secretory Protein FAM19A1. Front Cell Neurosci 2022; 16:866020. [PMID: 35685988 PMCID: PMC9171424 DOI: 10.3389/fncel.2022.866020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Epigenetic regulations on the maintenance of neural stem cells (NSCs) are complicated and far from been fully understood. Our previous findings have shown that after blocking Notch signaling in NSCs in vivo, the stemness of NSCs decreases, accompanied by the downregulated expression of miR-582-5p. In the current study, we further investigated the function and mechanism of miR-582-5p in the maintenance of NSCs in vitro and in vivo. After transfecting a mimic of miR-582-5p, the formation of neurospheres and proliferation of NSCs and intermediate progenitor cells (NS/PCs) were enhanced, and the expression of stemness markers such as Sox2, Nestin, and Pax6 also increased. The results were reversed after transfection of an inhibitor of miR-582-5p. We further generated miR-582 knock-out (KO) mice to investigate its function in vivo, and we found that the number of NSCs in the subventricular zone (SVZ) region decreased and the number of neuroblasts increased in miR-582 deficient mice, indicating reduced stemness and enhanced neurogenesis of NSCs. Moreover, RNA-sequencing and molecular biological analysis revealed that miR-582-5p regulates the stemness and proliferation of NSCs by inhibiting secretory protein FAM19A1. In summary, our research uncovered a new epigenetic mechanism that regulates the maintenance of NSCs, therefore providing novel targets to amplify NSCs in vitro and to promote neurogenesis in vivo during brain pathology and aging.
Collapse
Affiliation(s)
- Yu-Fei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Xin-Xin Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Xi’ an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xiu-Li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Chen-Chen Ji
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Xiang-Yu Gao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Dan Gao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hua Han,
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
- Fei Yu,
| | - Min-Hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- Min-Hua Zheng,
| |
Collapse
|
8
|
Li X, Zhang Y, He F, Gao D, Che B, Cao X, Huang S, Zheng M, Han H. miR-582 Suppresses the Proliferation of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) Cells and Protects Them From Natural Killer Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:853094. [PMID: 35514986 PMCID: PMC9065596 DOI: 10.3389/fimmu.2022.853094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignancy characterized by the aberrant accumulation of immature B-cell precursors in bone marrow and other lymphoid organs. Although several intrinsic regulatory signals participating in BCP-ALL have been clarified, detailed intrinsic and extrinsic mechanisms that regulate BCP-ALL progression have not been fully understood. In the current study, we report that miR-582 is downregulated in BCP-ALL cells compared with normal B cells. Forced overexpression of miR-582 attenuated BCP-ALL cell proliferation and survival. We found that miR-582 overexpression disturbed the mitochondrial metabolism of BCP-ALL cells, leading to less ATP but more ROS production. Mechanistically, we identified PPTC7 as a direct target of miR-582. MiR-582 overexpression inhibited the activity of CoQ10, which is downstream of PPTC7 and played an important positive regulatory role in mitochondrial electron transportation. Finally, we found that overexpression of miR-582 upregulated the expression of immune checkpoint molecule CD276 and reduced NK cell-mediated cytotoxicity against BCP-ALL cells. CD276 blockade significantly increased NK cell-mediated cytotoxicity against miR-582-overexpressing BCP-ALL cells. Together, our research demonstrates that miR-582 acts as a negative regulator of BCP-ALL cells by reducing proliferation and survival, but protects BCP-ALL cells from NK cell-mediated cytotoxicity, suggesting that miR-582 may be a new therapeutic biomarker for BCP-ALL with CD276 blocker.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.,Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
| | - Yufei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Gao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Bo Che
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Xiuli Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Siyong Huang
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Minhua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Li X, Zhang Y, Zheng M, Cao X, Guo M, Gao X, Han H. miR-582 negatively regulates pre-B cell proliferation and survival through targeting Hif1α and Rictor. Cell Death Dis 2022; 13:107. [PMID: 35115499 PMCID: PMC8814019 DOI: 10.1038/s41419-022-04560-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
B cell development in bone marrow (BM) is a multi-staged process involving pro-B, pre-B, immature B, and mature B cells, among which pre-B cells undergo vigorous proliferation, differentiation, apoptosis, and gene rearrangement. While several signaling pathways participate in pre-B cell development have been clarified, detailed intrinsic mechanisms regulating pre-B cell proliferation and survival have not been fully understood. In the current study, we report that miR-582 regulates pre-B cell proliferation and survival. miR-582 is enriched in pre-B cells. Deletion of miR-582 in mice expanded the BM pre-B cell population in a cell-autonomous manner as shown by competitive BM transplantation. We show that forced miR-582 overexpression inhibited pre-B cell proliferation and survival, whereas downregulation of miR-582 by siRNA significantly promoted pre-B cell proliferation and survival in vitro. We identified that Hif1α and Rictor are authentic targets of miR-582 in pre-B cells as shown by reporter assays. Moreover, miR-582 overexpression reduced the expression of Hif1α and its downstream molecule Glut1, as well as Rictor and mTORC2 activity as shown by attenuated AKT and FoxO1 phosphorylation, while miR-582 knockdown showed opposite effects. miR-582 knockdown-induced increases in pre-B proliferation and survival was abrogated by Hif1α and Rictor inhibitors. Together, miR-582 functions as a negative regulator of pre-B cell proliferation and survival by simultaneously targeting Hif1α and mTORC2 signaling that regulates metabolism in early B cell development.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, P. R. China. .,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518000, Shenzhen, Guangdong, P. R. China.
| | - Yufei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China
| | - Minhua Zheng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China
| | - Xiuli Cao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China
| | - Min Guo
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China
| | - Xiangyu Gao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
10
|
huang L, Dai G. Long non-coding RNA DCST1-AS1/hsa-miR-582-5p/HMGB1 axis regulates colorectal cancer progression. Bioengineered 2022; 13:12-26. [PMID: 34967274 PMCID: PMC8805871 DOI: 10.1080/21655979.2021.1976894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are related to the initiation and progression of tumor and regulate various cellular processes including growth, invasion, migration, and apoptosis. Understanding the roles and mechanisms of lncRNAs in regulating cancer progression is crucial for formulating novel therapeutic strategies. Although lncRNA DCST1-antisense RNA 1(AS1) has been implicated in several cancers, its role in the progression of colorectal cancer (CRC) remains to be explored. This study focuses on elucidating the function of lncRNA DCST1-AS1 in CRC development and its underlying mechanism. We found that the expression of lncRNA DCST1-AS1 was up-regulated in CRC tissues and cell lines, and CRC patients with high lncRNA DCST1-AS1 expression were associated with a poor prognosis. Loss-of-function and gain-of-function experiment in CRC cell lines confirmed that lncRNA DCST1-AS1 promoted the malignant phenotype of CRC cells, including cell proliferation, colony formation, migration, and invasion. In addition, we identified the binding sites between lncRNA DCST1-AS1 and hsa-miR-582-5p, and between hsa-miR-582-5p and High Mobility Group Box 1 (HMGB1) through DIANA Tools and TargetScan database, which was further confirmed by dual-luciferase reporter assay. Functional assay further confirmed the crucial role of lncRNA DCST1-AS1/hsa-miR-582-5p/HMGB1 axis in modulating the malignant phenotype of CRC cells. Collectively, our data suggest that lncRNA DCST1-AS1 regulates the aggressiveness of CRC cells through hsa-miR-582-5p/HMGB1 axis. Our study provides novel insight into the mechanism of lncRNA DCST1-AS1 in CRC cells for targeted therapy.
Collapse
Affiliation(s)
- Long huang
- Department of General Surgery, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Gang Dai
- Department of General Surgery, Fengdu People’s Hospital, Fengdu County, Chongqing, China
| |
Collapse
|
11
|
Zeng X, Ma X, Guo H, Wei L, Zhang Y, Sun C, Han N, Sun S, Zhang N. MicroRNA-582-5p promotes triple-negative breast cancer invasion and metastasis by antagonizing CMTM8. Bioengineered 2021; 12:10126-10135. [PMID: 34978519 PMCID: PMC8810067 DOI: 10.1080/21655979.2021.2000741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) commonly have aggressive properties. microRNA-582-5p (miR-582-5p) modulates the progression of several cancers. Yet, the role of miR-582-5p in TNBC progression is undetermined. In the current study, we investigated miR-582-5p expression levels and clinical significance in TNBC. The impact of miR-582-5p modulation on the biological behaviors of TNBC cells were measured. The downstream gene(s) regulated by miR-582-5p in TNBC was explored. We showed that compared to adjacent normal breast tissues, the miR-582-5p level was elevated in TNBC samples. The upregulation of miR-582-5p correlated with lymph node metastasis. Overexpression of miR-582-5p enhanced TNBC cell migration and invasion, whereas knockdown of miR-582-5p had an adverse impact on aggressive phenotype. In vivo xenograft mouse studies demonstrated that miR-582-5p overexpression accelerated TNBC growth and metastasis. Mechanistically, miR-582-5p selectively inhibited CMTM8, leading to a reduction of CMTM8 expression. CMTM8 showed suppressive effects on TNBC cell migration and invasion. Rescue experiments revealed that overexpression of CMTM8 impaired miR-582-5p-induced migration and invasion in TNBC cells. Overall, our data uncover an oncogenic role for miR-582-5p in TNBC metastasis through inhibition of CMTM8. We suggest miR-582-5p as a promising target for managing TNBC.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xinchi Ma
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Hong Guo
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Linlin Wei
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yaotian Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ning Han
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shichen Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
12
|
Chen F, Guo L, Di J, Li M, Dong D, Pei D. Circular RNA ubiquitin-associated protein 2 enhances autophagy and promotes colorectal cancer progression and metastasis via miR-582-5p/FOXO1 signaling. J Genet Genomics 2021; 48:1091-1103. [PMID: 34416339 DOI: 10.1016/j.jgg.2021.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Numerous circular RNAs (circRNAs) have been identified as vital regulators in various cancers. The newly reported circular RNA ubiquitin-associated protein 2 (circUBAP2) is a critical player in cell growth and metastasis in various types of cancers, although its role in colorectal cancer (CRC) has yet to be fully elucidated. We find that circUBAP2 is upregulated in CRC tissues and cell lines to induce autophagy both in vitro and in vivo. The effects of circUBAP2 on migration, invasion, and proliferation may be partially related to autophagy. Mechanistically, we uncover that circUBAP2 can directly interact with miR-582-5p and subsequently act as a microRNA sponge to regulate the expression of the miR-582-5p target gene forkhead box protein O1 (FOXO1) and downstream signaling molecules, which collectively advance the progression and metastasis of CRC. These results suggest that circUBAP2 acts as an oncogene via a novel circUBAP2/miR-582-5p/FOXO1 axis, providing a potential biomarker and therapeutic target for CRC management.
Collapse
Affiliation(s)
- Feifei Chen
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lei Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Man Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dong Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dongsheng Pei
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
13
|
Xiao W, Zhou H, Chen B, Shen B, Zhou J. miR-582-5p inhibits migration and chemo-resistant capabilities of colorectal cancer cells by targeting TNKS2. Genes Genomics 2021; 44:747-756. [PMID: 34357507 DOI: 10.1007/s13258-021-01141-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Metastasis and chemo-resistance are still important factors that limit the overall efficacy of colorectal cancer treatment. Understanding the detailed molecular mechanism and identifying potential biomarkers are of great value in prognosis prediction and risk stratification. OBJECTIVE We investigated the role of miR-582-5p in colorectal cancer pathogenesis, progression and chemo-resistance. Furthermore, we explored the underlying molecular mechanism of miR-582-5p in modulation of malignant behaviors of colorectal cancer cells. METHODS Clinical samples and colorectal cancer cell lines were applied to explore miR-582-5p expression level and its significance on tumor cell metastasis and chemo-resistance. Transwell study and cellular survivability study were performed to explore the influences of miR-582-5p expression modulation on tumor cell chemo-resistance and invasion/migration. Dual-luciferase reporter gene assay was conducted to explore the influences of miR-582-5p on its target gene TNKS2. RESULTS Colorectal cancer patients with lymph node or distal organ metastatic diseases exhibited significantly lower level of miR-582-5p. In vitro studies have indicated that miR-582-5p inhibition significantly increased migration and chemo-resistant capabilities of tumor cells. And dual-luciferase reporter gene assay demonstrated that miR-582-5p exhibited its influences on the biological behavior of tumor cells by targeting TNKS2. CONCLUSIONS Our study demonstrated for the first time that miR-582-5p played an important role for colorectal tumor cell metastasis and chemo-resistance. Our research also indicated that miR-582-5p and its target gene TNKS2 could be novel biomarkers for metastatic disease prediction, overall prognosis evaluation, as well as potential therapeutic target for colorectal cancer patients.
Collapse
Affiliation(s)
- Weixing Xiao
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Haijun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China.
| | - Bingrong Chen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Bin Shen
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| | - Jun Zhou
- Department of Hepatobiliary Surgery, Jiaxing Hospital of Traditional Chinese Medicine, No. 1501 Zhongshan East Road, Jiaxing, 314000, Zhejiang, China
| |
Collapse
|
14
|
Xue J, Zhu S, Qi F, Zhu K, Cao P, Yang J, Wang Z. RUNX1/miR-582-5p Pathway Regulates the Tumor Progression in Clear Cell Renal Cell Carcinoma by Targeting COL5A1. Front Oncol 2021; 11:610992. [PMID: 33937021 PMCID: PMC8079757 DOI: 10.3389/fonc.2021.610992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidences indicated that miRNAs played core role in the progression of clear cell renal cell carcinoma (ccRCC). However, its molecular mechanism in ccRCC is still remained unclear. The study was designed to identify the role and regulatory mechanism of miR-582-5p in ccRCC. In this study, the low expression level of miR-582-5p were detected by qRT-PCR in ccRCC patient tumor samples and ccRCC cell lines, respectively. The expression level of miR-582-5p was associated with tumor stage and metastasis. In vivo and in vitro experiments found miR-582-5p inhibit tumor growth via suppressing COL5A1 expression. Additionally, RUNX1 was identified as the negative regulator of miR-582-5p through database prediction and chromatin immunoprecipitation. Finally, the negative relation of RUNX1 and miR-582-5p was verified through rescue experiment both in vitro and in vivo. In summary, miR-582-5p, which was regulated by RUNX1, inhibited tumor growth and invasion by targeting COL5A1, indicating that miR-582-5p may act as a biomarker and that the RUNX1/miR-582-5p/COL5A1 axis could be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jianxin Xue
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shenhao Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Zhu
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu Cao
- Department of Urology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
The LncRNA RP11-301G19.1/miR-582-5p/HMGB2 axis modulates the proliferation and apoptosis of multiple myeloma cancer cells via the PI3K/AKT signalling pathway. Cancer Gene Ther 2021; 29:292-303. [PMID: 33707625 DOI: 10.1038/s41417-021-00309-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (lncRNAs) have recently been reported to act as crucial regulators and prognostic biomarkers of human tumorigenesis. Based on microarray data, RP11-301G19.1 was previously identified as an upregulated lncRNA during B cell development. However, the effect of RP11-301G19.1 on multiple myeloma (MM) cells remains unclear. In the present study, the effects of RP11-301G19.1 on tumour progression were ascertained both in vitro and in vivo. Our results demonstrated that RP11-301G19.1 was upregulated in MM cell lines and that its downregulation inhibited the proliferation and cell cycle progression and promoted the apoptosis of MM cells. Bioinformatic analysis and luciferase reporter assay results revealed that RP11-301G19.1 can upregulate the miR-582-5p-targeted gene HMGB2 as a competing endogenous RNA (ceRNA). Furthermore, Western blot results indicated that RP11-301G19.1 knockdown decreased the levels of PI3K and AKT phosphorylation without affecting their total protein levels. Additionally, in a xenograft model of human MM, RP11-301G19.1 knockdown significantly inhibited tumour growth by downregulating HMGB2. Overall, our data demonstrated that RP11-301G19.1 is involved in MM cell proliferation by sponging miR-582-5p and may serve as a therapeutic target for MM.
Collapse
|
16
|
Zhu B, V M, Finch-Edmondson M, Lee Y, Wan Y, Sudol M, DasGupta R. miR-582-5p Is a Tumor Suppressor microRNA Targeting the Hippo-YAP/TAZ Signaling Pathway in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13040756. [PMID: 33670427 PMCID: PMC7918774 DOI: 10.3390/cancers13040756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancers lead cancer-related mortalities, with Non-Small Cell Lung Cancer (NSCLC) representing a substantial proportion of these cases. Perturbation of Hippo-YAP/TAZ signaling in NSCLC could be mainly attributed to post-transcriptional regulators since genetic alterations to the signaling pathway are known to be rare. In this study, we identified miR-582-5p as a novel, post-transcriptional regulator of Hippo-YAP/TAZ signaling. Our work revealed an inhibitory function of miR-582-5p on YAP/TAZ signaling in NSCLC cells, whereby the tumorigenic potential is diminished upon the overexpression of miR-582-5p. We also uncovered the regulation of miR-582-5p expression by YAP/TAZ, suggesting a potential feedback loop of YAP/TAZ signaling mediated by miR-582-5p. Mechanistically, we discovered NCKAP1 and PIP5K1C, regulators of actin polymerization, as novel and direct targets of miR-582-5p. Restoring miR-582-5p expression in NSCLC cells resulted in deficient F-actin, which potentially mediates the miR-582-5p-driven tumor suppression in a YAP/TAZ-dependent manner. Our findings underscore the anti-tumor function of miR-582-5p in NSCLC, positing its therapeutic potential in YAP/TAZ-driven lung cancers. Abstract The Hippo-YAP/TAZ signaling pathway is an evolutionarily conserved signaling pathway involved in a broad spectrum of biological processes, including tumorigenesis. Whilst aberrant Hippo-YAP/TAZ signaling is frequently reported in various cancers, the genetic alterations of this pathway are relatively rare, suggesting regulation at the post-transcriptional level. MicroRNAs play key role in tumorigenesis by regulating gene expression post-transcriptionally. Amongst the cancer-relevant microRNAs, miR-582-5p suppresses cell growth and tumorigenesis by inhibiting the expression of oncogenes, including AKT3, MAP3K2 and NOTCH1. Given the oncogenic role of YAP/TAZ in solid tumors, we scrutinized the possible interplay between miR-582-5p and Hippo-YAP/TAZ signaling. Correlation analysis in NSCLC cells revealed a positive relationship between the expression of mature miR-582-5p and the proportion of phosphorylated YAP/TAZ. Intriguingly, YAP/TAZ knockdown reduced the expression of mature miR-582-5p but increased that of primary miR-582. Overexpression of miR-582-5p resulted in increased phosphorylation of YAP/TAZ with a concomitant reduction in cell proliferation and enhanced apoptosis. Mechanistically, we find that miR-582-5p targets actin regulators NCKAP1 and PIP5K1C, which may be responsible for the observed alteration in F-actin, known to modulate YAP/TAZ. We postulate that regulation of the actin cytoskeleton by miR-582-5p may attenuate YAP/TAZ activity. Altogether, this study reveals a novel mechanism of YAP/TAZ regulation by miR-582-5p in a cytoskeleton-dependent manner and suggests a negative feedback loop, highlighting the therapeutic potential of restoring miR-582-5p expression in treating NSCLC.
Collapse
Affiliation(s)
- Bowen Zhu
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Correspondence: (B.Z.); (R.D.)
| | - Mitheera V
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
| | - Marius Sudol
- Department of Physiology, NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; (M.F.-E.); (Y.L.)
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore;
- Correspondence: (B.Z.); (R.D.)
| |
Collapse
|
17
|
Liang C, Wang J, Liu A, Wu Y. Tumor promoting long non-coding RNA CASC15 affects HMGB2 expression by sponging miR-582-5p in colorectal cancer. J Gene Med 2021; 24:e3308. [PMID: 33395735 DOI: 10.1002/jgm.3308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The importance of long non-coding RNAs (lncRNAs) in regulating tumorigenesis has been gradually recognized. Roles of lncRNA cancer susceptibility candidate 15 (CASC15) in cancers have been validated by several independent groups, however, its role in colorectal cancer (CRC) remains to be explored. METHODS Levels of CASC15 in CRC cells and normal cells were measured with the qRT-PCR method. In vitro functional assays were performed to detect the effects of CASC15 on cell proliferation, invasion, and apoptosis. Bioinformatic analyses and luciferase activity assays were conducted to investigate the targets for CASC15. Animal experiments were conducted to analyze the effect of CASC15 on tumor growth in vivo. RESULTS CASC15 level is revealed to be significantly elevated in CRC cells compared with normal cells. In vitro assays revealed that CASC15 overexpression stimulates cell growth and invasion, while its down-expression has opposite effects. Furthermore, CASC15 can bind with microRNA-582-5p (miR-582-5p) to modulate high mobility group box 2 (HMGB2) expression. We also showed that silencing of CASC15 inhibits tumor growth. CONCLUSIONS In summary, CASC15 overexpression could promote CRC carcinogenesis, indicating knockdown of CASC15 might be a possible therapeutic measure to hinder carcinogenesis. This work could help us to understand the mechanisms behind CRC progression.
Collapse
Affiliation(s)
- Chao Liang
- Department of General surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jun Wang
- Department of General surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Aihua Liu
- Department of General surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunqiang Wu
- Department of General surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
18
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
19
|
Wang H, Chen X, Yang B, Xia Z, Chen Q. MiR-924 as a tumor suppressor inhibits non-small cell lung cancer by inhibiting RHBDD1/Wnt/β-catenin signaling pathway. Cancer Cell Int 2020; 20:491. [PMID: 33041671 PMCID: PMC7542747 DOI: 10.1186/s12935-020-01516-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background MiR-924 has been reported to be a tumor suppressor in hepatocellular carcinoma. However, the functions and mechanisms of miR-924 in non-small cell lung cancer (NSCLC) remain unclear. Methods The expression of miR-924 was determined in NSCLC tissues and cell lines using quantitative real time PCR. The Chi-squared test was used to evaluate the correlation between miR-924 levels and clinicopathological parameters in patients with NSCLC. Cell proliferation was assessed by CCK-8 assay. Cell migration and invasion were detected by transwell assay. The combination of miR-924 and RHBDD1 was analyzed via the luciferase reporter assay. The expression level of RHBDD1 was evaluated in lung cancer tissues using public microarray datasets form Oncomine and its prognostic value was assessed by Kaplan-Meier Plotter databases. A tumor xenograft mouse model was established to illustrate the effects of miR-924 on the tumorigenesis of NSCLC in vivo. Results In this study, we found miR-924 was strikingly decreased in NSCLC tissues and cell lines. Decreased miR-924 was closely correlated with advanced tumor-node-metastasis (TNM) stage and lymphatic metastasis in NSCLC patients. Noticeably, rhomboid domain-containing protein 1 (RHBDD1) was predicted and confirmed as a direct target of miR-924. Moreover, the expression level of RHBDD1 was significantly increased and inversely associated with prognosis using public microarray datasets form Oncomine and Kaplan-Meier Plotter databases. MiR-924 overexpression suppressed cell proliferation, migration and invasion. The in vivo experiments further demonstrated that miR-924 overexpression reduced NSCLC xenograft growth through inhibiting RHBDD1/Wnt/β-catenin signaling pathway. Conclusions In summary, these findings demonstrated that miR-924 blocked the progression of NSCLC by targeting RHBDD1 and miR-924/RHBDD1 axis might provide a novel therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Xi Chen
- Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Zhi Xia
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, NO 87 Xiangya Road, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Ren M, Yang L, Li D, Yang L, Su Y, Su X. Cell Cycle Regulation by Berberine in Human Melanoma A375 Cells. Bull Exp Biol Med 2020; 169:491-496. [PMID: 32915362 DOI: 10.1007/s10517-020-04916-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 01/24/2023]
Abstract
We studied the effects of berberine on the proliferation, apoptosis, and migration of skin melanoma A375 cells, as well as cell cycle-related miRNAs and their target genes, CDK1, CDK2, and cyclins D1 and A. The inhibitory effect of berberine on the growth of A375 cells was evaluated by MTT assay. Cell apoptosis was detected by trypan blue staining. Cell migration was assessed by the scratch test. Cell cycle phases were determined by flow cytometry. The levels of miRNA-582-5p and miRNA-188-5, and mRNA of their target genes encoding CDK1, CDK2, and cyclins D1 and A were measured by qRT-PCR. The expression of cell cycle-related proteins (CDK1, CDK2, and cyclins D1 and A) was determined by Western blotting. Berberine inhibited the proliferation of A375 cells in a time- and dose-dependent manner and significantly and dose-dependently enhanced cell apoptosis. Scratch assay showed an inhibitory effect of berberine on migration of A375 cells. Berberine in low concentrations (20 and 40 μM) caused cell cycle arrest in the S and G2/M phases, while treatment with high concentrations of berberine (60 and 80 μM) arrested cell-cycle in the G2/M phase. The increase in berberine concentration led to an increase in miRNA-582-5p and miRNA-188-5p expression and a decrease in the expression of mRNA for the corresponding target genes encoding CDK1, CDK2, and cyclins D1 and A. Western blotting also revealed reduced expression of CDK1, CDK2, and cyclins D1 and A. Thus, berberine suppressed the growth and migration of human melanoma cells and promoted their apoptosis. Berberine can increase the expression of cell cycle-related miRNAs and cause degradation of the corresponding target genes, thereby blocking the cell cycle progression and inhibiting the melanoma A375 cells.
Collapse
Affiliation(s)
- Min Ren
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China
| | - Lihui Yang
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China
| | - Dongxia Li
- Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China.
| | - Ling Yang
- Clinical Medical Research Center, Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China
| | - Yila Su
- Clinical Medical Research Center, Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China
| | - Xiulan Su
- Clinical Medical Research Center, Inner Mongolia Medical University, Huhhot, Inner Mongolia, P.R. China
| |
Collapse
|
21
|
Luo Y, Yu MH, Yan YR, Zhou Y, Qin SL, Huang YZ, Qin J, Zhong M. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J Cell Mol Med 2020; 24:11330-11342. [PMID: 32815642 PMCID: PMC7576264 DOI: 10.1111/jcmm.15726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis (UC) is a multifactorial inflammatory disease, and increasing evidence has demonstrated that the mechanism of UC pathogenesis is associated with excessive cellular apoptosis and reactive oxygen species (ROS) production. However, their function and molecular mechanisms related to UC remain unknown. In this study, Rab27A mRNA and protein were proven to be overexpressed in intestinal epithelial cells of UC patients and DSS‐induced colitis mice, compared with control (P < 0.05). And Rab27A silencing inhibits inflammatory process in DSS‐induced colitis mice (P < 0.05). Then, it was shown that knockdown of Rab27A suppressed apoptosis and ROS production through modulation of miR‐124‐3p, whereas overexpression of Rab27A promoted apoptosis and ROS production in LPS‑induced colonic cells. In addition, enhanced expression of miR‐124‐3p attenuated apoptosis and ROS production by targeting regulation of STAT3 in LPS‑induced colonic cells. Mechanistically, we found Rab27A reduced the expression and activity of miR‐124‐3p to activate STAT3/RelA signalling pathway and promote apoptosis and ROS production in LPS‑induced colonic cells, whereas overexpression of miR‐124‐3p abrogated these effects of Rab27A. More importantly, animal experiments illustrated that ectopic expression of Rab27A promoted the inflammatory process, whereas overexpression of miR‐124‐3p might interfere with the inflammatory effect in DSS‐induced colitis mice. In summary, Rab27A might modulate the miR‐124‐3p/STAT3/RelA axis to promote apoptosis and ROS production in inflammatory colonic cells, suggesting that Rab27A as a novel therapeutic target for the prevention and treatment of UC patients.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ya-Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Shao-Lan Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yi-Zhou Huang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
22
|
Jing C, Yan L, Wei Z, Shoumin Z, Guangwen Y, Jiangan Z, Xuesong J, Hongxiang C, Ziyu D, Jianguo L. Exogenous delivery of microRNA-134 (miR-134) using α-tocopherol-based PEGylated liposome for effective treatment in skin squamous cell carcinoma. Drug Deliv Transl Res 2020; 11:1000-1008. [PMID: 32572699 DOI: 10.1007/s13346-020-00811-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are involved in the pathogenesis of several cancers including skin squamous cell carcinoma (sSCC), and miR-134 is reported to possess tumor inhibition properties. The present study is an attempt to study the mechanistic role and antitumor property of miR-134 in sSCC. For this purpose, α-tocopherol PEG 1000 succinate (TPGS)-based PEGylated liposome was formulated and encapsulated with miR-134 (TP-miR-LP). CCK-8 assay results showed that miR-134 exhibited a concentration-dependent decrease in the cell viability of A-431 cells. Importantly, TPGS-based TP-miR-LP showed significantly (p < 0.05) lower cell viability compared with that of miR-134-loaded PEGylated liposome (miR-LP). Western blot analysis clearly indicates the specific targeting ability of miR-134 (TP-miR-LP) towards the Forkhead Box M1 (FOXM1) in the cancer cells. The apoptosis rate of the cells was significantly increased in TP-miR-LP (~ 38%) than that of miR-LP (~ 15%), respectively with significant inhibition of cell migration. Importantly, tumors treated with TP-miR-LP grew significantly slower compared with that of any other formulation group in the xenograft animal model. Present results clearly demonstrate the tumor suppressive effect of miR-134 through the downregulation of FOXM1 which subsequently blocks the downstream signaling pathways. These findings suggest the translational potential of miR-134 towards designing formulation strategies for sSCC treatment. Graphical abstract.
Collapse
Affiliation(s)
- Chen Jing
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Li Yan
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhang Wei
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhang Shoumin
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yin Guangwen
- Dermatology of Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhang Jiangan
- Dermatology of Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jia Xuesong
- Department of Dermatology, The First Affiliated Hospital of The Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Chen Hongxiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Duan Ziyu
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Li Jianguo
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
23
|
Zhang Z, Xu Y, Chi S, Cui L. MicroRNA-582-5p Reduces Propofol-induced Apoptosis in Developing Neurons by Targeting ROCK1. Curr Neurovasc Res 2020; 17:140-146. [PMID: 32031069 DOI: 10.2174/1567202617666200207124817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Propofol is an intravenous drug commonly used in anesthesia procedures and intensive care in children. However, it also has neurotoxic effects on children. MicroRNA plays an important role in neurological diseases and neurotoxicity. METHODS In this study, primary rat hippocampal neurons were used to investigate the role of miR- 582-5p in propofol-induced neurotoxicity. Cell viability was monitored by 3-(4,5-dimethylthiazolyl)- 2,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while the expression of proteins was monitored by real-time quantitation polymerase chain reaction (RT-qPCR) and western blot. TargetScan and double luciferase report assay were used to predict the targeting relationship between miR-582-5p and Rho-associated serine-threonine protein kinase 1 (ROCK1). RESULTS In the present study, the viability of neurons and the expression of miR-582-5p were decreased in a time-dependent manner after propofol treatment. Besides, miR-582-5p overexpression significantly reduced the toxicity of propofol on neuron cells but had no significant effect on normal nerve cells. In addition, miR-582-5p overexpression significantly reversed the expression of apoptosis-related proteins (cleaved caspase 3 and cleaved caspase 9) induced by propofol but had no significant effect in normal nerve cells. TargetScan and Dual-luciferase report assay revealed that ROCK1 was a targeted regulatory gene for miR-582-5p, and propofol treatment up-regulated ROCK1 expression by inhibiting miR-582-5p expression. Notably, miR-582-5p overexpression significantly increased cell viability, while ROCK1 overexpression reversed the effect of miR-582- 5p. CONCLUSION Taken together, these findings suggest that miR-582-5p alleviated propofol-induced apoptosis of newborn rat neurons by inhibiting ROCK1.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Yan Xu
- Department of Endocrinology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Songyuan Chi
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| | - Longji Cui
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, Jilin City, Jilin Province, 132000, China
| |
Collapse
|
24
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
25
|
Liu J, Liu S, Deng X, Rao J, Huang K, Xu G, Wang X. MicroRNA-582-5p suppresses non-small cell lung cancer cells growth and invasion via downregulating NOTCH1. PLoS One 2019; 14:e0217652. [PMID: 31170211 PMCID: PMC6553855 DOI: 10.1371/journal.pone.0217652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer worldwide. MicroRNAs have been shown to be correlated with biological processes of various tumors. In this study, we observed that the expression of miR-582-5p was lower in NSCLC tissues than that in para-carcinoma tissues. Ectopic expression of miR-582-5p significantly inhibited NCI-H358 cell proliferation and invasion. Knockdown of miR-582-5p showed the opposite results, with cell growth rate and the invasive capacity of PC-9 cells enhanced. Furthermore, we elucidated that NOTCH1 is a target of miR-582-5p and there is an inverse correlation between miR-582-5p and NOTCH1 expression in NSCLC tissues. Overexpression of NOTCH1 in miR-582-5p-overexpressing NCI-H358 cells could partially reverse the inhibition of cell proliferation and invasion by miR-582-5p. Thus, our research demonstrated that miR-582-5p suppresses NSCLC cell lines’ growth and invasion via targeting oncoprotein NOTCH1 and restoration of miR-582-5p might be feasible therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Jianghong Liu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Shengshuo Liu
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiaoyan Deng
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaiyuan Huang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- * E-mail:
| |
Collapse
|
26
|
Chiyo T, Fujita K, Iwama H, Fujihara S, Tadokoro T, Ohura K, Matsui T, Goda Y, Kobayashi N, Nishiyama N, Yachida T, Morishita A, Kobara H, Mori H, Niki T, Hirashima M, Himoto T, Masaki T. Galectin-9 Induces Mitochondria-Mediated Apoptosis of Esophageal Cancer In Vitro and In Vivo in a Xenograft Mouse Model. Int J Mol Sci 2019; 20:ijms20112634. [PMID: 31146370 PMCID: PMC6600680 DOI: 10.3390/ijms20112634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022] Open
Abstract
Galectin-9 (Gal-9) enhances tumor immunity mediated by T cells, macrophages, and dendritic cells. Its expression level in various cancers correlates with prognosis. Furthermore, Gal-9 directly induces apoptosis in various cancers; however, its mechanism of action and bioactivity has not been clarified. We evaluated Gal-9 antitumor effect against esophageal squamous cell carcinoma (ESCC) to analyze the dynamics of apoptosis-related molecules, elucidate its mechanism of action, and identify relevant changes in miRNA expressions. KYSE-150 and KYSE-180 cells were treated with Gal-9 and their proliferation was evaluated. Gal-9 inhibited cell proliferation in a concentration-dependent manner. The xenograft mouse model established with KYSE-150 cells was administered with Gal-9 and significant suppression in the tumor growth observed. Gal-9 treatment of KYSE-150 cells increased the number of Annexin V-positive cells, activation of caspase-3, and collapse of mitochondrial potential, indicating apoptosis induction. c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) phosphorylation were activated and could be involved in apoptosis. Therefore, Gal-9 induces mitochondria-mediated apoptosis of ESCC and inhibits cell proliferation in vitro and in vivo with JNK and p38 activation.
Collapse
Affiliation(s)
- Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Kyoko Ohura
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Yasuhiro Goda
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Nobuya Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Mitsuomi Hirashima
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan.
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
27
|
Liu X, Chen J, Guan T, Yao H, Zhang W, Guan Z, Wang Y. miRNAs and target genes in the blood as biomarkers for the early diagnosis of Parkinson's disease. BMC SYSTEMS BIOLOGY 2019; 13:10. [PMID: 30665415 PMCID: PMC6341689 DOI: 10.1186/s12918-019-0680-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/04/2019] [Indexed: 01/26/2023]
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disease, and it is a multifactorial disease with no definite diagnostic index. The aim of this study is to construct a molecular network to find molecules that play important roles in the progression of PD with the goal of using them diagnostically and for early intervention. Results We downloaded two gene expression profiles (GSE54536 and GSE100054) from the Expression Omnibus (GEO) database to analyze possible markers. The Genes were analyzed with GEO2R. There were 1790 and 967 differentially expressed genes (DEGs) in GSE54536 and GSE100054 respectively. A total of 125 genes co-exist in the DEGs of the two data sets. KEGG pathway analysis showed that 125 DEGs were enriched in Aldosterone synthesis and secretion, Gap junctions, Platelet activation, Rap1 signaling pathway, and Estrogen signaling pathway. There were 20 hub genes among 125 DEGs analyzed by PPI that involved in Platelet activation, Inflammatory response, Innate immune response, B cell receptor signaling, Stimulatory C-type lectin receptor signaling, Lipopolysaccharide response, Leukocyte migration, and Regulation of cell proliferation. Additionally, 42 differences in miRNAs were found in GSE100054. We constructed a miRNA-mRNA regulatory network depicting interactions between the predicted genes and the 125 DEGs. 34 miRNA-mRNA pairs were obtained. We found GNAQ and TMTC2 were the most important mRNAs in the network analyzed by Cytoscape APP centiscape, and their degrees in centiscape2.2 were all 10. has-miR-142 was the most important miRNA (the highest degree is 4 in centiscape2.2), which forms miRNA-mRNA pairs with GNAQ, TMTC2, BEND2, and KYNU. Conclusions This study provides data of potential biomarkers and therapeutic targets for PD diagnosis and treatment. Among them, hsa-miR-142 is a critical miRNA in the PD network, and may be involved in PD progression by regulating GNAQ, TMTC2, BEND2, and KYNU.
Collapse
Affiliation(s)
- Xiaoting Liu
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Tianyuan Guan
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Hui Yao
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wenpei Zhang
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenlong Guan
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yanqin Wang
- Department of Physiology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
28
|
Wu J, Li W, Ning J, Yu W, Rao T, Cheng F. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther 2019; 12:495-508. [PMID: 30666128 PMCID: PMC6331189 DOI: 10.2147/ott.s183940] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Rently, the incidence of bladder cancer has been on the rise. Accumulating researches have been conducted to clarify the molecular mechanisms and potential therapeutic targets of bladder cancer. The present study aims to explore the regulatory mechanism of the urothelial carcinoma-associated 1 (UCA1)-miR-582-5p-ATG7 axis in bladder cancer. METHODS Quantitative real-time polymerase chain reaction was used to detect mRNA level. Relative protein expression was detected by western blot. wound healing assay and transwell were used to determine migration and invasion of cells. in addtion, luciferase reporter assay and immunohistochemistry were performed. RESULTS UCA1 expression was upregulated in bladder cancer tissues and cells, while the depletion of UCA1 by shRNA resulted in the suppression of cell proliferation, invasion, migration, and drug resistance. Further studies demonstrated that UCA1 could directly interact with miR-582-5p, and that there was an inverse correlation between miR-582-5p and UCA1. In addition, we found that ATG7 is a target of miR-582-5p and can be downregulated by either miR-582-5p overexpression or UCA1 knockdown. In particular, the autophagy is reduced when UCA1 shRNA is introduced. Moreover, the in vivo experiment further demonstrated the contribution of UCA1 in bladder cancer including tumor growth, invasion, and migration, and UCA1 knockdown can inhibit the aforementioned activities. CONCLUSION These results provided evidence for a novel UCA1 interaction regulatory network in bladder cancer, that is, UCA1-miR-582-5p-ATG7-autophagy axis. Our study provides a new insight into the treatment of bladder cancer.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Wei Li
- Department of Anesthesiology, People's Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China,
| |
Collapse
|
29
|
Shahabi A, Naghili B, Ansarin K, Zarghami N. The relationship between microRNAs and Rab family GTPases in human cancers. J Cell Physiol 2019; 234:12341-12352. [PMID: 30609026 DOI: 10.1002/jcp.28038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs), as a group of noncoding RNAs, posttranscriptionally control gene expression by binding to 3'-untranslated region (3'-UTR). Ras-associated binding (Rab) proteins function as molecular switches for regulating vesicular transport, which mainly have oncogenic roles in cancer development and preventing the efficacy of chemotherapies. Increased evidence supported that miRNAs/Rabs interaction have been determined as potential therapeutics for cancer therapy. Nevertheless, instability and cross-targeting of miRNAs are main limitations of using miRNA-based therapeutic. The mutual interplay between Rabs and miRNAs has been poorly understood. In the present review, we focused on the essence and activity of these molecules in cancer pathogenesis. Also, numerous hindrances and potential methods in the expansion of miRNA as an anticancer therapeutics are mentioned.
Collapse
Affiliation(s)
- Arman Shahabi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Overexpression of miR-582-5p Inhibits the Apoptosis of Neuronal Cells after Cerebral Ischemic Stroke Through Regulating PAR-1/Rho/Rho Axis. J Stroke Cerebrovasc Dis 2018; 28:149-155. [PMID: 30327244 DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The purpose of this study was to explore the role of miR-582-5p/proteinase-activated receptors type I (PAR-1)/Rho/Rho in neuronal cell apoptosis after cerebral ischemic stroke (CIS). METHODS In vivo mouse model of CIS induced by middle cerebral artery occlusion and in vitro model induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in N2A cells was established. The expressions of miR-582-5p, PAR-1, RhoA, and ROCKII in brain tissues and N2A cells were detected. Neuronal cell apoptosis was detected by flow cytometry. RESULTS We found that miR-582-5p expression was decreased and the expressions of PAR-1, RhoA, and ROCKII were increased in CIS mice and OGD/R model. Moreover, miR-582-5p negatively regulated PAR-1, and overexpression of miR-582-5p inhibited the activation of Rho/Rho pathway by downregulating PAR-1, thus reducing OGD/R-induced neuronal cell apoptosis. CONCLUSIONS Our results suggested that miR-582-5p overexpression could regulate Rho/Rho-kinase signaling pathway via targeting PAR-1, thereby governing the apoptosis of neuronal cells after CIS.
Collapse
|
31
|
Li L, Ma L. Upregulation of miR-582-5p regulates cell proliferation and apoptosis by targeting AKT3 in human endometrial carcinoma. Saudi J Biol Sci 2018; 25:965-970. [PMID: 30108448 PMCID: PMC6088104 DOI: 10.1016/j.sjbs.2018.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
The human endometrial carcinoma is one of the most common female malignancies, and there is an urgent requirement to explore new therapeutic strategies. There is accumulating evidence that microRNAs (miRNAs) can serve as potential diagnostic and prognostic biomarkers for various types of cancer, but the significance of miR-582-5p still remains largely unknown in the endometrial carcinoma. The aims of this study were to understand and identify the influence of miR-582-5p on the proliferation and apoptosis of human endometrial carcinoma and its relevant mechanism. First, quantitative real-time PCR (qRT-PCR) was used to detect miR-582-5p and AKT3 expression in human tissue samples and cells. Then, CyQuant assay and 2D colony assay were employed to evaluate cell proliferation. Western blotting was used to determine protein expression. Subsequently, the luciferase reporter assay was used to identify the target of miR-582-5p. Finally, Annexin V assay was used to detect cell apoptosis. We found that miR-582-5p expression was significantly decreased in human endometrial carcinoma tissues, and miR-582-5p upregulation in human endometrial carcinoma cells inhibit cell proliferation and promote apoptosis. Moreover, AKT3 was validated as a target of miR-582-5p and AKT3 expression was inversely correlated with miR-582-5p expression. Besides, AKT3 upregulation efficiently abrogates the effect of miR-582-5p on the cells. These results demonstrated that miR-582-5p regulates cell proliferation and apoptosis in human endometrial carcinoma via AKT3. Thus, miR-582-5p represents a potential therapeutic target in human endometrial carcinoma meriting further investigation.
Collapse
Affiliation(s)
- Lingling Li
- Department of Gynecology of Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, PR China
| | - Li Ma
- Department of Gynecology of Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471000, PR China
| |
Collapse
|
32
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
33
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
34
|
Luo Y, Yu SY, Chen JJ, Qin J, Qiu YE, Zhong M, Chen M. MiR-27b directly targets Rab3D to inhibit the malignant phenotype in colorectal cancer. Oncotarget 2017; 9:3830-3841. [PMID: 29423086 PMCID: PMC5790503 DOI: 10.18632/oncotarget.23237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
MiRNAs, as oncogenes or as anti-oncogenes, play critically regulated roles in the initiation and progression of colorectal cancer at posttranscriptional level. However, the underlying functions of miR-27b in colorectal cancer remain largely unexplored. Here, we demonstrated miR-27b is significantly down-regulated in colorectal cancer tissues, and decreased miR-27b expression was closely associated with shorter overall survival of patients with colorectal cancer. By gain- and loss-of-function studies, we showed miR-27b remarkably suppressed cell proliferation and invasion of colorectal cancer. Furthermore, luciferase reporter assay identified Rab3D was the direct functional target of miR-27b. And Rab3D partly reversed the suppression of cell proliferation and invasion caused by miR-27b mimics. Finally, the animal experiment showed miR-27b plays a crucial role on colorectal cancer progression by targeting Rab3D. Taken together, our study implied miR-27b inhibits cell growth and invasion by targeting Rab3D, and miR-27b is a potential biomarker for prognosis and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Shi-Yong Yu
- Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai 201200, P.R. China
| | - Jian-Jun Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Yi-Er Qiu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Min Chen
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
35
|
Wang WW, Chen B, Lei CB, Liu GX, Wang YG, Yi C, Wang YY, Zhang SY. miR-582-5p inhibits invasion and migration of salivary adenoid cystic carcinoma cells by targeting FOXC1. Jpn J Clin Oncol 2017; 47:690-698. [PMID: 28591777 DOI: 10.1093/jjco/hyx073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/16/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Neurotropism of salivary adenoid cystic carcinoma (SACC) and pulmonary metastasis may lead to in treatment failure. miR-582-5p plays important roles in tumorigenesis, invasion and migration. Here, we aim to determine the effect of miR-582-5p and its role in SACC invasion and metastasis. Methods Six primary human SACC samples and matching adjacent normal tissues were analyzed by microarray analysis. Next, quantitative real-time PCR was carried out to evaluate miR-582-5p expression in 16 primary human SACC samples and matching adjacent normal tissues. Cell invasion and migration were also analyzed, and a luciferase reporter assay and western analysis were conducted. Cell growth and apoptosis assay were performed to confirm the effect of miR-582-5p and Forkhead box C1 (FOXC1) siRNA in cell proliferation and apoptosis. SACC tumorigenesis and metastasis were investigated in vivo experiment. Clinical samples from 110 patients were analyzed using in situ hybridization and immunohistochemistry. Results Microarray analysis revealed that miR-582-5p was significantly downregulated in the SACC samples compared with the matching adjacent normal tissues. Regulation of miR-582-5p expression significantly influenced the migration, invasion and proliferation ability of SACC cells by targeting FOXC1. E-cadherin was increased, while vimentin and snail were decreased with downregulation of FOXC1, suggesting that FOXC1 may regulate the epithelial-to-mesenchymal transition (EMT) of SACC cells by transactivating snail. In vivo, miR-582-5p overexpression suppressed the tumorigenesis and pulmonary metastasis of SACC. Lower expression of miR-582-5p expression predicts unfavorable prognoses and high rates of metastasis. Conclusions miR-582-5p could suppress effect on the process of invasion and migration in SACC cell lines, and this could occur through its target gene FOXC1.
Collapse
Affiliation(s)
| | - Bin Chen
- Department of Stomatology, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xu zhou, China
| | | | | | | | - Chen Yi
- Guangdong Provincial Key Laboratory of Malignant Tumor, Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - You-Yuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor, Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shan-Yi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor, Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
36
|
Song B, Long Y, Liu D, Zhang W, Liu C. MicroRNA-582 promotes tumorigenesis by targeting phosphatase and tensin homologue in colorectal cancer. Int J Mol Med 2017; 40:867-874. [DOI: 10.3892/ijmm.2017.3059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
|
37
|
miR-182-5p improves the viability, mitosis, migration, and invasion ability of human gastric cancer cells by down-regulating RAB27A. Biosci Rep 2017; 37:BSR20170136. [PMID: 28546229 PMCID: PMC6434084 DOI: 10.1042/bsr20170136] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022] Open
Abstract
We investigated the effect of miR-182-5p on the viability, proliferation, invasion, and migration ability of human gastric cells by regulating the expression of RAB27A. Real-time PCR assay was used to detect the expression of miR-182-5 and RAB27A in human gastric carcinoma tissues, para-carcinoma tissues, and different cell lines. Western blotting was also used to determine the RAB27A expression in both tissues and cell lines. We chose the HGC-27 cell line as experiment subject as it demonstrated the highest miR-182-5p level. HGC-27 cells were transfected with different vectors and the cell viability, mitosis, invasion, and migration ability were measured through MTT assay, flow cytometry (FCM) analysis, Transwell assay, and wound healing assay. In comparison with the normal tissues, miR-182-5p is expressed at a higher level in gastric cancer (GC) tissues, while RAB27A is expressed at a lower level in cancerous tissues. The down-regulation of miR-182-5p and up-regulation of RAB27A can significantly decrease the viability, migration, invasion, and mitosis of HGC-27 cells. The target relationship between miR-182-5p and RAb27A was confirmed through a dual-luciferase reporter gene assay and Western blot assay. miR-182-5p enhances the viability, mitosis, migration, and invasion of human GC cells by down-regulating RAB27A.
Collapse
|
38
|
Liu HY, Zhang CJ. Identification of differentially expressed genes and their upstream regulators in colorectal cancer. Cancer Gene Ther 2017; 24:244-250. [DOI: 10.1038/cgt.2017.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
|
39
|
Qin X, Wang J, Wang X, Liu F, Jiang B, Zhang Y. Targeting Rabs as a novel therapeutic strategy for cancer therapy. Drug Discov Today 2017; 22:1139-1147. [PMID: 28390930 DOI: 10.1016/j.drudis.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Rab GTPases constitute the largest family of small GTPases. Rabs regulate not only membrane trafficking but also cell signaling, growth and survival, and development. Increasingly, Rabs and their effectors are shown to be overexpressed or subject to loss-of-function mutations in a variety of disease settings, including cancer progression. This review provides an overview of dysregulated Rab proteins in cancer, and highlights the signaling and secretory pathways in which they operate, with the aim of identifying potential avenues for therapeutic intervention. Recent progress and perspectives for direct and/or indirect targeting of Rabs are also summarized.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Jiongyi Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Xinxin Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
40
|
MicroRNA-134-3p is a novel potential inhibitor of human ovarian cancer stem cells by targeting RAB27A. Gene 2017; 605:99-107. [DOI: 10.1016/j.gene.2016.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
|
41
|
Gurtner A, Falcone E, Garibaldi F, Piaggio G. Dysregulation of microRNA biogenesis in cancer: the impact of mutant p53 on Drosha complex activity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:45. [PMID: 26971015 PMCID: PMC4789259 DOI: 10.1186/s13046-016-0319-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
A widespread decrease of mature microRNAs is often observed in human malignancies giving them potential to act as tumor suppressors. Thus, microRNAs may be potential targets for cancer therapy. The global miRNA deregulation is often the result of defects in the miRNA biogenesis pathway, such as genomic mutation or aberrant expression/localization of enzymes and cofactors responsible of miRNA maturation. Alterations in the miRNA biogenesis machinery impact on the establishment and development of cancer programs. Accumulation of pri-microRNAs and corresponding depletion of mature microRNAs occurs in human cancers compared to normal tissues, strongly indicating an impairment of crucial steps in microRNA biogenesis. In agreement, inhibition of microRNA biogenesis, by depletion of Dicer1 and Drosha, tends to enhance tumorigenesis in vivo. The p53 tumor suppressor gene, TP53, is mutated in half of human tumors resulting in an oncogene with Gain-Of-Function activities. In this review we discuss recent studies that have underlined a role of mutant p53 (mutp53) on the global regulation of miRNA biogenesis in cancer. In particular we describe how a new transcriptionally independent function of mutant p53 in miRNA maturation, through a mechanism by which this oncogene is able to interfere with the Drosha processing machinery, generally inhibits miRNA processing in cancer and consequently impacts on carcinogenesis.
Collapse
Affiliation(s)
- Aymone Gurtner
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Emmanuela Falcone
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Garibaldi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|