1
|
Spahn C, Walker T, Byurat S, Palaniappan L. The Use of Pharmacogenomics in Cardiovascular Care. Nurs Clin North Am 2025; 60:305-320. [PMID: 40345762 DOI: 10.1016/j.cnur.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Pharmacogenomics (PGx)-the study of how one's genes affect their response to drugs-has implications for every medical subspecialty, including cardiology. This article discusses evidence-based resources that provide guidance for interpreting and applying PGx results in patient care. All health care providers, including frontline nurses, should understand this important tool for patient care.
Collapse
Affiliation(s)
- Claire Spahn
- Department of Pharmacy, Stanford Health Care, 500 Pasteur Drive, Palo Alto, CA 94304, USA.
| | | | - Seda Byurat
- Kaiser Permanente Northern California, Stanford University, Stanford, CA, USA
| | - Latha Palaniappan
- General Medical Disciplines, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Haldar T, Kvale M, Yang J, Douglas MP, Coyote‐Maetas W, Kachuri L, Witte JS, Iribarren C, Medina MW, Krauss RM, Yee SW, Oni‐Orisan A. SLCO1B1 Functional Variants, Bilirubin, Statin-Induced Myotoxicity, and Recent Sub-Saharan African Ancestry: A Precision Medicine Health Equity Study. Clin Pharmacol Ther 2025; 117:1696-1705. [PMID: 40047317 PMCID: PMC12087686 DOI: 10.1002/cpt.3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/19/2025] [Indexed: 04/25/2025]
Abstract
Statin pharmacogenetic implementation guidelines are derived from evidence of primarily Eurocentrically biased study populations. Functional SLCO1B1 variants that are rare in these study populations have not been equitably investigated and are thus missing from guidelines. The objective of this precision medicine health equity study was to determine the clinical validity of understudied candidate functional SLCO1B1 variants common in people with 1,000 Genomes sub-Saharan African superpopulation (1KG-AFR-like) genetic similarity. We conducted our analyses using the real-world evidence of participants from three large, electronic health record-linked biobanks. We used bilirubin levels (as an endogenous substrate of organic anion transporting polypeptide [OATP1B1] function) and severe statin-induced myotoxicity phenotypes. Loss-of-function splice variant rs77271279 (P = 1.1 × 10-17) had the strongest association with elevated total bilirubin levels in Black participants (mean 84% AFR-like genetic similarity) followed by missense variant rs59502379 (P = 7.4 × 10-12) then missense variant rs4149056 (P = 6.0 × 10-5). In an exploratory subset of the Black study population who used statins (n = 77 severe statin-induced myotoxicity cases), rs59502379 (odds ratio [OR] = 2.85, 95% confidence interval [CI] 1.08-7.52), but not rs77271279 (OR = 1.75, 95% CI 0.62-4.73) was associated with myotoxicity. Sensitivity analyses in participants with >5% AFR-like genetic similarity corroborated these findings. For white participants, rs77271279 and rs59502379 were rare precluding subsequent analyses. Our findings highlight the clinical relevance for understudied SLCO1B1 variants on pharmacogenetic testing panels with a potential immediate impact on reducing the risk of severe statin-induced myotoxicity primarily in Black patients, a group historically excluded from genomic research. Future studies require larger statin user study populations with less heterogeneity by statin type.
Collapse
Affiliation(s)
- Tanushree Haldar
- Department of Clinical PharmacyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark Kvale
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jia Yang
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Douglas
- Department of Clinical PharmacyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Willow Coyote‐Maetas
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Quantitative Biosciences InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Linda Kachuri
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - John S. Witte
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
- Department of Biomedical Data Science and GeneticsStanford UniversityStanfordCaliforniaUSA
| | - Carlos Iribarren
- Division of ResearchKaiser Permanente Northern CaliforniaPleasantonCaliforniaUSA
| | - Marisa W. Medina
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Liver CenterUniversity of California San Francisco, San FranciscoCaliforniaUSA
- Department of PediatricsUniversity of California San FranciscoOaklandCaliforniaUSA
| | - Ronald M. Krauss
- Liver CenterUniversity of California San Francisco, San FranciscoCaliforniaUSA
- Department of MedicineUniversity of California San FranciscoOaklandCaliforniaUSA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Akinyemi Oni‐Orisan
- Department of Clinical PharmacyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Institute for Human GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
3
|
Alqasrawi MN, Al-Mahayri ZN, AlBawa'neh AS, Khasawneh LQ, Dabaghie L, Altoum SM, Hamza D, Misra V, Ouda H, Aburuz S, Al-Maskari F, AlKaabi J, Patrinos GP, Ali BR. Pharmacogenomic insights into atorvastatin and rosuvastatin adverse effects: a prospective observational study in the UAE's multiethnic population. Hum Genomics 2025; 19:44. [PMID: 40281622 PMCID: PMC12032684 DOI: 10.1186/s40246-025-00753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Statins are essential for managing cardiovascular disease (CVD), but adverse effects often lead to treatment discontinuation and non-adherence, underscoring the need for personalized approaches. This study aimed to evaluate the influence of pharmacogenomic (PGx) variants and demographic factors on statin-associated adverse effects in a multiethnic cohort from the United Arab Emirates (UAE). METHODS This sub-analysis of the EmHeart Study included 675 patients using rosuvastatin or atorvastatin. Patients were genotyped for SLCO1B1 and ABCG2 actionable variants using real-time PCR. Data on demographics, comorbidities, and statin use were extracted from electronic health records. Adverse events, including statin-associated muscle symptoms (SAMS) and liver enzyme elevation, were tracked over 12 months. Associations were analyzed using chi-square tests and logistic regression. RESULTS Rosuvastatin users carrying the ABCG2 rs2231142 variant had a threefold increased risk of liver enzyme elevation, particularly among East Asian patients (P < 0.005). Atorvastatin users with the SLCO1B1 rs4149056 variant exhibited a twofold increased risk of SAMS, with higher rates observed in females and Arabs (P < 0.05). The combination of rosuvastatin with ezetimibe further exacerbated risks of SAMS and liver enzyme elevation. CONCLUSION This study highlights the importance of genetic testing and demographic factors, such as ethnicity and gender, in tailoring statin therapy to minimize adverse effects. Despite extensive research on PGx-guided statin prescribing, clinical implementation remains limited. Integrating PGx testing into routine practice and enhancing physician awareness of genetic and demographic risk factors can improve the safety, efficacy, and adherence of lipid-lowering therapies in diverse populations.
Collapse
Grants
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
- grant number 1570604941; UAEU21M139 Ministry of Education, United Arab Emirates
Collapse
Affiliation(s)
- Mais N Alqasrawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Zeina N Al-Mahayri
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Areej S AlBawa'neh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Lubna Q Khasawneh
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Lilas Dabaghie
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Sahar M Altoum
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Dana Hamza
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Virendra Misra
- Burjeel Day Surgery Centre, Abu Dhabi, United Arab Emirates
| | - Husam Ouda
- The Heart Medical Centre, Al-Ain, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Al-Maskari
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- Public Health Institute, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Juma AlKaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
4
|
Flowers-Moore T, Rapp AR, Salazar JH, Rajendran R. Evaluation of pharmacogenomic testing to identify cytochrome P450 and SLCO1B1 enzymes and adverse drug events: A non-experimental observational research. Medicine (Baltimore) 2025; 104:e42031. [PMID: 40193664 PMCID: PMC11977719 DOI: 10.1097/md.0000000000042031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 02/18/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
A laboratory-initiated preemptive and reactive cytochrome P450 and SLCO1B1 PGx testing protocol was evaluated in a private toxicology laboratory with the intent of identifying enzyme frequencies and associated adverse drug events. This study involved non-experimental observational research. During the retrospective medical chart review, patient demographics, statements of medical necessity, and PGx testing data were collected. Frequencies and percentages were calculated for the collected data, and statistical analysis was performed using Intellectus online software. A total of 192 PGx patient records from September 2019 to October 2021 were retrospectively reviewed. For patient demographics, men (n = 118; (61%)) were the majority gender identified among the patient population and Caucasians (n = 112; (58%)) followed by African Americans (n = 37; (19%)) were the most identified ancestry. The mean age of the patients was 69 (±9) years. CYP1A2 hyperinducers, followed by CYP3A5 poor metabolizers and CYP2B6 intermediate metabolizers, are the most encountered cytochrome P450 and SLCO1B1 enzymes. Regarding drug-gene interactions, 41 patients had 1 interaction, 29 had 2, and 31 had 3 or more interactions. For drug-drug interactions, 35 patients had 1 interaction, 15 had 2, and 30 had 3 or more interactions. Overall, 123 patients showed a minor or greater impact on drug-drug or drug-gene interactions. Overall, our study identified cytochrome P450 and SCLCO1B1 enzyme frequencies and patients experiencing actionable adverse drug events. By raising awareness of PGx test results through individualized clinician training, education, and interventions, these adverse events can be promptly identified and resolved.
Collapse
Affiliation(s)
- Tiffany Flowers-Moore
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, TX
| | - Alexandra R. Rapp
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Jose H. Salazar
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Rajkumar Rajendran
- Department of Clinical Laboratory Sciences, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
5
|
Jurado Vélez J, Anderson N, Datcher I, Foster C, Jackson P, Hidalgo B. Striving Towards Equity in Cardiovascular Genomics Research. Curr Atheroscler Rep 2025; 27:34. [PMID: 39964583 PMCID: PMC11836143 DOI: 10.1007/s11883-025-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW Our review emphasizes recent advancements and persisting gaps in cardiovascular genomics, particularly highlighting how emerging studies involving underrepresented populations have uncovered new genetic variants associated with cardiovascular diseases. RECENT FINDINGS Initiatives like the H3Africa project, the Million Veterans Program, and the All of Us Research Program are working to address this gap by focusing on underrepresented groups. Additionally, emerging research is centering on the interplay between genetic factors and socio-environmental determinants of health, which disproportionately impact marginalized communities. As cardiovascular genomics research grows, increasing the inclusion of underrepresented populations is essential for gaining a more comprehensive understanding of genetic variability. This will lead to more accurate and clinically meaningful strategies for preventing and treating cardiovascular diseases across all ancestral backgrounds and diverse populations.
Collapse
Affiliation(s)
- Javier Jurado Vélez
- Marnix E Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nekayla Anderson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivree Datcher
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Tsui L, Wang D, Fan C, Huang Y, Zhang Z, Fang Z, Xie W. Evaluation of statin-induced muscle and liver adverse drug reactions in the Chinese population: a retrospective analysis of clinical trial data from 1992 to 2023. Eur J Hosp Pharm 2025:ejhpharm-2024-004352. [PMID: 39922684 DOI: 10.1136/ejhpharm-2024-004352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
OBJECTIVES This study addressed the gaps in the disclosure of statin-associated adverse drug reactions (ADRs) in China's official database and the inadequacy of cases reported relative to the population size in public ADR databases. METHODS To address these limitations, we conducted a retrospective trial-based analysis using data from Chinese journals to comprehensively assess statin-associated ADRs from 1992 to 2023, focusing on liver (2895 studies, n = 163 810) and muscle (2888 studies, n = 161 714) related outcomes. RESULTS For large sample size clinical trial analysis (n≥100), our analysis encompassed data from 31 763 participants for muscle-related ADRs (incidence rate: 0.004-0.006, common effect model; 0.002-0.006, random effects model) and 31 281 participants for liver-related ADRs (incidence rate: 0.004-0.006, common effect model; 0.003-0.006, random effects model), covering various statins, including atorvastatin, simvastatin, rosuvastatin, fluvastatin, pitavastatin, pravastatin and lovastatin. Notably, muscle-related ADRs, particularly rhabdomyolysis, were most prevalent with fluvastatin, lovastatin and pravastatin, showing rates of 0.90%, 0.74% and 0.53%, respectively. Pitavastatin and atorvastatin were frequently associated with liver-related ADRs such as abnormal liver function and elevated enzymes, with rates of 5.36% and 1.819%, respectively. CONCLUSIONS This study underscores significant variations in ADR incidence among different statins in the Chinese population, providing critical insights for healthcare professionals and policymakers to enhance patient safety and optimise clinical decisions regarding statin therapy.
Collapse
Affiliation(s)
- Leo Tsui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| | - Dan Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| | - Chuyun Fan
- PLA Navy Characteristic Medical Center, Shanghai, Shanghai, China
| | - Yule Huang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| | - Zhiwen Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| | - Zhongjian Fang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| | - Wei Xie
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, China
| |
Collapse
|
7
|
Stoll F, Amato S, Sauter M, Burhenne J, Weiss J, Haefeli WE, Blank A. Effect of Staggered vs. Simultaneous Co-Administration of Bempedoic Acid on Pharmacokinetics of Pravastatin: Randomized, Cross-Over Clinical Trial in Healthy Volunteers. Pharmaceutics 2025; 17:60. [PMID: 39861708 PMCID: PMC11768435 DOI: 10.3390/pharmaceutics17010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Bempedoic acid (BA) is a novel cholesterol-lowering agent with proven positive effects on cardiovascular endpoints. Because it is an inhibitor of the hepatic transporters OATP1B1 and OATP1B3, two uptake transporters regulating the intrahepatic availability of statins, it increases the systemic exposure of co-administered statins. This interaction could raise the risk of myopathy. We hypothesized that the drug interaction between BA and statins could be mitigated by staggered administration. Methods: This was a single-centre, open-label, randomized, two-arm, cross-over, phase I drug interaction trial in healthy volunteers (EudraCT-No: 2022-001096-13). The primary objective was to evaluate the OATP1B1 inhibitory effect of BA on exposure to pravastatin after simultaneous administration versus different schedules of staggered administration. A secondary objective was to evaluate the impact of SLCO1B1 genotypes (*1, *5, *15, *37) on pravastatin exposure. Pravastatin was administered in single oral doses of 40 mg at six visits. After a baseline visit with pravastatin alone, BA was dosed to steady state at the approved oral dose of 180 mg. Outcome measures were the area under the plasma concentration-time curve, extrapolated to infinity (AUC∞) and Cmax of pravastatin, 3α-hydroxy-pravastatin (pravastatin 3-iso), and pravastatin lactone, and their geometric mean ratios (GMRs) of different schedules of administration. Log-transformed AUC∞ and Cmax were compared with one-way ANOVA with a 90% confidence interval (CI). Results: Fourteen participants completed all visits. At BA steady state, the GMRs of pravastatin AUC∞ and Cmax were 1.80 (90% CI 1.31-2.46) and 1.95 (90% CI 1.40-2.72), respectively, compared to baseline. There was no significant difference in pravastatin exposure between simultaneous vs. staggered administration. There was no statistically significant difference in pravastatin 3-iso or pravastatin lactone between different administration modes. For the AUC∞ of pravastatin and pravastatin 3-iso, haplotype was a significant source of variation (63% and 20%, respectively), while the type of administration (simultaneous vs. staggered) had no significant impact. Conclusions: The increase in pravastatin exposure with concomitant intake of BA was larger than expected. There was no significant difference between simultaneous vs. staggered administration of pravastatin and BA, possibly due to a population that was heterogenous in SLCO1B1 haplotypes.
Collapse
Affiliation(s)
- Felicitas Stoll
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Salvatore Amato
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Max Sauter
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jürgen Burhenne
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Walter E. Haefeli
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Antje Blank
- Medical Faculty Heidelberg, Heidelberg University, 69117 Heidelberg, Germany (A.B.)
- Internal Medicine IX—Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Litonius K, Kulla N, Falkenbach P, Kristiansson K, Tarkiainen EK, Ukkola-Vuoti L, Cajanus K, Korhonen M, Khan S, Sistonen J, Orpana A, Lindstedt M, Nyrönen T, Perola M, Turpeinen M, Kytö V, Tornio A, Niemi M. Value of Pharmacogenetic Testing Assessed with Real-World Drug Utilization and Genotype Data. Clin Pharmacol Ther 2025; 117:278-288. [PMID: 39365028 DOI: 10.1002/cpt.3458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
Implementation of pharmacogenetic testing in clinical care has been slow and with few exceptions is hindered by the lack of real-world evidence on how to best target testing. In this retrospective register-based study, we analyzed a nationwide cohort of 1,425,000 patients discharged from internal medicine or surgical wards and a cohort of 2,178 university hospital patients for purchases and prescriptions of pharmacogenetically actionable drugs. Pharmacogenetic variants were obtained from whole genome genotype data for a subset (n = 930) of the university hospital patients. We investigated factors associated with receiving pharmacogenetically actionable drugs and developed a literature-based cost-benefit model for pre-emptive pharmacogenetic panel testing. In a 2-year follow-up, 60.4% of the patients in the nationwide cohort purchased at least one pharmacogenetically actionable drug, most commonly ibuprofen (25.0%) and codeine (19.4%). Of the genotyped subset, 98.8% carried at least one actionable pharmacogenetic genotype and 23.3% had at least one actionable gene-drug pair. Patients suffering from musculoskeletal or cardiovascular diseases were more prone to receive pharmacogenetically actionable drugs during inpatient episode. The cost-benefit model included frequently dispensed drugs in the university hospital cohort, comprising ondansetron (19.4%), simvastatin (7.4%), clopidogrel (5.0%), warfarin (5.1%), (es)citalopram (5.3%), and azathioprine (0.5%). For untargeted pre-emptive pharmacogenetic testing of all university hospital patients, the model indicated saving €17.49 in direct healthcare system costs per patient in 2 years without accounting for the cost of the test itself. Therefore, it might be reasonable to target pre-emptive pharmacogenetic testing to patient groups most likely to receive pharmacogenetically actionable drugs.
Collapse
Affiliation(s)
- Kaisa Litonius
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Noora Kulla
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Petra Falkenbach
- Finnish Coordinating Center for Health Technology Assessment, Oulu University Hospital, University of Oulu, Oulu, Finland
| | | | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kristiina Cajanus
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mari Korhonen
- Genome Unit, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Khan
- Genome Unit, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Johanna Sistonen
- Genome Unit, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arto Orpana
- Genome Unit, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | | | | | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Turpeinen
- Finnish Coordinating Center for Health Technology Assessment, Oulu University Hospital, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Ville Kytö
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
- Clinical Research Center, Turku University Hospital, Turku, Finland
| | - Aleksi Tornio
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
González-Iglesias E, Méndez-Ponce C, Ochoa D, Román M, Mejía-Abril G, Martín-Vilchez S, de Miguel A, Gómez-Fernández A, Rodríguez-Lopez A, Soria-Chacartegui P, Abad-Santos F, Novalbos J. Effect of Genetic Variants on Rosuvastatin Pharmacokinetics in Healthy Volunteers: Involvement of ABCG2, SLCO1B1 and NAT2. Int J Mol Sci 2024; 26:260. [PMID: 39796117 PMCID: PMC11720188 DOI: 10.3390/ijms26010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the ABCG2 and SLCO1B1 genes to minimize ADRs and improve treatment efficacy. Despite these adjustments, some patients still experience ADRs. So, we performed a candidate gene study to better understand the pharmacogenetics of rosuvastatin. This study included 119 healthy volunteers who participated in three bioequivalence trials of rosuvastatin alone or in combination with ezetimibe at the Clinical Trials Unit of the Hospital Universitario de La Princesa (UECHUP). Participants were genotyped using a custom OpenArray from ThermoFisher that assessed 124 variants in 38 genes associated with drug metabolism and transport. No significant differences were observed according to sex or biogeographic origin. A significant increase in t1/2 (pmultivariate(pmv) = 0.013) was observed in the rosuvastatin plus ezetimibe trial compared with the rosuvastatin alone trials. Genetic analysis showed that decreased (DF) and poor function (PF) volunteers for the ABCG2 transporter had higher AUC∞/DW (adjusted dose/weight), AUC72h/DW and Cmax/DW compared to normal function (NF) volunteers (pmv< 0.001). DF and PF volunteers for SLCO1B1 showed an increase in AUC72h/DW (pmv = 0.020) compared to increased (IF) and NF individuals. Results for ABCG2 and SLCO1B1 were consistent with the existing literature. In addition, AUC∞/DW, AUC72h/DW and Cmax/DW were increased in intermediate (IA) and poor (PA) NAT2 acetylators (pmv = 0.001, pmv< 0.001, pmv< 0.001, respectively) compared to rapid acetylators (RA), which could be associated through a secondary pathway that was previously unknown.
Collapse
Affiliation(s)
- Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Clara Méndez-Ponce
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Alejandro de Miguel
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| | - Antía Gómez-Fernández
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
- Pharmacology Department, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jesús Novalbos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain; (E.G.-I.)
| |
Collapse
|
10
|
Rodríguez-Lopez A, Ochoa D, Soria-Chacartegui P, Martín-Vilchez S, Navares-Gómez M, González-Iglesias E, Luquero-Bueno S, Román M, Mejía-Abril G, Abad-Santos F. An Investigational Study on the Role of CYP2D6, CYP3A4 and UGTs Genetic Variation on Fesoterodine Pharmacokinetics in Young Healthy Volunteers. Pharmaceuticals (Basel) 2024; 17:1236. [PMID: 39338398 PMCID: PMC11435314 DOI: 10.3390/ph17091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Introduction: Fesoterodine is one of the most widely used antimuscarinic drugs to treat an overactive bladder. Fesoterodine is extensively hydrolyzed by esterases to 5-hydroxymethyl tolterodine (5-HMT), the major active metabolite. CYP2D6 and CYP3A4 mainly metabolize 5-HMT and are, therefore, the primary pharmacogenetic candidate biomarkers. Materials and Methods: This is a candidate gene study designed to investigate the effects of 120 polymorphisms in 33 genes (including the CYP, COMT, UGT, NAT2, and CES enzymes, ABC and SLC transporters, and 5-HT receptors) on fesoterodine pharmacokinetics and their safety in 39 healthy volunteers from three bioequivalence trials. Results: An association between 5-HMT exposure (dose/weight corrected area under the curve (AUC/DW) and dose/weight corrected maximum plasma concentration (Cmax/DW)), elimination (terminal half-life (T1/2) and the total drug clearance adjusted for bioavailability (Cl/F)), and CYP2D6 activity was observed. Poor/intermediate metabolizers (PMs/IMs) had higher 5-HMT AUC/DW (1.5-fold) and Cmax/DW (1.4-fold) values than the normal metabolizers (NMs); in addition, the normal metabolizers (NMs) had higher 5-HMT AUC/DW (1.7-fold) and Cmax/DW (1.3-fold) values than the ultrarapid metabolizers (UMs). Lower 5-HMT exposure and higher T1/2 were observed for the CYP3A4 IMs compared to the NMs, contrary to our expectations. Conclusions: CYP2D6 might have a more important role than CYP3A4 in fesoterodine pharmacokinetics, and its phenotype might be a better predictor of variation in its pharmacokinetics. An association was observed between different genetic variants of different genes of the UGT family and AUC, Cmax, and CL/F of 5-HMT, which should be confirmed in other studies.
Collapse
Affiliation(s)
- Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Németh S, Kriegshäuser G, Hayrapetyan H, Oberkanins C, Sarkisian T. Allelic frequencies of polymorphism c.521T>C (rs4149056) favor preemptive SLCO1B1 genotyping in Armenia. Drug Metab Pers Ther 2024; 39:159-161. [PMID: 38997114 DOI: 10.1515/dmpt-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVES Statins represent an important pharmacological factor for the prevention of cardiovascular diseases but may also cause severe cases of myotoxicity. Numerous studies have described the association of the SLCO1B1 gene variant c.521C with statin-induced myopathy across different populations. This study aimed at evaluating the usefulness of preemptive SLCO1B1 genotyping in Armenia. METHODS A total of 202 Armenian patients referred to the Center of Medical Genetics and Primary Health Care in Yerevan for upper respiratory tract infection between January and May 2022 were included in this study. Genotyping for SLCO1B1 c.521T>C (rs4149056) was performed using a commercially available real-time PCR assay (RealFast™). RESULTS In total, 3/202 (1.5 %) samples were C/C homozygotes and 52/202 (25.7 %) were T/C heterozygotes, associated with a high and increased risk for statin-induced myopathy, respectively. The SLCO1B1 c.521C allelic frequency was 14.4 %. CONCLUSIONS The observed allele frequency of 14.4 % for the c.521C variant is slightly lower than frequencies reported from Europe, but relatively high compared to Asian populations, suggesting that preemptive SLCO1B1 genotyping could be a useful approach for the reduction of statin-induced adverse effects in Armenia.
Collapse
Affiliation(s)
| | - Gernot Kriegshäuser
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | - Hasmik Hayrapetyan
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
- Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| | | | - Tamara Sarkisian
- Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
- Center of Medical Genetics and Primary Health Care, Yerevan, Armenia
| |
Collapse
|
12
|
Elgarhy FM, Borham A, Alziny N, AbdElaal KR, Shuaib M, Musaibah AS, Hussein MA, Abdelnaser A. From Drug Discovery to Drug Approval: A Comprehensive Review of the Pharmacogenomics Status Quo with a Special Focus on Egypt. Pharmaceuticals (Basel) 2024; 17:881. [PMID: 39065732 PMCID: PMC11279872 DOI: 10.3390/ph17070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Pharmacogenomics (PGx) is the hope for the full optimization of drug therapy while minimizing the accompanying adverse drug events that cost billions of dollars annually. Since years before the century, it has been known that inter-individual variations contribute to differences in specific drug responses. It is the bridge to what is well-known today as "personalized medicine". Addressing the drug's pharmacokinetics and pharmacodynamics is one of the features of this science, owing to patient characteristics that vary on so many occasions. Mainly in the liver parenchymal cells, intricate interactions between the drug molecules and enzymes family of so-called "Cytochrome P450" occur which hugely affects how the body will react to the drug in terms of metabolism, efficacy, and safety. Single nucleotide polymorphisms, once validated for a transparent and credible clinical utility, can be used to guide and ensure the succession of the pharmacotherapy plan. Novel tools of pharmacoeconomics science are utilized extensively to assess cost-effective pharmacogenes preceding the translation to the bedside. Drug development and discovery incorporate a drug-gene perspective and save more resources. Regulations and laws shaping the clinical PGx practice can be misconceived; however, these pre-/post approval processes ensure the product's safety and efficacy. National and international regulatory agencies seek guidance on maintaining conduct in PGx practice. In this patient-centric era, social and legal considerations manifest in a way that makes them unavoidable, involving patients and other stakeholders in a deliberate journey toward utmost patient well-being. In this comprehensive review, we contemporarily addressed the scientific leaps in PGx, along with various challenges that face the proper implementation of personalized medicine in Egypt. These informative insights were drawn to serve what the Egyptian population, in particular, would benefit from in terms of knowledge and know-how while maintaining the latest global trends. Moreover, this review is the first to discuss various modalities and challenges faced in Egypt regarding PGx, which we believe could be used as a pilot piece of literature for future studies locally, regionally, and internationally.
Collapse
Affiliation(s)
- Fadya M. Elgarhy
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 4435121, Egypt
| | - Abdallah Borham
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Noha Alziny
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Khlood R. AbdElaal
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt;
| | - Mahmoud Shuaib
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Abobaker Salem Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University, Cairo 11835, Egypt; (F.M.E.); (A.B.); (N.A.); (M.S.); (A.S.M.); (M.A.H.)
| |
Collapse
|
13
|
Abdel‐latif R, Badji R, Mohammed S, Al‐Muftah W, Mbarek H, Darwish D, Assaf D, Al‐Badriyeh D, Elewa H, Afifi N, Masoodi NA, Omar AS, Al Suwaidi J, Bujassoum S, Al Hail M, Ismail SI, Althani A. QPGx-CARES: Qatar pharmacogenetics clinical applications and research enhancement strategies. Clin Transl Sci 2024; 17:e13800. [PMID: 38818903 PMCID: PMC11140449 DOI: 10.1111/cts.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
Pharmacogenetic (PGx)-informed medication prescription is a cutting-edge genomic application in contemporary medicine, offering the potential to overcome the conventional "trial-and-error" approach in drug prescription. The ability to use an individual's genetic profile to predict drug responses allows for personalized drug and dosage selection, thereby enhancing the safety and efficacy of treatments. However, despite significant scientific and clinical advancements in PGx, its integration into routine healthcare practices remains limited. To address this gap, the Qatar Genome Program (QGP) has embarked on an ambitious initiative known as QPGx-CARES (Qatar Pharmacogenetics Clinical Applications and Research Enhancement Strategies), which aims to set a roadmap for optimizing PGx research and clinical implementation on a national scale. The goal of QPGx-CARES initiative is to integrate PGx testing into clinical settings with the aim of improving patient health outcomes. In 2022, QGP initiated several implementation projects in various clinical settings. These projects aimed to evaluate the clinical utility of PGx testing, gather valuable insights into the effective dissemination of PGx data to healthcare professionals and patients, and identify the gaps and the challenges for wider adoption. QPGx-CARES strategy aimed to integrate evidence-based PGx findings into clinical practice, focusing on implementing PGx testing for cardiovascular medications, supported by robust scientific evidence. The current initiative sets a precedent for the nationwide implementation of precision medicine across diverse clinical domains.
Collapse
Affiliation(s)
- Rania Abdel‐latif
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Radja Badji
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | | | - Wadha Al‐Muftah
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Dima Darwish
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Duha Assaf
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | | | - Hazem Elewa
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Nahla Afifi
- Qatar Biobank for Medical ResearchQatar Foundation for Education, Science, and CommunityDohaQatar
| | | | - Amr Salah Omar
- Cardiology and Cardiovascular SurgeryDepartment Hamad Medical CorporationDohaQatar
| | - Jassim Al Suwaidi
- Cardiology and Cardiovascular SurgeryDepartment Hamad Medical CorporationDohaQatar
| | - Salha Bujassoum
- Medical Oncology, National Center for Cancer Care and ResearchDepartment Hamad Medical CorporationDohaQatar
| | - Moza Al Hail
- Pharmacy DepartmentHamad Medical CorporationDohaQatar
| | - Said I. Ismail
- Qatar Genome Program, Qatar Precision Health InstituteQatar FoundationDohaQatar
| | - Asma Althani
- Biomedical Research CenterQatar UniversityDohaQatar
| |
Collapse
|
14
|
Lusiki Z, Blom D, Soko ND, Malema S, Jones E, Rayner B, Blackburn J, Sinxadi P, Dandara MT, Dandara C. Major Genetic Drivers of Statin Treatment Response in African Populations and Pharmacogenetics of Dyslipidemia Through a One Health Lens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:261-279. [PMID: 37956269 DOI: 10.1089/omi.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A One Health lens is increasingly significant to address the intertwined challenges in planetary health concerned with the health of humans, nonhuman animals, plants, and ecosystems. A One Health approach can benefit the public health systems in Africa that are overburdened by noncommunicable, infectious, and environmental diseases. Notably, the COVID-19 pandemic revealed the previously overlooked two-fold importance of pharmacogenetics (PGx), for individually tailored treatment of noncommunicable diseases and environmental pathogens. For example, dyslipidemia, a common cardiometabolic risk factor, has been identified as an independent COVID-19 severity risk factor. Observational data suggest that patients with COVID-19 infection receiving lipid-lowering therapy may have better outcomes. However, among African patients, the response to these drugs varies from patient to patient, pointing to the possible contribution of genetic variation in important pharmacogenes. The PGx of lipid-lowering therapies may underlie differences in treatment responses observed among dyslipidemia patients as well as patients comorbid with COVID-19 and dyslipidemia. Genetic variations in APOE, ABCB1, CETP, CYP2C9, CYP3A4, CYP3A5, HMGCR, LDLR, NPC1L1, and SLCO1B1 genes affect the pharmacogenomics of statins, and they have individually been linked to differential responses to dyslipidemia and COVID-19 treatment. African populations are underrepresented in PGx research. This leads to poor accounting of additional diverse genetic variants that could be important in understanding interindividual and between-population variations in therapeutic responses to dyslipidemia and COVID-19. This expert review examines and synthesizes the salient and priority PGx variations, as seen through a One Health lens in Africa, to improve and inform personalized medicine in both dyslipidemia and COVID-19.
Collapse
Affiliation(s)
- Zizo Lusiki
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Smangele Malema
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Erika Jones
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle T Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| |
Collapse
|
15
|
Westergaard N, Baltzer Houlind M, Christrup LL, Juul-Larsen HG, Strandhave C, Olesen AE. Use of drugs with pharmacogenomics (PGx)-based dosing guidelines in a Danish cohort of persons with chronic kidney disease, both on dialysis and not on dialysis: Perspectives for prescribing optimization. Basic Clin Pharmacol Toxicol 2024; 134:531-542. [PMID: 38308569 DOI: 10.1111/bcpt.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
AIM The objective of this registry study is to assess the utilization of pharmacogenomic (PGx) drugs among patients with chronic kidney disease (CKD). METHODS This study was a retrospective study of patients affiliated with the Department of Nephrology, Aalborg University Hospital, Denmark in 2021. Patients diagnosed with CKD were divided into CKD without dialysis and CKD with dialysis. PGx prescription drugs were retrieved from the Patient Administration System. Actionable dosing guidelines (AG) for specific drug-gene pairs for CYP2D6, CYP2C9, CYP2C19 and SLCO1B1 were retrieved from the PharmGKB homepage. RESULTS Out of 1241 individuals, 25.5% were on dialysis. The median number of medications for each patient was 9 within the non-dialysis group and 16 within the dialysis group. Thirty-one distinct PGx drugs were prescribed. Altogether, 76.0% (943 individuals) were prescribed at least one PGx drug and the prevalence of prescriptions of PGx drugs was higher in the dialysis group compared to the non-dialysis group. The most frequently prescribed drugs with AG were metoprolol, pantoprazole, atorvastatin, simvastatin and warfarin. CONCLUSION This study demonstrated that a substantial proportion of patients with CKD are exposed to drugs or drug combinations for which there exists AG related to PGx of CYP2D6, CYP2C19, CYP2C9 and SLCO1B1.
Collapse
Affiliation(s)
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- The Capital Region Pharmacy, Herlev, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lona Louring Christrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Helle Gybel Juul-Larsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | - Anne Estrup Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
16
|
Goljan E, Abouelhoda M, Tahir A, ElKalioby M, Meyer B, Monies D. Large-scale next generation sequencing based analysis of SLCO1B1 pharmacogenetics variants in the Saudi population. Hum Genomics 2024; 18:30. [PMID: 38523294 PMCID: PMC10962151 DOI: 10.1186/s40246-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND SLCO1B1 plays an important role in mediating hepatic clearance of many different drugs including statins, angiotensin-converting enzyme inhibitors, chemotherapeutic agents and antibiotics. Several variants in SLCO1B1 have been shown to have a clinically significant impact, in relation to efficacy of these medications. This study provides a comprehensive overview of SLCO1B1 variation in Saudi individuals, one of the largest Arab populations in the Middle East. METHODS The dataset of 11,889 (9,961 exomes and 1,928 pharmacogenetic gene panel) Saudi nationals, was used to determine the presence and frequencies of SLCO1B1 variants, as described by the Clinical Pharmacogenetic Implementation Consortium (CPIC). RESULTS We identified 141 previously described SNPs, of which rs2306283 (50%) and rs4149056 (28%), were the most common. In addition, we observed six alleles [*15 (24.7%) followed by *20 (8.04%), *14 (5.86%), *5 (3.84%), *31 (0.21%) and *9 (0.03%)] predicted to be clinically actionable. Allele diplotype to phenotype conversion revealed 41 OATP1B1 diplotypes. We estimated the burden of rare, and novel predicted deleterious variants, resulting from 17 such alterations. CONCLUSIONS The data we present, from one of the largest Arab cohorts studied to date, provides the most comprehensive overview of SLCO1B1 variants, and the subsequent OATP1B1 activity of this ethnic group, which thus far remains relatively underrepresented in available international genomic databases. We believe that the presented data provides a basis for further clinical investigations and the application of personalized statin drug therapy guidance in Arabs.
Collapse
Affiliation(s)
- Ewa Goljan
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohammed Abouelhoda
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Tahir
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed ElKalioby
- Computational Biosciences, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian Meyer
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Dorota Monies
- Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
17
|
Casajús A, Zubiaur P, Alday E, Soria‐Chacartegui P, Saiz‐Rodríguez M, Gutierrez L, Aragonés C, Campodónico D, Gómez‐Fernández A, Navares‐Gómez M, Villapalos‐García G, Mejía‐Abril G, Ochoa D, Abad‐Santos F. Impact of CYP2D6 and CYP2B6 phenotypes on the response to tramadol in patients with acute post-surgical pain. Clin Transl Sci 2024; 17:e13698. [PMID: 38140786 PMCID: PMC10787143 DOI: 10.1111/cts.13698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Tramadol is an important minor opioid prescribed for pain management. In this study, we analyzed the well-known impact of CYP2D6 genetic variation and 60 additional variants in eight candidate genes (i.e., ABCG2, SLCO1B1, CYP2D6, CYP2B6, CYP2C19, CYP2C9, CYP3A5, and CYP3A4) on tramadol efficacy and safety. Some 108 patients with pain after surgery admitted to a post-anesthesia care unit (PACU) and prescribed tramadol were recruited. They were genotyped, and tramadol M1/M2 metabolite concentrations were determined by a newly validated HPLC-MS/MS method. CYP2D6 intermediate (IM) and poor (PM) metabolizers showed lower M1 concentrations adjusted for dose/weight at 30 and 120 min compared to ultrarapid (UM) and normal (NM) metabolizers (univariate p < 0.001 and 0.020, multivariate p < 0.001 and 0.001, unstandardized β coefficients = 0.386 and 0.346, R2 = 0.146 and 0.120, respectively). CYP2B6 PMs (n = 10) were significantly related to a higher reduction in pain 30 min after tramadol intake (univariate p = 0.038, multivariate p = 0.016, unstandardized β coefficient = 0.224, R2 = 0.178), to lower PACU admission time (p = 0.007), and to lower incidence of adverse drug reactions (p = 0.038) compared to the other phenotypes. CYP3A4 IMs and PMs showed a higher prevalence of drowsiness and dizziness (p = 0.028 and 0.005, respectively). Our results suggest that the interaction of CYP2B6 and CYP2D6 phenotypes may be clinically relevant, pending validation of these results in large, independent cohorts. Additional research is required to clarify the impact of CYP3A4 genetic variation on tramadol response.
Collapse
Affiliation(s)
- Ana Casajús
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Pablo Zubiaur
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Enrique Alday
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de la PrincesaMadridSpain
| | - Paula Soria‐Chacartegui
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Miriam Saiz‐Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS)Hospital Universitario de BurgosBurgosSpain
- Department of Health SciencesUniversity of BurgosBurgosSpain
| | - Lara Gutierrez
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de MóstolesMadridSpain
| | - Catalina Aragonés
- Anesthesia and Surgical Critical Care DepartmentHospital Universitario de la PrincesaMadridSpain
| | - Diana Campodónico
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Antía Gómez‐Fernández
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Marcos Navares‐Gómez
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Gonzalo Villapalos‐García
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Gina Mejía‐Abril
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Dolores Ochoa
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
| | - Francisco Abad‐Santos
- Clinical Pharmacology DepartmentHospital Universitario de La Princesa, Faculty of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
18
|
Umar TP, Tanasov A, Stevanny B, Agustini D, Dave T, Nabhan A, Madany M, Ibrahim M, Nguyen D, Jain S, Jain N. A Digital Health Perspective on Medication Use and Polypharmacy Management for Improving Healthcare Outcomes in Geriatric Patients. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:1-39. [DOI: 10.4018/979-8-3693-0260-6.ch001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The high prevalence of multiple comorbidities poses unique medication-related challenges for geriatric patients. Polypharmacy is a particular concern since taking several medications simultaneously increases the likelihood of adverse drug events and the risk of drug interactions while decreasing patient adherence. These factors are associated with suboptimal health outcomes and a heightened burden on the healthcare system (insurance claims) and the patient (out-of-pocket expenses). These challenges can significantly affect the quality of life of geriatric patients. This chapter critically examines the impact of medication use and polypharmacy on the quality of life of older patients. In addition, the authors discuss how artificial intelligence-based digital tools and precision medicine can address these issues by streamlining medical decision-making, improving the patient experience, and allowing remote monitoring. Finally, they interpret the findings from the lens of ethical considerations associated with the adoption and implementation of digital applications and gadgets.
Collapse
Affiliation(s)
| | - Andrei Tanasov
- Carol Davila University of Medicine and Pharmacy, Romania
| | | | | | - Tirth Dave
- Bukovinian State Medical University, Ukraine
| | - Ayman Nabhan
- Al Andalus University for Medical Sciences, Syria
| | | | - Muiz Ibrahim
- International Higher School of Medicine, International University of Kyrgyzstan, Kyrgyzstan
| | | | - Shivani Jain
- Genesis Institute of Dental Sciences and Research, India
| | | |
Collapse
|
19
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influencia de la farmacogenética en la diversidad de respuesta a las estatinas asociada a las reacciones adversas. ADVANCES IN LABORATORY MEDICINE 2023; 4:353-364. [PMID: 38106494 PMCID: PMC10724860 DOI: 10.1515/almed-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Introducción Las estatinas son unos de los medicamentos más prescritos en los países desarrollados por ser el tratamiento de elección para reducir los niveles de colesterol ayudando así a prevenir la enfermedad cardiovascular. Sin embargo, un gran número de pacientes sufre reacciones adversas, en especial miotoxicidad. Entre los factores que influyen en la diversidad de respuesta, la farmacogenética puede jugar un papel relevante especialmente en la prevención de los efectos adversos asociados a estos medicamentos. Contenido Revisión de los conocimientos actuales sobre la influencia de la farmacogenética en la aparición y prevención de las reacciones adversas asociadas a estatinas, así como del beneficio clínico del test farmacogenético anticipado. Resumen Variaciones genéticas en SLCO1B1 (rs4149056) para todas las estatinas; en ABCG2 (rs2231142) para rosuvastatina; o en CYP2C9 (rs1799853 y rs1057910) para fluvastatina están asociadas a un incremento de las reacciones adversas de tipo muscular y a una baja adherencia al tratamiento. Además, diversos fármacos inhibidores de estos transportadores y enzimas de biotransformación incrementan la exposición sistémica de las estatinas favoreciendo la aparición de las reacciones adversas. Perspectiva La implementación clínica del análisis anticipado de este panel de farmacogenética evitaría en gran parte la aparición de reacciones adversas. Además, la estandarización en la identificación de los efectos adversos, en la metodología e interpretación del genotipo, permitirá obtener resultados más concluyentes sobre la asociación entre las variantes genéticas del SLCO1B1, ABCG y CYP2C9 y la aparición de reacciones adversas y establecer recomendaciones para alcanzar tratamientos más personalizados para cada estatina.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, España
| |
Collapse
|
20
|
Sainz de Medrano Sainz JI, Brunet Serra M. Influence of pharmacogenetics on the diversity of response to statins associated with adverse drug reactions. ADVANCES IN LABORATORY MEDICINE 2023; 4:341-352. [PMID: 38106499 PMCID: PMC10724874 DOI: 10.1515/almed-2023-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Background Statins are one of the most prescribed medications in developed countries as the treatment of choice for reducing cholesterol and preventing cardiovascular diseases. However, a large proportion of patients experience adverse drug reactions, especially myotoxicity. Among the factors that influence the diversity of response, pharmacogenetics emerges as a relevant factor of influence in inter-individual differences in response to statins and can be useful in the prevention of adverse drug effects. Content A systematic review was performed of current knowledge of the influence of pharmacogenetics on the occurrence and prevention of statin-associated adverse reactions and clinical benefits of preemptive pharmacogenetics testing. Summary Genetic variants SLCO1B1 (rs4149056) for all statins; ABCG2 (rs2231142) for rosuvastatin; or CYP2C9 (rs1799853 and rs1057910) for fluvastatin are associated with an increase in muscle-related adverse effects and poor treatment adherence. Besides, various inhibitors of these transporters and biotransformation enzymes increase the systemic exposure of statins, thereby favoring the occurrence of adverse drug reactions. Outlook The clinical preemptive testing of this pharmacogenetic panel would largely prevent the incidence of adverse drug reactions. Standardized methods should be used for the identification of adverse effects and the performance and interpretation of genotyping test results. Standardization would allow to obtain more conclusive results about the association between SLCO1B1, ABCG and CYP2C9 variants and the occurrence of adverse drug reactions. As a result, more personalized recommendations could be established for each statin.
Collapse
Affiliation(s)
- Jaime I. Sainz de Medrano Sainz
- Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mercè Brunet Serra
- Jefa de sección de Farmacología y Toxicología, Servicio de Bioquímica y Genética Molecular, Centro de Diagnóstico Biomédico, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Ye Z, Mayer J, Leary EJ, Kitchner T, Dart RA, Brilliant MH, Hebbring SJ. Estimating the efficacy of pharmacogenomics over a lifetime. Front Med (Lausanne) 2023; 10:1006743. [PMID: 38020121 PMCID: PMC10645151 DOI: 10.3389/fmed.2023.1006743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/10/2023] [Indexed: 12/01/2023] Open
Abstract
It is well known that common variants in specific genes influence drug metabolism and response, but it is currently unknown what fraction of patients are given prescriptions over a lifetime that could be contraindicated by their pharmacogenomic profiles. To determine the clinical utility of pharmacogenomics over a lifetime in a general patient population, we sequenced the genomes of 300 deceased Marshfield Clinic patients linked to lifelong medical records. Genetic variants in 33 pharmacogenes were evaluated for their lifetime impact on drug prescribing using extensive electronic health records. Results show that 93% of the 300 deceased patients carried clinically relevant variants. Nearly 80% were prescribed approximately three medications on average that may have been impacted by these variants. Longitudinal data suggested that the optimal age for pharmacogenomic testing was prior to age 50, but the optimal age is greatly influenced by the stability of the population in the healthcare system. This study emphasizes the broad clinical impact of pharmacogenomic testing over a lifetime and demonstrates the potential application of genomic medicine in a general patient population for the advancement of precision medicine.
Collapse
|
22
|
Rajabian A, McCloskey AP, Jamialahmadi T, Moallem SA, Sahebkar A. A review on the efficacy and safety of lipid-lowering drugs in neurodegenerative disease. Rev Neurosci 2023; 34:801-824. [PMID: 37036894 DOI: 10.1515/revneuro-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023]
Abstract
There is a train of thought that lipid therapies may delay or limit the impact of neuronal loss and poor patient outcomes of neurodegenerative diseases (NDDs). A variety of medicines including lipid lowering modifiers (LLMs) are prescribed in NDDs. This paper summarizes the findings of clinical and observational trials including systematic reviews and meta-analyses relating to LLM use in NDDs published in the last 15 years thus providing an up-to-date evidence pool. Three databases were searched PubMed, CINAHL, and Web of Science using key terms relating to the review question. The findings confirm the benefit of LLMs in hyperlipidemic patients with or without cardiovascular risk factors due to their pleotropic effects. In NDDs LLMs are proposed to delay disease onset and slow the rate of progression. Clinical observations show that LLMs protect neurons from α-synuclein, tau, and Aβ toxicity, activation of inflammatory processes, and ultimately oxidative injury. Moreover, current meta-analyses and clinical trials indicated low rates of adverse events with LLMs when used as monotherapy. LLMs appear to have favorable safety and tolerability profiles with few patients stopping treatment due to severe adverse effects. Our collated evidence thus concludes that LLMs have a role in NDDs but further work is needed to understand the exact mechanism of action and reach more robust conclusions on where and when it is appropriate to use LLMs in NDDs in the clinic.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Soria-Chacartegui P, Zubiaur P, Ochoa D, Navares-Gómez M, Abbes H, Villapalos-García G, de Miguel A, González-Iglesias E, Rodríguez-Lopez A, Mejía-Abril G, Martín-Vilchez S, Luquero-Bueno S, Román M, Abad-Santos F. Impact of Sex and Genetic Variation in Relevant Pharmacogenes on the Pharmacokinetics and Safety of Valsartan, Olmesartan and Hydrochlorothiazide. Int J Mol Sci 2023; 24:15265. [PMID: 37894954 PMCID: PMC10607223 DOI: 10.3390/ijms242015265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Drug combination therapy is the most common pharmacological strategy for hypertension management. No pharmacogenetic biomarkers for guiding hypertension pharmacotherapy are available to date. The study population were 64 volunteers from seven bioequivalence trials investigating formulations with valsartan, olmesartan and/or hydrochlorothiazide. Every volunteer was genotyped for 10 genetic variants in different transporters' genes. Additionally, valsartan-treated volunteers were genotyped for 29 genetic variants in genes encoding for different metabolizing enzymes. Variability in pharmacokinetic parameters such as maximum concentration (Cmax) and time to reach it (tmax), the incidence of adverse drug reactions (ADRs) and blood pressure measurements were analyzed as a function of pharmacogenetic and demographic parameters. Individuals with the ABCB1 rs1045642 T/T genotype were associated with a higher valsartan tmax compared to those with T/G and G/G genotypes (p < 0.001, β = 0.821, R2 = 0.459) and with a tendency toward a higher postural dizziness incidence (11.8% vs. 0%, p = 0.070). A higher hydrochlorothiazide dose/weight (DW)-corrected area under the curve (AUC∞/DW) was observed in SLC22A1 rs34059508 G/A volunteers compared to G/G volunteers (p = 0.050, β = 1047.35, R2 = 0.051), and a tendency toward a higher postural dizziness incidence (50% vs. 1.6%, p = 0.063). Sex impacted valsartan and hydrochlorothiazide pharmacokinetics, showing a lower exposure in women, whereas no significant differences were found for olmesartan pharmacokinetics.
Collapse
Affiliation(s)
- Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Houwaida Abbes
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Biochemistry Department, LR12SP11, Sahloul University Hospital, 4011 Sousse, Tunisia
- Faculty of Pharmacy of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Alejandro de Miguel
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Eva González-Iglesias
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Andrea Rodríguez-Lopez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
24
|
van der Drift D, Simoons M, Koch BCP, Brufau G, Bindels P, Matic M, van Schaik RHN. Implementation of Pharmacogenetics in First-Line Care: Evaluation of Its Use by General Practitioners. Genes (Basel) 2023; 14:1841. [PMID: 37895189 PMCID: PMC10606701 DOI: 10.3390/genes14101841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Pharmacogenetics (PGx) can explain/predict drug therapy outcomes. There is, however, unclarity about the use and usefulness of PGx in primary care. In this study, we investigated PGx tests ordered by general practitioners (GPs) in 2021 at Dept. Clinical Chemistry, Erasmus MC, and analyzed the gene tests ordered, drugs/drug groups, reasons for testing and single-gene versus panel testing. Additionally, a survey was sent to 90 GPs asking about their experiences and barriers to implementing PGx. In total, 1206 patients and 6300 PGx tests were requested by GPs. CYP2C19 was requested most frequently (17%), and clopidogrel was the most commonly indicated drug (23%). Regarding drug groups, antidepressants (51%) were the main driver for requesting PGx, followed by antihypertensives (26%). Side effects (79%) and non-response (27%) were the main indicators. Panel testing was preferred over single-gene testing. The survey revealed knowledge on when and how to use PGx as one of the main barriers. In conclusion, PGx is currently used by GPs in clinical practice in the Netherlands. Side effects are the main reason for testing, which mostly involves antidepressants. Lack of knowledge is indicated as a major barrier, indicating the need for more education on PGx for GPs.
Collapse
Affiliation(s)
- Denise van der Drift
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Mirjam Simoons
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Gemma Brufau
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Clinical Chemistry, Result Laboratory, 3318 AT Dordrecht, The Netherlands
| | - Patrick Bindels
- Department of General Practice, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maja Matic
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
25
|
Lönnberg KI, Tornio A, Hirvensalo P, Keskitalo J, Mustaniemi AL, Kiiski JI, Filppula AM, Niemi M. Real-world pharmacogenetics of statin intolerance: effects of SLCO1B1, ABCG2 , and CYP2C9 variants. Pharmacogenet Genomics 2023; 33:153-160. [PMID: 37490620 PMCID: PMC10399933 DOI: 10.1097/fpc.0000000000000504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE The association of SLCO1B1 c.521T>C with simvastatin-induced muscle toxicity is well characterized. However, different statins are subject to metabolism and transport also by other proteins exhibiting clinically meaningful genetic variation. Our aim was to investigate associations of SLCO1B1 c.521T>C with intolerance to atorvastatin, fluvastatin, pravastatin, rosuvastatin, or simvastatin, those of ABCG2 c.421C>A with intolerance to atorvastatin, fluvastatin, or rosuvastatin, and that of CYP2C9*2 and *3 alleles with intolerance to fluvastatin. METHODS We studied the associations of these variants with statin intolerance in 2042 patients initiating statin therapy by combining genetic data from samples from the Helsinki Biobank to clinical chemistry and statin purchase data. RESULTS We confirmed the association of SLCO1B1 c.521C/C genotype with simvastatin intolerance both by using phenotype of switching initial statin to another as a marker of statin intolerance [hazard ratio (HR) 1.88, 95% confidence interval (CI) 1.08-3.25, P = 0.025] and statin switching along with creatine kinase measurement (HR 5.44, 95% CI 1.49-19.9, P = 0.011). No significant association was observed with atorvastatin and rosuvastatin. The sample sizes for fluvastatin and pravastatin were relatively small, but SLCO1B1 c.521T>C carriers had an increased risk of pravastatin intolerance defined by statin switching when compared to homozygous reference T/T genotype (HR 2.11, 95% CI 1.01-4.39, P = 0.047). CONCLUSION The current results can inform pharmacogenetic statin prescribing guidelines and show feasibility for the methodology to be used in larger future studies.
Collapse
Affiliation(s)
- K. Ivar Lönnberg
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku
- Unit of Clinical Pharmacology, Turku University Hospital, Turku
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
| | - Jenni Keskitalo
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki
| | - Anna-Liina Mustaniemi
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
| | - Johanna I. Kiiski
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
| | - Anne M. Filppula
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
- Pharmaceutical Science Laboratory Åbo Akademi University, Turku, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki
| |
Collapse
|
26
|
Oni-Orisan A, Tuteja S, Hoffecker G, Smith DM, Castrichini M, Crews KR, Murphy WA, Nguyen NHK, Huang Y, Lteif C, Friede KA, Tantisira K, Aminkeng F, Voora D, Cavallari LH, Whirl-Carrillo M, Duarte JD, Luzum JA. An Introductory Tutorial on Cardiovascular Pharmacogenetics for Healthcare Providers. Clin Pharmacol Ther 2023; 114:275-287. [PMID: 37303270 PMCID: PMC10406163 DOI: 10.1002/cpt.2957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Pharmacogenetics can improve clinical outcomes by reducing adverse drug effects and enhancing therapeutic efficacy for commonly used drugs that treat a wide range of cardiovascular diseases. One of the major barriers to the clinical implementation of cardiovascular pharmacogenetics is limited education on this field for current healthcare providers and students. The abundance of pharmacogenetic literature underscores its promise, but it can also be challenging to learn such a wealth of information. Moreover, current clinical recommendations for cardiovascular pharmacogenetics can be confusing because they are outdated, incomplete, or inconsistent. A myriad of misconceptions about the promise and feasibility of cardiovascular pharmacogenetics among healthcare providers also has halted clinical implementation. Therefore, the main goal of this tutorial is to provide introductory education on the use of cardiovascular pharmacogenetics in clinical practice. The target audience is any healthcare provider (or student) with patients that use or have indications for cardiovascular drugs. This tutorial is organized into the following 6 steps: (1) understand basic concepts in pharmacogenetics; (2) gain foundational knowledge of cardiovascular pharmacogenetics; (3) learn the different organizations that release cardiovascular pharmacogenetic guidelines and recommendations; (4) know the current cardiovascular drugs/drug classes to focus on clinically and the supporting evidence; (5) discuss an example patient case of cardiovascular pharmacogenetics; and (6) develop an appreciation for emerging areas in cardiovascular pharmacogenetics. Ultimately, improved education among healthcare providers on cardiovascular pharmacogenetics will lead to a greater understanding for its potential in improving outcomes for a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Akinyemi Oni-Orisan
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Glenda Hoffecker
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D. Max Smith
- MedStar Health, Columbia, Maryland, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Matteo Castrichini
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristine R. Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nam H. K. Nguyen
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Yimei Huang
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Christelle Lteif
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin A. Friede
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kelan Tantisira
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Folefac Aminkeng
- Departments of Medicine and Biomedical Informatics (DBMI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
- Centre for Precision Health (CPH), National University Health System (NUHS), Singapore City, Singapore
| | - Deepak Voora
- Precision Medicine Program, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida, USA
| | - Jasmine A. Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
27
|
Soko ND, Muyambo S, Dandara MTL, Kampira E, Blom D, Jones ESW, Rayner B, Shamley D, Sinxadi P, Dandara C. Towards Evidence-Based Implementation of Pharmacogenomics in Southern Africa: Comorbidities and Polypharmacy Profiles across Diseases. J Pers Med 2023; 13:1185. [PMID: 37623436 PMCID: PMC10455498 DOI: 10.3390/jpm13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Pharmacogenomics may improve patient care by guiding drug selection and dosing; however, this requires prior knowledge of the pharmacogenomics of drugs commonly used in a specific setting. The aim of this study was to identify a preliminary set of pharmacogenetic variants important in Southern Africa. We describe comorbidities in 3997 patients from Malawi, South Africa, and Zimbabwe. These patient cohorts were included in pharmacogenomic studies of anticoagulation, dyslipidemia, hypertension, HIV and breast cancer. The 20 topmost prescribed drugs in this population were identified. Using the literature, a list of pharmacogenes vital in the response to the top 20 drugs was constructed leading to drug-gene pairs potentially informative in translation of pharmacogenomics. The most reported morbidity was hypertension (58.4%), making antihypertensives the most prescribed drugs, particularly amlodipine. Dyslipidemia occurred in 31.5% of the participants, and statins were the most frequently prescribed as cholesterol-lowering drugs. HIV was reported in 20.3% of the study participants, with lamivudine/stavudine/efavirenz being the most prescribed antiretroviral combination. Based on these data, pharmacogenes of immediate interest in Southern African populations include ABCB1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, SLC22A1, SLCO1B1 and UGT1A1. Variants in these genes are a good starting point for pharmacogenomic translation programs in Southern Africa.
Collapse
Affiliation(s)
- Nyarai Desiree Soko
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Department of Pharmaceutical Technology, School of Allied Health Sciences, Harare Institute of Technology, Harare, Zimbabwe
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Sarudzai Muyambo
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Michelle T. L. Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
| | - Elizabeth Kampira
- Medical Laboratory Sciences, School of Life Sciences and Health Professionals, Kamuzu University of Health Sciences (KUHES), Blantyre, Malawi
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Erika S. W. Jones
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
| | - Delva Shamley
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED), University of Cape Town, South African Medical Research Council, Cape Town 7935, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| | - Collet Dandara
- Department of Pharmaceutical Technology, School of Allied Health Sciences, Harare Institute of Technology, Harare, Zimbabwe
- Pharmacogenomics and Drug Metabolism Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7935, South Africa
| |
Collapse
|
28
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
29
|
Bertholim-Nasciben L, Scliar MO, Debortoli G, Thiruvahindrapuram B, Scherer SW, Duarte YAO, Zatz M, Suarez-Kurtz G, Parra EJ, Naslavsky MS. Characterization of pharmacogenomic variants in a Brazilian admixed cohort of elderly individuals based on whole-genome sequencing data. Front Pharmacol 2023; 14:1178715. [PMID: 37234706 PMCID: PMC10206227 DOI: 10.3389/fphar.2023.1178715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Research in the field of pharmacogenomics (PGx) aims to identify genetic variants that modulate response to drugs, through alterations in their pharmacokinetics (PK) or pharmacodynamics (PD). The distribution of PGx variants differs considerably among populations, and whole-genome sequencing (WGS) plays a major role as a comprehensive approach to detect both common and rare variants. This study evaluated the frequency of PGx markers in the context of the Brazilian population, using data from a population-based admixed cohort from Sao Paulo, Brazil, which includes variants from WGS of 1,171 unrelated, elderly individuals. Methods: The Stargazer tool was used to call star alleles and structural variants (SVs) from 38 pharmacogenes. Clinically relevant variants were investigated, and the predicted drug response phenotype was analyzed in combination with the medication record to assess individuals potentially at high-risk of gene-drug interaction. Results: In total, 352 unique star alleles or haplotypes were observed, of which 255 and 199 had a frequency < 0.05 and < 0.01, respectively. For star alleles with frequency > 5% (n = 97), decreased, loss-of-function and unknown function accounted for 13.4%, 8.2% and 27.8% of alleles or haplotypes, respectively. Structural variants (SVs) were identified in 35 genes for at least one individual, and occurred with frequencies >5% for CYP2D6, CYP2A6, GSTM1, and UGT2B17. Overall 98.0% of the individuals carried at least one high risk genotype-predicted phenotype in pharmacogenes with PharmGKB level of evidence 1A for drug interaction. The Electronic Health Record (EHR) Priority Result Notation and the cohort medication registry were combined to assess high-risk gene-drug interactions. In general, 42.0% of the cohort used at least one PharmGKB evidence level 1A drug, and 18.9% of individuals who used PharmGKB evidence level 1A drugs had a genotype-predicted phenotype of high-risk gene-drug interaction. Conclusion: This study described the applicability of next-generation sequencing (NGS) techniques for translating PGx variants into clinically relevant phenotypes on a large scale in the Brazilian population and explores the feasibility of systematic adoption of PGx testing in Brazil.
Collapse
Affiliation(s)
- Luciana Bertholim-Nasciben
- School of Public Health, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Marilia O. Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | | | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yeda A. O. Duarte
- Medical-Surgical Nursing Department, School of Nursing, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Michel S. Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
30
|
Nunez-Torres R, Pita G, Peña-Chilet M, López-López D, Zamora J, Roldán G, Herráez B, Álvarez N, Alonso MR, Dopazo J, Gonzalez-Neira A. A Comprehensive Analysis of 21 Actionable Pharmacogenes in the Spanish Population: From Genetic Characterisation to Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15041286. [PMID: 37111771 PMCID: PMC10140932 DOI: 10.3390/pharmaceutics15041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The implementation of pharmacogenetics (PGx) is a main milestones of precision medicine nowadays in order to achieve safer and more effective therapies. Nevertheless, the implementation of PGx diagnostics is extremely slow and unequal worldwide, in part due to a lack of ethnic PGx information. We analysed genetic data from 3006 Spanish individuals obtained by different high-throughput (HT) techniques. Allele frequencies were determined in our population for the main 21 actionable PGx genes associated with therapeutical changes. We found that 98% of the Spanish population harbours at least one allele associated with a therapeutical change and, thus, there would be a need for a therapeutical change in a mean of 3.31 of the 64 associated drugs. We also identified 326 putative deleterious variants that were not previously related with PGx in 18 out of the 21 main PGx genes evaluated and a total of 7122 putative deleterious variants for the 1045 PGx genes described. Additionally, we performed a comparison of the main HT diagnostic techniques, revealing that after whole genome sequencing, genotyping with the PGx HT array is the most suitable solution for PGx diagnostics. Finally, all this information was integrated in the Collaborative Spanish Variant Server to be available to and updated by the scientific community.
Collapse
Affiliation(s)
- Rocio Nunez-Torres
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Peña-Chilet
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Daniel López-López
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
| | - Jorge Zamora
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Gema Roldán
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Belén Herráez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Nuria Álvarez
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - María Rosario Alonso
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Joaquín Dopazo
- Computational Medicine Platform, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 41013 Sevilla, Spain
- Computational Systems Medicine Group, Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Seville, Spain
- Functional Genomics Node, FPS/ELIXIR-ES, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Anna Gonzalez-Neira
- Human Genotyping Unit (CEGEN), Cancer Genetics Program, National Cancer Research Center (CNIO), 28029 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER-U706), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
31
|
Ramsey LB, Gong L, Lee SB, Wagner JB, Zhou X, Sangkuhl K, Adams SM, Straka RJ, Empey PE, Boone EC, Klein TE, Niemi M, Gaedigk A. PharmVar GeneFocus: SLCO1B1. Clin Pharmacol Ther 2023; 113:782-793. [PMID: 35797228 PMCID: PMC10900141 DOI: 10.1002/cpt.2705] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) is now providing star (*) allele nomenclature for the highly polymorphic human SLCO1B1 gene encoding the organic anion transporting polypeptide 1B1 (OATP1B1) drug transporter. Genetic variation within the SLCO1B1 gene locus impacts drug transport, which can lead to altered pharmacokinetic profiles of several commonly prescribed drugs. Variable OATP1B1 function is of particular importance regarding hepatic uptake of statins and the risk of statin-associated musculoskeletal symptoms. To introduce this important drug transporter gene into the PharmVar database and serve as a unified reference of haplotype variation moving forward, an international group of gene experts has performed an extensive review of all published SLCO1B1 star alleles. Previously published star alleles were self-assigned by authors and only loosely followed the star nomenclature system that was first developed for cytochrome P450 genes. This nomenclature system has been standardized by PharmVar and is now applied to other important pharmacogenes such as SLCO1B1. In addition, data from the 1000 Genomes Project and investigator-submitted data were utilized to confirm existing haplotypes, fill knowledge gaps, and/or define novel star alleles. The PharmVar-developed SLCO1B1 nomenclature has been incorporated by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 2022 guideline on statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Laura B Ramsey
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Korea
| | - Jonathan B Wagner
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Solomon M Adams
- School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip E Empey
- School of Pharmacy and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
32
|
Häkkinen K, Kiander W, Kidron H, Lähteenvuo M, Urpa L, Lintunen J, Vellonen KS, Auriola S, Holm M, Lahdensuo K, Kampman O, Isometsä E, Kieseppä T, Lönnqvist J, Suvisaari J, Hietala J, Tiihonen J, Palotie A, Ahola-Olli AV, Niemi M. Functional Characterization of Six SLCO1B1 (OATP1B1) Variants Observed in Finnish Individuals with a Psychotic Disorder. Mol Pharm 2023; 20:1500-1508. [PMID: 36779498 PMCID: PMC9996821 DOI: 10.1021/acs.molpharmaceut.2c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Variants in the SLCO1B1 (solute carrier organic anion transporter family member 1B1) gene encoding the OATP1B1 (organic anion transporting polypeptide 1B1) protein are associated with altered transporter function that can predispose patients to adverse drug effects with statin treatment. We explored the effect of six rare SLCO1B1 single nucleotide variants (SNVs) occurring in Finnish individuals with a psychotic disorder on expression and functionality of the OATP1B1 protein. The SUPER-Finland study has performed exome sequencing on 9381 individuals with at least one psychotic episode during their lifetime. SLCO1B1 SNVs were annotated with PHRED-scaled combined annotation-dependent (CADD) scores and the Ensembl variant effect predictor. In vitro functionality studies were conducted for the SNVs with a PHRED-scaled CADD score of >10 and predicted to be missense. To estimate possible changes in transport activity caused by the variants, transport of 2',7'-dichlorofluorescein (DCF) in OATP1B1-expressing HEK293 cells was measured. According to the findings, additional tests with rosuvastatin and estrone sulfate were conducted. The amount of OATP1B1 in crude membrane fractions was quantified using a liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomics analysis. Six rare missense variants of SLCO1B1 were identified in the study population, located in transmembrane helix 3: c.317T>C (p.106I>T), intracellular loop 2: c.629G>T (p.210G>V), c.633A>G (p.211I>M), c.639T>A (p.213N>L), transmembrane helix 6: 820A>G (p.274I>V), and the C-terminal end: 2005A>C (p.669N>H). Of these variants, SLCO1B1 c.629G>T (p.210G>V) resulted in the loss of in vitro function, abolishing the uptake of DCF, estrone sulfate, and rosuvastatin and reducing the membrane protein expression to 31% of reference OATP1B1. Of the six rare missense variants, SLCO1B1 c.629G>T (p.210G>V) causes a loss of function of OATP1B1 transport in vitro and severely decreases membrane protein abundance. Carriers of SLCO1B1 c.629G>T might be susceptible to altered pharmacokinetics of OATP1B1 substrate drugs and might have increased likelihood of adverse drug effects such as statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Katja Häkkinen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio FI-70240, Finland.,Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki FI-00014, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio FI-70240, Finland
| | - Lea Urpa
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki FI-00014, Finland
| | - Jonne Lintunen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio FI-70240, Finland
| | | | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Minna Holm
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki FI-00271, Finland
| | | | - Olli Kampman
- Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33100, Finland.,Department of Psychiatry, Pirkanmaa Hospital District, Tampere FI-33521, Finland.,Department of Clinical Sciences (Psychiatry), Faculty of Medicine, Umeå University, Umeå SE-90187, Sweden.,Department of Psychiatry, University Hospital of Umeå, Umeå SE-90187, Sweden.,Department of Clinical Medicine (Psychiatry), Faculty of Medicine, University of Turku, Turku FI-20014, Finland.,Department of Psychiatry, The Wellbeing Services County of Ostrobothnia, Vaasa FI-65101, Finland
| | - Erkki Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014, Finland
| | - Tuula Kieseppä
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki FI-00271, Finland.,Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki FI-00014, Finland
| | - Jouko Lönnqvist
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki FI-00271, Finland.,Department of Psychiatry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jaana Suvisaari
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku FI-20700, Finland
| | - Jari Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio FI-70240, Finland.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden.,Center for Psychiatry Research, Stockholm City Council, Stockholm SE-11364, Sweden.,Neuroscience Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki FI-00014, Finland.,The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston MA-02114, United States
| | - Ari V Ahola-Olli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki FI-00014, Finland.,The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Internal Medicine, Satasairaala Hospital, Pori FI-28500, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki FI-00014, Finland.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki FI-00029, Finland
| |
Collapse
|
33
|
Williams GR, Tsongalis GJ, Lewis LD, Barney RE, Cook LJ, Geno KA, Nerenz RD. Potential Impact of Pharmacogenomic Single Nucleotide Variants in a Rural Caucasian Population. J Appl Lab Med 2023; 8:251-263. [PMID: 36611001 PMCID: PMC10539040 DOI: 10.1093/jalm/jfac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND In the US adverse drug reactions (ADRs) are estimated to cause 100 000 fatalities and cost over $136 billion annually. A patient's genes play a significant role in their response to a drug. Pharmacogenomics aims to optimize drug choice and dose for individual patients by characterizing patients' pharmacologically relevant genes to identify variants of known impact. METHODS DNA was extracted from randomly selected remnant whole blood samples from Caucasian patients with previously performed complete blood counts. Samples were genotyped by mass spectrometry using a customized pharmacogenomics panel. A third-party result interpretation service used genotypic results to predict likely individual responses to frequently prescribed drugs. RESULTS Complete genotypic and phenotypic calls for all tested Cytochrome P450 isoenzymes and other genes were obtained from 152 DNA samples. Of these 152 unique genomic DNA samples, 140 had genetic variants suggesting dose adjustment for at least one drug. Cardiovascular and psychiatry drugs had the highest number of recommendations, which included United States Food and Drug Administration warnings for highly prescribed drugs metabolized by CYP2C19, CYP2C9, CYP2D6, HLA-A, and VKORC1. CONCLUSIONS Risk for each drug:gene pairing primarily depends upon the degree of predicted enzyme impairment or activation, width of the therapeutic window, and whether parent compound or metabolite is pharmacologically active. The resulting metabolic variations range from risk of toxicity to therapeutic failure. Pharmacogenomic profiling likely reduces ADR potential by allowing up front drug/dose selection to fit a patient's unique drug-response profile.
Collapse
Affiliation(s)
- Grace R. Williams
- Department of Pathology, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Lionel D. Lewis
- Department of Medicine, The Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Rachael E. Barney
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Leanne J. Cook
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - K. Aaron Geno
- Department of Pathology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Robert D. Nerenz
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
34
|
Huang Q, Liao Y, Yu T, Lei W, Liang H, Wen J, Liu Q, Chen Y, Huang K, Jing L, Huang X, Liu Y, Yu X, Su K, Liu T, Yang L, Huang M. A retrospective analysis of preemptive pharmacogenomic testing in 22,918 individuals from China. J Clin Lab Anal 2023; 37:e24855. [PMID: 36916827 PMCID: PMC10098050 DOI: 10.1002/jcla.24855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Pharmacogenomics (PGx) examines the influence of genetic variation on drug responses. With more and more Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines published, PGx is gradually shifting from the reactive testing of single gene toward the preemptive testing of multiple genes. But the profile of PGx genes, especially for the intra-country diversity, is not well understood in China. METHODS We retrospectively collected preemptive PGx testing data of 22,918 participants from 20 provinces of China, analyzed frequencies of alleles, genotypes and phenotypes of pharmacogenes, predicted drug responses for each participant, and performed comparisons between different provinces. RESULTS AND CONCLUSION After analyzing 15 pharmacogenes from CPIC guidelines of 31 drugs, we found that 99.97% of individuals may have an atypical response to at least one drug; the participants carry actionable genotypes leading to atypical dosage recommendation for a median of eight drugs. Over 99% of the participants were recommended a decreased warfarin dose based on genetic factors. There were 20 drugs with high-risk ratios from 0.18% to 58.25%, in which clopidogrel showed the highest high-risk ratio. In addition, the high-risk ratio of rasburicase in GUANGDONG (risk ratio (RR) = 13.17, 95%CI:4.06-33.22, p < 0.001) and GUANGXI (RR = 23.44, 95%CI:8.83-52.85, p < 0.001) were significantly higher than that in all provinces. Furthermore, the diversity we observed among 20 provinces suggests that preemptive PGx testing in different geographical regions in China may need to pay more attention to specific genes. These results emphasize the importance of preemptive PGx testing and provide essential evidence for promoting clinical implementation in China.
Collapse
Affiliation(s)
- Quanfei Huang
- Institute of Clinical PharmacologySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Yuwei Liao
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Tao Yu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Wei Lei
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Hongfeng Liang
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Jianxin Wen
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Qing Liu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Yu Chen
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Kaisheng Huang
- CapitalBio Technology Co. Ltd.BeijingChina
- Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Lifang Jing
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Xiaoyan Huang
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Yuanru Liu
- CapitalBio Technology Co. Ltd.BeijingChina
- Guangdong CapitalBio Medical LaboratoryDongguanChina
| | - Xiaokang Yu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Kaichan Su
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Tengfei Liu
- CapitalBio Genomics Co., Ltd.DongguanChina
- CapitalBio Technology Co. Ltd.BeijingChina
| | - Liye Yang
- Precision Medical Lab CenterPeople's Hospital of YangjiangYangjiangChina
| | - Min Huang
- Institute of Clinical PharmacologySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
35
|
Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, Charisma AN, Lius EE, Yuliwulandari R, Quang Hoa P, Ky Phat N, Thu VTA, Ky Anh N, Ahn S, Phuoc Long N, Cho YS, Shin JG. Development of population pharmacokinetics model and Bayesian estimation of rifampicin exposure in Indonesian patients with tuberculosis. Tuberculosis (Edinb) 2023; 139:102325. [PMID: 36841141 DOI: 10.1016/j.tube.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Interindividual variability in the pharmacokinetics (PK) of anti-tuberculosis (TB) drugs is the leading cause of treatment failure. Herein, we evaluated the influence of demographic, clinical, and genetic factors that cause variability in RIF PK parameters in Indonesian TB patients. METHODS In total, 210 Indonesian patients with TB (300 plasma samples) were enrolled in this study. Clinical data, solute carrier organic anion transporter family member-1B1 (SLCO1B1) haplotypes *1a, *1b, and *15, and RIF concentrations were analyzed. The population PK model was developed using a non-linear mixed effect method. RESULTS A one-compartment model with allometric scaling adequately described the PK of RIF. Age and SLCO1B1 haplotype *15 were significantly associated with variability in apparent clearance (CL/F). For patients in their 40s, each 10-year increase in age was associated with a 10% decrease in CL/F (7.85 L/h). Patients with the SLCO1B1 haplotype *15 had a 24% lower CL/F compared to those with the wild-type. Visual predictive checks and non-parametric bootstrap analysis indicated good model performance. CONCLUSION Age and SLCO1B1 haplotype *15 were significant covariates of RIF CL/F. Geriatric patients with haplotype *15 had significantly greater exposure to RIF. The model could optimize TB pharmacotherapy through its application in therapeutic drug monitoring (clinical trial no. NCT05280886).
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Sub-pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Surabaya, 60244, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia.
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Ni Made Mertaniasih
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia; Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Dwi Wahyu Indrawanto
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Anita Nur Charisma
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Elvina Elizabeth Lius
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta, 10510, Indonesia; Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, 10510, Indonesia
| | - Pham Quang Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Vo Thuy Anh Thu
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Anh
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Sangzin Ahn
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, 47392, Republic of Korea
| |
Collapse
|
36
|
Jansen ME, Rigter T, Fleur TMC, Souverein PC, Verschuren WMM, Vijverberg SJ, Swen JJ, Rodenburg W, Cornel MC. Predictive Value of SLCO1B1 c.521T>C Polymorphism on Observed Changes in the Treatment of 1136 Statin-Users. Genes (Basel) 2023; 14:456. [PMID: 36833383 PMCID: PMC9957000 DOI: 10.3390/genes14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Pharmacogenomic testing is a method to prevent adverse drug reactions. Pharmacogenomics could be relevant to optimize statin treatment, by identifying patients at high risk for adverse drug reactions. We aim to investigate the clinical validity and utility of pre-emptive pharmacogenomics screening in primary care, with SLCO1B1 c.521T>C as a risk factor for statin-induced adverse drug reactions. The focus was on changes in therapy as a proxy for adverse drug reactions observed in statin-users in a population-based Dutch cohort. In total, 1136 statin users were retrospectively genotyped for the SLCO1B1 c.521T>C polymorphism (rs4149056) and information on their statin dispensing was evaluated as cross-sectional research. Approximately half of the included participants discontinued or switched their statin treatment within three years. In our analyses, we could not confirm an association between the SLCO1B1 c.521T>C genotype and any change in statin therapy or arriving at a stable dose sooner in primary care. To be able to evaluate the predictive values of SLCO1B1 c.521T>C genotype on adverse drug reactions from statins, prospective data collection of actual adverse drug reactions and reasons to change statin treatment should be facilitated.
Collapse
Affiliation(s)
- Marleen E. Jansen
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Tessel Rigter
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Thom M. C. Fleur
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Patrick C. Souverein
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - W. M. Monique Verschuren
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands
| | - Susanne J. Vijverberg
- Department of Pulmonary Medicine and Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Martina C. Cornel
- Department of Clinical Genetics, Amsterdam Public Health Research Institute, Personalized Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Section Community Genetics, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
37
|
Đanić M, Pavlović N, Lazarević S, Stanimirov B, Vukmirović S, Al-Salami H, Mooranian A, Mikov M. Bioaccumulation and biotransformation of simvastatin in probiotic bacteria: A step towards better understanding of drug-bile acids-microbiome interactions. Front Pharmacol 2023; 14:1111115. [PMID: 36843926 PMCID: PMC9946981 DOI: 10.3389/fphar.2023.1111115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: Although pharmacogenetics and pharmacogenomics have been at the forefront of research aimed at finding novel personalized therapies, the focus of research has recently extended to the potential of intestinal microbiota to affect drug efficacy. Complex interplay of gut microbiota with bile acids may have significant repercussions on drug pharmacokinetics. However, far too little attention has been paid to the potential implication of gut microbiota and bile acids in simvastatin response which is characterized by large interindividual variations. The Aim: In order to gain more insight into the underlying mechanism and its contribution in assessing the clinical outcome, the aim of our study was to examine simvastatin bioaccumulation and biotransformation in probiotic bacteria and the effect of bile acids on simvastatin bioaccumulation in in vitro conditions. Materials and methods: Samples with simvastatin, probiotic bacteria and three different bile acids were incubated at anaerobic conditions at 37°C for 24 h. Extracellular and intracellular medium samples were collected and prepared for the LC-MS analysis at predetermined time points (0 min, 15 min, 1 h, 2 h, 4 h, 6 h, 24 h). The concentrations of simvastatin were analyzed by LC-MS/MS. Potential biotransformation pathways were analyzed using a bioinformatics approach in correlation with experimental assay. Results: During the incubation, simvastatin was transported into bacteria cells leading to a drug bioaccumulation over the time, which was augmented upon addition of bile acids after 24 h. A decrease of total drug level during the incubation indicates that the drug is partly biotransformed by bacterial enzymes. According to the results of bioinformatics analysis, the lactone ring is the most susceptible to metabolic changes and the most likely reactions include ester hydrolysis followed by hydroxylation. Conclusion: Results of our study reveal that bioaccumulation and biotransformation of simvastatin by intestinal bacteria might be the underlying mechanisms of altered simvastatin bioavailability and therapeutic effect. Since this study is based only on selected bacterial strains in vitro, further more in-depth research is needed in order to elicit completely the contribution of complex drug-microbiota-bile acids interactions to overall clinical response of simvastatin which could ultimately lead to novel approaches for the personalized lipid-lowering therapy.
Collapse
Affiliation(s)
- Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Slavica Lazarević
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia,*Correspondence: Slavica Lazarević,
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Saša Vukmirović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia,Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia,Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
38
|
Soria-Chacartegui P, Zubiaur P, Ochoa D, Villapalos-García G, Román M, Matas M, Figueiredo-Tor L, Mejía-Abril G, Calleja S, de Miguel A, Navares-Gómez M, Martín-Vilchez S, Abad-Santos F. Genetic Variation in CYP2D6 and SLC22A1 Affects Amlodipine Pharmacokinetics and Safety. Pharmaceutics 2023; 15:404. [PMID: 36839726 PMCID: PMC9959242 DOI: 10.3390/pharmaceutics15020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Amlodipine is an antihypertensive drug with unknown pharmacogenetic biomarkers. This research is a candidate gene study that looked for associations between amlodipine pharmacokinetics and safety and pharmacogenes. Pharmacokinetic and safety data were taken from 160 volunteers from eight bioequivalence trials. In the exploratory step, 70 volunteers were genotyped for 44 polymorphisms in different pharmacogenes. CYP2D6 poor metabolizers (PMs) showed higher half-life (t1/2) (univariate p-value (puv) = 0.039, multivariate p-value (pmv) = 0.013, β = -5.31, R2 = 0.176) compared to ultrarapid (UMs), normal (NMs) and intermediate metabolizers (IMs). SLC22A1 rs34059508 G/A genotype was associated with higher dose/weight-corrected area under the curve (AUC72/DW) (puv = 0.025; pmv = 0.026, β = 578.90, R2 = 0.060) compared to the G/G genotype. In the confirmatory step, the cohort was increased to 160 volunteers, who were genotyped for CYP2D6, SLC22A1 and CYP3A4. In addition to the previous associations, CYP2D6 UMs showed a lower AUC72/DW (puv = 0.046, pmv = 0.049, β = -68.80, R2 = 0.073) compared to NMs, IMs and PMs and the SLC22A1 rs34059508 G/A genotype was associated with thoracic pain (puv = 0.038) and dizziness (puv = 0.038, pmv = 0.014, log OR = 10.975). To our knowledge, this is the first work to report a strong relationship between amlodipine and CYP2D6 and SLC22A1. Further research is needed to gather more evidence before its application in clinical practice.
Collapse
Affiliation(s)
- Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute, Kansas City, MO 64102, USA
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Miriam Matas
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Laura Figueiredo-Tor
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Sofía Calleja
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Servicio de Bioquímica Clínica, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Alejandro de Miguel
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Samuel Martín-Vilchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
39
|
Ronquillo JG, Lester WT. Pharmacogenomic testing and prescribing patterns for patients with cancer in a large national precision medicine cohort. J Med Genet 2023; 60:81-83. [PMID: 34872990 PMCID: PMC9167887 DOI: 10.1136/jmedgenet-2021-108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
Population databases could help patients with cancer and providers better understand current pharmacogenomic prescribing and testing practices. This retrospective observational study analysed patients with cancer, drugs with pharmacogenomic evidence and related genetic testing in the National Institutes of Health All of Us database. Most patients with cancer (19 633 (88.3%) vs 2590 (11.7%)) received ≥1 drug and 36 (0.2%) received genetic testing, with a significant association between receiving ≥1 drug and age group (p<0.001), but not sex (p=0.612), race (p=0.232) or ethnicity (p=0.971). Drugs with pharmacogenomic evidence-but not genetic testing-were common for patients with cancer, reflecting key gaps preventing precision medicine from becoming standard of care.
Collapse
Affiliation(s)
- Jay G Ronquillo
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
- Office of Data Science Strategy, National Institutes of Health, Bethesda, Maryland, USA
| | - William T Lester
- Laboratory of Computer Science, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Kiiskinen T, Helkkula P, Krebs K, Karjalainen J, Saarentaus E, Mars N, Lehisto A, Zhou W, Cordioli M, Jukarainen S, Rämö JT, Mehtonen J, Veerapen K, Räsänen M, Ruotsalainen S, Maasha M, Niiranen T, Tuomi T, Salomaa V, Kurki M, Pirinen M, Palotie A, Daly M, Ganna A, Havulinna AS, Milani L, Ripatti S. Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases. Nat Med 2023; 29:209-218. [PMID: 36653479 PMCID: PMC9873570 DOI: 10.1038/s41591-022-02122-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Little is known about the genetic determinants of medication use in preventing cardiometabolic diseases. Using the Finnish nationwide drug purchase registry with follow-up since 1995, we performed genome-wide association analyses of longitudinal patterns of medication use in hyperlipidemia, hypertension and type 2 diabetes in up to 193,933 individuals (55% women) in the FinnGen study. In meta-analyses of up to 567,671 individuals combining FinnGen with the Estonian Biobank and the UK Biobank, we discovered 333 independent loci (P < 5 × 10-9) associated with medication use. Fine-mapping revealed 494 95% credible sets associated with the total number of medication purchases, changes in medication combinations or treatment discontinuation, including 46 credible sets in 40 loci not associated with the underlying treatment targets. The polygenic risk scores (PRS) for cardiometabolic risk factors were strongly associated with the medication-use behavior. A medication-use enhanced multitrait PRS for coronary artery disease matched the performance of a risk factor-based multitrait coronary artery disease PRS in an independent sample (UK Biobank, n = 343,676). In summary, we demonstrate medication-based strategies for identifying cardiometabolic risk loci and provide genome-wide tools for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Tuomo Kiiskinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Pyry Helkkula
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kristi Krebs
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Arto Lehisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Wei Zhou
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mattia Cordioli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sakari Jukarainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Juha Mehtonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kumar Veerapen
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Markus Räsänen
- Wihuri Research Institute, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mutaamba Maasha
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Teemu Niiranen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Lund University Diabetes Center, Malmo, Sweden
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mitja Kurki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Lund University Diabetes Center, Malmo, Sweden.
| |
Collapse
|
41
|
El Masri AER, Tobler C, Willemijn B, Von Bueren AO, Ansari M, Samer CF. Case report: Hepatotoxicity and nephrotoxicity induced by methotrexate in a paediatric patient, what is the role of precision medicine in 2023? Front Pharmacol 2023; 14:1130548. [PMID: 37201023 PMCID: PMC10185764 DOI: 10.3389/fphar.2023.1130548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Methotrexate is an immunosuppressant and chemotherapeutic agent used in the treatment of a range of autoimmune disorders and cancers. Its main serious adverse effects, bone marrow suppression and gastrointestinal complications, arise from its antimetabolite effect. Nevertheless, hepatotoxicity and nephrotoxicity are two widely described adverse effects of methotrexate. Its hepatotoxicity has been studied mainly in the low-dose, chronic setting, where patients are at risk of fibrosis/cirrhosis. Studies of acute hepatoxicity of high dose methotrexate, such as during chemotherapy, are scarce. We present the case of a 14-year-old patient who received high-dose methotrexate and subsequently developed acute fulminant liver failure and acute kidney injury. Genotyping of MTHFR (Methylene tetrahydrofolate reductase gene), ABCB1 (codes for P-glycoprotein, intestinal transport and biliary excretion), ABCG2 (codes for BCRP, intestinal transporter and renal excretion) and SLCO1B1 (codes for OATP1B1, hepatic transporter) identified variants in all the genes analysed that predicted a reduced rate of methotrexate elimination and thus may have contributed to the clinical situation of the patient. Precision medicine involving pharmacogenomic testing could potentially avoid such adverse drug effects.
Collapse
Affiliation(s)
- Ali El Rida El Masri
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
- *Correspondence: Ali El Rida El Masri,
| | - Caroline Tobler
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Breunis Willemijn
- Department of Oncology and Children’s Research Center, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Andre O. Von Bueren
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marc Ansari
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
- Cansearch Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Caroline Flora Samer
- Division of Clinical Pharmacology and Toxicology, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Which four medication classes have important pharmacogenetic considerations? JAAPA 2023; 36:12-13. [PMID: 36573809 DOI: 10.1097/01.jaa.0000902916.16504.e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ABSTRACT Medications often are prescribed without knowledge of a patient's pharmacogenetic profile. Initial therapy may require subsequent modification due to adverse reactions or lack of efficacy. Although many variables, including changes in pharmacokinetics, pharmacodynamics, or patient nonadherence, may account for these outcomes, information about a patient's ability to metabolize or transport drugs across membranes may be used to optimize therapy, resulting in improved medication outcomes.
Collapse
|
43
|
Božina T, Ganoci L, Karačić E, Šimičević L, Vrkić-Kirhmajer M, Klarica-Domjanović I, Križ T, Sertić Z, Božina N. ABCG2 and SLCO1B1 gene polymorphisms in the Croatian population. Ann Hum Biol 2022; 49:323-331. [PMID: 36382878 DOI: 10.1080/03014460.2022.2140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Organic anion-transporting polypeptide 1B1 (OATP1B1) and the ATP-binding cassette subfamily G member 2, ABCG2, are important transporters involved in the transport of endogenous substrates and xenobiotics, including drugs. Genetic polymorphisms of these transporters have effect on transporter activity. There is significant interethnic variability in the frequency of allele variants. AIM To determined allele and genotype frequencies of ABCG2 and SLCO1B1 genes in Croatian populations of European descent. SUBJECTS AND METHODS A total of 905 subjects (482 women) were included. Genotyping for ABCG2 c.421C > A (rs2231142) and for SLCO1B1 c.521T > C (rs4149056), was performed by real-time polymerase chain reaction (PCR) using TaqMan® DME Genotyping Assays. RESULTS For ABCG2 c.421C > A, the frequency of CC, CA and AA genotypes was 81.4%, 17.8% and 0.8% respectively. The frequency of variant ABCG2 421 A allele was 9.7%. For SLCO1B1 c.521T > C, the frequency of TT, TC and CC genotypes was 61.7%, 34.8% and 3.5% respectively. The frequency of variant SLCO1B1 521 C allele was 20.9%. CONCLUSION The frequency of the ABCG2 and SLCO1B1 allelic variants and genotypes in the Croatian population is in accordance with other European populations. Pharmacogenetic analysis can serve to individualise drug therapy and minimise the risk of developing adverse drug reactions.
Collapse
Affiliation(s)
- Tamara Božina
- Department of Medical Chemistry, Biochemistry, and Clinical Chemistry, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ena Karačić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Majda Vrkić-Kirhmajer
- Department of Cardiovascular Diseases Zagreb, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Croatia
| | | | - Tena Križ
- Department of Ophthalmology, University Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Zrinka Sertić
- Department of Emergency Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
44
|
Ragia G, Atzemian N, Maslarinou A, Manolopoulos VG. SLCO1B1 c.521T>C gene polymorphism decreases hypoglycemia risk in sulfonylurea-treated type 2 diabetic patients. Drug Metab Pers Ther 2022; 37:347-352. [PMID: 36169244 DOI: 10.1515/dmpt-2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Pharmacogenomics can explain some of the heterogeneity of sulfonylurea (SU)-related hypoglycemia risk. Recently, a role of OATP1B1, encoded by SLCO1B1 gene, on SU liver transport prior of metabolism has been uncovered. The aim of the present study was to explore the potential association of SLCO1B1 c.521T>C polymorphism, leading to reduced OATP1B1 function, with SU-related hypoglycemia risk. METHODS Study cohort consists of 176 type 2 diabetes patients treated with the SUs glimepiride or gliclazide. 92 patients reported SU-related hypoglycemia, while 84 patients had never experienced a hypoglycemic event. Patients were previously genotyped for CYP2C9 *2 and *3 variant alleles that lead to decreased enzyme activity of the SU metabolizing enzyme CYP2C9 and have been associated with increased SU-related hypoglycemia risk. SLCO1B1 c.521T>C polymorphism was genotyped by use of PCR-RFLP analysis. RESULTS SLCO1B1 c.521TC genotype frequency was significantly lower in hypoglycemic cases than non-hypoglycemic controls (15.2% vs. 32.1%, p=0.008). In an adjusted model, c.521TC genotype significantly reduced the risk of hypoglycemia (OR 0.371; 95% C.I. 0.167-0.822; p=0.015). In CYP2C9 intermediate metabolizers (n=54) c.521TC genotype frequency was significantly decreased in cases compared to controls (3 out of 36 cases, 8.3% vs. 7 out of 18 controls, 38.9%, p=0.012). A similar albeit not significant difference of SLCO1B1 c.521TC genotype was present in CYP2C9 extensive metabolizers (n=120) (18.2% in cases vs. 30.8% in controls, p=0.113). CONCLUSIONS We have found a protective effect of SLCO1B1 c.521C variant on SU-related hypoglycemia risk both independently and in interaction with CYP2C9 phenotypes. Our results suggest a possible linkage of SLCO1B1 c.521T>C polymorphism with variants in other genes impairing OATPs expressed in pancreatic islets that could interfere with SU tissue distribution.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Anthi Maslarinou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece.,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece.,Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
45
|
Fernandes Silva L, Ravi R, Vangipurapu J, Oravilahti A, Laakso M. Effects of SLCO1B1 Genetic Variant on Metabolite Profile in Participants on Simvastatin Treatment. Metabolites 2022; 12:metabo12121159. [PMID: 36557197 PMCID: PMC9785662 DOI: 10.3390/metabo12121159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
Organic-anion-transporting polypeptide 1B1 (OATP1B1), encoded by the solute carrier organic anion transporter family member 1B1 gene (SLCO1B1), is highly expressed in the liver and transports several endogenous metabolites into the liver, including statins. Previous studies have not investigated the association of SLCO1B1 rs4149056 variant with the risk of type 2 diabetes (T2D) or determined the metabolite signature of the C allele of SLCO1B1 rs4149056 (SLCO1B1 rs4149056-C allele) in a large randomly selected population. SLCO1B1 rs4149056-C inhibits OATP1B1 transporter and is associated with increased levels of blood simvastatin concentrations. Our study is to first to show that SLCO1B1 rs4149056 variant is not significantly associated with the risk of T2D, suggesting that simvastatin has a direct effect on the risk of T2D. Additionally, we investigated the effects of SLCO1B1 rs4149056-C on plasma metabolite concentrations in 1373 participants on simvastatin treatment and in 1368 age- and body-mass index (BMI)-matched participants without any statin treatment. We found 31 novel metabolites significantly associated with SLCO1B1 rs4149056-C in the participants on simvastatin treatment and in the participants without statin treatment. Simvastatin decreased concentrations of dicarboxylic acids, such as docosadioate and dodecanedioate, that may increase beta- and peroxisomal oxidation and increased the turnover of cholesterol into bile acids, resulting in a decrease in steroidogenesis due to limited availability of cholesterol for steroid synthesis. Our findings suggest that simvastatin exerts its effects on the lowering of low-density lipoprotein (LDL) cholesterol concentrations through several distinct pathways in the carriers of SLCO1B1 rs4149056-C, including dicarboxylic acids, bile acids, steroids, and glycerophospholipids.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Rowmika Ravi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence:
| |
Collapse
|
46
|
Campodónico DM, Zubiaur P, Soria‐Chacartegui P, Casajús A, Villapalos‐García G, Navares‐Gómez M, Gómez‐Fernández A, Parra‐Garcés R, Mejía‐Abril G, Román M, Martín‐Vílchez S, Ochoa D, Abad‐Santos F. CYP2C8*3 and *4 define CYP2C8 phenotype: An approach with the substrate cinitapride. Clin Transl Sci 2022; 15:2613-2624. [PMID: 36065758 PMCID: PMC9652446 DOI: 10.1111/cts.13386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Cinitapride is a gastrointestinal prokinetic drug, prescribed for the treatment of functional dyspepsia, and as an adjuvant therapy for gastroesophageal reflux disease. In this study, we aimed to explore the impact of relevant variants in CYP3A4 and CYP2C8 and other pharmacogenes, along with demographic characteristics, on cinitapride pharmacokinetics and safety; and to evaluate the impact of CYP2C8 alleles on the enzyme's function. Twenty-five healthy volunteers participating in a bioequivalence clinical trial consented to participate in the study. Participants were genotyped for 56 variants in 19 genes, including cytochrome P450 (CYP) enzymes (e.g., CYP2C8 or CYP3A4) or transporters (e.g., SLC or ABC), among others. CYP2C8*3 carriers showed a reduction in AUC of 42% and Cmax of 35% compared to *1/*1 subjects (p = 0.003 and p = 0.011, respectively). *4 allele carriers showed a 45% increase in AUC and 63% in Cmax compared to *1/*1 subjects, although these differences did not reach statistical significance. CYP2C8*3 and *4 alleles may be used to infer the following pharmacogenetic phenotypes: ultrarapid (UM) (*3/*3), rapid (RM) (*1/*3), normal (NM) (*1/*1), intermediate (IM) (*1/*4), and poor (PM) metabolizers (*4/*4). In this study, we properly characterized RMs, NMs, and IMs; however, additional studies are required to properly characterize UMs and PMs. These findings should be relevant with respect to cinitapride, but also to numerous CYP2C8 substrates such as imatinib, loperamide, montelukast, ibuprofen, paclitaxel, pioglitazone, repaglinide, or rosiglitazone.
Collapse
Affiliation(s)
- Diana María Campodónico
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Paula Soria‐Chacartegui
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Ana Casajús
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Gonzalo Villapalos‐García
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Marcos Navares‐Gómez
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Antía Gómez‐Fernández
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Raúl Parra‐Garcés
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Gina Mejía‐Abril
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Manuel Román
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Samuel Martín‐Vílchez
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Francisco Abad‐Santos
- Clinical Pharmacology Department, Instituto Teófilo HernandoInstituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
47
|
Jørgensen JT, Westergaard N. Predictive biomarkers and personalized pharmacotherapy. Expert Rev Mol Diagn 2022; 22:1-4. [PMID: 36268756 DOI: 10.1080/14737159.2022.2139602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2022]
|
48
|
Pinzón-Espinosa J, van der Horst M, Zinkstok J, Austin J, Aalfs C, Batalla A, Sullivan P, Vorstman J, Luykx JJ. Barriers to genetic testing in clinical psychiatry and ways to overcome them: from clinicians' attitudes to sociocultural differences between patients across the globe. Transl Psychiatry 2022; 12:442. [PMID: 36220808 PMCID: PMC9553897 DOI: 10.1038/s41398-022-02203-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Genetic testing has evolved rapidly over recent years and new developments have the potential to provide insights that could improve the ability to diagnose, treat, and prevent diseases. Information obtained through genetic testing has proven useful in other specialties, such as cardiology and oncology. Nonetheless, a range of barriers impedes techniques, such as whole-exome or whole-genome sequencing, pharmacogenomics, and polygenic risk scoring, from being implemented in psychiatric practice. These barriers may be procedural (e.g., limitations in extrapolating results to the individual level), economic (e.g., perceived relatively elevated costs precluding insurance coverage), or related to clinicians' knowledge, attitudes, and practices (e.g., perceived unfavorable cost-effectiveness, insufficient understanding of probability statistics, and concerns regarding genetic counseling). Additionally, several ethical concerns may arise (e.g., increased stigma and discrimination through exclusion from health insurance). Here, we provide an overview of potential barriers for the implementation of genetic testing in psychiatry, as well as an in-depth discussion of strategies to address these challenges.
Collapse
Affiliation(s)
- Justo Pinzón-Espinosa
- Sant Pau Mental Health Group, Institut d'Investigació Biomèdica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Department of Clinical Psychiatry, School of Medicine, University of Panama, Panama City, Panama
- Department of Mental Health, Parc Tauli University Hospital, Institut d'Investigació i Innovació Parc Tauli (I3PT), Sabadell, Barcelona, Spain
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marte van der Horst
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Nijmegen, The Netherlands
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry and Medical Genetics, Genetic Counselling Training Program, University of British Columbia, Vancouver, BC, Canada
| | - Cora Aalfs
- Department of Clinical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Patrick Sullivan
- Center for Psychiatric Genomics, Department of Genetics and Psychiatric, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Karolinska Institute, Stockholm, Sweden
| | - Jacob Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands.
| |
Collapse
|
49
|
Dashti M, Al-Matrouk A, Channanath A, Al-Mulla F, Thanaraj TA. Frequency of functional exonic single-nucleotide polymorphisms and haplotype distribution in the SLCO1B1 gene across genetic ancestry groups in the Qatari population. Sci Rep 2022; 12:14858. [PMID: 36050458 PMCID: PMC9437070 DOI: 10.1038/s41598-022-19318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Organic anion transporting polypeptides (OATP), which are encoded by SLCO genes, participate in the hepatic elimination of drugs and xenobiotics. SLCO1B1 is an important pharmacogenomic gene (encoding OATP1B1) associated with response to the uptake of endogenous compounds, such as statin and bilirubin. Ethnicity of the patient modulates the response to these drugs; the frequency and haplotype data for SLCO1B1 genetic variants in the Arab population is lacking. Therefore, we determined the frequencies of two well-characterized SLCO1B1 single nucleotide polymorphisms (SNP) and haplotypes that affect the OATP1B1 drugs transportation activity in Qatari population. Genotyping data for two SLCO1B1 SNPs (c.388A > G, c.521 T > C) were extracted from whole exome data of 1050 Qatari individuals, who were divided into three ancestry groups, namely Bedouins, Persians/South Asians, and Africans. By way of using Fisher's exact and Chi-square tests, we evaluated the differences in minor allele frequency (MAF) of the two functional SNPs and haplotype frequencies (HF) among the three ancestry groups. The OATP1B1 phenotypes were assigned according to their function by following the guidelines from the Clinical Pharmacogenetics Implementation Consortium for SLCO1B1 and Simvastatin-Induced Myopathy.The MAF of SLCO1B1:c.388A > G was higher compared to that of SLCO1B1:c.521 T > C in the study cohort. It was significantly high in the African ancestry group compared with the other two groups, whereas SLCO1B1:c.521 T > C was significantly low in the African ancestry group compared with the other two groups. The SLCO1B1 *15 haplotype had the highest HF, followed by *1b, *1a, and *5. Only the SLCO1B1 *5 haplotype showed no significant difference in frequency across the three ancestry groups. Furthermore, we observed that the OATP1B1 normal function phenotype accounted for 58% of the Qatari individuals, the intermediate function phenotype accounted for 35% with significant differences across the ancestry groups, and the low function phenotype accounted for 6% of the total Qatari individuals with a higher trend observed in the Bedouin group.The results indicate that the phenotype frequencies of the OATP1B1 intermediate and low function in the Qatari population appear at the higher end of the frequency range seen worldwide. Thus, a pharmacogenetic screening program for SLCO1B1 variants may be necessary for the Qatari population.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Matrouk
- Narcotic and Psychotropic Department, Ministry of Interior, Farwaniya, Kuwait
| | - Arshad Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | |
Collapse
|
50
|
Anabtawi N, Drabison T, Hu S, Sparreboom A, Talebi Z. The role of OATP1B1 and OATP1B3 transporter polymorphisms in drug disposition and response to anticancer drugs: a review of the recent literature. Expert Opin Drug Metab Toxicol 2022; 18:459-468. [PMID: 35983889 DOI: 10.1080/17425255.2022.2113380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Members of the solute carrier family of organic anion transporting polypeptides are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. In particular, the polymorphic transporters OATP1B1 and OATP1B3 are highly expressed in the liver and have been identified as critical regulators of hepatic eliminaton. As these transporters are also expressed in cancer cells, the function alteration of these proteins have important consequences for an individual's susceptibility to certain drug-induced side effects, drug-drug interactions, and treatment efficacy. AREAS COVERED In this mini-review, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of genetic variants in OATP1B1 and OATP1B3 to the transport of anticancer drugs, the role of these carriers in regulation of their disposition and toxicity profiles, and recent advances in attempts to integrate information on transport function in patients to derive individualized treatment strategies. EXPERT OPINION Based on currently available data, it appears imperative that different aspects of disease, physiology, and drugs of relevance should be evaluated along with an individual's genetic signature, and that tools such as biomarker levels can be implemented to achieve the most reliable prediction of clinically relevant pharmacodynamic endpoints.
Collapse
Affiliation(s)
- Nadeen Anabtawi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio.,Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|