1
|
Bayat M, Nahid-Samiei R, Sadri Nahand J, Naghili B. Interferon and immunity: the role of microRNA in viral evasion strategies. Front Immunol 2025; 16:1567459. [PMID: 40416980 PMCID: PMC12101089 DOI: 10.3389/fimmu.2025.1567459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/26/2025] [Indexed: 05/27/2025] Open
Abstract
Interferons (IFNs) are indispensable innate antiviral cytokines that orchestrate the vertebrate immune response against viral incursions. Nearly every cell possesses the remarkable ability to release IFNs upon detecting viral threats, triggering a robust signaling cascade that alerts neighboring cells and halts viral propagation via paracrine communication. The intricate influence of IFNs is mediated by an extensive network of proteins activated through the Jak-STAT pathways, facilitating the swift transcription of over 300 interferon-stimulated genes (ISGs) that fortify cellular defenses against replication. However, the cunning nature of viruses has led to the evolution of sophisticated evasion strategies, notably through the manipulation of host microRNAs (miRNAs) that disrupt vital components of the IFN signaling machinery. This review delves into the intricate interplay between viral infections and both host- and viral-derived miRNAs, exploring their potent roles in modulating RIG-I-like receptors, Toll-like receptors, IFN receptors, and the JAK/STAT pathway, ultimately shaping the landscape of antiviral immunity.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahil Nahid-Samiei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Chakraborty C, Bhattacharya M, Das A, Saha A. Regulation of miRNA in Cytokine Storm (CS) of COVID-19 and Other Viral Infection: An Exhaustive Review. Rev Med Virol 2025; 35:e70026. [PMID: 40032584 DOI: 10.1002/rmv.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/29/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In the initial stage of the COVID-19 pandemic, high case fatality was noted. The case fatality during this was associated with the cytokine storm (CS) or cytokine storm syndrome (CSS). Sometimes, virus infections are due to the excessive secretion of pro-inflammatory cytokines, leading to cytokine storms, which might be directed to ARDS, multi-organ failure, and death. However, it was noted that several miRNAs are involved in regulating cytokines during SARS-CoV-2 and other viruses such as IFNs, ILs, GM-CSF, TNF, etc. The article spotlighted several miRNAs involved in regulating cytokines associated with the cytokine storm caused by SARS-CoV-2 and other viruses (influenza virus, MERS-CoV, SARS-CoV, dengue virus). Targeting those miRNAs might help in the discovery of novel therapeutics, considering CS or CSS associated with different virus infections.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | | - Arpita Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Abinit Saha
- Deparment of Zoology, J.K. College, Purulia, India
| |
Collapse
|
3
|
Wang X, Zhao W. Research progress on miRNAs function in the interaction between human infectious viruses and hosts: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1452-1462. [PMID: 39101759 PMCID: PMC11496870 DOI: 10.17305/bb.2024.10821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
MicroRNAs (miRNAs) represent a class of non-coding small RNAs that are prevalent in eukaryotes, typically comprising approximately 22 nucleotides, and have the ability to post-transcriptionally regulate gene expression. miRNAs exhibit diverse types and functions, with mechanisms of action that include cell differentiation, proliferation, apoptosis, and regulation of signaling pathways. Both viruses and their hosts can encode miRNAs, which serve as crucial effector molecules in the complex interaction between viruses and host cells. Host miRNAs can either directly interact with the virus genome to inhibit virus replication or facilitate virus replication by providing necessary substances. Viral miRNAs can directly bind to host mRNAs, thereby influencing translation efficiency, suppressing the immune response, and ultimately enhancing virus replication. This article comprehensively reviews the roles of miRNAs in virus-host interactions, aiming to provide valuable insights into viral pathogenic mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaotong Wang
- Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
4
|
Pan Y, Zhang L, Ma W, Ibrahim YM, Zhang W, Wang M, Wang X, Xu Y, Gao C, Chen H, Zhang H, Xia C, Wang Y. miR-191-5p suppresses PRRSV replication by targeting porcine EGFR to enhance interferon signaling. Front Microbiol 2024; 15:1473504. [PMID: 39469460 PMCID: PMC11514493 DOI: 10.3389/fmicb.2024.1473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major thread to the global swine industry, lack of effective control strategies. This study explores the regulatory role of a small non-coding RNA, miR-191-5p, in PRRSV infection. We observed that miR-191-5p significantly inhibits PRRSV in porcine alveolar macrophages (PAMs), contrasting with negligible effects in MARC-145 and HEK293-CD163 cells, suggesting a cell-specific antiviral effect. Further investigation unveiled that miR-191-5p directly targets the porcine epidermal growth factor receptor (EGFR), whose overexpression or EGF-induced activation suppresses type I interferon (IFN-I) signaling, promoting PRRSV replication. In contrast, siRNA-or miR-191-5p-induced EGFR downregulation or EGFR inhibitor boosts IFN-I signaling, reducing viral replication. Notably, this miRNA alleviates the suppressive effect of EGF on IFN-I signaling, underscoring its regulatory function. Further investigation revealed interconnections among miR-191-5p, EGFR and signal transducer and activator of transcription 3 (STAT3). Modulation of STAT3 activity influenced IFN-I signaling and PRRSV replication, with STAT3 knockdown countering EGFR activation-induced virus replication. Combination inhibition of STAT3 and miR-191-5p suggests that STAT3 acts downstream in EGFR's antiviral response. Furthermore, miR-191-5p's broad efficacy in restricting various PRRSV strains in PAMs was identified. Collectively, these findings elucidate a novel mechanism of miR-191-5p in activating host IFN-I signaling to inhibit PRRSV replication, highlighting its potential in therapeutic applications against PRRSV.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lin Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yassein M. Ibrahim
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Science, Chongqing, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhang X, Xu J. A novel miR-466l-3p/FGF23 axis promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Bone 2024; 185:117123. [PMID: 38735373 DOI: 10.1016/j.bone.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) regulate osteogenic differentiation processes and influence the development of osteoporosis (OP). This study aimed to investigate the potential role of miR-466 l-3p in OP. METHODS The expression levels of miR-466 l-3p and fibroblast growth factor 23 (FGF23) were quantified in the trabeculae of the femoral neck of 40 individuals with or without OP using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The impact of miR-466 l-3p or FGF23 expression on cell proliferation and the expression levels of runt-related transcription factor 2 (RUNX2), type I collagen (Col1), osteocalcin (OCN), osterix (OSX) and dentin matrix protein 1 (DMP1) was quantified in human bone marrow mesenchymal stem cells (hBMSCs) overexpressing miR-466 l-3p. Furthermore, alkaline phosphatase (ALP) staining and alizarin red staining were performed to measure ALP activity and the levels of calcium deposition, respectively. In addition, bioinformatics analysis, luciferase reporter assays, and RNA pull-down assays were conducted to explore the molecular mechanisms underlying the effects of miR-466 l-3p and FGF23 in osteogenic differentiation of hBMSCs. RESULTS The expression levels of miR-466 l-3p were significantly lower in femoral neck trabeculae of patients with OP than in the control cohort, whereas FGF23 levels exhibited the opposite trend. Furthermore, miR-466 l-3p levels were upregulated and FGF23 levels were downregulated in hBMSCs during osteogenic differentiation. Moreover, the high miR-466 l-3p expression enhanced the mRNA expression of RUNX2, Col1, OCN, OSX and DMP1, as well as cell proliferation, ALP activity, and calcium deposition in hBMSCs. FGF23 was found to be a direct target of miR-466 l-3p. FGF23 overexpression downregulated the expression of osteoblast markers and inhibited the osteogenic differentiation induced by miR-466 l-3p overexpression. qRT-PCR and Western blot assays showed that miR-466 l-3p overexpression decreased the expression levels of mRNAs and proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway, whereas FGF23 upregulation exhibited the opposite trend. CONCLUSION In conclusion, these findings suggest that miR-466 l-3p enhances the osteogenic differentiation of hBMSCs by suppressing FGF23 expression, ultimately preventing OP.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
6
|
Keikha R, Hashemi-Shahri SM, Jebali A. Pattern of Neuroinflammatory miRNAs, C-reactive Protein and Alanine Aminotransferase in Hospitalization In Recovered or Not-recovered COVID-19 Patients. Basic Clin Neurosci 2024; 15:73-80. [PMID: 39291092 PMCID: PMC11403103 DOI: 10.32598/bcn.2022.3342.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 09/19/2024] Open
Abstract
Introduction Our aim was to investigate the expression of miRNAs, C-reactive protein as a blood inflammation marker, and alanine aminotransferase as a tissue inflammation marker, in recovered and not-recovered COVID-19 patients. Methods This cross-sectional project was conducted at three medical centers in Iran from December to March 2021. In total, 20 confirmed cases of COVID-19 with grade III severity and 20 healthy subjects were enrolled in the study. Subsequently, the neuroinflammatory expression of miRNAs (miR-199, miR-203, and miR-181), C-reactive protein, and alanine aminotransferase was investigated during hospitalization from week 0 to week 2. Results Among COVID-19 subjects who did not recover, the expression levels of miR-199, miR-203, and miR-181 were decreased, while the levels of C-reactive protein and alanine aminotransferase increased during hospitalization. Conversely, in recovered COVID-19 subjects, the relative expression of miR-199, miR-203, and miR-181 increased and the levels of C-reactive protein and alanine aminotransferase decreased during hospitalization. Conclusion The expression pattern of neuroinflammatory miRNAs depends on whether the COVID-19 patient is recovering or deteriorating. Their expression is downregulated in COVID-19 patients who do not recover and upregulated in those who do recover.
Collapse
Affiliation(s)
- Reza Keikha
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Pathology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mohammad Hashemi-Shahri
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Chen D, Ji Q, Liu J, Cheng F, Zheng J, Ma Y, He Y, Zhang J, Song T. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Biomolecules 2023; 13:1344. [PMID: 37759744 PMCID: PMC10526236 DOI: 10.3390/biom13091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-recognition receptors within the innate immune system. These receptors, present in various cell and tissue types, serve as essential sensors for viral infections, enhancing the immune system's capacity to combat infections through the induction of type I interferons (IFN-I) and inflammatory cytokines. RLRs are involved in a variety of physiological and pathological processes, including viral infections, autoimmune disorders, and cancer. An increasing body of research has examined the possibility of RLRs or microRNAs as therapeutic targets for antiviral infections and malignancies, despite the fact that few studies have focused on the regulatory function of microRNAs on RLR signaling. Consequently, our main emphasis in this review is on elucidating the role of microRNAs in modulating the signaling pathways of RLRs in the context of cancer and viral infections. The aim is to establish a robust knowledge base that can serve as a basis for future comprehensive investigations into the interplay between microRNAs and RIG-I, while also facilitating the advancement of therapeutic drug development.
Collapse
Affiliation(s)
- Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| |
Collapse
|
8
|
Fang A, Yuan Y, Sui B, Wang Z, Zhang Y, Zhou M, Chen H, Fu ZF, Zhao L. Inhibition of miR-200b-3p confers broad-spectrum resistance to viral infection by targeting TBK1. mBio 2023; 14:e0086723. [PMID: 37222520 PMCID: PMC10470528 DOI: 10.1128/mbio.00867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
The host innate immune system's defense against viral infections depends heavily on type I interferon (IFN-I) production. Research into the mechanisms of virus-host interactions is essential for developing novel antiviral therapies. In this study, we compared the effect of the five members of the microRNA-200 (miR-200) family on IFN-I production during viral infection and found that miR-200b-3p displayed the most pronounced regulatory effect. During viral infection, we discovered that the transcriptional level of microRNA-200b-3p (miR-200b-3p) increased with the infection of influenza virus (IAV) and vesicular stomatitis virus (VSV), and miR-200b-3p production was modulated by the activation of the ERK and p38 pathways. We identified cAMP response element binding protein (CREB) as a novel transcription factor that binds to the miR-200b-3p promoter. MiR-200b-3p reduces NF-κB and IRF3-mediated IFN-I production by targeting the 3' untranslated region (3' UTR) of TBK1 mRNA. Applying miR-200b-3p inhibitor enhances IFN-I production in IAV and VSV-infected mouse models, thus inhibiting viral replication and improving mouse survival ratio. Importantly, in addition to IAV and VSV, miR-200b-3p inhibitors exhibited potent antiviral effects against multiple pathogenic viruses threatening human health worldwide. Overall, our study suggests that miR-200b-3p might be a potential therapeutic target for broad-spectrum antiviral therapy. IMPORTANCE The innate immune response mediated by type I interferon (IFN-I) is essential for controlling viral replication. MicroRNAs (miRNAs) have been found to regulate the IFN signaling pathway. In this study, we describe a novel function of miRNA-200b-3p in negatively regulating IFN-I production during viral infection. miRNA-200b-3p was upregulated by the MAPK pathway activated by IAV and VSV infection. The binding of miRNA-200b-3p to the 3' UTR of TBK1 mRNA reduced IFN-I activation mediated by IRF3 and NF-κB. Application of miR-200b-3p inhibitors exhibited potent antiviral effects against multiple RNA and DNA viruses. These results provide fresh insight into understanding the impact of miRNAs on host-virus interactions and reveal a potential therapeutic target for common antiviral intervention.
Collapse
Affiliation(s)
- An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokuen Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
Hoang HD, Naeli P, Alain T, Jafarnejad SM. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem Soc Trans 2023; 51:1047-1056. [PMID: 37199495 PMCID: PMC10317165 DOI: 10.1042/bst20221037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Interferons (IFNs) are crucial components of the cellular innate immune response to viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown a remarkable capacity to suppress the host IFN production to benefit viral replication and spread. Thus far, of the 28 known virus-encoded proteins, 16 have been found to impair the host's innate immune system at various levels ranging from detection and signaling to transcriptional and post-transcriptional regulation of expression of the components of the cellular antiviral response. Additionally, there is evidence that the viral genome encodes non-protein-coding microRNA-like elements that could also target IFN-stimulated genes. In this brief review, we summarise the current state of knowledge regarding the factors and mechanisms by which SARS-CoV-2 impairs the production of IFNs and thereby dampens the host's innate antiviral immune response.
Collapse
Affiliation(s)
- Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Parisa Naeli
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 5B2, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland BT9 7AE, U.K
| |
Collapse
|
10
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
11
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|
12
|
Yan X, Zhao X, Zhou M, Sun Y, Xu T. IRF4b and IRF8 Negatively Regulate RLR-Mediated NF-κB Signaling by Targeting MITA for Degradation in Teleost Fish. Front Immunol 2022; 13:858179. [PMID: 35309315 PMCID: PMC8927078 DOI: 10.3389/fimmu.2022.858179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mediator of IRF3 activation (MITA) is a significant signal adaptor in the retinoic acid-inducible gene-I like receptor (RLR) signaling pathway and plays an important role in the innate immune system. As a transcription factor, nuclear factor kappa B (NF-κB) can be available in many signaling pathways including the RLR signaling pathway and relative to biological processes like immune responses. In this study, it is determined that IRF4b and IRF8 can have a negative effect on NF-κB signaling pathway mediated by MITA in fish. Firstly, it is found that IRF4b and IRF8 have an inhibitory function on MITA-mediated NF-κB signaling pathway. It is interesting that IRF4b and IRF8 have similar functions to achieve precise downregulated and the degradation of MITA through the ubiquitin-proteasome pathway. IRF is taken as the core domain of IRF4b or IRF8 for the downregulation to MITA. This study provides data on MITA-mediated NF-κB signaling pathway in teleost fish and provides new insights into the regulatory mechanism in fish immune system.
Collapse
Affiliation(s)
- Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xueyan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ming Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- *Correspondence: Tianjun Xu, ; Yuena Sun,
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Tianjun Xu, ; Yuena Sun,
| |
Collapse
|
13
|
Li C, Han H, Li X, Wu J, Li X, Niu H, Li W. Analysis of lncRNA, miRNA, and mRNA Expression Profiling in Type I IFN and Type II IFN Overexpressed in Porcine Alveolar Macrophages. Int J Genomics 2021; 2021:6666160. [PMID: 34222462 PMCID: PMC8225432 DOI: 10.1155/2021/6666160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Current data is scarce regarding the function of noncoding RNAs (ncRNAs) such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in the interferon- (IFN-) mediated immune response. This is a comprehensive study that analyzes the lncRNA and miRNA expression profiles of the type I IFN and type II IFN in porcine alveolar macrophages using RNA sequencing. There was a total of 152 overexpressed differentially expressed (DE) lncRNAs and 21 DE miRNAs across type I IFN and type II IFN in porcine alveolar macrophages. Subsequent lncRNA-miRNA-mRNA network construction revealed the involvement of 36 DE lncRNAs and 12 DE miRNAs. LncRNAs such as the XLOC_211306, XLOC_100516, XLOC_00695, XLOC_149196, and XLOC_014459 were expressed at a higher degree in the type I IFN group, while XLOC_222640, XLOC_047290, XLOC_147777, XLOC_162298, XLOC_220210, and XLOC_165237 were expressed at a higher degree in the type II IFN group. These lncRNAs were found to act as "sponges" for miRNAs such as miR-34a, miR-328, miR-885-3p, miR-149, miR-30c-3p, miR-30b-5p, miR-708-5p, miR-193a-5p, miR-365-5p, and miR-7. Their target genes FADS2, RPS6KA1, PIM1, and NOD1 were found to be associated with several immune-related signaling pathways including the NOD-like receptor, Jak-STAT, mTOR, and PPAR signaling pathways. These experiments provide a comprehensive profile of overexpressed noncoding RNAs in porcine alveolar macrophages, providing new insights regarding the IFN-mediated immune response.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Haoyuan Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xinfeng Li
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Abstract
Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.
Collapse
|
15
|
Shi M, Zhu Y, Yan J, Rouby J, Summah H, Monsel A, Qu J. Role of miR-466 in mesenchymal stromal cell derived extracellular vesicles treating inoculation pneumonia caused by multidrug-resistant Pseudomonas aeruginosa. Clin Transl Med 2021; 11:e287. [PMID: 33463070 PMCID: PMC7805403 DOI: 10.1002/ctm2.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
RATIONALE The effects of mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) on multidrug-resistant pseudomonas aeruginosa (MDR-PA)-induced pneumonia remain unclear. MATERIALS AND METHODS MicroRNA array and RT-PCR were used to select the major microRNA in MSC EVs. Human peripheral blood monocytes were obtained and isolated from qualified patients. The crosstalk between MSCs/MSC EVs and macrophages in vitro was studied. MDR-PA pneumonia models were further established in C57BL/6 mice and MSC EVs or miR-466 overexpressing MSC EVs were intratracheally instilled. RESULTS MiR-466 was highly expressed in MSC EVs. MSCs and miR-466 promoted macrophage polarization toward Type 2 phenotype through TIRAP-MyD88-NFκB axis. Moreover, cocultured macrophages with miR-466 overexpressing MSCs significantly increased the phagocytosis of macrophages. MSC EVs significantly reduced mortality and decreased influx of BALF neutrophils, proinflammatory factor levels, protein, and bacterial load in murine MDR-PA pneumonia. Administration of miR-466 overexpressing MSC EVs further alleviated the inflammatory severity. CONCLUSIONS MSC-derived EVs containing high levels of miR-466 may partly participate in host immune responses to MDR-PA. Both MSCs and MSC EVs have therapeutic effects in treating MDR-PA-induced pneumonia.
Collapse
Affiliation(s)
- Meng‐meng Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ying‐gang Zhu
- Department of Pulmonary and Critical Care Medicine, Hua‐dong HospitalFudan UniversityShanghaiChina
| | - Jia‐yang Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jean‐Jacques Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié‐Salpêtrière Hospital, Assistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityParisFrance
| | - Hanssa Summah
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié‐Salpêtrière Hospital, Assistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityParisFrance
- INSERM, UMR S 959, Immunology‐Immunopathology‐ Immunotherapy (I3)Sorbonne UniversitéParisF‐75005France
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (DHU i2B)Hôpital Pitié‐SalpêtrièreAP‐HPParisF‐75651France
| | - Jie‐ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Respiratory Diseases, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
16
|
Felipe VLJ, Paula A V, Silvio UI. Chikungunya virus infection induces differential inflammatory and antiviral responses in human monocytes and monocyte-derived macrophages. Acta Trop 2020; 211:105619. [PMID: 32634389 DOI: 10.1016/j.actatropica.2020.105619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that has caused several outbreaks in tropical and subtropical areas worldwide during the last 50 years. The virus is known to target different human cell types throughout the course of infection including epithelial and endothelial cells, fibroblasts, primary monocytes and monocyte-derived macrophages (MDMs). The two latter are phagocytic cell populations of the innate immune system which are involved in some aspects of CHIKV pathogenesis. However, monocytes and macrophages also potentially contribute to the control of viral replication through the expression of different pattern recognition receptors sensing viral pathogens and subsequently, inducing an type I interferone (IFN-I)-dependent antiviral immune response. The aim of this study was to determine the modulation of the expression of Toll-like receptors (TLRs), cytokine secretion capabilities and antiviral factor production in monocytes and MDMs following infection with CHIKV. Moreover, we sought to determine the replication kinetics of CHIKV in these two cell populations. We found that the maximum peak of CHIKV replication was observed between 18- and 24-hours post-infection (hpi), while after that the is strongly reduced. Furthermore, CHIKV infection induced the pro-inflammatory cytokine production starting from the first 6 hpi in both monocytes and MDMs, with similar kinetics but different protein levels. In contrast, the kinetics of transcriptional expression of some TLRs were different between both cell types. In addition, IFN-I, 2',5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase R (PKR) mRNA levels were detected in response to CHIKV infection of monocytes and MDMs, resulting the highest expression levels at 48 hpi. In conclusion, our data provides evidence that CHIKV infection activates the TLR pathways in primary monocytes and MDMs, which play a crucial role in CHIKV pathogenesis and/or host defense, differentially. However, additional studies are required to determine the functional role of TLRs in monocytes and MDMs.
Collapse
Affiliation(s)
- Valdés López Juan Felipe
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Velilla Paula A
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Urcuqui-Inchima Silvio
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
17
|
Yang JJ, Wu BB, Han F, Chen JH, Yang Y. Gene expression profiling of sepsis-associated acute kidney injury. Exp Ther Med 2020; 20:34. [PMID: 32952625 PMCID: PMC7485311 DOI: 10.3892/etm.2020.9161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/19/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis accounts for more than 50% of all acute kidney injury (AKI) cases, and the combination of sepsis and AKI increases the risk of mortality from sepsis alone. However, to the best of our knowledge, the specific mechanism by which sepsis causes AKI has not yet been fully elucidated, and there is no targeted therapy for sepsis-associated AKI (SA-AKI). The present study investigated gene expression profiles using RNA sequencing (RNA-Seq) and bioinformatics analyses to assess the function of differentially expressed genes (DEGs) and the molecular mechanisms relevant to the prognosis of SA-AKI. From the bioinformatics analysis, 2,256 downregulated and 3,146 upregulated genes were identified (false discovery rate <0.1 and fold-change >2). Gene Ontology analysis revealed that the genes were enriched in cellular metabolic processes, cell death and apoptosis. The enriched transcription factors were v-rel reticuloendotheliosis viral oncogene homolog A and signaling transducer and activator of transcription 3. The enriched microRNAs (miRNAs or miRs) among the DEGs were miR-30e, miR-181a, miR-340, miR-466d and miR-466l. Furthermore, the enriched pathways included toll-like receptor signaling, nod-like receptor signaling and the Janus kinase/STAT signaling pathway. In conclusion, the present study identified certain prognosis-related genes, transcription factors, miRNAs and pathways by analyzing gene expression profiles of SA-AKI using RNA-Seq, which provides some basis for future experimental studies.
Collapse
Affiliation(s)
- Jing-Juan Yang
- Department of Nephrology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, P.R. China
| | - Bin-Bin Wu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jiang-Hua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yi Yang
- Department of Nephrology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, P.R. China.,Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
18
|
Liu Y, Yang J, Sun W. Upregulation of IL-10 expression inhibits the proliferation of human periodontal ligament stem cells. Braz Oral Res 2020; 34:e030. [PMID: 32236319 DOI: 10.1590/1807-3107bor-2020.vol34.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 09/19/2019] [Indexed: 11/22/2022] Open
Abstract
The abnormal increase in proliferation rate of human periodontal ligament stem cells (PDLSCs) is considered to be involved in the pathogenesis of periodontitis, a disease in which the IL-10-mediated anti-inflammatory pathway plays a critical role. This study aimed to investigate the involvement of microRNA-466l in periodontitis and to explore the possible interaction between IL-10 and microRNA-466l. PDLSCs were obtained from periodontitis-affected teeth and healthy control teeth. The expression of microRNA-466l and IL-10 mRNA was measured in PDLSCs using RT-qPCR. The proliferation ability of PDLSCs was analyzed using CCK-8 assays. Overexpression of microRNA-466l in a PDLSC cell line was established using two different types of PDLSCs, and the effect of microRNA-466l overexpression on IL-10 expression and cell proliferation were detected by western blot and CCK-8 assays, respectively. We found that expression levels of microRNA-466l and IL-10 mRNA were significantly lower (P < 0.05) in PDLSCs derived from periodontitis-affected teeth compared to those derived from healthy teeth. However, the cell proliferation ability was significantly higher in the PDLSCs derived from periodontitis-affected teeth. Meanwhile microRNA-466l overexpression decreased cell proliferation rates of both types of PDLSCs and upregulated IL-10 expression. Together, these data suggest that microRNA-466l can upregulate IL-10 and reduce the proliferation rate of PDLSCs.
Collapse
Affiliation(s)
- Yu Liu
- Nanjing University, Medical School, Department of Periodontology, Nanjing City, Jiangsu Province, China
| | - Jie Yang
- Nanjing University, Medical School, Department of Periodontology, Nanjing City, Jiangsu Province, China
| | - Weibin Sun
- Nanjing University, Medical School, Department of Periodontology, Nanjing City, Jiangsu Province, China
| |
Collapse
|
19
|
Ciechomska M, Wojtas B, Swacha M, Olesinska M, Benes V, Maslinski W. Global miRNA and mRNA expression profiles identify miRNA-26a-2-3p-dependent repression of IFN signature in systemic sclerosis human monocytes. Eur J Immunol 2020; 50:1057-1066. [PMID: 32087087 DOI: 10.1002/eji.201948428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Dysregulation in type I IFN and IFN-stimulated genes (ISGs) induced by monocytes is one of the key features of systemic sclerosis (SSc) pathogenesis. Abnormalities in microRNA (miRNA) expression are related to excessive IFN production, however the role of miRNA remains largely elusive in SSc monocytes. This study explores global miRNA-mRNA profiling of SSc monocytes and functional attenuation of IFN and ISGs by specific miRNAs. Global sequencing of mRNA (mRNA-seq) and miRNA (miRNA-seq) samples were performed simultaneously on healthy controls and SSc monocytes. Following computational analysis, selected miRNAs-mRNA candidates were validated, correlated with clinical parameters, and tested by functional assays. Transcriptomics data and qPCR analysis confirmed IFN signature in SSc but not in rheumatoid arthritis monocytes. Based on miRNA-seq analysis, five miRNAs were selected for further validation. Only the expression patterns of miRNA-26a-2-3p and miRNA-485-3p were confirmed and negatively correlated with clinical parameters. Exogenous delivery of miRNA-26a-2-3p to TLR-stimulated monocytic THP-1 cells specifically inhibited ISGs but not inflammasome activity in functional assays. In conclusion, our miRNA-mRNA co-sequencing and functional analysis identify miRNA-26a-2-3p as a new candidate, which is predicated to negatively regulate ISGs. This implies that reduced expression of miRNA-26a-2-3 may be involved in pathogenic IFN signature in SSc monocytes.
Collapse
Affiliation(s)
- Marzena Ciechomska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Bartosz Wojtas
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Swacha
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesinska
- National Institute of Geriatrics Rheumatology and Rehabilitation, Warsaw, Poland
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
20
|
Zhao L, Zhang X, Wu Z, Huang K, Sun X, Chen H, Jin M. The Downregulation of MicroRNA hsa-miR-340-5p in IAV-Infected A549 Cells Suppresses Viral Replication by Targeting RIG-I and OAS2. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 14:509-519. [PMID: 30753994 PMCID: PMC6370596 DOI: 10.1016/j.omtn.2018.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
The influenza A virus poses serious public health challenges worldwide. Strikingly, small noncoding microRNAs (miRNAs) that modulate gene expression are closely involved in antiviral responses, although the underlying mechanisms are essentially unknown. We now report that microRNA-340 (miR340) is downregulated following influenza A and other RNA virus infections, implying that host cells deplete miR340 as an antiviral defense mechanism. Accordingly, the inhibition or knockdown of endogenous miR340 clearly prevents the infection of cultured cells, whereas the forced expression of miR340 significantly enhances virus replication. Using next-generation sequencing, we found that miR340 attenuates cellular antiviral immunity. Moreover, mechanistic studies defined miR340 as a repressor of RIG-I and OAS2, critical factors for the establishment of an antiviral response. Collectively, these data indicate that host cells may lower their viral loads by regulating miRNA pathways, which may, in turn, provide new opportunities for treatment.
Collapse
Affiliation(s)
- Lianzhong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaohan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhu Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
21
|
Becker W, Nagarkatti M, Nagarkatti PS. miR-466a Targeting of TGF-β2 Contributes to FoxP3 + Regulatory T Cell Differentiation in a Murine Model of Allogeneic Transplantation. Front Immunol 2018; 9:688. [PMID: 29686677 PMCID: PMC5900016 DOI: 10.3389/fimmu.2018.00688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The promise of inducing immunological tolerance through regulatory T cell (Treg) control of effector T cell function is crucial for developing future therapeutic strategies to treat allograft rejection as well as inflammatory autoimmune diseases. In the current study, we used murine allograft rejection as a model to identify microRNA (miRNA) regulation of Treg differentiation from naïve CD4 cells. We performed miRNA expression array in CD4+ T cells in the draining lymph node (dLN) of mice which received syngeneic or allogeneic grafts to determine the molecular mechanisms that hinder the expansion of Tregs. We identified an increase in miRNA cluster 297-669 (C2MC) after allogeneic transplantation, in CD4+ T cells, such that 10 of the 27 upregulated miRNAs were all from this cluster, with one of its members, mmu-miR-466a-3p (miR-466a-3p), targeting transforming growth factor beta 2 (TGF-β2), as identified through reporter luciferase assay. Transfection of miR-466a-3p in CD4+ T cells led to a decreased inducible FoxP3+ Treg generation while inhibiting miR-466a-3p expression through locked nucleic acid resulting in increased Tregs and a reduction in effector T cells. Furthermore, in vivo inhibition of miR-466a-3p in an allogeneic skin-graft model attenuated T cell response against the graft through an increase in TGF-β2. TGF-β2 was as effective as TGF-β1 at both inducing Tregs and through adoptive transfer, mitigating host effector T cell response against the allograft. Together, the current study demonstrates for the first time a new role for miRNA-466a-3p and TGF-β2 in the regulation of Treg differentiation and thus offers novel avenues to control inflammatory disorders.
Collapse
Affiliation(s)
| | | | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
22
|
Arimoto KI, Miyauchi S, Stoner SA, Fan JB, Zhang DE. Negative regulation of type I IFN signaling. J Leukoc Biol 2018; 103:1099-1116. [PMID: 29357192 DOI: 10.1002/jlb.2mir0817-342r] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Type I IFNs (α, β, and others) are a family of cytokines that are produced in physiological conditions as well as in response to the activation of pattern recognition receptors. They are critically important in controlling the host innate and adaptive immune response to viral and some bacterial infections, cancer, and other inflammatory stimuli. However, dysregulation of type I IFN production or response can contribute to immune pathologies termed "interferonopathies", pointing to the importance of balanced activating signals with tightly regulated mechanisms of tuning this signaling. Here, we summarize the recent advances of how type I IFN production and response are controlled at multiple levels of the type I IFN signaling cascade.
Collapse
Affiliation(s)
- Kei-Ichiro Arimoto
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sayuri Miyauchi
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Samuel A Stoner
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Jun-Bao Fan
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Inducible MicroRNA-3570 Feedback Inhibits the RIG-I-Dependent Innate Immune Response to Rhabdovirus in Teleost Fish by Targeting MAVS/IPS-1. J Virol 2018; 92:JVI.01594-17. [PMID: 29093090 DOI: 10.1128/jvi.01594-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/23/2017] [Indexed: 01/14/2023] Open
Abstract
Effectively recognizing invading viruses and subsequently inducing innate antiviral immunity are essential for host antiviral defense. Although these processes are closely regulated by the host to maintain immune balance, viruses have evolved the ability to downregulate or upregulate these processes for their survival. MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in modulating host immune response. Accumulating evidence demonstrates that host miRNAs as mediators are involved in regulating viral replication and host antiviral immunity in mammals. However, the underlying regulatory mechanisms in fish species are still poorly understood. Here, we found that rhabdovirus infection significantly upregulated host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulated RNA virus-triggered type I interferon (IFN) and antiviral gene production, thus facilitating viral replication. Furthermore, miR-3570 was found to target and posttranscriptionally downregulate mitochondrial antiviral signaling protein (MAVS), which functions as a platform for innate antiviral signal transduction. Moreover, we demonstrated that miR-3570 suppressed the expression of MAVS, thereby inhibiting MAVS-mediated NF-κB and IRF3 signaling. The collective results demonstrated a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miRNA.IMPORTANCE RNA viral infection could upregulate host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulates RNA virus-triggered type I IFN and antiviral gene production, thus facilitating viral replication. Remarkably, miR-3570 could target and inhibit MAVS expression, which thus modulates MAVS-mediated NF-κB and IRF3 signaling. The collective results of this study suggest a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miR-3570. Thus, a novel mechanism for virus evasion in fish is proposed.
Collapse
|
24
|
Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Immunol 2017; 8:1775. [PMID: 29312306 PMCID: PMC5732478 DOI: 10.3389/fimmu.2017.01775] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Snakehead vesiculovirus (SHVV), a new rhabdovirus isolated from diseased hybrid snakehead, has emerged as an important pathogen during the past few years in China with great economical losses in snakehead fish cultures. However, little is known about the mechanism of its pathogenicity. MicroRNAs are small noncoding RNAs that posttranscriptionally modulate gene expression and have been indicated to regulate almost all cellular processes. Our previous study has revealed that miR-214 was downregulated upon SHVV infection. Results The overexpression of miR-214 in striped snakehead (SSN-1) cells inhibited SHVV replication and promoted IFN-α expression, while miR-214 inhibitor facilitated SHVV replication and reduced IFN-α expression. These findings suggested that miR-214 negatively regulated SHVV replication probably through positively regulating IFN-α expression. Further investigation revealed that adenosine 5′-monophosphate-activated protein kinase (AMPK) was a target gene of miR-214. Knockdown of AMPK by siRNA inhibited SHVV replication and promoted IFN-α expression, suggesting that cellular AMPK positively regulated SHVV replication and negatively regulated IFN-α expression. Moreover, we found that siAMPK-mediated inhibition of SHVV replication could be partially restored by miR-214 inhibitor, indicating that miR-214 inhibited SHVV replication at least partially via targeting AMPK. Conclusion The findings of this study complemented our early study, and provide insights for the mechanism of SHVV pathogenicity. SHVV infection downregulated miR-214, and in turn, the downregulated miR-214 increased the expression of its target gene AMPK, which promoted SHVV replication via reducing IFN-α expression. It can therefore assume that cellular circumstance with low level of miR-214 is beneficial for SHVV replication and that SHVV evades host antiviral innate immunity through decreasing IFN-α expression via regulating cellular miR-214 expression.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Interaction of RNA-binding protein HuR and miR-466i regulates GM-CSF expression. Sci Rep 2017; 7:17233. [PMID: 29222492 PMCID: PMC5722853 DOI: 10.1038/s41598-017-17371-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/24/2017] [Indexed: 01/03/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by T helper 17 (Th17) cells plays an essential role in autoimmune diseases. Transcriptional regulation of Th17 cell differentiation has been extensively studied, but post-transcriptional regulation of Th17 cell differentiation has remained less well characterized. The RNA-binding protein HuR functions to promote the stability of target mRNAs via binding the AU-rich elements of the 3′ untranslated region (3′UTR) of numerous pro-inflammatory cytokines including IL-4, IL-13, IL-17 and TNF-α. However, whether HuR regulates GM-CSF expression in Th17 cells has not been fully investigated. Here we showed that HuR conditional knockout (KO) Th17 cells have decreased GM-CSF mRNA in comparison with wild-type (WT) Th17 cells, and that HuR binds directly to GM-CSF mRNA 3′UTR. Interestingly, HuR deficiency increased the levels of certain microRNA expression in Th17 cells; for example, miR-466i functioned to mediate GM-CSF and IL-17 mRNA decay, which was confirmed by in vitro luciferase assay. Furthermore, we found that HuR promoted Mxi1 expression to inhibit certain miRNA expression. Taken together, these findings indicate that interaction of HuR and miR-466i orchestrates GM-CSF expression in Th17 cells.
Collapse
|
26
|
MicroRNA expression analysis of feline and canine parvovirus infection in vivo (felis). PLoS One 2017; 12:e0185698. [PMID: 29049413 PMCID: PMC5648106 DOI: 10.1371/journal.pone.0185698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023] Open
Abstract
Feline panleukopenia is a common contagious disease with high morbidity and mortality. At present, feline parvovirus (FPV) and canine parvovirus (CPV) variants are the pathogens of feline panleukopenia. Many studies have shown that miRNAs are involved in virus-host interactions. Nevertheless, miRNA expression profiling of FPV (original virus) or CPV-2b (new virus) in cats has not been reported. To investigate these profiles, three 10-week-old cats were orally inoculated with 106 TCID50 of the viruses (FPV and CPV-2b), and the jejunums of one cat in each group were sectioned for miRNA sequencing at 5 days post-inoculation (dpi). This study is the first attempt to use miRNA analysis to understand the molecular basis of FPV and CPV infection in cats. The miRNA expression profiles of the jejunums of cats infected with FPV and CPV were obtained, and a subset of miRNAs was validated by real-time qPCR. The results show that a variety of metabolism-related pathways, cytokine- and pathogen-host interaction-related pathways, and pathology- and cellar structure-related pathways, as well as others, were affected. Specifically, the JAK-STAT signaling pathway, which is critical for cytokines and growth factors, was enriched. This description of the miRNAs involved in regulating FPV and CPV infection in vivo provides further insight into the mechanisms of viral infection and adaptation and might provide an alternative antiviral strategy for disease control and prevention.
Collapse
|
27
|
Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10:eaaf5185. [PMID: 28196914 DOI: 10.1126/scisignal.aaf5185] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Effective recognition of viral components and the subsequent stimulation of the production of type I interferons (IFNs) is crucial for the induction of host antiviral immunity. The failure of the host to efficiently produce type I IFNs in response to infection by the Japanese encephalitis virus (JEV) is linked with an increased probability for the disease to become lethal. JEV is a neurotropic virus of the Flaviviridae family that causes encephalitis in humans. JEV infection is regulated by several host factors, including microRNAs, which are conserved noncoding RNAs that participate in various physiological and pathological processes. We showed that the JEV-induced expression of miR-301a led to inhibition of the production of type I IFN by reducing the abundances of the transcription factor IFN regulatory factor 1 (IRF1) and the signaling protein suppressor of cytokine signaling 5 (SOCS5). Mechanistically, induction of miR-301a expression during JEV infection required the transcription factor nuclear factor κB. In mouse neurons, neutralization of miR-301a restored the host innate immune response by enabling IFN-β production, thereby restricting viral propagation. Inhibition of miR-301a in mouse brain rescued the production of IRF1 and SOCS5, increased the generation of IFN-β, and reduced the extent of JEV replication, thus improving mouse survival. Thus, our study suggests that the JEV-induced expression of miR-301a assists viral pathogenesis by suppressing IFN production, which might be targeted by antiviral therapies.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
28
|
Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:327-42. [DOI: 10.5507/bp.2016.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
|
29
|
Wu J, Gong H, Bai Y, Zhang W. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5469371. [PMID: 27689084 PMCID: PMC5027296 DOI: 10.1155/2016/5469371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022]
Abstract
Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse.
Collapse
Affiliation(s)
- Jianghong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot 010031, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Husile Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Yongsheng Bai
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
30
|
Chen L, Song Y, He L, Wan X, Lai L, Dai F, Liu Y, Wang Q. MicroRNA-223 Promotes Type I Interferon Production in Antiviral Innate Immunity by Targeting Forkhead Box Protein O3 (FOXO3). J Biol Chem 2016; 291:14706-16. [PMID: 27226534 DOI: 10.1074/jbc.m115.700252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Effective recognition of viral infection and subsequent triggering of antiviral innate immune responses are essential for the host antiviral defense, which is tightly regulated by multiple regulators, including microRNAs. Previous reports have shown that some microRNAs are induced during virus infection and participate in the regulation of the innate antiviral response. However, whether the type I IFN response is regulated by miR-223 is still unknown. Here, we reported that vesicular stomatitis virus (VSV) infection induced significant up-regulation of miR-223 in murine macrophages. We observed that miR-223 overexpression up-regulated type I IFN expression levels in VSV-infected macrophages. We also demonstrated that miR-223 directly targets FOXO3 to regulate the type I IFN production. Furthermore, type I IFN, which is triggered by VSV infection, is responsible for the up-regulation of miR-223, thus forming a positive regulatory loop for type I IFN production. Our results uncovered a novel mechanism of miR-223-mediated regulation of type I IFN production in the antiviral innate immunity for the first time.
Collapse
Affiliation(s)
- Luoquan Chen
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yinjing Song
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Li He
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaopeng Wan
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihua Lai
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Dai
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yang Liu
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingqing Wang
- From the Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
31
|
Wolf S, Wu W, Jones C, Perwitasari O, Mahalingam S, Tripp RA. MicroRNA Regulation of Human Genes Essential for Influenza A (H7N9) Replication. PLoS One 2016; 11:e0155104. [PMID: 27166678 PMCID: PMC4864377 DOI: 10.1371/journal.pone.0155104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses are important pathogens of humans and animals. While seasonal influenza viruses infect humans every year, occasionally animal-origin viruses emerge to cause pandemics with significantly higher morbidity and mortality rates. In March 2013, the public health authorities of China reported three cases of laboratory confirmed human infection with avian influenza A (H7N9) virus, and subsequently there have been many cases reported across South East Asia and recently in North America. Most patients experience severe respiratory illness, and morbidity with mortality rates near 40%. No vaccine is currently available and the use of antivirals is complicated due the frequent emergence of drug resistant strains. Thus, there is an imminent need to identify new drug targets for therapeutic intervention. In the current study, a high-throughput screening (HTS) assay was performed using microRNA (miRNA) inhibitors to identify new host miRNA targets that reduce influenza H7N9 replication in human respiratory (A549) cells. Validation studies lead to a top hit, hsa-miR-664a-3p, that had potent antiviral effects in reducing H7N9 replication (TCID50 titers) by two logs. In silico pathway analysis revealed that this microRNA targeted the LIF and NEK7 genes with effects on pro-inflammatory factors. In follow up studies using siRNAs, anti-viral properties were shown for LIF. Furthermore, inhibition of hsa-miR-664a-3p also reduced virus replication of pandemic influenza A strains H1N1 and H3N2.
Collapse
Affiliation(s)
- Stefan Wolf
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD, Australia
| | - Weilin Wu
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| | - Cheryl Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| | - Olivia Perwitasari
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, Southport, QLD, Australia
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
32
|
Egli A, Lisboa LF, O'Shea D, Asberg A, Mueller T, Emery V, Kumar D, Humar A. Complexity of Host Micro-RNA Response to Cytomegalovirus Reactivation After Organ Transplantation. Am J Transplant 2016; 16:650-60. [PMID: 26460801 DOI: 10.1111/ajt.13464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 01/25/2023]
Abstract
Human (Homo sapiens) micro-RNAs (hsa-miRNAs) regulate virus and host-gene translation, but the biological impact in patients with human cytomegalovirus (hCMV) infection is not well defined in a clinically relevant model. First, we compared hsa-miRNA expression profiles in peripheral blood mononuclear cells from 35 transplant recipients with and without CMV viremia by using a microarray chip covering 847 hsa-miRNAs. This approach demonstrated a set of 142 differentially expressed hsa-miRNAs. Next, we examined the effect of each of these miRNAs on viral growth by using human fibroblasts (human foreskin fibroblast-1) infected with the hCMV Towne strain, identifying a subset of proviral and antiviral hsa-miRNAs. miRNA-target prediction software indicated potential binding sites within the hCMV genome (e.g., hCMV-UL52 and -UL100 [UL = unique long]) and host-genes (e.g., interleukin-1 receptor, IRF1). Luciferase-expressing plasmid constructs and immunoblotting confirmed several predicted miRNA targets. Finally, we determined the expression of selected proviral and antiviral hsa-miRNAs in 242 transplant recipients with hCMV-viremia. We measured hsa-miRNAs before and after antiviral therapy and correlated hsa-miRNA expression levels to hCMV-replication dynamics. One of six antiviral hsa-miRNAs showed a significant increase during treatment, concurrent with viral decline. In contrast, six of eight proviral hsa-miRNAs showed a decrease during viral decline. Our results indicate that a complex and multitargeted hsa-miRNA response occurs during CMV replication in immunosuppressed patients. This study provides mechanistic insight and potential novel biomarkers for CMV replication.
Collapse
Affiliation(s)
- A Egli
- Li KaShing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.,Applied Microbiology Research, Department Biomedicine, University of Basel, Basel, Switzerland
| | - L F Lisboa
- Li KaShing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D O'Shea
- Li KaShing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Asberg
- Department of Transplant Medicine, Section of Nephrology, Oslo University Hospital-Rikshospitalet, and Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - T Mueller
- Department of Nephrology, University Hospital of Zurich, Zurich, Switzerland
| | - V Emery
- Department of Microbial and Cellular Sciences, University of Surrey, London, UK
| | - D Kumar
- Li KaShing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - A Humar
- Li KaShing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
34
|
|
35
|
Hibino N, Best CA, Engle A, Ghimbovschi S, Knoblach S, Nath DS, Ishibashi N, Jonas RA. Novel Association of miR-451 with the Incidence of TEVG Stenosis in a Murine Model. Tissue Eng Part A 2015; 22:75-82. [PMID: 26573748 DOI: 10.1089/ten.tea.2014.0664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of a tissue-engineered vascular graft (TEVG) holds great promise for advancing the field of cardiac surgery. Despite the successful translation of this technology, previous reports identify the primary mode of graft failure as stenosis secondary to intimal hyperplasia. MicroRNAs (miRNAs) regulate gene expression by interfering with mRNA function and recent research has suggested miRNA as a potential therapeutic target. The role of miRNAs in TEVGs during neotissue formation is currently unknown. In this study, we investigated if miRNAs regulate the inhibition of graft stenosis. Biodegradable PGA-P(LA/CL) scaffolds were implanted as inferior vena cava interposition grafts in a murine model (n = 14). Mice were sacrificed 14 days following implantation and TEVGs were harvested for histological analysis and miRNA profiling using Affymetrix miRNA arrays. Graft diameters were measured histologically, and the largest grafts (patent group) and smallest grafts (stenosed group) were profiled (n = 4 for each group). Cell population in each graft was analyzed with immunohistochemistry using antismooth muscle actin (SMA) and antimacrophage (F4/80) antibodies. The graft diameter was significantly greater in the patent group (0.63 ± 0.06 mm) than in the stenosed group (0.17 ± 0.06 mm) (p < 0.01). Cell proliferation was significantly greater in the stenosed grafts than in patent grafts (p < 0.01: SMA [187 ± 11 vs. 77 ± 8 cells] vs. p = 0.025: F4/80 [245 ± 23 vs. 187 ± 11 cells]). MiRNA array of 1416 genes showed that in stenosed grafts, mir-451, mir-338, and mir-466 were downregulated and mir-154 was upregulated. Mir-451 exhibited the greatest difference in expression between stenosed and patent grafts by -3.1-fold. Significant negative correlation was found between the expression of mir-451 and cell proliferation (SMA: r = -0.86, p = 0.003; F4/80: r = -0.89, p = 0.001). Our data, along with previous evidence that mir-451 regulates tumor suppressor genes, suggest that downregulation of mir-451 promotes acute proliferation of macrophages and smooth muscle cells, thereby inducing TEVG stenosis. Adequate expression of mir-451 may be critical for improving TEVG patency.
Collapse
Affiliation(s)
- Narutoshi Hibino
- 1 Department of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Cameron A Best
- 2 Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital , Columbus, Ohio
| | - Alyson Engle
- 3 George Washington University School of Medicine and Health Sciences , Washington, District of Columbia
| | - Svetlana Ghimbovschi
- 4 Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia.,5 Research Center for Genetic Medicine, Children's National Medical Center , NW Washington, District of Columbia
| | - Susan Knoblach
- 4 Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences , Washington, District of Columbia.,5 Research Center for Genetic Medicine, Children's National Medical Center , NW Washington, District of Columbia
| | - Dilip S Nath
- 6 Department of Cardiovascular Surgery, Children's National Medical Center , NW Washington, District of Columbia
| | - Nobuyuki Ishibashi
- 6 Department of Cardiovascular Surgery, Children's National Medical Center , NW Washington, District of Columbia
| | - Richard A Jonas
- 6 Department of Cardiovascular Surgery, Children's National Medical Center , NW Washington, District of Columbia
| |
Collapse
|
36
|
Ingle H, Kumar S, Raut AA, Mishra A, Kulkarni DD, Kameyama T, Takaoka A, Akira S, Kumar H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8:ra126. [PMID: 26645583 DOI: 10.1126/scisignal.aab3183] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.
Collapse
Affiliation(s)
- Harshad Ingle
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Sushil Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ashwin Ashok Raut
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Anamika Mishra
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Diwakar Dattatraya Kulkarni
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Takeshi Kameyama
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Himanshu Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India. Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Forster SC, Tate MD, Hertzog PJ. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response. Front Immunol 2015. [PMID: 26217335 PMCID: PMC4495342 DOI: 10.3389/fimmu.2015.00334] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential.
Collapse
Affiliation(s)
- Samuel C Forster
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia ; Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute , Hinxton , UK
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC , Australia ; Department of Molecular and Translational Sciences, Monash University , Clayton, VIC , Australia
| |
Collapse
|
38
|
Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. Curr Opin Virol 2015; 12:7-14. [PMID: 25644461 PMCID: PMC5076476 DOI: 10.1016/j.coviro.2015.01.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Mammalian cells have the intrinsic capacity to detect viral pathogens and to initiate an antiviral response that is characterized by the induction of interferons (IFNs) and proinflammatory cytokines. A delicate regulation of the signaling pathways that lead to cytokine production is needed to ensure effective clearance of the virus, while preventing tissue damage caused by excessive cytokine release. Here, we focus on the mechanisms that modulate the signal transduction triggered by RIG-I-like receptors (RLRs) and their adaptor protein MAVS, key components of the host machinery for sensing foreign RNA. Specifically, we summarize recent advances in understanding how RLR signaling is regulated by posttranslational and posttranscriptional mechanisms, microRNAs (miRNAs) and autophagy. We further discuss how viruses target these regulatory mechanisms for immune evasion.
Collapse
Affiliation(s)
- Ying Kai Chan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Porritt RA, Hertzog PJ. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol 2015; 36:150-60. [DOI: 10.1016/j.it.2015.02.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
|
40
|
Li L, Wei Z, Zhou Y, Gao F, Jiang Y, Yu L, Zheng H, Tong W, Yang S, Zheng H, Shan T, Liu F, Xia T, Tong G. Host miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by upregulating type I interferons. Virus Res 2015; 195:86-94. [PMID: 25218480 PMCID: PMC7114497 DOI: 10.1016/j.virusres.2014.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/19/2014] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) play important roles in viral infections, especially by modulating the expression of cellular factors essential to viral replication or the host innate immune response to infection. To identify host miRNAs important to controlling porcine reproductive and respiratory syndrome virus (PRRSV) infection, we screened 15 miRNAs that were previously implicated in innate immunity or antiviral functions. Over-expression of the miR-26 family strongly inhibited PRRSV replication in vitro, as shown by virus titer assays, Western blotting, and qRT-PCR assays. MiR-26a inhibited the replication of both type 1 and type 2 PRRSV strains. Mutating the seed region of miR-26 restored viral titers. Luciferase reporters showed that miR-26a does not target the PRRSV genome directly but instead affects the expression of type I interferon and the IFN-stimulated genes MX1 and ISG15 during PRRSV infection. These results demonstrate the important role of miR-26a in modulating PRRSV infection and also support the possibility of using host miR-26a to achieve RNAi-mediated antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shen Yang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Haihong Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tongling Shan
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Fei Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Tianqi Xia
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
41
|
Seo M, Choi JS, Rho CR, Joo CK, Lee SK. MicroRNA miR-466 inhibits Lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J Biomed Sci 2015; 22:3. [PMID: 25573115 PMCID: PMC4304626 DOI: 10.1186/s12929-014-0104-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background Lymphangiogenesis is one of the major causes of corneal graft rejection. Among the lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and -D are considered to be the most potent. Both bind to VEGF receptor 3 (VEGFR3) to activate Prospero homeobox 1 (Prox1), a transcription factor essential for the development and maintenance of lymphatic vasculature. MicroRNAs (miRNAs) bind to the 3' untranslated regions (3' UTRs) of target genes in a sequence-specific manner and suppress gene expression. In the current study, we searched for miRNAs that target the pro-lymphangiogenic factor Prox1. Results Among the miRNAs predicted by the bioinformatic analysis to seed match with the 3' UTR of Prox-1, we chose 3 (miR-466, miR-4305, and miR-4795-5p) for further investigation. Both the miR-466 and miR-4305 mimics, but not the miR-4795-5p mimic, significantly reduced the luciferase activity of the Prox-1 3' UTR reporter vector. In primary lymphatic endothelial cells (HDLEC), miR-466 mimic transfection suppressed Prox1 mRNA and protein expression, while miR-4305 mimic transfection did not. Experiments using mutated reporter constructs of the two possible seed match sites on the 3' UTR of Prox1 suggested that the target site 2 directly bound miR-466. HDLEC transfected with the miR-466 mimic suppressed tube formation as compared to the scrambled control. Furthermore, HDLEC transfected with a miR-466 inhibitor showed enhanced tube formation as compared to control inhibitor transfected cells, and this inhibitory effect was counteracted by Prox1 siRNA. The miR-466 mimic reduced angiogenesis and lymphangiogenesis resulting in clearer corneas in an cornea injury rat model compared to the scrambled control. Conclusions Our data suggest that miR-446 may have a protective effect on transplanted corneas by suppressing Prox1 expression at the post-transcriptional level. The results of the current study may provide insights into the mechanisms of lymphangiogenesis resulting from corneal graft rejection and alkali-burn injuries, as well as into the development of new treatments for lymphangiogenic eye diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0104-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minkoo Seo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jun-Sub Choi
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Chang Rae Rho
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea. .,Department of Ophthalmology and Visual Science, Daejeon St. Mary's Hospital, Daejeon, Korea.
| | - Choun-Ki Joo
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea. .,Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, Seoul, Korea.
| | - Suk Kyeong Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
42
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
43
|
Savan R. Post-transcriptional regulation of interferons and their signaling pathways. J Interferon Cytokine Res 2014; 34:318-29. [PMID: 24702117 DOI: 10.1089/jir.2013.0117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3' untranslated regions (3' UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ~22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3' UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3' UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology, School of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
44
|
He X, Jing Z, Cheng G. MicroRNAs: new regulators of Toll-like receptor signalling pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:945169. [PMID: 24772440 PMCID: PMC3977468 DOI: 10.1155/2014/945169] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/29/2014] [Accepted: 02/16/2014] [Indexed: 01/08/2023]
Abstract
Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels.
Collapse
Affiliation(s)
- Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
45
|
Kroeker AL, Coombs KM. Systems biology unravels interferon responses to respiratory virus infections. World J Biol Chem 2014; 5:12-25. [PMID: 24600511 PMCID: PMC3942539 DOI: 10.4331/wjbc.v5.i1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.
Collapse
|
46
|
Zhang Q, Guo XK, Gao L, Huang C, Li N, Jia X, Liu W, Feng WH. MicroRNA-23 inhibits PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating type I interferons. Virology 2014; 450-451:182-95. [PMID: 24503081 DOI: 10.1016/j.virol.2013.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/19/2013] [Accepted: 12/17/2013] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally and play critical roles in intricate networks of host-pathogen interactions and innate immunity. Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases affecting swine industry worldwide. Here, we demonstrated that miR-23, miR-378, and miR-505 were antiviral host factors against PRRS virus (PRRSV). Over-expression of the three miRNAs inhibited PRRSV infection in a dose-dependent manner, respectively. Blockage of the three endogenously expressed miRNAs significantly enhanced PRRSV replication. Different type 2 PRRSV strains harbored conserved miR-23, miR-378, and miR-505 target sites (TSs) that were sufficient to confer miRNA-mediated repression of PRRSV replication. Interestingly, miR-23 was capable of inducing type I interferon expression during PRRSV infection through IRF3/IRF7 activation, which might further lead to the inhibition of virus infection. These results suggest that miR-23, miR-378, and miR-505, especially miR-23, may have the potential to be used as antiviral therapy against PRRSV infection.
Collapse
Affiliation(s)
- Qiong Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue-Kun Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojuan Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenjun Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
47
|
Luo Y, Liu Y, Liu M, Wei J, Zhang Y, Hou J, Huang W, Wang T, Li X, He Y, Ding F, Yuan L, Cai J, Zheng F, Yang JY. Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:97-106. [PMID: 24389345 DOI: 10.1016/j.bbagrm.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Sfmbt2-hosted miR-466a-3p and its close relatives are often among the most significantly up-regulated or down-regulated miRNAs in responses to numerous deleterious environmental stimuli. The exact roles of these miRNAs in cellular stress responses, however, are not clear. Here we showed that many Sfmbt2-hosted miRNAs were highly hypertonic stress responsive in vitro and in vivo. In renal medulla, water deprivation induced alterations in the expression of miR-466(a/b/c/e/p)-3p in a pattern similar to that of miR-200b-3p, a known regulator of osmoresponsive transcription factor Nfat5. Remarkably, exposure of mIMCD3 cells to an arginine vasopressin analog time-dependently down-regulated the expression of miR-466(a/b/c/e/p)-3p and miR-200b-3p, which provides a novel regulatory mechanism for these osmoresponsive miRNAs. In cultured mIMCD3 cells we further demonstrated that miR-466a-3p and miR-466g were capable of targeting Nfat5 by interacting with its 3'UTR. In transgenic mice overexpressing miR-466a-3p, significant down-regulation of Nfat5 and many other osmoregulation-related genes was observed in both the renal cortex and medulla. Moreover, sustained transgenic over-expression of miR-466a-3p was found to be associated with polydipsia, polyuria and disturbed ion homeostasis and kidney morphology. Since the mature sequence of miR-466a-3p is completely equivalent to that of miR-466e-3p and that the seed sequence of miR-466a-3p is completely equivalent to that of miR-297(a/b/c)-3p, miR-466d-3p, miR-467g and miR-669d-3p, and that miR-466a-3p differs from miR-466(b/c/p)-3p only in a 5' nucleotide, we propose that miR-466a-3p and many of its close relatives are important epigenetic regulators of renal Nfat5 signaling, osmoregulation and urine concentration in mice.
Collapse
Affiliation(s)
- Yu Luo
- School of Nursing, The Third Military Medical University, Chongqing 400038, China; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Ying Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Meng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jie Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Yunyun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jinpao Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Weifeng Huang
- The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Tao Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Xun Li
- The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China
| | - Feng Ding
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiang'an, Xiamen 361102, China
| | - Jianchun Cai
- Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Feng Zheng
- Department of Nephrology and Basic Science Laboratory, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - James Y Yang
- School of Nursing, The Third Military Medical University, Chongqing 400038, China; Fujian Provincial Transgenic Core, Xiamen University Laboratory Animal Center, Xiang'an, Xiamen 361102, China.
| |
Collapse
|
48
|
Zhang Y, Li YK. MicroRNAs in the regulation of immune response against infections. J Zhejiang Univ Sci B 2013; 14:1-7. [PMID: 23303626 DOI: 10.1631/jzus.b1200292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Innate immunity is considered to provide the initial defense against infections by viruses, bacteria, fungi, and protozoa. Detection of the signature molecules of invading pathogens by front-line defense cells via various germline-encoded pattern recognition receptors (PRRs) is needed to activate intracellular signaling cascades that lead to transcriptional expression of inflammatory mediators to coordinate the elimination of pathogens and infected cells. To maintain a fine balance between protective immunity and inflammatory pathology upon infection, the innate signaling pathways in the host need to be tightly regulated. MicroRNAs (miRNAs), a new class of small non-coding RNAs, have been recently shown to be potent modulators that function at post-transcriptional levels. Accumulating evidence demonstrates that the involvement of microorganism-encoded and host miRNAs might play instructive roles in the immune response upon infection. Here, we discuss the current knowledge of miRNAs in the regulation of immune response against infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of General Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | |
Collapse
|
49
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
50
|
Hastie E, Cataldi M, Marriott I, Grdzelishvili VZ. Understanding and altering cell tropism of vesicular stomatitis virus. Virus Res 2013; 176:16-32. [PMID: 23796410 DOI: 10.1016/j.virusres.2013.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV's broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV's neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, United States
| | | | | | | |
Collapse
|