1
|
Karpinska MA, Zhu Y, Fakhraei Ghazvini Z, Ramasamy S, Barbieri M, Cao TBN, Varahram N, Aljahani A, Lidschreiber M, Papantonis A, Oudelaar AM. CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation. Nat Struct Mol Biol 2025:10.1038/s41594-025-01555-z. [PMID: 40360814 DOI: 10.1038/s41594-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
Enhancers and promoters interact in three-dimensional (3D) chromatin structures to regulate gene expression. Here we characterize the mechanisms that drive the formation and function of these structures in a lymphoid-to-myeloid transdifferentiation system. Based on analyses at base pair resolution, we demonstrate a close correlation between binding of regulatory proteins, formation of chromatin interactions and gene expression. Multi-way interaction analyses and computational modeling show that tissue-specific gene loci are organized into chromatin hubs, characterized by cooperative interactions between multiple enhancers, promoters and CTCF-binding sites. While depletion of CTCF strongly impairs the formation of these chromatin hubs, the effects of CTCF depletion on gene expression are modest and can be explained by rewired enhancer-promoter interactions. These findings demonstrate a role for enhancer-promoter interactions in gene regulation that is independent of cooperative interactions in chromatin hubs. Together, these results contribute to our understanding of the structure-function relationship of the genome during cellular differentiation.
Collapse
Affiliation(s)
- Magdalena A Karpinska
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Yi Zhu
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Zahra Fakhraei Ghazvini
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Shyam Ramasamy
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Mariano Barbieri
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - T B Ngoc Cao
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Natalie Varahram
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
| | - Abrar Aljahani
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Georg August University of Göttingen, Göttingen, Germany
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Michael Lidschreiber
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - A Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Pacheco-Hernandez AF, Rodriguez-Ramos I, Vazquez-Santillan K, Valle-Rios R, Velasco-Velázquez M, Aquino-Jarquin G, Martínez-Ruiz GU. The Regulatory Role of CTCF in IL6 Gene Transcription Assessed in Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2025; 18:305. [PMID: 40143084 PMCID: PMC11944638 DOI: 10.3390/ph18030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Breast cancer (BrCa) patients with tumors expressing high interleukin-6 (IL6) levels have poor clinical outcomes. In BrCa, altered occupancy of CCCTC-binding factor (CTCF) within its DNA binding sites deregulates the expression of its targeted genes. In this study, we investigated whether CTCF contributes to the altered IL6 expression in BrCa. Methods/Results: We performed CTCF gain- and loss-of-function assays in BrCa cell lines and observed an inverse correlation between CTCF and IL6 expression levels. To understand how CTCF negatively regulates IL6 gene expression, we performed luciferase gene reporter assays, site-directed mutagenesis assays, and chromatin immunoprecipitation assays. Our findings revealed that CTCF interacted with the IL6 promoter, a form of regulation disrupted in a CpG methylation-independent fashion in MDA-MB-231 and Tamoxifen-resistant MCF7 cells. Data from TCGA and GEO databases allowed us to explore the clinical implications of our results. An inverse correlation between CTCF and IL6 expression levels was seen in disease-free survival BrCa patients but not in patients who experienced cancer recurrence. Conclusions: Our findings provide evidence that the CTCF-mediated negative regulation of the IL6 gene is lost in highly tumorigenic BrCa cells.
Collapse
Affiliation(s)
- Angel Francisco Pacheco-Hernandez
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Itayesitl Rodriguez-Ramos
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Karla Vazquez-Santillan
- Precision Medicine Innovation Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunology and Proteomics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| | - Marco Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico;
| | - Gustavo Ulises Martínez-Ruiz
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunobiology and Oncology Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Liu S, Li J, Zhang Y, Wang C, Zhang L. IL-10: the master immunomodulatory cytokine in allergen immunotherapy. Expert Rev Clin Immunol 2025; 21:17-28. [PMID: 39323099 DOI: 10.1080/1744666x.2024.2406894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Allergen immunotherapy (AIT) is the only disease-modifying treatment for patients with IgE-mediated allergic diseases. Successful AIT can induce long-term immune tolerance to the common allergen, which provides clinical benefits for years after discontinuation. The cytokine interleukin (IL)-10, as a key anti-inflammatory mediator with strong immunoregulatory functions, has drawn increasing attention over the past decades. AREAS COVERED After an extensive search of PubMed, EMBASE, and Web of Science databases, covering articles published from 1989 to 2024, our review aims to emphasize the key common information from previous reviews on the crucial involvement of IL-10 in allergen immunotherapy (AIT) induced immunological tolerance. In this review, we discuss the regulation of IL-10 expression and the molecular pathways associated with IL-10 function. We also further summarize mechanisms of immune tolerance induced by AIT, especially the indispensable role of IL-10 in AIT. EXPERT OPINION IL-10 plays an indispensable role in immune tolerance induced by AIT. Understanding the importance of the role of IL-10 in AIT would help us comprehend the mechanisms thoroughly and develop targeted therapeutics for allergic diseases.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Simats A, Zhang S, Messerer D, Chong F, Beşkardeş S, Chivukula AS, Cao J, Besson-Girard S, Montellano FA, Morbach C, Carofiglio O, Ricci A, Roth S, Llovera G, Singh R, Chen Y, Filser S, Plesnila N, Braun C, Spitzer H, Gokce O, Dichgans M, Heuschmann PU, Hatakeyama K, Beltrán E, Clauss S, Bonev B, Schulz C, Liesz A. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 2024; 187:4637-4655.e26. [PMID: 39043180 DOI: 10.1016/j.cell.2024.06.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1β was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1β or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1β-mediated comorbidities, offering a framework for secondary prevention immunotherapy.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Cerebrovascular Research Laboratory, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sijia Zhang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sude Beşkardeş
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Felipe A Montellano
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Caroline Morbach
- Department Clinical Research & Epidemiology, Comprehensive Heart Failure Center, and Department Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rashween Singh
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Yiming Chen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Braun
- Institute of Legal Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Hannah Spitzer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany; Department of Old Age Psychiatry and cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany; Institute for Medical Data Sciences, University Hospital Würzburg, Würzburg, Germany; Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Eduardo Beltrán
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Xiao T, Li X, Felsenfeld G. The Myc-associated zinc finger protein epigenetically controls expression of interferon-γ-stimulated genes by recruiting STAT1 to chromatin. Proc Natl Acad Sci U S A 2024; 121:e2320938121. [PMID: 38635637 PMCID: PMC11046693 DOI: 10.1073/pnas.2320938121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The MYC-Associated Zinc Finger Protein (MAZ) plays important roles in chromatin organization and gene transcription regulation. Dysregulated expression of MAZ causes diseases, such as glioblastoma, breast cancer, prostate cancer, and liposarcoma. Previously, it has been reported that MAZ controls the proinflammatory response in colitis and colon cancer via STAT3 signaling, suggesting that MAZ is involved in regulating immunity-related pathways. However, the molecular mechanism underlying this regulation remains elusive. Here, we investigate the regulatory effect of MAZ on interferon-gamma (IFN-γ)-stimulated genes via STAT1, a protein that plays an essential role in immune responses to viral, fungal, and mycobacterial pathogens. We demonstrate that about 80% of occupied STAT1-binding sites colocalize with occupied MAZ-binding sites in HAP1/K562 cells after IFN-γ stimulation. MAZ depletion significantly reduces STAT1 binding in the genome. By analyzing genome-wide gene expression profiles in the RNA-Seq data, we show that MAZ depletion significantly suppresses a subset of the immune response genes, which include the IFN-stimulated genes IRF8 and Absent in Melanoma 2. Furthermore, we find that MAZ controls expression of the immunity-related genes by changing the epigenetic landscape in chromatin. Our study reveals an important role for MAZ in regulating immune-related gene expression.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH
| | - Xin Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH
| |
Collapse
|
6
|
Zhang Y, Yang W, Kumagai Y, Loza M, Zhang W, Park SJ, Nakai K. Multi-omics computational analysis unveils the involvement of AP-1 and CTCF in hysteresis of chromatin states during macrophage polarization. Front Immunol 2023; 14:1304778. [PMID: 38173717 PMCID: PMC10761412 DOI: 10.3389/fimmu.2023.1304778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Macrophages display extreme plasticity, and the mechanisms and applications of polarization and de-/repolarization of macrophages have been extensively investigated. However, the regulation of macrophage hysteresis after de-/repolarization remains unclear. In this study, by using a large-scale computational analysis of macrophage multi-omics data, we report a list of hysteresis genes that maintain their expression patterns after polarization and de-/repolarization. While the polarization in M1 macrophages leads to a higher level of hysteresis in genes associated with cell cycle progression, cell migration, and enhancement of the immune response, we found weak levels of hysteresis after M2 polarization. During the polarization process from M0 to M1 and back to M0, the factors IRFs/STAT, AP-1, and CTCF regulate hysteresis by altering their binding sites to the chromatin. Overall, our results show that a history of polarization can lead to hysteresis in gene expression and chromatin accessibility over a given period. This study contributes to the understanding of de-/repolarization memory in macrophages.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Wenbo Yang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaro Kumagai
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Martin Loza
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Weihang Zhang
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
| | - Sung-Joon Park
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, the University of Tokyo, Tokyo, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Oliver H, Ruta D, Thompson D, Kamli-Salino S, Philip S, Wilson HM, Mody N, Delibegovic M. Myeloid PTP1B deficiency protects against atherosclerosis by improving cholesterol homeostasis through an AMPK-dependent mechanism. J Transl Med 2023; 21:715. [PMID: 37828508 PMCID: PMC10568790 DOI: 10.1186/s12967-023-04598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory process induced by the influx and entrapment of excess lipoproteins into the intima media of arteries. Previously, our lab demonstrated that systemic PTP1B inhibition protects against atherosclerosis in preclinical LDLR-/- models. Similarly, it was shown that myeloid-specific PTP1B ablation decreases plaque formation and ameliorates dyslipidaemia in the ApoE-/- model of atherosclerosis. We hypothesized that the relevant improvements in dyslipidaemia following modification of PTP1B activation may either result from changes in hepatic cholesterol biosynthesis and/or increased uptake and degradation by liver-resident macrophages. We examined this in animal models and patients with coronary artery disease. METHODS In this study, we determined the cholesterol-lowering effect of myeloid-PTP1B deletion in mice fed a high-fat high-cholesterol diet and examined effects on total cholesterol levels and lipoprotein profiles. We also determined the effects of PTP1B inhibition to oxLDL-C challenge on foam cell formation and cholesterol efflux in human monocytes/macrophages. RESULTS We present evidence that myeloid-PTP1B deficiency significantly increases the affinity of Kupffer cells for ApoB containing lipoproteins, in an IL10-dependent manner. We also demonstrate that PTP1B inhibitor, MSI-1436, treatment decreased foam cell formation in Thp1-derived macrophages and increased macrophage cholesterol efflux to HDL in an AMPK-dependent manner. We present evidence of three novel and distinct mechanisms regulated by PTP1B: an increase in cholesterol efflux from foam cells, decreased uptake of lipoproteins into intra-lesion macrophages in vitro and a decrease of circulating LDL-C and VLDL-C in vivo. CONCLUSIONS Overall, these results suggest that myeloid-PTP1B inhibition has atheroprotective effects through improved cholesterol handling in atherosclerotic lesions, as well as increased reverse cholesterol transport. Trial registration Research registry, researchregistry 3235. Registered 07 November 2017, https://www.researchregistry.com/browse-the-registry#home/registrationdetails/5a01d0fce7e1904e93e0aac5/ .
Collapse
Affiliation(s)
- Helk Oliver
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Dekeryte Ruta
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Grampian Diabetes Research Unit, JJR Macleod Centre, NHS Grampian, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
8
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
9
|
Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation. Proc Natl Acad Sci U S A 2022; 119:e2207009119. [PMID: 35969760 PMCID: PMC9407307 DOI: 10.1073/pnas.2207009119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.
Collapse
|
10
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
Affiliation(s)
- Tessa M Popay
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
11
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Liu Y, Wang X, Zhu Y, Cao Y, Wang L, Li F, Zhang Y, Li Y, Zhang Z, Luo J, Deng X, Peng C, Wei G, Chen H, Shen B. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin Transl Med 2022; 12:e654. [PMID: 35184402 PMCID: PMC8858628 DOI: 10.1002/ctm2.654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) play an important role in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to study the epigenetic mechanisms in regulating pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment. METHODS This study was conducted based on ex vivo TAMs isolated from PDAC tissues and in vitro THP1-derived TAM model. RNA-sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing and chromatin immunoprecipitation sequencing were performed to investigate gene expression, chromatin accessibility, transcription factor binding sites and histone modifications. Gene knockdown in THP1-derived TAMs was performed with lentivirus, and the impact of THP1-derived TAMs on invasion and metastasis ability of PDAC cells were investigated with in vitro and in vivo functional assays. RNA-chromatin interaction was analysed by chromatin isolation through RNA purification with sequencing. RNA-protein interaction was studied by RNA immunoprecipitation and RNA pull-down. RESULTS Our data showed that the transcription factor CTCF (CCCTC-binding factor) was highly expressed in TAMs and predicted to be significantly enriched in hyper-accessible chromatin regions when compared to monocytes. High infiltration of CTCF+ TAMs was significantly associated with poor prognosis in PDAC patients. Knockdown of CTCF in THP1-derived TAMs led to the down-regulation of specific markers for M2-polarised TAMs, including CD206 and CD163. When THP1-derived TAMs with CTCF knockdown, they showed a decreased ability of invasion and metastasis. Further integrative analysis of multi-omics data revealed that prostaglandin-endoperoxide synthase 2 (PTGS2) and PTGS2 antisense NF-κB1 complex-mediated expression regulator RNA (PACERR) were critical downstream targets of CTCF and positively correlated with each other, which are closely situated on a chromosome. Knockdown of PACERR exhibited a similar phenotype as observed in CTCF knockdown THP1-derived TAMs. Moreover, PACERR could directly bind to CTCF and recruit histone acetyltransferase E1A binding protein p300 to the promoter regions of PACERR and PTGS2, thereby enhancing histone acetylation and gene transcription, promoting the M2 polarization of TAMs in PDAC. CONCLUSIONS Our study demonstrated a novel epigenetic regulation mechanism of promoting pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xuelong Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yizhi Cao
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Liwen Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Fanlu Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Ying Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Zhiqiang Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiaxin Luo
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xiaxing Deng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Chenghong Peng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
13
|
Monteleone NJ, Lutz CS. miR-708 Negatively Regulates TNF α/IL-1 β Signaling by Suppressing NF- κB and Arachidonic Acid Pathways. Mediators Inflamm 2021; 2021:5595520. [PMID: 33776573 PMCID: PMC7969122 DOI: 10.1155/2021/5595520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023] Open
Abstract
Two pathways commonly dysregulated in autoimmune diseases and cancer are tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β) signaling. Researchers have also shown that both signaling cascades positively regulate arachidonic acid (AA) signaling. More specifically, TNFα/IL-1β promotes expression of the prostaglandin E2- (PGE2-) producing enzymes, cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1). Exacerbated TNFα, IL-1β, and AA signaling have been associated with many diseases. While some TNFα therapies have significantly improved patients' lives, there is still an urgent need to develop novel therapeutics that more comprehensively treat inflammatory-related diseases. Recently, researchers have begun to use RNA interference (RNAi) to treat various diseases in the clinic. One type of RNAi is microRNA (miRNA), a class of small noncoding RNA found within cells. One miRNA in particular, miR-708, has been shown to target COX-2 and mPGES-1. Previous studies have also suggested that miR-708 may be a negative regulator of TNFα/IL-1β signaling. Therefore, we studied the relationship between miR-708, TNFα/IL-1β, and AA signaling in diseased lung cells. We found that miR-708 negatively regulates TNFα/IL-1β signaling in nondiseased lung cells, which is lost in diseased lung cells. Transient transfection of miR-708 suppressed TNFα/IL-1β-induced changes in COX-2, mPGES-1, and PGE2 levels. Moreover, miR-708 also suppressed TNFα/IL-1β-induced IL-6 independent of AA signaling. Mechanistically, we determined that miR-708 suppressed IL-6 signaling by reducing expression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activator inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ). Collectively, our data suggest miR-708 regulates TNFα/IL-1β signaling by inhibiting multiple points of the signaling cascade.
Collapse
Affiliation(s)
- Nicholas J. Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers School of Graduate Studies-RBHS, Newark, NJ 07005, USA
| |
Collapse
|
14
|
Assouvie A, Rotival M, Hamroune J, Busso D, Romeo PH, Quintana-Murci L, Rousselet G. A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer. PLoS Genet 2020; 16:e1009090. [PMID: 33147208 PMCID: PMC7641354 DOI: 10.1371/journal.pgen.1009090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/31/2020] [Indexed: 12/01/2022] Open
Abstract
Interferon β (IFN-β) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-β binding motif, prevents binding of C/EBP-β, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-β expression in myeloid cells. Genome-wide association studies identify multiple genetic variants associated with higher order phenotypes. Pinpointing the causative variant and understanding its molecular mode of action is a complex task. Using a murine model of interferon-β transcriptional deregulation, we characterize a super-enhancer controlling Ifnb1 expression in myeloid cells. The most active enhancer of this locus is conserved in humans, but presents a frequent variant found in around 30% of the population worldwide. This variant prevents binding of the C/EBP-β transcription factor, and is associated with decreased expression of IFNB1 in activated monocytes. When mimicked in the murine enhancer, it abolishes its inducible enhancer activity. Our results describe the molecular link between a point mutation and a cellular phenotype that could influence clinical situations.
Collapse
Affiliation(s)
- Anaïs Assouvie
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Maxime Rotival
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| | - Juliette Hamroune
- Plate-forme Génomique, Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Didier Busso
- CIGEx, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Paul-Henri Romeo
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
- Chair Human Genomics & Evolution, Collège de France, Paris, France
| | - Germain Rousselet
- Laboratoire Réparation et Transcription dans les cellules Souches, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA/IRCM, Inserm U1274, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
15
|
Yan B, Liu N, Li J, Li J, Zhu W, Kuang Y, Chen X, Peng C. The role of Langerhans cells in epidermal homeostasis and pathogenesis of psoriasis. J Cell Mol Med 2020; 24:11646-11655. [PMID: 32916775 PMCID: PMC7579693 DOI: 10.1111/jcmm.15834] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The skin is the main barrier between the human body and the outside world, which not only plays the role of a physical barrier but also functions as the first line of defence of immunology. Langerhans cells (LCs), as dendritic cells (DC) that play an important role in the immune system, are mainly distributed in the epidermis. This review focuses on the role of these epidermal LCs in regulating skin threats (such as microorganisms, ultraviolet radiation and allergens), especially psoriasis. Since human and mouse skin DC subsets share common ontogenetic characteristics, we can further explore the role of LCs in psoriatic inflammation.
Collapse
Affiliation(s)
- Bei Yan
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Jiaoduan Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, China
| |
Collapse
|
16
|
Li Y, Yun K, Mu R. A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes. Lipids Health Dis 2020; 19:164. [PMID: 32646451 PMCID: PMC7350193 DOI: 10.1186/s12944-020-01342-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity exhibits a correlation with metabolic inflammation and endoplasmic reticulum stress, promoting the progression of metabolic disease such as diabetes, hyperlipidemia, hyperuricemia and so on. Adipose tissue macrophages (ATMs) are central players in obesity-associated inflammation and metabolic diseases. Macrophages are involved in lipid and energy metabolism and mitochondrial function in adipocytes. Macrophage polarization is accompanied by metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation. Here, this review focuses on macrophage metabolism linked to functional phenotypes with an emphasis on macrophage polarization in adipose tissue physiological and pathophysiological processes. In particular, the interplay between ATMs and adipocytes in energy metabolism, glycolysis, OXPHOS, iron handing and even interactions with the nervous system have been reviewed. Overall, the understanding of protective and pathogenic roles of ATMs in adipose tissue can potentially provide strategies to prevent and treat obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Yunjia Li
- The First Clinical Medicine Faculty, China Medical University, Shenyang, 110001, China
| | - Ke Yun
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Runqing Mu
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
17
|
Stik G, Vidal E, Barrero M, Cuartero S, Vila-Casadesús M, Mendieta-Esteban J, Tian TV, Choi J, Berenguer C, Abad A, Borsari B, le Dily F, Cramer P, Marti-Renom MA, Stadhouders R, Graf T. CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response. Nat Genet 2020; 52:655-661. [DOI: 10.1038/s41588-020-0643-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/08/2020] [Indexed: 11/09/2022]
|
18
|
Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol 2019; 44:101324. [PMID: 31676122 DOI: 10.1016/j.smim.2019.101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IL-10 is a critical immunoregulatory cytokine expressed in virtually all immune cell types. Maintaining a delicate balance between effective immune response and tolerance requires meticulous and dynamic control of IL-10 expression both epigenetically and transcriptionally. In this Review, we describe the epigenetic mechanisms controlling IL-10 expression, including chromatin remodeling, 3D chromatin loops, histone modification and DNA methylation. We discuss the role of transcription factors in directing chromatin modifications, with a special highlight on the emerging concept of pioneer transcription factors in setting up the chromatin landscape in T helper cells for IL-10 induction. Besides summarizing the recent progress on transcriptional regulation in specialized IL-10 producers such as type 1 regulatory T cells, regulatory B cells and regulatory innate lymphoid cells, we also discuss common transcriptional mechanisms for IL-10 regulation that are shared with other IL-10 producing cells.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
19
|
Siegler BH, Uhle F, Lichtenstern C, Arens C, Bartkuhn M, Weigand MA, Weiterer S. Impact of human sepsis on CCCTC-binding factor associated monocyte transcriptional response of Major Histocompatibility Complex II components. PLoS One 2018; 13:e0204168. [PMID: 30212590 PMCID: PMC6136812 DOI: 10.1371/journal.pone.0204168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Background Antigen presentation on monocyte surface to T-cells by Major Histocompatibility Complex, Class II (MHC-II) molecules is fundamental for pathogen recognition and efficient host response. Accordingly, loss of Major Histocompatibility Complex, Class II, DR (HLA-DR) surface expression indicates impaired monocyte functionality in patients suffering from sepsis-induced immunosuppression. Besides the impact of Class II Major Histocompatibility Complex Transactivator (CIITA) on MHC-II gene expression, X box-like (XL) sequences have been proposed as further regulatory elements. These elements are bound by the DNA-binding protein CCCTC-Binding Factor (CTCF), a superordinate modulator of gene transcription. Here, we hypothesized a differential interaction of CTCF with the MHC-II locus contributing to an altered monocyte response in immunocompromised septic patients. Methods We collected blood from six patients diagnosed with sepsis and six healthy controls. Flow cytometric analysis was used to identify sepsis-induced immune suppression, while inflammatory cytokine levels in blood were determined via ELISA. Isolation of CD14++ CD16—monocytes was followed by (i) RNA extraction for gene expression analysis and (ii) chromatin immunoprecipitation to assess the distribution of CTCF and chromatin modifications in selected MHC-II regions. Results Compared to healthy controls, CD14++ CD16—monocytes from septic patients with immune suppression displayed an increased binding of CTCF within the MHC-II locus combined with decreased transcription of CIITA gene. In detail, enhanced CTCF enrichment was detected on the intergenic sequence XL9 separating two subregions coding for MHC-II genes. Depending on the relative localisation to XL9, gene expression of both regions was differentially affected in patients with sepsis. Conclusion Our experiments demonstrate for the first time that differential CTCF binding at XL9 is accompanied by uncoupled MHC-II expression as well as transcriptional and epigenetic alterations of the MHC-II regulator CIITA in septic patients. Overall, our findings indicate a sepsis-induced enhancer blockade mediated by variation of CTCF at the intergenic sequence XL9 in altered monocytes during immunosuppression.
Collapse
Affiliation(s)
- Benedikt Hermann Siegler
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Lichtenstern
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Christoph Arens
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58–62, Giessen, Hessen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Weiterer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
20
|
Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E5096-E5105. [PMID: 29760084 DOI: 10.1073/pnas.1802611115] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Obesity is characterized by an accumulation of macrophages in adipose, some of which form distinct crown-like structures (CLS) around fat cells. While multiple discrete adipose tissue macrophage (ATM) subsets are thought to exist, their respective effects on adipose tissue, and the transcriptional mechanisms that underlie the functional differences between ATM subsets, are not well understood. We report that obese fat tissue of mice and humans contain multiple distinct populations of ATMs with unique tissue distributions, transcriptomes, chromatin landscapes, and functions. Mouse Ly6c ATMs reside outside of CLS and are adipogenic, while CD9 ATMs reside within CLS, are lipid-laden, and are proinflammatory. Adoptive transfer of Ly6c ATMs into lean mice activates gene programs typical of normal adipocyte physiology. By contrast, adoptive transfer of CD9 ATMs drives gene expression that is characteristic of obesity. Importantly, human adipose tissue contains similar ATM populations, including lipid-laden CD9 ATMs that increase with body mass. These results provide a higher resolution of the cellular and functional heterogeneity within ATMs and provide a framework within which to develop new immune-directed therapies for the treatment of obesity and related sequela.
Collapse
|
21
|
Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 2017; 45:4606-4618. [PMID: 28334928 PMCID: PMC5416830 DOI: 10.1093/nar/gkx185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
The zinc finger protein CTCF has been invoked in establishing boundaries between genes, thereby controlling spatial and temporal enhancer activities. However, there is limited genetic evidence to support the concept that these boundaries restrict the search space of enhancers. We have addressed this question in the casein locus containing five mammary and two non-mammary genes under the control of at least seven putative enhancers. We have identified two CTCF binding sites flanking the locus and two associated with a super-enhancer. Individual deletion of these sites from the mouse genome did not alter expression of any of the genes. However, deletion of the border CTCF site separating the Csn1s1 mammary enhancer from neighboring genes resulted in the activation of Sult1d1 at a distance of more than 95 kb but not the more proximal and silent Sult1e1 gene. Loss of this CTCF site led to de novo interactions between the Sult1d1 promoter and several enhancers in the casein locus. Our study demonstrates that only one out of the four CTCF sites in the casein locus had a measurable in vivo activity. Studies on additional loci are needed to determine the biological role of CTCF sites associated with enhancers.
Collapse
Affiliation(s)
- Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Cell and Developmental Biology & Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Chul Min Yang
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core,National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Gilboa D, Haim-Ohana Y, Deshet-Unger N, Ben-Califa N, Hiram-Bab S, Reuveni D, Zigmond E, Gassmann M, Gabet Y, Varol C, Neumann D. Erythropoietin enhances Kupffer cell number and activity in the challenged liver. Sci Rep 2017; 7:10379. [PMID: 28871174 PMCID: PMC5583293 DOI: 10.1038/s41598-017-11082-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) is the main hormone driving mammalian erythropoiesis, with activity mediated via the surface receptor, EPO-R, on erythroid progenitor cells. Recombinant human EPO is currently used clinically for the treatment of anemia in patients with end-stage renal disease, and in certain cancer patients suffering from anemia induced either by the tumor itself or by chemotherapy. EPO-R expression is also detected in non-erythroid cells, including macrophages present in the peritoneum, spleen, and bone marrow (BM). Here we demonstrate that Kupffer cells (KCs) - the liver-resident macrophages - are EPO targets. We show that, in vitro, EPO initiated intracellular signalling and enhanced phagocytosis in a rat KC line (RKC-2) and in sorted KCs. Moreover, continuous EPO administration in mice, resulted in an increased number of KCs, up-regulation of liver EPO-R expression and elevated production of the monocyte chemoattractant CCL2, with corresponding egress of Ly6Chi monocytes from the BM. In a model of acute acetaminophen-induced liver injury, EPO administration increased the recruitment of Ly6Chi monocytes and neutrophils to the liver. Taken together, our results reveal a new role for EPO in stimulating KC proliferation and phagocytosis, and in recruiting Ly6Chi monocytes in response to liver injury.
Collapse
Affiliation(s)
- Dafna Gilboa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Haim-Ohana
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naamit Deshet-Unger
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Max Gassmann
- Institute for Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Sourasky Medical Center and Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Drorit Neumann
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
23
|
Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet 2017; 13:e1006985. [PMID: 28846746 PMCID: PMC5591014 DOI: 10.1371/journal.pgen.1006985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/08/2017] [Accepted: 08/17/2017] [Indexed: 11/27/2022] Open
Abstract
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. Properly regulated gene expression in time and space during development and differentiation requires not only transcriptional inputs, but also specific structuring of the chromatin. CTCF is a DNA binding factor that is believed to be critical for this process through binding to tens of thousands of sites across the genome. Despite the knowledge gained in recent years on the role of CTCF in genome organization, its functions in vivo are poorly understood. To address this issue, we studied the effect of genetically deleting CTCF in differentiating cardiomyocytes at early stages of mouse development. Surprisingly only a fraction of genes change their expression when CTCF is removed. Importantly, misregulated genes control opposing genetic programs in charge of development and patterning on one hand, and cardiomyocyte maturation on the other. This imbalance leads to faulty mitochondria and incorrect expression of cardiac patterning genes, and subsequent embryonic lethality. Our results suggest that CTCF is not necessary for maintenance of global genome structure, but coordinates dynamic genetic programs controlling phenotypic transitions in developing cells and tissues.
Collapse
Affiliation(s)
| | | | - Ana Victoria Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alba Alvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Eva F. Caceres
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Anna R. Roy
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Delgado-Olguin
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, Toronto, Ontario, Canada
| | | | | | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Kim TG, Kim S, Jung S, Kim M, Yang B, Lee MG, Kim HP. CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice. Exp Mol Med 2017; 49:e371. [PMID: 28857086 PMCID: PMC5579513 DOI: 10.1038/emm.2017.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis involves a series of lineage differentiation programs initiated in hematopoietic stem cells (HSCs) found in bone marrow (BM). To ensure lifelong hematopoiesis, various molecular mechanisms are needed to maintain the HSC pool. CCCTC-binding factor (CTCF) is a DNA-binding, zinc-finger protein that regulates the expression of its target gene by organizing higher order chromatin structures. Currently, the role of CTCF in controlling HSC homeostasis is unknown. Using a tamoxifen-inducible CTCF conditional knockout mouse system, we aimed to determine whether CTCF regulates the homeostatic maintenance of HSCs. In adult mice, acute systemic CTCF ablation led to severe BM failure and the rapid shrinkage of multiple c-Kithi progenitor populations, including Sca-1+ HSCs. Similarly, hematopoietic system-confined CTCF depletion caused an acute loss of HSCs and highly increased mortality. Mixed BM chimeras reconstituted with supporting BM demonstrated that CTCF deficiency-mediated HSC depletion has both cell-extrinsic and cell-intrinsic effects. Although c-Kithi myeloid progenitor cell populations were severely reduced after ablating Ctcf, c-Kitint common lymphoid progenitors and their progenies were less affected by the lack of CTCF. Whole-transcriptome microarray and cell cycle analyses indicated that CTCF deficiency results in the enhanced expression of the cell cycle-promoting program, and that CTCF-depleted HSCs express higher levels of reactive oxygen species (ROS). Importantly, in vivo treatment with an antioxidant partially rescued c-Kithi cell populations and their quiescence. Altogether, our results suggest that CTCF is indispensable for maintaining adult HSC pools, likely by regulating ROS-dependent HSC quiescence.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sueun Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soyeon Jung
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bobae Yang
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute. of Tropical Medicine, Yonsei University College of Medicine, Seoul, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Šenolt L, Prajzlerová K, Hulejová H, Šumová B, Filková M, Veigl D, Pavelka K, Vencovský J. Interleukin-20 is triggered by TLR ligands and associates with disease activity in patients with rheumatoid arthritis. Cytokine 2017; 97:187-192. [PMID: 28662439 DOI: 10.1016/j.cyto.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/24/2017] [Accepted: 06/11/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Interleukin (IL)-20 is a pro-inflammatory cytokine that may be implicated in the pathogenesis of rheumatoid arthritis (RA). This study aimed to determine the association between IL-20 and disease activity in patients with RA. METHODS The levels of serum and synovial fluid IL-20 were measured in patients with RA and OA. The disease activity was assessed based on the Disease Activity Score of 28 joints (DAS28). The expression of IL-20 in synovial tissue samples from patients with RA and OA were determined by immunohistochemistry. Immunofluorescence staining was used to co-localize IL-20 with selected cells. The secretion of IL-20 was analysed in human peripheral blood mononuclear cells (PBMCs) of patients with RA. RESULTS Synovial fluid and synovial tissue IL-20 were significantly increased in patients with RA compared with patients with OA. The expression of IL-20 in RA synovial tissue was particularly associated with macrophages and neutrophil granulocytes, but also with synovial fibroblasts and lymphocytes. The IL-20 levels in synovial fluid correlated with DAS28 (r=0.434; p=0.015) and were significantly elevated in anti-CCP positive RA compared with anti-CCP negative RA (122.3±104.1pg/ml and 45.9±35.8pg/ml; p=0.008). IL-20 production from PBMCs was induced by Poly I:C and LPS but not with pro-inflammatory cytokines, such as TNF-α or IL-1. CONCLUSION Our data showed that IL-20 is independently associated with RA disease activity and may be triggered by TLR ligands at local sites of inflammation.
Collapse
Affiliation(s)
- Ladislav Šenolt
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Klára Prajzlerová
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Hulejová
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Šumová
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mária Filková
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Veigl
- 1st Orthopaedic Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
Higher-Order Chromatin Regulation of Inflammatory Gene Expression. Mediators Inflamm 2017; 2017:7848591. [PMID: 28490839 PMCID: PMC5401750 DOI: 10.1155/2017/7848591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Whether it is caused by viruses and bacteria infection, or low-grade chronic inflammation of atherosclerosis and cellular senescence, the transcription factor (TF) NF-κB plays a central role in the inducible expression of inflammatory genes. Accumulated evidence has indicated that the chromatin environment is the main determinant of TF binding in gene expression regulation, including the stimulus-responsive NF-κB. Dynamic changes in intra- and interchromosomes are the key regulatory mechanisms promoting the binding of TFs. When an inflammatory process is triggered, NF-κB binds to enhancers or superenhancers, triggering the transcription of enhancer RNA (eRNA), driving the chromatin of the NF-κB-binding gene locus to construct transcriptional factories, and forming intra- or interchromosomal contacts. These processes reveal a mechanism in which intrachromosomal contacts appear to be cis-control enhancer-promoter communications, whereas interchromosomal regulatory elements construct trans-form relationships with genes on other chromosomes. This article will review emerging evidence on the genome organization hierarchy underlying the inflammatory response.
Collapse
|
27
|
Innate recognition of microbial-derived signals in immunity and inflammation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1210-1217. [PMID: 27888386 DOI: 10.1007/s11427-016-0325-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Microbes generate a vast array of different types of conserved structural components called pathogen-associated molecular patterns (PAMPs), which can be recognized by cells of the innate immune system. This recognition of "nonself" signatures occurs through host pattern recognition receptors (PRRs), suggesting that microbial-derived signals are good targets for innate immunity to discriminate between self- and nonself. Such PAMP-PRR interactions trigger multiple but distinct downstream signaling cascades, subsequently leading to production of proinflammatory cytokines and interferons that tailor immune responses to particular microbes. Aberrant PRR signals have been associated with various inflammatory diseases and fine regulation of PRR signaling is essential for avoiding excessive inflammatory immune responses and maintaining immune homeostasis. In this review we summarize the ligands and signal transduction pathways of PRRs and highlight recent progress of the mechanisms involved in microbe-specific innate immune recognition during immune responses and inflammation, which may provide new targets for therapeutic intervention to the inflammatory disorders.
Collapse
|
28
|
Rishi G, Secondes ES, Wallace DF, Subramaniam VN. Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2. Am J Physiol Gastrointest Liver Physiol 2016; 310:G171-80. [PMID: 26608187 DOI: 10.1152/ajpgi.00291.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023]
Abstract
Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2(f/f) mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis.
Collapse
Affiliation(s)
- Gautam Rishi
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Eriza S Secondes
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and
| | - Daniel F Wallace
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - V Nathan Subramaniam
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Kim TG, Kim M, Lee JJ, Kim SH, Je JH, Lee Y, Song MJ, Choi Y, Chung YW, Park CG, Cho JW, Lee MG, Lee YS, Kim HP. CCCTC-binding factor controls the homeostatic maintenance and migration of Langerhans cells. J Allergy Clin Immunol 2015; 136:713-24. [DOI: 10.1016/j.jaci.2015.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 02/01/2023]
|
30
|
Chen HH, Keyhanian K, Zhou X, Vilmundarson RO, Almontashiri NAM, Cruz SA, Pandey NR, Lerma Yap N, Ho T, Stewart CA, Huang H, Hari A, Geoffrion M, McPherson R, Rayner KJ, Stewart AFR. IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circ Res 2015. [PMID: 26195219 DOI: 10.1161/circresaha.114.305777] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE Inflammation impairs macrophage cholesterol clearance from vascular tissues and promotes atherosclerosis. Inflammatory macrophages suppress expression of the transcription cofactor interferon regulatory factor 2-binding protein 2 (IRF2BP2), and genetic variants near IRF2BP2 associate with ischemic heart disease progression in humans. OBJECTIVES To test whether IRF2BP2 in macrophages affects atherosclerosis in mice and humans. METHODS AND RESULTS We generated mice that delete IRF2BP2 in macrophages. IRF2BP2-deficient macrophages worsened atherosclerosis in irradiated low-density lipoprotein receptor null-recipient mice and in apolipoprotein E null mice. IRF2BP2-deficient macrophages were inflammatory and had impaired cholesterol efflux because of their inability to activate the cholesterol transporter ABCA1 in response to cholesterol loading. Their expression of the anti-inflammatory transcription factor Krüppel-like factor 2 was markedly reduced. Promoter studies revealed that IRF2BP2 is required for MEF2-dependent activation of Krüppel-like factor 2. Importantly, restoring Krüppel-like factor 2 in IRF2BP2-deficient macrophages attenuated M1 inflammatory and rescued M2 anti-inflammatory gene activation and improved the cholesterol efflux deficit by restoring ABCA1 activation in response to cholesterol loading. In a cohort of 1066 angiographic cases and 1011 controls, homozygous carriers of a deletion polymorphism (rs3045215) in the 3' untranslated region sequence of human IRF2BP2 mRNA had a higher risk of coronary artery disease (recessive model, odds ratio [95% confidence interval]=1.560 [1.179-2.065], P=1.73E-03) and had lower IRF2BP2 (and Krüppel-like factor 2) protein levels in peripheral blood mononuclear cells. The effect of this deletion polymorphism to suppress protein expression was confirmed in luciferase reporter studies. CONCLUSION Ablation of IRF2BP2 in macrophages worsens atherosclerosis in mice, and a deletion variant that lowers IRF2BP2 expression predisposes to coronary artery disease in humans.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.).
| | - Kianoosh Keyhanian
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Xun Zhou
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Ragnar O Vilmundarson
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Naif A M Almontashiri
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Shelly A Cruz
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Nihar R Pandey
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Nida Lerma Yap
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Tiffany Ho
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Chloe A Stewart
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Hua Huang
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Aswin Hari
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Michele Geoffrion
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Ruth McPherson
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Katey J Rayner
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Alexandre F R Stewart
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.).
| |
Collapse
|
31
|
Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh I, Sanjana NE, Shalem O, Satija R, Raychowdhury R, Mertins P, Carr SA, Zhang F, Hacohen N, Regev A. A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks. Cell 2015; 162:675-86. [PMID: 26189680 DOI: 10.1016/j.cell.2015.06.059] [Citation(s) in RCA: 347] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/25/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023]
Abstract
Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.
Collapse
Affiliation(s)
- Oren Parnas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Jovanovic
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas M Eisenhaure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Rebecca H Herbst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA
| | - Atray Dixit
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, Department of Epidemiology and Biostatistics, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Randall J Platt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itay Tirosh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Neville E Sanjana
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ophir Shalem
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rahul Satija
- New York Genome Center, New York, NY 10013, USA; New York University, Center for Genomics and Systems Biology, New York, NY 10012, USA
| | | | - Philipp Mertins
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston MA 02114.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02140, USA.
| |
Collapse
|
32
|
Long-range epigenetic regulation is conferred by genetic variation located at thousands of independent loci. Nat Commun 2015; 6:6326. [PMID: 25716334 PMCID: PMC4351585 DOI: 10.1038/ncomms7326] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023] Open
Abstract
The interplay between genetic and epigenetic variation is only partially understood. One form of epigenetic variation is methylation at CpG sites, which can be measured as methylation quantitative trait loci (meQTL). Here we report that in a panel of lymphocytes from 1,748 individuals, methylation levels at 1,919 CpG sites are correlated with at least one distal (trans) single-nucleotide polymorphism (SNP) (P<3.2 × 10(-13); FDR<5%). These trans-meQTLs include 1,657 SNP-CpG pairs from different chromosomes and 262 pairs from the same chromosome that are >1 Mb apart. Over 90% of these pairs are replicated (FDR<5%) in at least one of two independent data sets. Genomic loci harbouring trans-meQTLs are significantly enriched (P<0.001) for long non-coding transcripts (2.2-fold), known epigenetic regulators (2.3-fold), piwi-interacting RNA clusters (3.6-fold) and curated transcription factors (4.1-fold), including zinc-finger proteins (8.75-fold). Long-range epigenetic networks uncovered by this approach may be relevant to normal and disease states.
Collapse
|
33
|
Schönheit J, Leutz A, Rosenbauer F. Chromatin Dynamics during Differentiation of Myeloid Cells. J Mol Biol 2015; 427:670-87. [DOI: 10.1016/j.jmb.2014.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 12/23/2022]
|
34
|
Dubois-Chevalier J, Oger F, Dehondt H, Firmin FF, Gheeraert C, Staels B, Lefebvre P, Eeckhoute J. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Res 2014; 42:10943-59. [PMID: 25183525 PMCID: PMC4176165 DOI: 10.1093/nar/gku780] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CCCTC-binding factor (CTCF) is a ubiquitously expressed multifunctional transcription factor characterized by chromatin binding patterns often described as largely invariant. In this context, how CTCF chromatin recruitment and functionalities are used to promote cell type-specific gene expression remains poorly defined. Here, we show that, in addition to constitutively bound CTCF binding sites (CTS), the CTCF cistrome comprises a large proportion of sites showing highly dynamic binding patterns during the course of adipogenesis. Interestingly, dynamic CTCF chromatin binding is positively linked with changes in expression of genes involved in biological functions defining the different stages of adipogenesis. Importantly, a subset of these dynamic CTS are gained at cell type-specific regulatory regions, in line with a requirement for CTCF in transcriptional induction of adipocyte differentiation. This relates to, at least in part, CTCF requirement for transcriptional activation of both the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) and its target genes. Functionally, we show that CTCF interacts with TET methylcytosine dioxygenase (TET) enzymes and promotes adipogenic transcriptional enhancer DNA hydroxymethylation. Our study reveals a dynamic CTCF chromatin binding landscape required for epigenomic remodeling of enhancers and transcriptional activation driving cell differentiation.
Collapse
Affiliation(s)
- Julie Dubois-Chevalier
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Frédérik Oger
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Hélène Dehondt
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - François F Firmin
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Céline Gheeraert
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Bart Staels
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Philippe Lefebvre
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Inserm UMR U1011, F-59000 Lille, France Université Lille 2, F-59000 Lille, France Institut Pasteur de Lille, F-59019 Lille, France European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France
| |
Collapse
|
35
|
Yang J, Mowry LE, Nejak-Bowen KN, Okabe H, R. Diegel C, Lang RA, Williams BO, Monga SP. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation! Hepatology 2014; 60:964-76. [PMID: 24700412 PMCID: PMC4139486 DOI: 10.1002/hep.27082] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED Liver-specific β-catenin knockout (β-Catenin-LKO) mice have revealed an essential role of β-catenin in metabolic zonation where it regulates pericentral gene expression and in initiating liver regeneration (LR) after partial hepatectomy (PH), by regulating expression of Cyclin-D1. However, what regulates β-catenin activity in these events remains an enigma. Here we investigate to what extent β-catenin activation is Wnt-signaling-dependent and the potential cell source of Wnts. We studied liver-specific Lrp5/6 KO (Lrp-LKO) mice where Wnt-signaling was abolished in hepatocytes while the β-catenin gene remained intact. Intriguingly, like β-catenin-LKO mice, Lrp-LKO exhibited a defect in metabolic zonation observed as a lack of glutamine synthetase (GS), Cyp1a2, and Cyp2e1. Lrp-LKO also displayed a significant delay in initiation of LR due to the absence of β-catenin-TCF4 association and lack of Cyclin-D1. To address the source of Wnt proteins in liver, we investigated conditional Wntless (Wls) KO mice, which lacked the ability to secrete Wnts from either liver epithelial cells (Wls-LKO), or macrophages including Kupffer cells (Wls-MKO), or endothelial cells (Wls-EKO). While Wls-EKO was embryonic lethal precluding further analysis in adult hepatic homeostasis and growth, Wls-LKO and Wls-MKO were viable but did not show any defect in hepatic zonation. Wls-LKO showed normal initiation of LR; however, Wls-MKO showed a significant but temporal deficit in LR that was associated with decreased β-catenin-TCF4 association and diminished Cyclin-D1 expression. CONCLUSION Wnt-signaling is the major upstream effector of β-catenin activity in pericentral hepatocytes and during LR. Hepatocytes, cholangiocytes, or macrophages are not the source of Wnts in regulating hepatic zonation. However, Kupffer cells are a major contributing source of Wnt secretion necessary for β-catenin activation during LR.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Laura E. Mowry
- Lab of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grant Rapids, MI
| | | | - Hirohisa Okabe
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cassandra R. Diegel
- Lab of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grant Rapids, MI
| | - Richard A. Lang
- Department of Pediatrics, Cincinnati Childrens, Cincinnati, OH
| | - Bart O. Williams
- Lab of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grant Rapids, MI
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA,Address correspondence to: Satdarshan Pal Singh Monga, MD, Vice Chair of Experimental Pathology, Endowed Chair of Experimental Pathology, Professor of Pathology & Medicine (GI, Hepatology & Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261; Tel: (412) 648-9966; Fax: (412) 648-1916;
| |
Collapse
|
36
|
Majumder P, Scharer CD, Choi NM, Boss JM. B cell differentiation is associated with reprogramming the CCCTC binding factor-dependent chromatin architecture of the murine MHC class II locus. THE JOURNAL OF IMMUNOLOGY 2014; 192:3925-35. [PMID: 24634495 DOI: 10.4049/jimmunol.1303205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transcriptional insulator CCCTC binding factor (CTCF) was shown previously to be critical for human MHC class II (MHC-II) gene expression. Whether the mechanisms used by CTCF in humans were similar to that of the mouse and whether the three-dimensional chromatin architecture created was specific to B cells were not defined. Genome-wide CTCF occupancy was defined for murine B cells and LPS-derived plasmablasts by chromatin immunoprecipitation sequencing. Fifteen CTCF sites within the murine MHC-II locus were associated with high CTCF binding in B cells. Only one-third of these sites displayed significant CTCF occupancy in plasmablasts. CTCF was required for maximal MHC-II gene expression in mouse B cells. In B cells, a subset of the CTCF regions interacted with each other, creating a three-dimensional architecture for the locus. Additional interactions occurred between MHC-II promoters and the CTCF sites. In contrast, a novel configuration occurred in plasma cells, which do not express MHC-II genes. Ectopic CIITA expression in plasma cells to induce MHC-II expression resulted in high levels of MHC-II proteins, but did not alter the plasma cell architecture completely. These data suggest that reorganizing the three-dimensional chromatin architecture is an epigenetic mechanism that accompanies the silencing of MHC-II genes as part of the cell fate commitment of plasma cells.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | |
Collapse
|