1
|
Rueda A, Serna N, Mangues R, Villaverde A, Unzueta U. Targeting the chemokine receptor CXCR4 for cancer therapies. Biomark Res 2025; 13:68. [PMID: 40307933 PMCID: PMC12044942 DOI: 10.1186/s40364-025-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) has emerged as a key molecular biomarker for cancer therapies due to its critical role in tumor progression and metastases by displaying a stem cells phenotype. Its overexpression has been observed in more than 20 types of cancers, including solid tumors and hematological malignancies, and it is often associated with tumor aggressiveness and poor prognosis. Being initially recognized as a co-receptor involved in HIV infection, numerous CXCR4-targeting ligands and antagonists, including small molecules, peptides and biologics have been identified over the past decades. While only few of them have been used in the context of cancer therapies, recent biotechnological advancements using CXCR4 as a molecular target are showing significant potential to revolutionize future cancer therapies. Therefore, this review highlights the biotechnological innovations developed for cancer therapy and diagnosis by targeting the chemokine receptor CXCR4. It also discusses future perspectives on emerging therapeutic strategies, ranging from the use of small molecule inhibitors that block receptor signaling to cutting-edge nanocarriers designed for the targeted delivery of innovative drugs and proteins into cancer stem cells, aiming at cell-selective precision nanomedicines.
Collapse
Affiliation(s)
- Ariana Rueda
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
2
|
Qiu X, Wen R, Wu F, Mao J, Azad T, Wang Y, Zhu J, Zhou X, Xie H, Hong K, Li B, Zhang L, Wen C. The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2025; 24:103821. [PMID: 40274006 DOI: 10.1016/j.autrev.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies. According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
Collapse
Affiliation(s)
- Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China; The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China
| | - RuiFan Wen
- Medical School, Hunan University of Chinese Medicine, No.300 Xueshi Road, Hanpu Science & Education District, Changsha, Hunan 410208, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Tasnim Azad
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Liang Zhang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China; Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha 410007, Hunan, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
3
|
Fang G, Chen J, Xi T, Liu Y, Wu Y, Wen Y, Tang H. A cohort of highly activated CD99 - CD72 + B cells promoting autoimmune progression in juvenile systemic lupus erythematosus. Int Immunopharmacol 2025; 152:114466. [PMID: 40090085 DOI: 10.1016/j.intimp.2025.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/17/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
CD72 inhibits the development of systemic lupus erythematosus (SLE) by suppressing TLR7-dependent B cell responses to self-nucleic acids (NAs). The absence of CD72 promotes the progression of lupus disease. Here, we find a highly activated subset of CD99- CD72+ B cells (CD72+ BCs) expressing elevated levels of TLR7 in juvenile SLE, which contributes to autoimmunity. Through multi-omics integrated analysis of single-cell RNA sequencing(scRNA-seq) data and bulk RNA sequencing (RNA-seq) data, we demonstrate that CD72+ BCs possess characteristics of both activated naïve B cells (aN) and age-associated B cells (ABCs). Concurrently, CD72+ BCs exhibit pronounced plasmablast-like features compared to other cellular subpopulations. We propose a plausible conclusion that CD72+ BCs represent a critical transitional cell population involved in the activation and subsequent plasma cell differentiation of naïve B cells and age-related B cells following exposure to self-antigens in SLE. This finding offers novel opportunities for elucidating the genesis of autoantibody-secreting cells involved in the autoimmune response processes in lupus.
Collapse
Affiliation(s)
- Guofeng Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan 430030, China
| | - Jing Chen
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Ting Xi
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Yali Wu
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Yini Wen
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Hongxia Tang
- Department of Rheumatology and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| |
Collapse
|
4
|
Qin X, Zhang M, Liang J, Xu S, Fu X, Liu Z, Tian T, Song J, Lin Y. Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus. J Control Release 2025; 380:943-956. [PMID: 39983922 DOI: 10.1016/j.jconrel.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Using Tetrahedral framework nucleic acids, we combined antigenic peptides to create the "DART" vaccine: DNA framework-Antigenic peptide-RNA modification-Targeting aptamer coupling. Generating antigen-specific tolerogenic dendritic cells (tolDCs), for systemic lupus erythematosus (SLE) is a potential therapeutic strategy for addressing compromised autoimmune tolerance. However, simple antigenic peptides degrade easily, lack specificity for delivery to dendritic cells (DCs), and cannot transform DCs to tolDCs. Therefore, this study aims to employ DART to generate tolDCs and compare DART-treated DCs to tolDCs. DART improved peptide stability, specifically targeted DCs, induced tolDCs in situ, and showed promising outcomes in mitigating SLE symptoms in the MRL/lpr mouse model. DART effectively normalized the plasma cytokine levels, glomerulonephritis, and joint lesions in MRL/lpr mice. These findings highlight the potential of the DART vaccine to induce transformation of DCs to tolDCs and address SLE symptoms, suggesting novel therapeutic utility. These findings may advance vaccine design for various autoimmune diseases.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Xu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Xiao Fu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Bekaddour N, Smith N, Caspar B, Grinberg S, Giorgiutti S, Rodeschini V, Dupuy S, Leboulanger N, Duffy D, Soulas-Sprauel P, Gies V, Korganow AS, Nisole S, Herbeuval JP. The histamine analogue clobenpropit modulates IRF7 phosphorylation and interferon production by targeting CXCR4 in systemic lupus erythematosus models. Front Immunol 2024; 15:1490593. [PMID: 39737176 PMCID: PMC11682962 DOI: 10.3389/fimmu.2024.1490593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by an overactive immune response, particularly involving excessive production of type I interferons. This overproduction is driven by the phosphorylation of IRF7, a crucial factor in interferon gene activation. Current treatments for SLE are often not very effective and can have serious side effects. Methods Our study introduces clobenpropit, a histamine analogue, as a potential new therapy targeting the CXCR4 receptor to reduce IRF7 phosphorylation and subsequent interferon production. We employed various laboratory techniques to investigate how clobenpropit interacts with CXCR4 and its effects on immune cells from healthy individuals and SLE patients. Results Clobenpropit binds effectively to CXCR4, significantly inhibiting IRF7 phosphorylation and reducing interferon production. Additionally, clobenpropit lowered levels of pro-inflammatory cytokines in a mouse model of lupus, demonstrating efficacy comparable to the standard treatment, prednisolone. Discussion These results suggest that clobenpropit could be a promising new treatment for SLE, offering a targeted approach with potential advantages over current therapies.
Collapse
Affiliation(s)
- Nassima Bekaddour
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy (CBMIT), Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Birgit Caspar
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy (CBMIT), Paris, France
| | - Severine Grinberg
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy (CBMIT), Paris, France
| | - Stephane Giorgiutti
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantation Excellence Nouvelle Génération (Transplantex NG), Fédération Hospitalo-Universitaire OMICs for Care (OMICARE), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (Centre de Référence des Maladies Auto-Immunes Rares de Strasbourg, (CNR RESO)), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | | | - Stephanie Dupuy
- Unité d’Appui et de Recherche (UAR) BioMedTech Facilities, Plateforme cyto2Bm, Université Paris Cité, Paris, France
| | - Nicolas Leboulanger
- Faculté de Médecine, Université Paris Cité, Paris, France
- Department of Paediatric Otolaryngology, Assistance Publique – Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Pauline Soulas-Sprauel
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantation Excellence Nouvelle Génération (Transplantex NG), Fédération Hospitalo-Universitaire OMICs for Care (OMICARE), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (Centre de Référence des Maladies Auto-Immunes Rares de Strasbourg, (CNR RESO)), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantation Excellence Nouvelle Génération (Transplantex NG), Fédération Hospitalo-Universitaire OMICs for Care (OMICARE), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (Centre de Référence des Maladies Auto-Immunes Rares de Strasbourg, (CNR RESO)), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) S1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantation Excellence Nouvelle Génération (Transplantex NG), Fédération Hospitalo-Universitaire OMICs for Care (OMICARE), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (Centre de Référence des Maladies Auto-Immunes Rares de Strasbourg, (CNR RESO)), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9004, Montpellier, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Paris Cité, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy (CBMIT), Paris, France
| |
Collapse
|
6
|
Wang Y, Rambold U, Fiedler P, Babushku T, Tapken CL, Hoefig KP, Hofer TP, Adler H, Yildirim AÖ, Strobl LJ, Zimber-Strobl U. CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells. Cell Mol Immunol 2024; 21:1410-1425. [PMID: 39420111 PMCID: PMC11607414 DOI: 10.1038/s41423-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.
Collapse
Affiliation(s)
- Yan Wang
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Petra Fiedler
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Claas L Tapken
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Research Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Önder Yildirim
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B-Cell Development and Activation, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Center Munich, Comprehensive Pneumology Center (CPC-M), Neuherberg, Germany.
| |
Collapse
|
7
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
8
|
Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev 2024; 44:1189-1220. [PMID: 38178560 DOI: 10.1002/med.22011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Liuxin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junjie Li
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wu Q, Chen Q, Xu D, Wang X, Ye H, Li X, Xiong Y, Li J, Zhou S, Miao J, Shen W, Liu Y, Niu H, Tang Y, Zhou L. C-X-C chemokine receptor type 4 promotes tubular cell senescence and renal fibrosis through β-catenin-inhibited fatty acid oxidation. J Cell Mol Med 2024; 28:e18075. [PMID: 38213100 PMCID: PMC10844696 DOI: 10.1111/jcmm.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
The prevalence of chronic kidney disease (CKD) is highly increasing. Renal fibrosis is a common pathological feature in various CKD. Previous studies showed tubular cell senescence is highly involved in the pathogenesis of renal fibrosis. However, the inducers of tubular senescence and the underlying mechanisms have not been fully investigated. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled seven-span transmembrane receptor, increases renal fibrosis and plays an important role in tubular cell injury. Whereas, whether CXCR4 could induce tubular cell senescence and the detailed mechanisms have not studied yet. In this study, we adopted adriamycin nephropathy and 5/6 nephrectomy models, and cultured tubular cell line. Overexpression or knockdown of CXCR4 was obtained by injection of related plasmids. We identified CXCR4 increased in injury tubular cells. CXCR4 was expressed predominantly in renal tubular epithelial cells and co-localized with adipose differentiation-related protein (ADRP) as well as the senescence-related protein P16INK4A . Furthermore, we found overexpression of CXCR4 greatly induced the activation of β-catenin, while knockdown of CXCR4 inhibited it. We also found that CXCR4 inhibited fatty acid oxidation and triggered lipid deposition in tubular cells. To inhibit β-catenin by ICG-001, an inhibitor of β-catenin, could significantly block CXCR4-suppressed fatty acid oxidation. Taken together, our results indicate that CXCR4 is a key mediator in tubular cell senescence and renal fibrosis. CXCR4 promotes tubular cell senescence and renal fibrosis by inducing β-catenin and inhibiting fatty acid metabolism. Our findings provide a new theory for tubular cell injury in renal fibrosis.
Collapse
Affiliation(s)
- Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Tang
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Li M, Li M, Qiao L, Wu C, Xu D, Zhao Y, Zeng X. Role of JAK-STAT signaling pathway in pathogenesis and treatment of primary Sjögren's syndrome. Chin Med J (Engl) 2023; 136:2297-2306. [PMID: 37185152 PMCID: PMC10538906 DOI: 10.1097/cm9.0000000000002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease with high prevalence and possible poor prognosis. Though the pathogenesis of pSS has not been fully elucidated, B cell hyperactivity is considered as one of the fundamental abnormalities in pSS patients. It has long been identified that Janus kinases-signal transducer and activator of transcription (JAK-STAT) signaling pathway contributes to rheumatoid arthritis and systemic lupus erythematosus. Recently, increasing numbers of studies have provided evidence that JAK-STAT pathway also has an important role in the pathogenesis of pSS via direct or indirect activation of B cells. Signal transducer and activator of transcription 1 (STAT1), STAT3, and STAT5 activated by various cytokines and ribonucleic acid contribute to pSS development, respectively or synergically. These results reveal the potential application of Janus kinase inhibitors for treatment of pSS, which may fundamentally improve the quality of life and prognosis of patients with pSS.
Collapse
Affiliation(s)
- Mucong Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Cui S, Shin YJ, Fang X, Lee H, Eum SH, Ko EJ, Lim SW, Shin E, Lee KI, Lee JY, Lee CB, Bae SK, Yang CW, Chung BH. CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease phenotypes in a kidney organoid model. Transl Res 2023:S1931-5244(23)00025-7. [PMID: 36805562 DOI: 10.1016/j.trsl.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
The objective of this study was to investigate whether CRISPR/Cas9-mediated suppression of A4GALT could rescue phenotype of Fabry disease nephropathy (FDN) using human induced pluripotent stem cells (hiPSCs) derived kidney organoid system. We generated FDN patient-derived hiPSC (CMC-Fb-002) and FD-specific hiPSCs (GLA-KO) by knock-out (KO) of GLA in wild-type (WT) hiPSCs using CRISPR/Cas9. We then performed A4GALT KO in both CMC-Fb-002 and GLA-KO to make Fb-002-A4GALT-KO and GLA/A4GALT-KO, respectively. Using these hiPSCs, we generated kidney organoids and compared alpha-galactosidase-A enzyme (α-GalA) activity, globotriaosylceramide (Gb-3) deposition, and zebra body formation under electron microscopy (EM). We also compared mRNA expression levels using RNA-seq and qPCR. Generated hiPSCs showed typical pluripotency markers without chromosomal disruption. Expression levels of GLA in CMC-Fb-002 and GLA-KO and expression levels of A4GALT in Fb-002-A4GALT-KO and GLA/A4GALT-KO were successfully decreased compared to those in WT-hiPSCs, respectively. Generated kidney organoids using these hiPSCs expressed typical nephron markers. In CMC-Fb-002 and GLA-KO organoids, α-GalA activity was significantly decreased along with increased deposition of Gb-3 in comparison with WT organoids. Intralysosomal inclusion body was also detected under EM. However, these disease phenotypes were rescued by KO of A4GALT in both GLA/A4GALT-KO and Fb-002-A4GALT-KO kidney organoids. RNA-seq showed increased expression levels of genes related to FDN progression in both GLA-mutant organoids compared to those in WT. Such increases were rescued in GLA/A4GALT-KO or Fb-002-A4GALT-KO organoids. CRISPR/Cas9 mediated suppression of A4GALT could rescue FDN phenotype. Hence, it can be proposed as a therapeutic approach to treat FDN.
Collapse
Affiliation(s)
- Sheng Cui
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xianying Fang
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanbi Lee
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hun Eum
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | - Chae Bin Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
13
|
Cao T, Liu L, To KK, Lim C, Zhou R, Ming Y, Kwan K, Yu S, Chan C, Zhou B, Huang H, Mo Y, Du Z, Gong R, Yat L, Hung IF, Tam AR, To W, Leung W, Chik TS, Tsang OT, Lin X, Song Y, Yuen K, Chen Z. Mitochondrial regulation of acute extrafollicular B-cell responses to COVID-19 severity. Clin Transl Med 2022; 12:e1025. [PMID: 36103567 PMCID: PMC9473490 DOI: 10.1002/ctm2.1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Patients with COVID-19 display a broad spectrum of manifestations from asymptomatic to life-threatening disease with dysregulated immune responses. Mechanisms underlying the detrimental immune responses and disease severity remain elusive. METHODS We investigated a total of 137 APs infected with SARS-CoV-2. Patients were divided into mild and severe patient groups based on their requirement of oxygen supplementation. All blood samples from APs were collected within three weeks after symptom onset. Freshly isolated PBMCs were investigated for B cell subsets, their homing potential, activation state, mitochondrial functionality and proliferative response. Plasma samples were tested for cytokine concentration, and titer of Nabs, RBD-, S1-, SSA/Ro- and dsDNA-specific IgG. RESULTS While critically ill patients displayed predominantly extrafollicular B cell activation with elevated inflammation, mild patients counteracted the disease through the timely induction of mitochondrial dysfunction in B cells within the first week post symptom onset. Rapidly increased mitochondrial dysfunction, which was caused by infection-induced excessive intracellular calcium accumulation, suppressed excessive extrafollicular responses, leading to increased neutralizing potency index and decreased inflammatory cytokine production. Patients who received prior COVID-19 vaccines before infection displayed significantly decreased extrafollicular B cell responses and mild disease. CONCLUSION Our results reveal an immune mechanism that controls SARS-CoV-2-induced detrimental B cell responses and COVID-19 severity, which may have implications for viral pathogenesis, therapeutic interventions and vaccine development.
Collapse
Affiliation(s)
- Tianyu Cao
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of ImmunologyFourth Military Medical UniversityXi'anPeople's Republic of China
- Department of DermatologyTangdu Hospital, Fourth Military Medical UniversityXi'anPeople's Republic of China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Kelvin Kai‐Wang To
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of ImmunologyFourth Military Medical UniversityXi'anPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Chun‐Yu Lim
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Yue Ming
- School of Biomedical SciencesUniversity of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ka‐Yi Kwan
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Sulan Yu
- School of Chinese MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Chun‐Yin Chan
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Biao Zhou
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Haode Huang
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Yufei Mo
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Zhenglong Du
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ruomei Gong
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Luk‐Tsz Yat
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Ivan Fan‐Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Anthony Raymond Tam
- Department of MedicineQueen Mary HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Wing‐Kin To
- Department of PathologyPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Wai‐Shing Leung
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Thomas Shiu‐Hong Chik
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Owen Tak‐Yin Tsang
- Department of Medicine and GeriatricsPrincess Margaret HospitalHong Kong Special Administrative RegionPeople's Republic of China
| | - Xiang Lin
- School of Chinese MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - You‐qiang Song
- School of Biomedical SciencesUniversity of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
| | - Kwok‐Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Department of MicrobiologyThe University of Hong KongHong Kong Special Administrative RegionPeople's Republic of China
- Centre for VirologyVaccinology and Therapeutics LimitedHong Kong Special Administrative RegionPeople's Republic of China
| |
Collapse
|
14
|
Jianing W, Jingyi X, Pingting Y. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J Autoimmun 2022; 132:102892. [PMID: 36030137 DOI: 10.1016/j.jaut.2022.102892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently suffer from nervous system complications, termed neuropsychiatric lupus erythematosus (NPLE). NPLE accounts for the poor prognosis of SLE. Correct attribution of NP events to SLE is the primary principle in managing NPLE. The vascular injuries and neuroinflammation are the fundamental neuropathologic changes in NPLE. Specific autoantibody-mediated central nerve system (CNS) damages distinguish NPLE from other CNS disorders. Though the central antibodies in NPLE are generally thought to be raised from the periphery immune system, they may be produced in the meninges and choroid plexus. On this basis, abnormal activation of microglia and disease-associated microglia (DAM) should be the common mechanisms of NPLE and other CNS disturbances. Improved understanding of both characteristic and sharing features of NPLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Wang Jianing
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xu Jingyi
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yang Pingting
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
15
|
Tan Y, Yang S, Liu Q, Li Z, Mu R, Qiao J, Cui L. Pregnancy-related complications in systemic lupus erythematosus. J Autoimmun 2022; 132:102864. [PMID: 35872104 DOI: 10.1016/j.jaut.2022.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune inflammatory disease that predominantly affects women of childbearing age and results in various adverse pregnancy outcomes (APOs). Pregnancy was formerly discouraged in patients with SLE because of unstable disease activity during the gestation period, increased thrombosis risk, severe organ damage, and inevitable side effects of immunosuppressive agents. Currently, most patients with SLE have successful pregnancies due to preconception counselling, strict monitoring, and improved therapy with minimised complications for both the mother and foetus. Hydroxychloroquine (HCQ) is extensively used and is beneficial for improving pregnancy outcomes. However, pregnant women with SLE have a high-risk of APOs, such as disease flare, preterm birth, intrauterine growth restriction (IUGR), preeclampsia, and pregnancy loss. Better understanding of the changes in maternal immunity and serum biomarkers, as well as their relationships with SLE-related APOs progression, would facilitate the investigation of molecular mechanisms for triggering and ameliorating APOs. Furthermore, it would enable us to explore and develop novel and effective therapeutic strategies to prevent disease activation. Therefore, this review briefly introduces the interaction between pregnancy outcomes and SLE, elucidates pathophysiological and immunological changes during SLE pregnancy. Furthermore, this review systematically expounds on the effective predictors of APOs and the molecular mechanisms underlying the SLE-related APOs to provide a solid foundation for the advanced management of lupus pregnancy.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jie Qiao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Beijing, 100191, China; Ministry of Education Key Laboratory of Assisted Reproduction, Center for Reproductive Medicine, Beijing, 100191, China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China; Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
16
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Cao P, Yang M, Chang C, Wu H, Lu Q. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clin Rev Allergy Immunol 2022; 63:357-370. [PMID: 35674978 DOI: 10.1007/s12016-022-08936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China. .,Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China. .,Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
18
|
Caspar B, Cocchiara P, Melet A, Van Emelen K, Van der Aa A, Milligan G, Herbeuval JP. CXCR4 as a novel target in immunology: moving away from typical antagonists. FUTURE DRUG DISCOVERY 2022; 4:FDD77. [PMID: 35875591 PMCID: PMC9298491 DOI: 10.4155/fdd-2022-0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
CXCR4 has been a target of interest in drug discovery for numerous years. However, so far, most if not all studies focused on finding antagonists of CXCR4 function. Recent studies demonstrate that targeting a minor allosteric pocket of CXCR4 induces an immunomodulating effect in immune cells expressing CXCR4, connected to the TLR pathway. Compounds binding in this minor pocket seem to be functionally selective with inverse agonistic properties in selected GPCR signaling pathways (Gi activation), but additional signaling pathways are likely to be involved in the immunomodulating effects. In depth research into these CXCR4-targeted immunomodulators could lead to novel treatment options for (auto)-immune diseases.
Collapse
Affiliation(s)
- Birgit Caspar
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Pietro Cocchiara
- Centre for Translational Pharmacology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Armelle Melet
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| | - Kristof Van Emelen
- Ermium Therapeutics, Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, Paris, F-75014, France
| | - Annegret Van der Aa
- Ermium Therapeutics, Pépinière Paris Santé Cochin, 29 Rue du Faubourg Saint-Jacques, Paris, F-75014, France
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jean-Philippe Herbeuval
- CNRS UMR-8601, 45 Rue des Saints-Pères, Paris, F-75006, France
- Team Chemistry & Biology, Modelling & Immunology for Therapy, CBMIT, Paris, France
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, F-75006, France
| |
Collapse
|
19
|
Ding G, An J, Li L. MicroRNA-103a-3p enhances sepsis-induced acute kidney injury via targeting CXCL12. Bioengineered 2022; 13:10288-10298. [PMID: 35510354 PMCID: PMC9278413 DOI: 10.1080/21655979.2022.2062195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) is a common and fatal complication in inflammatory sepsis. Several microRNAs (miRNAs or miRs) have been identified to control sepsis. MiR-103a-3p has been reported to take part in the various inflammatory response. However, its role in AKI remains unclear. The present research aimed to explore the role and mechanisms of miR-103a-3p in AKI. Neurogenic sepsis mouse model and lipopolysaccharide-induced HK-2 and 293 cell models were established. The renal functions in each group of mice were measured. After evaluating the biological functions of C-X-C motif chemokine 12 (CXCL12) and miR-103a-3p on HK-2 and HEK-293 T cells, their interaction was determined. Detection of CXCL12 and apoptosis and inflammation-related factors in renal tissue was done. MiR-103a-3p was significantly repressed in the sepsis model, while CXCL12 was elevated. Furthermore, miR-103a-3p inversely controlled CXCL12. Knockdown of miR-103a-3p or overexpression of CXCL12 could significantly inhibit the progression of HK-2 and HEK293 cells, whereas elevated miR-103a-3p or knockdown of CXCL12 showed the opposite effects. Collectively, miR-103a-3p heightens renal cell damage caused by sepsis by targeting CXCL12.
Collapse
Affiliation(s)
- Gaihong Ding
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| | - Jinhua An
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| | - Luyao Li
- Department of Nephrology, Xuchang University Medical College, Xuchang City, Henan Province, China
| |
Collapse
|
20
|
Balasundaram A, Udhaya Kumar S, George Priya Doss C. A computational model revealing the immune-related hub genes and key pathways involved in rheumatoid arthritis (RA). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:247-273. [PMID: 35305721 DOI: 10.1016/bs.apcsb.2021.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rheumatoid arthritis (RA) has one of the highest disability rates among inflammatory joint disorders. However, the reason and possible molecular events are still unclear. There are various treatment options available, but no complete cure. To obtain early diagnosis and successful medication in RA, it is necessary to explore gene susceptibility and pathogenic factors. The main intend of our work is to explore the immune-related hub genes with similar functions that are differentially expressed in RA patients. Three datasets such as GSE21959, GSE55457, and GSE77298, were taken to analyze the differently expressed genes (DEGs) among 55 RA and 33 control samples. We obtained 331 upregulated and 275 downregulated DEGs from three Gene Expression Omnibus (GEO) datasets using the R package. Furthermore, a protein-protein interaction network was built for upregulated and downregulated DEGs using Cytoscape. Subsequently, MCODE analysis was performed and obtained the top two modules in each DEG's upregulated and downregulated protein-protein interactions (PPIs) network. CytoNCA and cytoHubba were performed and identified overlapping DEGs. In addition, we narrowed down DEGs by filtering with immune-related genes and identified DE-IRGs. Gene ontology (GO) and KEGG pathway analysis in upregulated and downregulated DEGs were executed with the DAVID platform. Our study obtained the nine most significant DE-IRGs in RA such as CXCR4, CDK1, BUB1, BIRC5, AGTR1, EGFR, EDNRB, KALRN, and GHSR. Among them, CXCR4, CDK1, BUB1, and BIRC5 are overexpressed in RA and may contribute to the pathophysiology of the disease. Similarly, AGTR1, EGFR, EDNRB, KALRN, and GHSR are all low expressed in RA and may have a contribution to pathogenesis. GO, KEGG functional enrichment, and GeneMANIA showed that the dysregulated process of DE-IRGs causes RA development and progression. These findings may be helpful in future studies in RA diagnosis and therapy.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, TN, India.
| |
Collapse
|
21
|
Spena S, Cairo A, Pappalardo E, Gorski MM, Garagiola I, Hassan S, Gualtierotti R, Peyvandi F. Genetic variants at the chromosomal region 2q21.3 underlying inhibitor development in patients with severe haemophilia A. Haemophilia 2022; 28:270-277. [PMID: 35182444 PMCID: PMC9306754 DOI: 10.1111/hae.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
Introduction Inhibitor development affects about 30% of patients with severe haemophilia A (HA) and results from different environmental and genetic risk factors. Previously, we identified the missense variant rs3754689 in the LCT gene linked with this predisposition. Since rs3754689 variant is benign and is located in a conserved haplotype region, we hypothesized that the association signal captured by this variant is located in coinherited, neighbouring genes. Aim To identify novel genetic risk factors associated with inhibitor development in coding regions of R3HDM1, UBXN4, CXCR4, MCM6, DARS and miR128‐1 genes. Methods Targeted sequencing was performed in 246 severe HA patients (72 with and 174 without inhibitor): 181 previously and 65 newly enrolled. Results Forty‐one common and 152 rare variants passed the quality control. Logistic regression analysis of common variants identified rs3754689 and four additional variants (.011 < P < .047; FDR ranging .2‐.38). Logistic regression analysis performed only in the 220 Italian patients showed similar results (.004 < P < .05; FDR ranging .12‐.22). Three of these variants (rs3213892 and rs3816155 in the LCT intron 13 and rs961360 in the R3HDM1 intron10‐exon11 junction) may affect the expression of UBXN4 and R3HDM1, respectively. Rare variants did not show association with inhibitor development. Identified variants were not replicated in the multi‐ethnic SIPPET cohort of 230 severe HA patients. Conclusion Due to the limited sample size that may be responsible of the high FDR values, we could not confirm with certainty the analysed association. Further evaluation of the expression levels of analysed genes will confirm or not their role in inhibitor development.
Collapse
Affiliation(s)
- Silvia Spena
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy
| | - Andrea Cairo
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy
| | - Emanuela Pappalardo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marcin M Gorski
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Isabella Garagiola
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy
| | - Shermarke Hassan
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roberta Gualtierotti
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and Luigi Villa Foundation, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Wu M, Pan W, Jia C, He Z, Zhao M, Tang C, Chang C, Li S, Wu H, Lu Q. Systemic lupus erythematosus patients contain B cell receptor repertoires sensitive to immunosuppressive drugs. Eur J Immunol 2022; 52:669-680. [PMID: 35092307 DOI: 10.1002/eji.202149596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Meiyu Wu
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
| | - Wenjing Pan
- Nanjing ARP Biotechnology Co., Ltd Nanjing China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices Hunan University of Technology Zhuzhou China
| | - Chen Jia
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
| | - Zhenghao He
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd Nanjing China
| | - Christopher Chang
- Christopher Chang Division of Rheumatology Allergy and Clinical Immunology University of California at Davis School of Medicine Davis California USA
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices Hunan University of Technology Zhuzhou China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics Department of Dermatology Second Xiangya Hospital Central South University Changsha China
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| |
Collapse
|
23
|
He Y, Gallman AE, Xie C, Shen Q, Ma J, Wolfreys FD, Sandy M, Arsov T, Wu X, Qin Y, Zhang P, Jiang S, Stanley M, Wu P, Tan J, Ding H, Xue H, Chen W, Xu J, Criswell LA, Nititham J, Adamski M, Kitching AR, Cook MC, Cao L, Shen N, Cyster JG, Vinuesa CG. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance. J Exp Med 2022; 219:e20211004. [PMID: 34889940 PMCID: PMC8669517 DOI: 10.1084/jem.20211004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
B cell self-tolerance is maintained through multiple checkpoints, including restraints on intracellular signaling and cell trafficking. P2RY8 is a receptor with established roles in germinal center (GC) B cell migration inhibition and growth regulation. Somatic P2RY8 variants are common in GC-derived B cell lymphomas. Here, we identify germline novel or rare P2RY8 missense variants in lupus kindreds or the related antiphospholipid syndrome, including a "de novo" variant in a child with severe nephritis. All variants decreased protein expression, F-actin abundance, and GPCR-RhoA signaling, and those with stronger effects increased AKT and ERK activity and cell migration. Remarkably, P2RY8 was reduced in B cell subsets from some SLE patients lacking P2RY8 gene variants. Low P2RY8 correlated with lupus nephritis and increased age-associated B cells and plasma cells. By contrast, P2RY8 overexpression in cells and mice restrained plasma cell development and reinforced negative selection of DNA-reactive developing B cells. These findings uncover a role of P2RY8 in immunological tolerance and lupus pathogenesis.
Collapse
MESH Headings
- Animals
- Antiphospholipid Syndrome/genetics
- Antiphospholipid Syndrome/immunology
- Antiphospholipid Syndrome/metabolism
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Line, Tumor
- Female
- HEK293 Cells
- Humans
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Nephritis/genetics
- Lupus Nephritis/immunology
- Lupus Nephritis/metabolism
- Male
- Mice, Inbred C57BL
- Mutation, Missense/genetics
- Mutation, Missense/immunology
- Pedigree
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, Purinergic P2Y/genetics
- Receptors, Purinergic P2Y/immunology
- Receptors, Purinergic P2Y/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Mice
Collapse
Affiliation(s)
- Yuke He
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Antonia E. Gallman
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Chengmei Xie
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Shen
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Jianyang Ma
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Finn D. Wolfreys
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Moriah Sandy
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Todor Arsov
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Xiaoqian Wu
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Qin
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pingjing Zhang
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Simon Jiang
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Maurice Stanley
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Philip Wu
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Jingjing Tan
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xue
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jinping Xu
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lindsey A. Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Joanne Nititham
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Marcin Adamski
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - A. Richard Kitching
- Centre for Personalised Immunology, Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, Victoria, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
| | - Lanfang Cao
- Department of Pediatrics, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Carola G. Vinuesa
- Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Australian Capital Territory, Australia
- Francis Crick Institute, London, UK
| |
Collapse
|
24
|
Schall N, Daubeuf F, Marsol C, Gizzi P, Frossard N, Bonnet D, Galzi JL, Muller S. A Selective Neutraligand for CXCL12/SDF-1α With Beneficial Regulatory Functions in MRL/Lpr Lupus Prone Mice. Front Pharmacol 2021; 12:752194. [PMID: 34744730 PMCID: PMC8566942 DOI: 10.3389/fphar.2021.752194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Dysregulation of CXCL12/SDF-1-CXCR4/CD184 signaling is associated with inflammatory diseases and notably with systemic lupus erythematosus. Issued from the lead molecule chalcone-4, the first neutraligand of the CXCL12 chemokine, LIT-927 was recently described as a potent analogue with improved solubility and stability. We aimed to investigate the capacity of LIT-927 to correct immune alterations in lupus-prone MRL/lpr mice and to explore the mechanism of action implemented by this small molecule in this model. We found that in contrast to AMD3100, an antagonist of CXCR4 and agonist of CXCR7, LIT-927 reduces the excessive number of several B/T lymphocyte subsets occurring in the blood of sick MRL/lpr mice (including CD3+/CD4-/CD8-/B220+ double negative T cells). In vitro, LIT-927 downregulated the overexpression of several activation markers on splenic MRL/lpr lymphocytes. It exerted effects on the CXCR4 pathway in MRL/lpr CD4+ T spleen cells. The results underline the importance of the CXCL12/CXCR4 axis in lupus pathophysiology. They indicate that neutralizing CXCL12 by the neutraligand LIT-927 can attenuate hyperactive lymphocytes in lupus. This mode of intervention might represent a novel strategy to control a common pathophysiological mechanism occurring in inflammatory diseases.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - François Daubeuf
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,CNRS UMS3286, Plate-forme de Chimie Biologique Intégrative de Strasbourg, Strasbourg University/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Claire Marsol
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Patrick Gizzi
- CNRS UMS3286, Plate-forme de Chimie Biologique Intégrative de Strasbourg, Strasbourg University/ Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Nelly Frossard
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Dominique Bonnet
- CNRS UMR7200, Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Jean-Luc Galzi
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Sylviane Muller
- CNRS UMR7242, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
25
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Targeting Canonical and Non-Canonical STAT Signaling Pathways in Renal Diseases. Cells 2021; 10:cells10071610. [PMID: 34199002 PMCID: PMC8305338 DOI: 10.3390/cells10071610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) plays an essential role in the inflammatory reaction and immune response of numerous renal diseases. STATs can transmit the signals of cytokines, chemokines, and growth factors from the cell membrane to the nucleus. In the canonical STAT signaling pathways, upon binding with their cognate receptors, cytokines lead to a caspase of Janus kinases (JAKs) and STATs tyrosine phosphorylation and activation. Besides receptor-associated tyrosine kinases JAKs, receptors with intrinsic tyrosine kinase activities, G-protein coupled receptors, and non-receptor tyrosine kinases can also activate STATs through tyrosine phosphorylation or, alternatively, other post-translational modifications. Activated STATs translocate into the nucleus and mediate the transcription of specific genes, thus mediating the progression of various renal diseases. Non-canonical STAT pathways consist of preassembled receptor complexes, preformed STAT dimers, unphosphorylated STATs (U-STATs), and non-canonical functions including mitochondria modulation, microtubule regulation and heterochromatin stabilization. Most studies targeting STAT signaling pathways have focused on canonical pathways, but research extending into non-canonical STAT pathways would provide novel strategies for treating renal diseases. In this review, we will introduce both canonical and non-canonical STAT pathways and their roles in a variety of renal diseases.
Collapse
|
27
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
28
|
CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. J Clin Med 2020; 9:jcm9113653. [PMID: 33202988 PMCID: PMC7697100 DOI: 10.3390/jcm9113653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.
Collapse
|
29
|
Peng L, Zhu N, Mao J, Huang L, Yang Y, Zhou Z, Wang L, Wu B. Expression levels of CXCR4 and CXCL12 in patients with rheumatoid arthritis and its correlation with disease activity. Exp Ther Med 2020; 20:1925-1934. [PMID: 32782501 PMCID: PMC7401245 DOI: 10.3892/etm.2020.8950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the expression levels of C-X-C motif chemokine receptor 4 (CXCR4) and CXC ligand 12 (CXCL12) in patients with rheumatoid arthritis (RA) and the correlation with disease activity. In total, 60 patients with RA were selected as the study group, comprising of 28 patients in active-stage and 32 patients in remission-stage. In addition, 60 patients with osteoarthritis were selected as the control group. Western blotting and ELISA were used to detect the expression of CXCR4 and CXCL12, respectively. The Spearman's correlation test was used to analyze correlations between CXCR4 and CXCL12, and erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), disease activity score 28 (DAS28) scores and rheumatoid factor (RF). The present results suggested that CXCR4 and CXCL12 expression levels in the serum and joint synovial fluid of the study group were significantly higher compared with the control group (P<0.05). Moreover, CXCR4 and CXCL12 expression levels in the RA-active group were higher compared with the remission (P<0.05) and control groups (P<0.01). The Pearson test results suggested that the expression levels of CXCR4 and CXCL12 in the serum and joint synovial fluid of patients with RA had a positive correlation with the ESR, CRP, RF and DAS28 scores (P<0.05). CXCL12 and CXCR4 were highly expressed in the serum and joint synovial fluid of patients with RA, and these expression levels were positively correlated with ESR, CRP, RF and DAS28 scores. Therefore, these clinical parameters may be used as indicators to evaluate the disease activity of patients with RA.
Collapse
Affiliation(s)
- Liping Peng
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Ning Zhu
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Mao
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Li Huang
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yameng Yang
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Zhengju Zhou
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Li Wang
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Bin Wu
- Department of Rheumatology and Immunology, First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
30
|
Ganugula R, Arora M, Zou D, Agarwal SK, Mohan C, Kumar MNVR. A highly potent lymphatic system-targeting nanoparticle cyclosporine prevents glomerulonephritis in mouse model of lupus. SCIENCE ADVANCES 2020; 6:eabb3900. [PMID: 32582860 PMCID: PMC7292630 DOI: 10.1126/sciadv.abb3900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 05/02/2023]
Abstract
Cyclosporine A (CsA) is a powerful immunosuppressant, but it is an ineffective stand-alone treatment for systemic lupus erythematosus (SLE) due to poor target tissue distribution and renal toxicity. We hypothesized that CD71 (transferrin receptor 1)-directed delivery of CsA to the lymphatic system would improve SLE outcomes in a murine model. We synthesized biodegradable, ligand-conjugated nanoparticles [P2Ns-gambogic acid (GA)] targeting CD71. GA conjugation substantially increased nanoparticle association with CD3+ or CD20+ lymphocytes and with intestinal lymphoid tissues. In orally dosed MRL-lpr mice, P2Ns-GA-encapsulated CsA increased lymphatic drug delivery 4- to 18-fold over the ligand-free formulation and a commercial CsA capsule, respectively. Improved lymphatic bioavailability of CsA was paralleled by normalization of anti-double-stranded DNA immunoglobulin G titer, plasma cytokines, and glomerulonephritis. Thus, this study demonstrates the translational potential of nanoparticles that enhance the targeting of lymphatic tissues, transforming CsA into a potent single therapeutic for SLE.
Collapse
Affiliation(s)
- Raghu Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Dianxiong Zou
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Sandeep K. Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Biology of Inflammation Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | |
Collapse
|
31
|
Song J, Zhao L, Li Y. Comprehensive bioinformatics analysis of mRNA expression profiles and identification of a miRNA-mRNA network associated with lupus nephritis. Lupus 2020; 29:854-861. [PMID: 32437257 DOI: 10.1177/0961203320925155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Lupus nephritis (LN) is one of the serious complications of systemic lupus erythematosus. The aim of this study was to identify core genes and pathways involved in the pathogenesis of LN. METHODS We screened differentially expressed genes (DEGs) in LN patients using mRNA expression profile data from the Gene Expression Omnibus. The functional and pathway enrichment analysis of DEGs was performed utilizing the Database for annotation, Visualization and Integrated Discovery. Target genes with differentially expressed miRNAs (DEMIs) were predicted using the miRTarBase database, and the intersection between these target genes and DEGs was selected to be studied further. RESULTS In total, 107 common DEGs (CDEGs) were identified from the Tub_LN group and Glom_LN group, and 66 DEMIs were identified. Fifty-three hub genes and two significant modules were identified from the protein-protein interaction (PPI) network, and a miRNA-mRNA network was constructed. The CDEGs, module genes in the PPI network and genes intersecting with the CDEGs and target genes of DEMIs were all associated with the PI3K-Akt signalling pathway. CONCLUSION In summary, this study reveals some crucial genes and pathways potentially involving in the pathogenesis of LN. These findings provide a new insight for the research and treatment of LN.
Collapse
Affiliation(s)
- Jianbo Song
- Department of pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Liqin Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yuanping Li
- Department of pharmacy, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
32
|
Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020; 24:3837-3855. [PMID: 32119183 PMCID: PMC7171406 DOI: 10.1111/jcmm.14973] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.
Collapse
Affiliation(s)
- Yahong Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Division of NephrologyThe Second Affiliated Hospital of Xingtai Medical CollegeXingtaiChina
| | - Qijian Feng
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Feng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
| | - Fan Fan Hou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
33
|
Shen Y, Zhang W, Lee L, Hong M, Lee M, Chou G, Yu L, Sui Y, Chou B. RETRACTED: Down-regulated microRNA-195-5p and up-regulated CXCR4 attenuates the heart function injury of heart failure mice via inactivating JAK/STAT pathway. Int Immunopharmacol 2020; 82:106225. [PMID: 32155465 DOI: 10.1016/j.intimp.2020.106225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the integrity of the images in Figure 6, which appear to contain suspected image duplications, as detailed here: https://pubpeer.com/publications/A31DE9EEF13ED6B88BCC86A9CAC8D9 and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Most of these image duplications involve either pasting portions of one image into another, or rotating/flipping the image. Numerous additional suspected image duplications were detected within Figures 2A and 7A. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yuhua Shen
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Wen Zhang
- Department of Cardiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518106, Guangdong, China
| | - Lijun Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Mianming Hong
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Minfei Lee
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Guohui Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Li Yu
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Yuqing Sui
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China
| | - Baihua Chou
- Nanhai Hospital, Southern Medical University Carvascular Medicine, Foshan 528244, Guangdong, China.
| |
Collapse
|
34
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
35
|
Kwon YC, Chun S, Kim K, Mak A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019; 8:cells8101180. [PMID: 31575058 PMCID: PMC6829439 DOI: 10.3390/cells8101180] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of complex etiology that primarily affects women of childbearing age. The development of SLE is attributed to the breach of immunological tolerance and the interaction between SLE-susceptibility genes and various environmental factors, resulting in the production of pathogenic autoantibodies. Working in concert with the innate and adaptive arms of the immune system, lupus-related autoantibodies mediate immune-complex deposition in various tissues and organs, leading to acute and chronic inflammation and consequent end-organ damage. Over the past two decades or so, the impact of genetic susceptibility on the development of SLE has been well demonstrated in a number of large-scale genetic association studies which have uncovered a large fraction of genetic heritability of SLE by recognizing about a hundred SLE-susceptibility loci. Integration of genetic variant data with various omics data such as transcriptomic and epigenomic data potentially provides a unique opportunity to further understand the roles of SLE risk variants in regulating the molecular phenotypes by various disease-relevant cell types and in shaping the immune systems with high inter-individual variances in disease susceptibility. In this review, the catalogue of SLE susceptibility loci will be updated, and biological signatures implicated by the SLE-risk variants will be critically discussed. It is optimistically hoped that identification of SLE risk variants will enable the prognostic and therapeutic biomarker armamentarium of SLE to be strengthened, a major leap towards precision medicine in the management of the condition.
Collapse
Affiliation(s)
- Young-Chang Kwon
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222–1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Sehwan Chun
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| | - Anselm Mak
- Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| |
Collapse
|
36
|
Wu BX, Zhao LD, Zhang X. CXCR4 and CXCR5 orchestrate dynamic germinal center reactions and may contribute to the pathogenesis of systemic lupus erythematosus. Cell Mol Immunol 2019; 16:724-726. [PMID: 31160759 DOI: 10.1038/s41423-019-0244-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 05/11/2019] [Indexed: 01/23/2023] Open
Affiliation(s)
- Bing-Xuan Wu
- Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College Hospital, 100730, Beijing, China
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College Hospital, 100730, Beijing, China.
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Medical Epigenetics Research Center, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College Hospital, 100730, Beijing, China.
| |
Collapse
|
37
|
Regulation of autoimmune disease by the E3 ubiquitin ligase Itch. Cell Immunol 2019; 340:103916. [PMID: 31126634 DOI: 10.1016/j.cellimm.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Itch is a HECT type E3 ubiquitin ligase that is required to prevent the development of autoimmune disease in both mice and humans. Itch is expressed in most mammalian cell types, and, based on published data, it regulates many cellular pathways ranging from T cell differentiation to liver tumorigenesis. Since 1998, when Itch was first discovered, hundreds of publications have described mechanisms through which Itch controls various biologic activities in both immune and non-immune cells. Other studies have provided insight into how Itch catalytic activity is regulated. However, while autoimmunity is the primary clinical feature that occurs in both mice and humans lacking Itch, and Itch control of immune cell function has been well-studied, it remains unclear how Itch prevents the emergence of autoimmune disease. In this review, we explore recent discoveries that advance our understanding of how Itch regulates immune cell biology, and the extent to which these clarify how Itch prevents autoimmune disease. Additionally, we discuss how molecular regulators of Itch impact its ability to control these processes, as this may provide clues on how to therapeutically target Itch to treat patients with autoimmune disease.
Collapse
|
38
|
Geng L, Tang X, Zhou K, Wang D, Wang S, Yao G, Chen W, Gao X, Chen W, Shi S, Shen N, Feng X, Sun L. MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Mol Immunol 2019; 16:260-274. [PMID: 30886422 PMCID: PMC6460486 DOI: 10.1038/cmi.2018.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are critical for immune regulation. Although several microRNAs (miRNAs) have been shown to participate in autoimmune pathogenesis by affecting lymphocyte development and function, the roles of miRNAs in MSC dysfunction in autoimmune diseases remain unclear. Here, we show that patients with systemic lupus erythematosus (SLE) display a unique miRNA signature in bone marrow-derived MSCs (BMSCs) compared with normal controls, among which miR-663 is closely associated with SLE disease activity. MiR-663 inhibits the proliferation and migration of BMSCs and impairs BMSC-mediated downregulation of follicular T helper (Tfh) cells and upregulation of regulatory T (Treg) cells by targeting transforming growth factor β1 (TGF-β1). MiR-663 overexpression weakens the therapeutic effect of BMSCs, while miR-663 inhibition improves the remission of lupus disease in MRL/lpr mice. Thus, miR-663 is a key mediator of SLE BMSC regulation and may serve as a new therapeutic target for the treatment of lupus.
Collapse
Affiliation(s)
- Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Kangxing Zhou
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Shiying Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China
| | - Xiang Gao
- Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 210000, Nanjing, China
| | - Wanjun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, 20892-2190, Bethesda, MD, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, 19104-6004, Philadelphia, PA, USA
| | - Nan Shen
- Joint Molecular Rheumatology Laboratory of the Institute of Health Sciences and Shanghai Renji Hospital, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, China.
| |
Collapse
|
39
|
Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019; 99:1-14. [PMID: 30773373 DOI: 10.1016/j.jaut.2019.01.013] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-21 (IL-21), an autocrine cytokine predominantly produced by follicular helper T (Tfh) and T helper 17 (Th17) cells, has been proven to play an important role in the immune system, for example, by promoting proliferation and the development of Tfh and Th17 cells, balancing helper T cell subsets, inducing B cell generation and differentiation into plasma cells, and enhancing the production of immunoglobulin. These effects are mainly mediated by activation of the JAK/STAT, MAPK and PI3K pathways. Some IL-21 target genes, such as B lymphocyte induced maturation protein-1 (Blimp-1), suppressor of cytokine signaling (SOCS), CXCR5 and Bcl-6, play important roles in the immune response. Therefore, IL-21 has been linked to autoimmune diseases. Indeed, IL-21 levels are increased in the peripheral blood and tissues of patients with systematic lupus erythematosus (SLE), rheumatoid arthritis (RA), type 1 diabetes (T1D), immune thrombocytopenia (ITP), primary Sjogren's syndrome (pSS), autoimmune thyroid disease (AITD) and psoriasis. This increased IL-21 even positively associates with Tfh cells, plasma cells, autoantibodies and disease activity in SLE and RA. Additionally, IL-21 has been utilized as a therapeutic target in SLE, RA, T1D and psoriatic mouse models. Profoundly, clinical trials have shown safety and improvement in RA patients. However, tolerance and long-term pharmacodynamics effects with low bioavailability have been found in SLE patients. Therefore, this review aims to summarize the latest progress on IL-21 function and its signaling pathway and discuss the role of IL-21 in the pathogenesis of and therapy for autoimmune diseases, with the hope of providing potential therapeutic and diagnostic strategies for clinical use.
Collapse
Affiliation(s)
- Di Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Yongjian Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, PR China.
| |
Collapse
|
40
|
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019; 10:585. [PMID: 31507535 PMCID: PMC6718456 DOI: 10.3389/fendo.2019.00585] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.
Collapse
Affiliation(s)
- Eva M. García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - César A. Santiago
- Macromolecular X-Ray Crystallography Unit, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yasmina Juarranz
- Department Cell Biology, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
- *Correspondence: Mario Mellado
| |
Collapse
|
41
|
Barrera-Vargas A, Gómez-Martín D, Carmona-Rivera C, Merayo-Chalico J, Torres-Ruiz J, Manna Z, Hasni S, Alcocer-Varela J, Kaplan MJ. Differential ubiquitination in NETs regulates macrophage responses in systemic lupus erythematosus. Ann Rheum Dis 2018; 77:944-950. [PMID: 29588275 PMCID: PMC6560641 DOI: 10.1136/annrheumdis-2017-212617] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To assess if ubiquitinated proteins potentially present in neutrophil extracellular traps (NETs) can modify cellular responses and induce inflammatory mechanisms in patients with systemic lupus erythematosus (SLE) and healthy subjects. MATERIALS AND METHODS We studied 74 subjects with SLE and 77 healthy controls. Neutrophils and low-density granulocytes were isolated, and NETs were induced. Ubiquitin content was quantified in NETs by western blot analysis, ELISA and immunofluorescence microscopy, while ubiquitination of NET proteins was assessed by immunoprecipitation. Monocyte-derived macrophages from SLE and controls were isolated and stimulated with NETs or ubiquitin. Calcium flux and cytokine synthesis were measured following these stimuli. RESULTS NETs contain ubiquitinated proteins, with a lower expression of polyubiquitinated proteins in subjects with SLE than in controls. Myeloperoxidase (MPO) is present in ubiquitinated form in NETs. Patients with SLE develop antiubiquitinated MPO antibodies, and titres positively correlate with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (P<0.01), and negatively correlate with complement components (P<0.01). Stimulation of monocyte-derived macrophages with NETs or with ubiquitin led to enhanced calcium flux. In addition, stimulation with NETs led to enhanced cytokine (tumour necrosis factor-α and interleukin-10) production in macrophages from patients with SLE when compared with controls, which was hampered by inhibition of NET internalisation by macrophages. CONCLUSION This is the first study to find ubiquitinated proteins in NETs, and evidence for adaptive immune responses directed towards ubiquitinated NET proteins in SLE. The distinct differences in ubiquitin species profile in NETs compared with healthy controls may contribute to dampened anti-inflammatory responses observed in SLE. These results also support a role for extracellular ubiquitin in inflammation in SLE.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology and Red de Apoyo a la Investigación, CIC-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Javier Merayo-Chalico
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Zerai Manna
- Lupus Clinical Research Unit, Intramural Research Program, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Unit, Intramural Research Program, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
42
|
Tang P, Wang JM. Chemokines: the past, the present and the future. Cell Mol Immunol 2018; 15:295-298. [PMID: 29578534 PMCID: PMC6052843 DOI: 10.1038/cmi.2018.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Peng Tang
- Department of Breast Surgery, Southwest Hospital, Army Medical University, 400038, Chongqing, China
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
43
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
44
|
Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell Mol Immunol 2018; 16:367-379. [PMID: 29563616 DOI: 10.1038/s41423-018-0010-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 01/02/2023] Open
Abstract
A hallmark of systemic lupus erythematosus (SLE) is the breaking of B-cell tolerance with the generation of high-affinity autoantibodies; however, the antibody-independent features of the B-cell compartment in SLE are less understood. In this study, we performed an extensive examination of B-cell subsets and their proinflammatory properties in a Chinese cohort of new-onset SLE patients. We observed that SLE patients exhibited an increased frequency of transitional B cells compared with healthy donors and rheumatoid arthritis patients. Plasma from SLE patients potently promoted the survival of transitional B cells in a type I IFN-dependent manner, which can be recapitulated by direct IFN-α treatment. Furthermore, the effect of IFN-α on enhanced survival of transitional B cells was associated with NF-κB pathway activation and reduced expression of the pro-apoptotic molecule Bax. Transitional B cells from SLE patients harbored a higher capacity to produce proinflammatory cytokine IL-6, which was also linked to the overactivated type I IFN pathway. In addition, the frequency of IL-6-producing transitional B cells was positively correlated with disease activity in SLE patients, and these cells were significantly reduced after short-term standard therapies. Thus, the current study provides a direct link between type I IFN pathway overactivation and the abnormally high frequency and proinflammatory properties of transitional B cells in active SLE patients, which contributes to the understanding of the roles of type I IFNs and B cells in the pathogenesis of SLE.
Collapse
|