1
|
Heck AJR. Distinct appearances of circulatory and secretory IgM demarcated by CD5L. Semin Arthritis Rheum 2025; 72S:152683. [PMID: 40037999 DOI: 10.1016/j.semarthrit.2025.152683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
IgM is an important human immunoglobulin present in our blood, but also in mucosa and body fluids such as saliva, tears and breast milk. In this manuscript Heck describes recent findings, namely that the CD5L protein is always attached to circulatory IgM but not to secretory IgM.
Collapse
Affiliation(s)
- Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, the Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
2
|
Mu YF, Mao ZH, Pan SK, Liu DW, Liu ZS, Wu P, Gao ZX. Macrophage-driven inflammation in acute kidney injury: Therapeutic opportunities and challenges. Transl Res 2025; 278:1-9. [PMID: 39954848 DOI: 10.1016/j.trsl.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Acute kidney injury (AKI) is increasingly being recognized as a systemic disorder associated with significant morbidity and mortality. AKI manifests with extensive cellular damage, necrosis, and an intense inflammatory response, often leading to late-stage interstitial fibrosis. Although the mechanisms underlying renal injury and repair remain poorly understood, macrophages (pivotal inflammatory cells) play central roles in AKI. They undergo polarization into pro-inflammatory and anti-inflammatory phenotypes, contributing dynamically to both the injury and repair processes while maintaining homeostasis. Macrophages modulate microenvironmental inflammation by releasing extracellular vesicles (EVs) containing pro- or anti-inflammatory signaling molecules, thereby influencing the regulation of tissue injury. The injured tissue cells release EVs and activate local macrophages to initiate these responses. Our bibliometric analysis indicated that a shift has occurred in AKI macrophage research towards therapeutic strategies and clinical translation, focusing on macrophage-targeted therapies, including exosomes and nanoparticles. This review highlights the roles and mechanisms of macrophage activation, phenotypic polarization, and trans-differentiation in AKI and discusses macrophage-based approaches for AKI prevention and treatment. Understanding the involvement of macrophages in AKI contributes to the comprehension of related immune mechanisms and lays the groundwork for novel diagnostic and therapeutic avenues.
Collapse
Affiliation(s)
- Ya-Fan Mu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zi-Hui Mao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Shao-Kang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Peng Wu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| | - Zhong-Xiuzi Gao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Institute of Nephrology, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China; Henan Province Research Center for Kidney Disease, Zhengzhou, China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China.
| |
Collapse
|
3
|
Yang H, Luo Y, Lai X. CD5L induces inflammation and survival in RA-FLS through ERK1/2 MAPK pathway. Autoimmunity 2024; 57:2201412. [PMID: 38425093 DOI: 10.1080/08916934.2023.2201412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/01/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To explore the effect of CD5-like molecule (CD5L) on rheumatoid arthritis (RA) fibroblast-like synoviocytes (RA-FLS) and the relative molecular mechanism of CD5L in it. METHODS Recombinant protein CD5L was used to stimulate the cultured RA-FLS cells. The inflammation-related cytokines were determined by real time-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The signal molecules and apoptosis-related molecules were detected by western blot assay (WB), and cell counting kit-8 (CCK-8) was used to detect the proliferation. RESULTS CD5L can increase the production of IL-6, IL-8, and TNF-α and this effect can be inhibited by signal pathway inhibitor. At the same time, CD5L activated ERK1/2 MAPK signal, inhibitor treatment can weaken the intensity of phosphorylation. In addition, CD5L can enhance the proliferation ability of RA-FLS. CONCLUSION CD5L induces the production of inflammatory cytokines in RA-FLS through the ERK1/2 MAPK pathway and increases cell survival.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Chen Q, Ishii K, Mori H, Nishijima A, Arai S, Miyazaki T, Rosenthal PB. Cryo-EM reveals structural basis for human AIM/CD5L recognition of polymeric immunoglobulin M. Nat Commun 2024; 15:9387. [PMID: 39477921 PMCID: PMC11525585 DOI: 10.1038/s41467-024-53615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Cell surface scavenger receptors contribute to homoeostasis and the response to pathogens and products associated with damage by binding to common molecular features on a wide range of targets. Apoptosis inhibitor of macrophage (AIM/CD5L) is a soluble protein belonging to the scavenger receptor cysteine-rich (SRCR) superfamily that contributes to prevention of a wide range of diseases associated with infection, inflammation, and cancer. AIM forms complexes with IgM pentamers which helps maintain high-levels of circulating AIM in serum for subsequent activation on release from the complex. The structural basis for AIM recognition of IgM as well as other binding targets is unknown. Here we apply cryogenic electron microscopy imaging (cryo-EM) to show how interfaces on both of AIM's C-terminal SRCR domains interact with the Fcμ constant region and J chain components of the IgM core. Both SRCR interfaces are also shown to contribute interactions important for AIM binding to damage-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Qu Chen
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Kazuhiro Ishii
- The Institute for AIM Medicine, Tokyo, Japan
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Mori
- The Institute for AIM Medicine, Tokyo, Japan
| | | | - Satoko Arai
- The Institute for AIM Medicine, Tokyo, Japan.
| | - Toru Miyazaki
- The Institute for AIM Medicine, Tokyo, Japan.
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
5
|
Wang Y, Su C, Ji C, Xiao J. CD5L associates with IgM via the J chain. Nat Commun 2024; 15:8397. [PMID: 39333069 PMCID: PMC11437284 DOI: 10.1038/s41467-024-52175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
CD5 antigen-like (CD5L), also known as Spα or AIM (Apoptosis inhibitor of macrophage), emerges as an integral component of serum immunoglobulin M (IgM). However, the molecular mechanism underlying the interaction between IgM and CD5L has remained elusive. In this study, we present a cryo-electron microscopy structure of the human IgM pentamer core in complex with CD5L. Our findings reveal that CD5L binds to the joining chain (J chain) in a Ca2+-dependent manner and further links to IgM via a disulfide bond. We further corroborate recently published data that CD5L reduces IgM binding to the mucosal transport receptor pIgR, but does not impact the binding of the IgM-specific receptor FcμR. Additionally, CD5L does not interfere with IgM-mediated complement activation. These results offer a more comprehensive understanding of IgM and shed light on the function of the J chain in the immune system.
Collapse
Affiliation(s)
- Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
6
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
7
|
Li Y, Hu C, Zhai P, Zhang J, Jiang J, Suo J, Hu B, Wang J, Weng X, Zhou X, Billiar TR, Kellum JA, Deng M, Peng Z. Fibroblastic reticular cell-derived exosomes are a promising therapeutic approach for septic acute kidney injury. Kidney Int 2024; 105:508-523. [PMID: 38163633 DOI: 10.1016/j.kint.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.
Collapse
Affiliation(s)
- Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jun Jiang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jinmeng Suo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Jing Wang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan, China; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Intensive Care Unit of the second affiliated Hospital of Hainan Medical College, Haikou, Hainan, China.
| |
Collapse
|
8
|
McGettigan SE, Aira LE, Kumar G, Ballet R, Butcher EC, Baumgarth N, Debes GF. Secreted IgM modulates IL-10 expression in B cells. Nat Commun 2024; 15:324. [PMID: 38182585 PMCID: PMC10773282 DOI: 10.1038/s41467-023-44382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
IL-10+ B cells are critical for immune homeostasis and restraining immune responses in infection, cancer, and inflammation; however, the signals that govern IL-10+ B cell differentiation are ill-defined. Here we find that IL-10+ B cells expand in mice lacking secreted IgM ((s)IgM-/-) up to 10-fold relative to wildtype (WT) among all major B cell and regulatory B cell subsets. The IL-10+ B cell increase is polyclonal and presents within 24 hours of birth. In WT mice, sIgM is produced prenatally and limits the expansion of IL-10+ B cells. Lack of the high affinity receptor for sIgM, FcμR, in B cells translates into an intermediate IL-10+ B cell phenotype relative to WT or sIgM-/- mice. Our study thus shows that sIgM regulates IL-10 programming in B cells in part via B cell-expressed FcμR, thereby revealing a function of sIgM in regulating immune homeostasis.
Collapse
Affiliation(s)
- Shannon Eileen McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lazaro Emilio Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Romain Ballet
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
9
|
Cao Y, Hu B, Fan Y, Wang W, Chi M, Nasser MI, Ma K, Liu C. The effects of apoptosis inhibitor of macrophage in kidney diseases. Eur J Med Res 2024; 29:21. [PMID: 38178221 PMCID: PMC10765713 DOI: 10.1186/s40001-023-01597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Kidney disease is a progressive and irreversible condition in which immunity is a contributing factor that endangers human health. It is widely acknowledged that macrophages play a significant role in developing and causing numerous kidney diseases. The increasing focus on the mechanism by which macrophages express apoptosis inhibitor of macrophages (AIM) in renal diseases has been observed. AIM is an apoptosis inhibitor that stops different things that cause apoptosis from working. This keeps AIM-bound cell types alive. Notably, the maintenance of immune cell viability regulates immunity. As our investigation progressed, we concluded that AIM has two sides when it comes to renal diseases. AIM can modulate renal phagocytosis, expedite the elimination of renal tubular cell fragments, and mitigate tissue injury. AIM can additionally exacerbate the development of renal fibrosis and kidney disease by prolonging inflammation. IgA nephropathy (IgAN) may also worsen faster if more protein is in the urine. This is because IgA and immunoglobulin M are found together and expressed. In the review, we provide a comprehensive overview of prior research and concentrate on the impacts of AIM on diverse subcategories of nephropathies. We discovered that AIM is closely associated with renal diseases by playing a positive or negative role in the onset, progression, or cure of kidney disease. AIM is thus a potentially effective therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yixia Cao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Boyan Hu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yunhe Fan
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Wang
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
- Renal Department and Nephrology Institute, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China.
| |
Collapse
|
10
|
Kotol D, Woessmann J, Hober A, Álvez MB, Tran Minh KH, Pontén F, Fagerberg L, Uhlén M, Edfors F. Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Cancers (Basel) 2023; 15:4764. [PMID: 37835457 PMCID: PMC10571728 DOI: 10.3390/cancers15194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.
Collapse
Affiliation(s)
- David Kotol
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Jakob Woessmann
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Andreas Hober
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - María Bueno Álvez
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Khue Hua Tran Minh
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Pontén
- Rudbeck Laboratory, Uppsala University, 752 36 Uppsala, Sweden;
| | - Linn Fagerberg
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Mathias Uhlén
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Edfors
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| |
Collapse
|
11
|
Yang H, Luo Y, Lai X. The comprehensive role of apoptosis inhibitor of macrophage (AIM) in pathological conditions. Clin Exp Immunol 2023; 212:184-198. [PMID: 36427004 PMCID: PMC10243866 DOI: 10.1093/cei/uxac095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 08/19/2023] Open
Abstract
CD5L/AIM (apoptosis inhibitor of macrophage), as an important component in maintaining tissue homeostasis and inflammation, is mainly produced and secreted by macrophages but partially dissociated and released from blood AIM-IgM. AIM plays a regulatory role in intracellular physiological mechanisms, including lipid metabolism and apoptosis. AIM not only increases in autoimmune diseases, directly targets liver cells in liver cancer and promotes cell clearance in acute kidney injury, but also causes arteriosclerosis and cardiovascular events, and aggravates inflammatory reactions in lung diseases and sepsis. Obviously, AIM plays a pleiotropic role in the body. However, to date, studies have failed to decipher the mechanisms behind its different roles (beneficial or harmful) in inflammatory regulation. The inflammatory response is a "double-edged sword," and maintaining balance is critical for effective host defense while minimizing the adverse side effects of acute inflammation. Enhancing the understanding of AIM function could provide the theoretical basis for new therapies in these pathological settings. In this review, we discuss recent studies on the roles of AIM in lipid metabolism, autoimmune diseases and organic tissues, such as liver cancer, myocardial infarction, and kidney disease.
Collapse
Affiliation(s)
- Huiqing Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Luo
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaofei Lai
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Peters KE, Bringans SD, O’Neill RS, Lumbantobing TSC, Lui JKC, Davis TME, Hansen MK, Lipscombe RJ. Canagliflozin Attenuates PromarkerD Diabetic Kidney Disease Risk Prediction Scores. J Clin Med 2023; 12:3247. [PMID: 37176686 PMCID: PMC10179173 DOI: 10.3390/jcm12093247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
PromarkerD is a biomarker-based blood test that predicts kidney function decline in people with type 2 diabetes (T2D) who may otherwise be missed by current standard of care tests. This study examined the association between canagliflozin and change in PromarkerD score (Δ score) over a three-year period in T2D participants in the CANagliflozin cardioVascular Assessment Study (CANVAS). PromarkerD scores were measured at baseline and Year 3 in 2008 participants with preserved kidney function (baseline eGFR ≥60 mL/min/1.73 m2). Generalized estimating equations were used to assess the effect of canagliflozin versus placebo on PromarkerD scores. At baseline, the participants (mean age 62 years, 32% females) had a median PromarkerD score of 3.9%, with 67% of participants categorized as low risk, 14% as moderate risk, and 19% as high risk for kidney function decline. After accounting for the known acute drop in eGFR following canagliflozin initiation, there was a significant treatment-by-time interaction (p < 0.001), whereby participants on canagliflozin had decreased mean PromarkerD scores from baseline to Year 3 (Δ score: -1.0% [95% CI: -1.9%, -0.1%]; p = 0.039), while the scores of those on placebo increased over the three-year period (Δ score: 6.4% [4.9%, 7.8%]; p < 0.001). When stratified into PromarkerD risk categories, participants with high risk scores at baseline who were randomized to canagliflozin had significantly lower scores at Year 3 (Δ score: -5.6% [-8.6%, -2.5%]; p < 0.001), while those on placebo retained high scores (Δ score: 4.5% [0.3%, 8.8%]; p = 0.035). This post hoc analysis of data from CANVAS showed that canagliflozin significantly lowered PromarkerD risk scores, with the effect greatest in those T2D participants who were classified at study entry as at high risk of a subsequent decline in kidney function.
Collapse
Affiliation(s)
- Kirsten E. Peters
- Proteomics International, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Scott D. Bringans
- Proteomics International, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Ronan S. O’Neill
- Proteomics International, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | | | - James K. C. Lui
- Proteomics International, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Timothy M. E. Davis
- Medical School, The University of Western Australia, Fremantle Hospital, Fremantle, WA 6959, Australia
| | | | - Richard J. Lipscombe
- Proteomics International, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| |
Collapse
|
13
|
Rahmel T, Kraft F, Haberl H, Achtzehn U, Brandenburger T, Neb H, Jarczak D, Dietrich M, Magunia H, Zimmer F, Basten J, Landgraf C, Koch T, Zacharowski K, Weigand MA, Rosenberger P, Ullrich R, Meybohm P, Nierhaus A, Kindgen-Milles D, Timmesfeld N, Adamzik M. Intravenous IgM-enriched immunoglobulins in critical COVID-19: a multicentre propensity-weighted cohort study. Crit Care 2022; 26:204. [PMID: 35799196 PMCID: PMC9260992 DOI: 10.1186/s13054-022-04059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background A profound inflammation-mediated lung injury with long-term acute respiratory distress and high mortality is one of the major complications of critical COVID-19. Immunoglobulin M (IgM)-enriched immunoglobulins seem especially capable of mitigating the inflicted inflammatory harm. However, the efficacy of intravenous IgM-enriched preparations in critically ill patients with COVID-19 is largely unclear. Methods In this retrospective multicentric cohort study, 316 patients with laboratory-confirmed critical COVID-19 were treated in ten German and Austrian ICUs between May 2020 and April 2021. The primary outcome was 30-day mortality. Analysis was performed by Cox regression models. Covariate adjustment was performed by propensity score weighting using machine learning-based SuperLearner to overcome the selection bias due to missing randomization. In addition, a subgroup analysis focusing on different treatment regimens and patient characteristics was performed. Results Of the 316 ICU patients, 146 received IgM-enriched immunoglobulins and 170 cases did not, which served as controls. There was no survival difference between the two groups in terms of mortality at 30 days in the overall cohort (HRadj: 0.83; 95% CI: 0.55 to 1.25; p = 0.374). An improved 30-day survival in patients without mechanical ventilation at the time of the immunoglobulin treatment did not reach statistical significance (HRadj: 0.23; 95% CI: 0.05 to 1.08; p = 0.063). Also, no statistically significant difference was observed in the subgroup when a daily dose of ≥ 15 g and a duration of ≥ 3 days of IgM-enriched immunoglobulins were applied (HRadj: 0.65; 95% CI: 0.41 to 1.03; p = 0.068). Conclusions Although we cannot prove a statistically reliable effect of intravenous IgM-enriched immunoglobulins, the confidence intervals may suggest a clinically relevant effect in certain subgroups. Here, an early administration (i.e. in critically ill but not yet mechanically ventilated COVID-19 patients) and a dose of ≥ 15 g for at least 3 days may confer beneficial effects without concerning safety issues. However, these findings need to be validated in upcoming randomized clinical trials. Trial registrationDRKS00025794, German Clinical Trials Register, https://www.drks.de. Registered 6 July 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04059-0.
Collapse
|
14
|
Okanoue T, Yamaguchi K, Shima T, Mitsumoto Y, Mizuno M, Katayama T, Seko Y, Moriguchi M, Umemura A, Itoh Y, Miyazaki T. Serum levels of immunoglobulin M-free inhibitors of macrophage/CD5L as a predictive and early diagnostic marker for nonalcoholic steatohepatitis-associated hepatocellular carcinoma. Hepatol Res 2022; 52:998-1008. [PMID: 35939571 DOI: 10.1111/hepr.13826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The apoptosis inhibitor of macrophage (AIM) is usually associated with the immunoglobulin M (IgM) pentamer in the blood and is dissociated from IgM in various diseases, including hepatocellular carcinoma (HCC) in nonalcoholic steatohepatitis (NASH). We aimed to elucidate whether IgM-free AIM (fAIM) is useful for detecting latent HCC in NASH. METHODS This research consisted of two cohort studies. The levels of serum fAIM, alpha-fetoprotein (AFP), and des-gamma carboxy prothrombin (DCP) of 18 NASH patients who developed HCC were measured during the follow-up period before HCC diagnosis (median, 4.7 years). In total, 199 patients with nonalcoholic fatty liver disease (NAFLD) were included in the HCC survey. The serum fAIM levels were analyzed using enzyme-linked immunosorbent assays. RESULTS In the cohort of 18 patients with HCC, 12 had high fAIM at the time of the initial blood sample, three had normal fAIM levels throughout the follow-up period, and three had fAIM elevated from normal to positive. The positive ratio of fAIM prior to HCC diagnosis remained significantly higher than that of AFP and DCP, and the fAIM ratio gradually increased. In a survey of 199 non-HCC NAFLD patients, a Cox regression analysis using independent variables, such as AFP, fAIM, age, albumin, bilirubin, and fibrosis stage, revealed that fAIM and AFP were significantly associated with the incidence of HCC. CONCLUSIONS During the development of NASH-HCC, AIM activation in blood appears to start even before HCC is diagnostically detectable. Thus, the serum IgM-free AIM levels could be a new, sensitive biomarker for latent NASH-HCC.
Collapse
Affiliation(s)
- Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Masayuki Mizuno
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Takayuki Katayama
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toru Miyazaki
- The Institute for AIM Medicine, TWINS, Tokyo, Japan.,LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Abstract
Sepsis-associated AKI is a life-threatening complication that is associated with high morbidity and mortality in patients who are critically ill. Although it is clear early supportive interventions in sepsis reduce mortality, it is less clear that they prevent or ameliorate sepsis-associated AKI. This is likely because specific mechanisms underlying AKI attributable to sepsis are not fully understood. Understanding these mechanisms will form the foundation for the development of strategies for early diagnosis and treatment of sepsis-associated AKI. Here, we summarize recent laboratory and clinical studies, focusing on critical factors in the pathophysiology of sepsis-associated AKI: microcirculatory dysfunction, inflammation, NOD-like receptor protein 3 inflammasome, microRNAs, extracellular vesicles, autophagy and efferocytosis, inflammatory reflex pathway, vitamin D, and metabolic reprogramming. Lastly, identifying these molecular targets and defining clinical subphenotypes will permit precision approaches in the prevention and treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Shuhei Kuwabara
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Shuken SR, Rutledge J, Iram T, Losada PM, Wilson EN, Andreasson KI, Leib RD, Wyss-Coray T. Limited Proteolysis-Mass Spectrometry Reveals Aging-Associated Changes in Cerebrospinal Fluid Protein Abundances and Structures. NATURE AGING 2022; 2:379-388. [PMID: 36741774 PMCID: PMC9893943 DOI: 10.1038/s43587-022-00196-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebrospinal fluid (CSF) proteins and their structures have been implicated repeatedly in aging and neurodegenerative diseases. Limited proteolysis-mass spectrometry (LiP-MS) is a method that enables proteome-wide screening for changes in both protein abundance and structure. To screen for novel aging-associated changes in the CSF proteome, we performed LiP-MS on CSF from young and old mice with a modified analysis pipeline. We found 38 protein groups change in abundance with aging, most dominantly immunoglobulins of the IgM subclass. We discovered six high-confidence candidates that appeared to change in structure with aging, of which Kng1, Itih2, Lp-PLA2, and 14-3-3 proteins have binding partners or proteoforms known previously to change in the brain with Alzheimer's disease. Intriguingly, using orthogonal validation by Western blot we found the LiP-MS hit Cd5l forms a covalent complex with IgM in mouse and human CSF whose abundance increases with aging. SOMAmer probe signals for all six LiP-MS hits in human CSF, especially 14-3-3 proteins, significantly associate with several clinical features relevant to cognitive function and neurodegeneration. Together, our findings show that LiP-MS can uncover age-related structural changes in CSF with relevance to neurodegeneration.
Collapse
Affiliation(s)
- Steven R. Shuken
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jarod Rutledge
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Patricia Moran Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Edward N. Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Program in Immunology, Stanford University, Stanford, CA, USA
| | - Ryan D. Leib
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,To whom correspondence should be addressed:
| |
Collapse
|
17
|
Shimizu T, Sawada T, Asai T, Kanetsuki Y, Hirota J, Moriguchi M, Nakajima T, Miyazaki T, Okanoue T. Hepatocellular carcinoma diagnosis using a novel electrochemiluminescence immunoassay targeting serum IgM-free AIM. Clin J Gastroenterol 2022; 15:41-51. [PMID: 34981443 PMCID: PMC8858287 DOI: 10.1007/s12328-021-01567-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent increases in the number of patients with non-alcoholic steatohepatitis (NASH) warrant the identification of biomarkers for early detection of hepatocellular carcinoma (HCC) associated with NASH (NASH-HCC). IgM-free apoptosis inhibitor of macrophage (AIM), which generally associates with IgM in blood and exerts its biological function by dissociation from IgM, may serve as an effective biomarker for NASH-HCC. Here, we established a fully automatic and high-throughput electrochemiluminescence immunoassay (ECLIA) to measure IgM-free AIM and investigated its efficacy in diagnosing NASH-HCC and viral HCC. METHODS IgM-free AIM levels were measured in 212 serum samples from patients with, or without, HCC related to NASH, hepatitis B virus, and hepatitis C virus, using ECLIA. We also developed an ECLIA for measuring both IgM-free and IgM-bound AIM and investigated the existing form of AIM in blood by size-exclusion chromatography. RESULTS IgM-free AIM levels were significantly higher in the HCC group than in the non-HCC group, regardless of the associated pathogenesis. Moreover, the area under the receiver operating curve for IgM-free AIM was greater than that for conventional HCC biomarkers, alpha-fetoprotein or des-γ-carboxy prothrombin, regardless of the cancer stage. ECLIA counts of IgM-free AIM derived from samples fractionated by size-exclusion chromatography were significantly higher in patients with NASH-HCC than in healthy volunteers and in patients with non-alcoholic fatty liver and NASH. CONCLUSIONS Serum IgM-free AIM may represent a universal HCC diagnostic marker superior to alpha-fetoprotein or des-γ-carboxy prothrombin. Our newly established ECLIA could contribute to further clinical studies on AIM and in vitro HCC diagnosis.
Collapse
Affiliation(s)
- Tomo Shimizu
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan.
| | - Takashi Sawada
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Tomohide Asai
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Yuka Kanetsuki
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Jiro Hirota
- Tsukuba Research Institute Research and Development Division, Sekisui Medical Co., Ltd., 3-3-1, Koyodai, Ryugasaki, Ibaraki, 301-0852, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomoaki Nakajima
- Department of Hepatology, Sapporo Kosei General Hospital, Hokkaido, 060-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,LEAP, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan.,Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,The Institute for AIM Medicine, Tokyo, 101-0047, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, 564-0013, Japan
| |
Collapse
|
18
|
3D Structures of IgA, IgM, and Components. Int J Mol Sci 2021; 22:ijms222312776. [PMID: 34884580 PMCID: PMC8657937 DOI: 10.3390/ijms222312776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Immunoglobulin G (IgG) is currently the most studied immunoglobin class and is frequently used in antibody therapeutics in which its beneficial effector functions are exploited. IgG is composed of two heavy chains and two light chains, forming the basic antibody monomeric unit. In contrast, immunoglobulin A (IgA) and immunoglobulin M (IgM) are usually assembled into dimers or pentamers with the contribution of joining (J)-chains, which bind to the secretory component (SC) of the polymeric Ig receptor (pIgR) and are transported to the mucosal surface. IgA and IgM play a pivotal role in various immune responses, especially in mucosal immunity. Due to their structural complexity, 3D structural study of these molecules at atomic scale has been slow. With the emergence of cryo-EM and X-ray crystallographic techniques and the growing interest in the structure-function relationships of IgA and IgM, atomic-scale structural information on IgA-Fc and IgM-Fc has been accumulating. Here, we examine the 3D structures of IgA and IgM, including the J-chain and SC. Disulfide bridging and N-glycosylation on these molecules are also summarized. With the increasing information of structure–function relationships, IgA- and IgM-based monoclonal antibodies will be an effective option in the therapeutic field.
Collapse
|
19
|
IgM Immunoglobulin Influences Recovery after Cervical Spinal Cord Injury by Modulating the IgG Autoantibody Response. eNeuro 2021; 8:ENEURO.0491-19.2021. [PMID: 34413082 PMCID: PMC8431822 DOI: 10.1523/eneuro.0491-19.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) results in the development of detrimental autoantibodies against the lesioned spinal cord. IgM immunoglobulin maintains homeostasis against IgG-autoantibody responses, but its effect on SCI recovery remains unknown. In the present study we investigated the role of IgM immunoglobulin in influencing recovery after SCI. To this end, we induced cervical SCI at the C6/C7 level in mice that lacked secreted IgM immunoglobulin [IgM-knock-out (KO)] and their wild-type (WT) littermate controls. Overall, the absence of secretory IgM resulted in worse outcomes as compared with WT mice with SCI. At two weeks after injury, IgM-KO mice had significantly more IgG antibodies, which fixed the complement system, in the injured spinal cord parenchyma. In addition to these findings, IgM-KO mice had more parenchymal T-lymphocytes as well as CD11b+ microglia/macrophages, which co-localized with myelin. At 10 weeks after injury, IgM-KO mice showed significant impairment in neurobehavioral recovery, such as deteriorated coordination, reduced hindlimb swing speed and print area. These neurobehavioral detriments were coupled with increased lesional tissue and myelin loss. Taken together, this study provides the first evidence for the importance of IgM immunoglobulin in modulating recovery after SCI and suggests that modulating IgM could be a novel therapeutic approach to enhance recovery after SCI.
Collapse
|
20
|
Lee JY, Arumugarajah S, Lian D, Maehara N, Haig AR, Suri RS, Miyazaki T, Gunaratnam L. Recombinant apoptosis inhibitor of macrophage protein reduces delayed graft function in a murine model of kidney transplantation. PLoS One 2021; 16:e0249838. [PMID: 33891625 PMCID: PMC8064555 DOI: 10.1371/journal.pone.0249838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/25/2021] [Indexed: 12/03/2022] Open
Abstract
Reperfusion injury following cold and warm ischemia (IRI) is unavoidable during kidney transplantation and contributes to delayed graft function (DGF) and premature graft loss. Death of tubular epithelial cells (TECs) by necrosis during IRI releases pro-inflammatory mediators (e.g. HMGB1), propagating further inflammation (necroinflammation) and tissue damage. Kidney Injury Molecule-1 (KIM-1) is a phagocytic receptor upregulated on proximal TECs during acute kidney injury. We have previously shown that renal KIM-1 protects the graft against transplant associated IRI by enabling TECs to clear apoptotic and necrotic cells, and that recognition of necrotic cells by KIM-1 is augmented in the presence of the opsonin, apoptosis inhibitor of macrophages (AIM). Here, we tested whether recombinant AIM (rAIM) could be used to mitigate transplant associated IRI. We administered rAIM or vehicle control to nephrectomised B6 mice transplanted with a single B6 donor kidney. Compared to grafts in vehicle-treated recipients, grafts from rAIM-treated mice exhibited significantly less renal dysfunction, tubular cell death, tissue damage, tubular obstruction, as well as local and systemic inflammation. Both mouse and human rAIM enhanced the clearance of necrotic cells by murine and human TECs, respectively in vitro. These data support testing of rAIM as a potential therapeutic agent to reduce DGF following kidney transplantation.
Collapse
Affiliation(s)
- Ji Yun Lee
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Shabitha Arumugarajah
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Natsumi Maehara
- Centre for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Aaron R. Haig
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Rita S. Suri
- Faculty of Medicine, Division of Nephrology, McGill University, Montreal, Quebec, Canada
| | - Toru Miyazaki
- Centre for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Lakshman Gunaratnam
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
- Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci 2021; 22:ijms22052284. [PMID: 33668983 PMCID: PMC7956327 DOI: 10.3390/ijms22052284] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcytosis of polymeric IgA and IgM from the basolateral surface to the apical side of the epithelium and subsequent secretion into mucosal fluids are mediated by the polymeric immunoglobulin receptor (pIgR). Secreted IgA and IgM have vital roles in mucosal immunity in response to pathogenic infections. Binding and recognition of polymeric IgA and IgM by pIgR require the joining chain (J chain), a small protein essential in the formation and stabilization of polymeric Ig structures. Recent studies have identified marginal zone B and B1 cell-specific protein (MZB1) as a novel regulator of polymeric IgA and IgM formation. MZB1 might facilitate IgA and IgM transcytosis by promoting the binding of J chain to Ig. In this review, we discuss the roles of pIgR in transcytosis of IgA and IgM, the roles of J chain in the formation of polymeric IgA and IgM and recognition by pIgR, and focus particularly on recent progress in understanding the roles of MZB1, a molecular chaperone protein.
Collapse
Affiliation(s)
- Hao Wei
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Immunology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Correspondence: ; Tel.: +86-(21)-54237957
| |
Collapse
|
22
|
Gong S, Ruprecht RM. Immunoglobulin M: An Ancient Antiviral Weapon - Rediscovered. Front Immunol 2020; 11:1943. [PMID: 32849652 PMCID: PMC7432194 DOI: 10.3389/fimmu.2020.01943] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recent discoveries have shed new light onto immunoglobulin M (IgM), an ancient antibody class preserved throughout evolution in all vertebrates. First, IgM – long thought to be a perfect pentamer – was shown to be asymmetric, resembling a quasi-hexamer missing one monomer and containing a gap. Second, this gap allows IgM to serve as carrier of a specific host protein, apoptosis inhibitor of macrophages (AIM), which is released to promote removal of dead-cell debris, cancer cells, or pathogens. Third, recombinant IgM delivered mucosally by passive immunization gave proof-of-concept that this antibody class can prevent mucosal simian-human immunodeficiency virus transmission in non-human primates. Finally, IgM’s role in adaptive immunity goes beyond being only a first defender to respond to pathogen invasion, as long-lived IgM plasma cells have been observed predominantly residing in the spleen. In fact, IgM produced by such cells contained somatic hypermutations and was linked to protection against lethal influenza virus challenge in murine models. Importantly, such long-lived IgM plasma cells had been induced by immunization 1 year before challenge. Together, new data on IgM function raise the possibility that vaccine strategies aimed at preventing virus acquisition could include this ancient weapon.
Collapse
Affiliation(s)
- Siqi Gong
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States.,Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ruth M Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States.,Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Sumida Y, Yoneda M, Seko Y, Ishiba H, Hara T, Toyoda H, Yasuda S, Kumada T, Hayashi H, Kobayashi T, Imajo K, Yoneda M, Tada T, Kawaguchi T, Eguchi Y, Oeda S, Takahashi H, Tomita E, Okanoue T, Nakajima A. Surveillance of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Diagnostics (Basel) 2020; 10:E579. [PMID: 32785100 PMCID: PMC7459689 DOI: 10.3390/diagnostics10080579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the leading cause of hepatocellular carcinoma (HCC), liver-related mortality, and liver transplantation. There is sufficient epidemiological cohort data to recommend the surveillance of patients with NAFLD based upon the incidence of HCC. The American Gastroenterology Association (AGA) expert review published in 2020 recommends that NAFLD patients with cirrhosis or advanced fibrosis estimated by non-invasive tests (NITs) consider HCC surveillance. NITs include the fibrosis-4 (FIB-4) index, the enhanced liver fibrosis (ELF) test, FibroScan, and MR elastography. The recommended surveillance modality is abdominal ultrasound (US), which is cost effective and noninvasive with good sensitivity. However, US is limited in obese patients and those with NAFLD. In NAFLD patients with a high likelihood of having an inadequate US, or if an US is attempted but inadequate, CT or MRI may be utilized. The GALAD score, consisting of age, gender, AFP, the lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), and the protein induced by the absence of vitamin K or antagonist-II (PIVKA-II), can help identify a high risk of HCC in NAFLD patients. Innovative parameters, including a Mac-2 binding protein glycated isomer, type IV collagen 7S, free apoptosis inhibitor of the macrophage, and a combination of single nucleoside polymorphisms, are expected to be established. Considering the large size of the NAFLD population, optimal screening tests must meet several criteria, including high sensitivity, cost effectiveness, and availability.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Hiroshi Ishiba
- Department of Gastroenterology, Japanese Redcross Kyoto daiichi Hospital, Kyoto 605-0981, Japan;
| | - Tasuku Hara
- Department of Gastroenterology, Fukuchiyama City Hospital, Fukuchiyama, Kyoto 620-8505, Japan;
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; (H.T.); (S.Y.); (T.K.)
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; (H.T.); (S.Y.); (T.K.)
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; (H.T.); (S.Y.); (T.K.)
| | - Hideki Hayashi
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (H.H.); (E.T.)
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yohokama, Kanagawa 236-0004, Japan; (T.K.); (K.I.); (M.Y.); (A.N.)
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yohokama, Kanagawa 236-0004, Japan; (T.K.); (K.I.); (M.Y.); (A.N.)
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yohokama, Kanagawa 236-0004, Japan; (T.K.); (K.I.); (M.Y.); (A.N.)
| | - Toshifumi Tada
- Department of Hepatology, Himeji Redcross Hospital, Himeji, Hyogo 670-8540, Japan;
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Yuichiro Eguchi
- Loco Medical General Institute, 1178-1 Kanada Mikatsuki Ogi, Saga 849-8501, Japan;
| | - Satoshi Oeda
- Liver Center, Saga Medical Hospital, Saga, Saga 849-8501, Japan; (H.T.); (S.O.)
| | - Hirokazu Takahashi
- Liver Center, Saga Medical Hospital, Saga, Saga 849-8501, Japan; (H.T.); (S.O.)
| | - Eiichi Tomita
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; (H.H.); (E.T.)
| | - Takeshi Okanoue
- Hepatology Center, Saiseikai Suita Hospital, Suita, Osaka 564-0013, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yohokama, Kanagawa 236-0004, Japan; (T.K.); (K.I.); (M.Y.); (A.N.)
| | | |
Collapse
|
24
|
Tarazón E, Corbacho-Alonso N, Barderas MG, Gil-Cayuela C, García-Manzanares M, Feijóo-Bandín S, Lago F, González-Juanatey JR, Martínez-Dolz L, Portolés M, Roselló-Lletí E. Plasma CD5L and non-invasive diagnosis of acute heart rejection. J Heart Lung Transplant 2019; 39:257-266. [PMID: 31883820 DOI: 10.1016/j.healun.2019.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Acute rejection is one of the most important direct contributors to mortality after heart transplantation. Advances in the development of novel non-invasive approaches for the early identification of allograft rejection are necessary. We conducted a non-targeted proteome characterization focused on identifying multiple plasmatic protein differences to evaluate their diagnostic accuracy for rejection episodes. METHODS We included consecutive plasma samples from transplant recipients undergoing routine endomyocardial biopsies. A liquid chromatography-tandem mass spectrometry analysis using isobaric tags (tandem mass tag 10-plex) was performed and concentrations of CD5L were validated using a specific sandwich enzyme-linked immunosorbent assay. RESULTS A total of 17 altered proteins were identified as potential markers for detecting heart transplant rejection, most involved in inflammation and immunity. CD5L, an apoptosis inhibitor expressed by macrophages, showed the best results in the proteomic analysis (n = 30). We confirm this finding in a larger patient cohort (n = 218), obtaining a great diagnostic capacity for clinically relevant rejection (≥Grade 2R: area under the curve = 0.892, p < 0.0001) and preserving the accuracy at mild rejection (Grade 1R: area under the curve = 0.774, p < 0.0001). CD5L was a strong independent predictor, with an odds ratio of 14.74 (p < 0.0001), for the presence of rejection. CONCLUSIONS Episodes of acute cardiac allograft rejection are related to significant changes in a key inhibitor of apoptosis in macrophages, CD5L. Because of its precision to detect acute cellular rejection, even at mild grade, we propose CD5L as a potential candidate to be included in the studies of molecule combination panel assays. This finding could contribute to improving the diagnostic and preventive methods for the surveillance of cardiac transplanted patients.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain; CIBERCV, Madrid, Spain.
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Carolina Gil-Cayuela
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain; CIBERCV, Madrid, Spain
| | - María García-Manzanares
- Medicine and Animal Surgery, CEU Cardenal Herrera University, Alfara del Patriarca, Valencia, Spain
| | - Sandra Feijóo-Bandín
- CIBERCV, Madrid, Spain; Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Francisca Lago
- CIBERCV, Madrid, Spain; Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- CIBERCV, Madrid, Spain; Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain; CIBERCV, Madrid, Spain; Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain; CIBERCV, Madrid, Spain
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain; CIBERCV, Madrid, Spain
| |
Collapse
|
25
|
Blandino R, Baumgarth N. Secreted IgM: New tricks for an old molecule. J Leukoc Biol 2019; 106:1021-1034. [PMID: 31302940 PMCID: PMC6803036 DOI: 10.1002/jlb.3ri0519-161r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
Secreted IgM (sIgM) is a multifunctional evolutionary conserved antibody that is critical for the maintenance of tissue homeostasis as well as the development of fully protective humoral responses to pathogens. Constitutive secretion of self- and polyreactive natural IgM, produced mainly by B-1 cells, provides a circulating antibody that engages with autoantigens as well as invading pathogens, removing apoptotic and other cell debris and initiating strong immune responses. Pathogen-induced IgM production by B-1 and conventional B-2 cells strengthens this early, passive layer of IgM-mediated immune defense and regulates subsequent IgG production. The varied effects of secreted IgM on immune homeostasis and immune defense are facilitated through its binding to numerous different cell types via different receptors. Recent studies identified a novel function for pentameric IgM, namely as a transporter for the effector protein ″apoptosis-inhibitor of macrophages″ (AIM/CD5L). This review aims to provide a summary of the known functions and effects of sIgM on immune homeostasis and immune defense, and its interaction with its various receptors, and to highlight the many critical immune regulatory functions of this ancient and fascinating immunoglobulin.
Collapse
Affiliation(s)
- Rebecca Blandino
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
| | - Nicole Baumgarth
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
- Dept. Pathology, Microbiology & Immunology, University of California, Davis
| |
Collapse
|
26
|
Komatsu G, Nonomura T, Sasaki M, Ishida Y, Arai S, Miyazaki T. AIM-deficient mouse fed a high-trans fat, high-cholesterol diet: a new animal model for nonalcoholic fatty liver disease. Exp Anim 2018; 68:147-158. [PMID: 30487357 PMCID: PMC6511520 DOI: 10.1538/expanim.18-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Owing to changes in lifestyle, nonalcoholic fatty liver disease (NAFLD) is becoming a
common form of chronic liver injury. NAFLD comprises a wide variety of disease stages,
from simple steatosis to nonalcoholic steatohepatitis, which is a risk factor for the
development of hepatocellular carcinoma (HCC). Because animal models for NAFLD are needed
to investigate the precise pathogenesis, we aimed to establish a new mouse model employing
mice deficient for apoptosis inhibitor of macrophage (AIM−/−),
which exhibit accelerated lipid storage in the liver and high susceptibility to developing
HCC in response to a high-fat diet (HFD). AIM−/− mice were fed
the D09100301 diet, which contains 40 kcal% fat (trans fat 30 kcal%), high cholesterol
(2%), and 40 kcal% carbohydrates (20 kcal% fructose), and then features of obesity and
NAFLD including steatosis, inflammation, fibrosis, and HCC development were analyzed.
Although a comparable grade of liver steatosis was promoted in
AIM−/− mice by the D09100301 diet and the standard HFD (60
kcal% largely lard fat), significantly less lipid storage in visceral fat was observed
when the mice were fed the D09100301 diet. Accelerated liver inflammation was promoted by
the D09100301 diet compared with the HFD, but interestingly, HCC development was decreased
in mice fed the D09100301 diet. Our findings suggest that
AIM−/− mice fed the D09100301 diet exhibited a phenotype
that resembled nonobese NAFLD patients and thus could be an appropriate tool to study the
pathophysiology by which obesity increases the risk of HCC.
Collapse
Affiliation(s)
- Ginga Komatsu
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Nonomura
- Research Division Pharmacology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Mai Sasaki
- Research Division Pathology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Yuki Ishida
- Research Division Pharmacology Group, New Drug Research Center Inc., 452-1 Toiso, Eniwa-shi, Hokkaido 061-1405, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Max Planck-The University of Tokyo Center for Integrative Inflammology, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Hiramoto E, Tsutsumi A, Suzuki R, Matsuoka S, Arai S, Kikkawa M, Miyazaki T. The IgM pentamer is an asymmetric pentagon with an open groove that binds the AIM protein. SCIENCE ADVANCES 2018; 4:eaau1199. [PMID: 30324136 PMCID: PMC6179379 DOI: 10.1126/sciadv.aau1199] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/31/2018] [Indexed: 05/09/2023]
Abstract
Soluble immunoglobulin M (IgM) forms a pentamer containing a joining (J) chain polypeptide. While IgM pentamer has various immune functions, it also behaves as a carrier of circulating apoptosis inhibitor of macrophage (AIM; also called CD5L) protein that facilitates repair during different diseases. AIM binds to the IgM pentamer solely in the presence of the J chain. Here, using a single-particle negative-stain electron microscopy, we found that the IgM pentamer exhibits an asymmetric pentagon containing one large gap, which is markedly different from the textbook symmetric pentagon model. A single AIM molecule specifically fits into the gap, cross-bridging two IgM-Fc that form the edges of the gap through a disulfide bond at one side and a charge-based interaction at the other side. The discovery of the bona fide shape of the IgM pentamer advances our structural understanding of the pentameric IgM and its binding mode with AIM.
Collapse
Affiliation(s)
- Emiri Hiramoto
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Risa Suzuki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Corresponding author. (T.M.); (S.A.)
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Corresponding author. (T.M.); (S.A.)
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Max Planck–The University of Tokyo Center for Integrative Inflammology, Tokyo, Japan
- Corresponding author. (T.M.); (S.A.)
| |
Collapse
|
28
|
Sugisawa R, Komatsu G, Hiramoto E, Takeda N, Yamamura KI, Arai S, Miyazaki T. Independent modes of disease repair by AIM protein distinguished in AIM-felinized mice. Sci Rep 2018; 8:13157. [PMID: 30177770 PMCID: PMC6120884 DOI: 10.1038/s41598-018-31580-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Tissue macrophage-derived apoptosis inhibitor of macrophage (AIM, encoded by cd5l gene) is a circulating protein that has suppressive functions in a broad range of diseases including obesity, liver steatosis, hepatocellular carcinoma (HCC), and acute kidney injury (AKI). In healthy states, high levels of AIM circulate in the inactivated state by associating with the immunoglobulin M (IgM) pentamer in the blood, whereas during AKI, AIM dissociates from IgM and gains disease repair activity. Here, we assessed whether AIM activation via its release from IgM is required to ameliorate other diseases. To this end, we employed a mouse line in which mouse AIM was replaced with feline AIM (AIM-felinized mice). Because feline AIM rarely dissociates from IgM due to its extremely high binding affinity for IgM, these mice exhibited deficient AKI repair as in cats. When fed a high-fat diet (HFD), similar to AIM-deficient (AIM−/−) mice, AIM-felinized mice exhibited enhanced triacylglycerol deposition in visceral adipocytes and hepatocytes, resulting in more prominent obesity and fatty liver than in wild-type mice. In contrast, the incidence of HCC after a 1-year HFD was remarkably lower in AIM-felinized mice than in AIM−/− mice, suggesting that AIM produced by liver Kupffer macrophages might directly facilitate the elimination of HCC cells. Accordingly, the marked deposition of AIM accompanied by accumulation of Kupffer cells was obvious during HCC tumour development in AIM-felinized mice. Δsµ mice, which harbour almost no circulating AIM due to the lack of secreted IgM, showed a phenotype comparable with that of AIM-felinized mice in prevention of those diseases. Thus, blood AIM released from IgM contributes to suppression of obesity and fatty liver as in AKI, whereas macrophage-derived noncirculating AIM mainly prevents HCC development. Our study depicted two different modes of disease prevention/repair facilitated by AIM, which could be the basis for HCC therapy that works by increasing AIM expression in macrophages.
Collapse
Affiliation(s)
- Ryoichi Sugisawa
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ginga Komatsu
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Emiri Hiramoto
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Ken-Ichi Yamamura
- Center for Animal Resources and Development, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 113-0033, Japan. .,Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo, 113-0033, Japan.
| |
Collapse
|
29
|
Apoptosis inhibitor of macrophage and diabetic kidney disease. Cell Mol Immunol 2018; 16:521. [PMID: 30002449 DOI: 10.1038/s41423-018-0088-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
|
30
|
Selmi C, Bin Gao, Gershwin ME. The long and latent road to autoimmunity. Cell Mol Immunol 2018; 15:543-546. [PMID: 29568115 DOI: 10.1038/s41423-018-0018-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy. .,Department BIOMETRA, University of Milan, Milan, Italy.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| |
Collapse
|