1
|
Zheng W, Pu M, Zeng S, Zhang H, Wang Q, Chen T, Zhou T, Chang C, Neculai D, Liu W. S-palmitoylation modulates ATG2-dependent non-vesicular lipid transport during starvation-induced autophagy. EMBO J 2025; 44:2596-2619. [PMID: 40128367 PMCID: PMC12048663 DOI: 10.1038/s44318-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
Lipid transfer proteins mediate the non-vesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Despite significant recent advances in our understanding of the structural basis for lipid transfer, its functional regulation remains unclear. In this study, we report that S-palmitoylation modulates the cellular function of ATG2, a rod-like lipid transfer protein responsible for transporting phospholipids from the endoplasmic reticulum (ER) to phagophores during autophagosome formation. During starvation-induced autophagy, ATG2A undergoes depalmitoylation as the balance between ZDHHC11-mediated palmitoylation and APT1-mediated depalmitoylation. Inhibition of ATG2A depalmitoylation leads to impaired autophagosome formation and disrupted autophagic flux. Further, in cell and in vitro analyses demonstrate that S-palmitoylation at the C-terminus of ATG2A anchors the C-terminus to the ER. Depalmitoylation detaches the C-terminus from the ER membrane, enabling it to interact with phagophores and promoting their growth. These findings elucidate a S-palmitoylation-dependent regulatory mechanism of cellular ATG2, which may represent a broad regulatory strategy for lipid transport mediated by bridge-like transporters within cells.
Collapse
Affiliation(s)
- Wenhui Zheng
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Maomao Pu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sai Zeng
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hongtao Zhang
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tao Chen
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianhua Zhou
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chunmei Chang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Dante Neculai
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
- Department of Ultrasound Medicine and State Key laboratory Implantation Device, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Yi L, Song J, Zhang Z, Li L, Wu Y, Xue M, Zheng C, Liu C. Palmitoyl-transferase 3 promotes mitochondrial antiviral signaling protein degradation by modulating its ubiquitination. Int J Biol Macromol 2025; 310:143609. [PMID: 40300684 DOI: 10.1016/j.ijbiomac.2025.143609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The innate antiviral immunity of humans serves as their first line of defence against viral and microbial illnesses. The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway requires the mitochondrial antiviral signaling protein (MAVS) to function properly. ZDHHCs, a family of acyltransferases, regulate diverse biological processes via interactions with numerous mammalian proteins and viral proteins. However, the role of ZDHHCs in antiviral innate immunity against RNA viruses remains largely elusive. Here, we show that ZDHHC3 downregulates the RLR signaling pathway. Ectopic ZDHHC3 expression reduces RIG-IN- and SeV-mediated IFN-β promoter activity, IRF3 nuclear transduction, and transcription of the IFN-β and ISG genes. Furthermore, ectopic expression of ZDHHC3 decreases MAVS stability by promoting proteasomal degradation, which can be reversed by MG132 but not CQ. ZDHHC3 interacts with MAVS and promotes its breakdown by increasing K48-linked ubiquitination rather than K63-linked ubiquitination. ZDHHC3 deletion resulted in increased IFN-β promoter activity and transcription of the IFN-β and ISG genes. ZDHHC3 knockdown promotes subsequent antiviral signaling and reduces viral replication, indicating the role of ZDHHC3 in antiviral innate immunity. In addition, the catalytically inactive mutant ZDHHC3 C157S efficiently reversed the IFN-β promoter activity produced by RIG-IN, which was consistent with the results of 2-BP treatment. Collectively, these data show that ZDHHC3 inhibits the RNA virus-triggered signaling cascade by targeting MAVS and provides new insights into the role of ZDHHC3 in antiviral innate immunity.
Collapse
Affiliation(s)
- Li Yi
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan 413099, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zheng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Longping Li
- Department of Clinical Laboratory, Yiyang Central Hospital, Yiyang, Hunan 413099, China
| | - Yongqing Wu
- Shanwei Academy of Agricultural Sciences, Shanwei, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases University of Calgary, Calgary, Alberta, Canada.
| | - Chenggang Liu
- Shanwei Academy of Agricultural Sciences, Shanwei, China.
| |
Collapse
|
3
|
Chen YD, Lin XP, Ruan ZL, Li M, Yi XM, Zhang X, Li S, Shu HB. PLK2-mediated phosphorylation of SQSTM1 S349 promotes aggregation of polyubiquitinated proteins upon proteasomal dysfunction. Autophagy 2024; 20:2221-2237. [PMID: 39316746 PMCID: PMC11423667 DOI: 10.1080/15548627.2024.2361574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 09/26/2024] Open
Abstract
Dysregulation in protein homeostasis results in accumulation of protein aggregates, which are sequestered into dedicated insoluble compartments so-called inclusion bodies or aggresomes, where they are scavenged through different mechanisms to reduce proteotoxicity. The protein aggregates can be selectively scavenged by macroautophagy/autophagy called aggrephagy, which is mediated by the autophagic receptor SQSTM1. In this study, we have identified PLK2 as an important regulator of SQSTM1-mediated aggregation of polyubiquitinated proteins. PLK2 is upregulated following proteasome inhibition, and then associates with and phosphorylates SQSTM1 at S349. The phosphorylation of SQSTM1 S349 strengthens its binding to KEAP1, which is required for formation of large SQSTM1 aggregates/bodies upon proteasome inhibition. Our findings suggest that PLK2-mediated phosphorylation of SQSTM1 S349 represents a critical regulatory mechanism in SQSTM1-mediated aggregation of polyubiquitinated proteins.
Collapse
Affiliation(s)
- Yun-Da Chen
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiu-Ping Lin
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Mi Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Mei Yi
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Xu Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
4
|
Bu L, Wang H, Zhang S, Zhang Y, Liu M, Zhang Z, Wu X, Jiang Q, Wang L, Xie W, He M, Zhou Z, Cheng C, Guo J. Targeting APT2 improves MAVS palmitoylation and antiviral innate immunity. Mol Cell 2024; 84:3513-3529.e5. [PMID: 39255795 DOI: 10.1016/j.molcel.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.
Collapse
Affiliation(s)
- Lang Bu
- Center of Lung Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Huan Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuishen Zhang
- Center of Lung Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yi Zhang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Miaowen Liu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhengkun Zhang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Miao He
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhengran Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Chao Cheng
- Center of Lung Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Dai T, Zhao Z, Zhu T, Fei C, Nie L, Chen J. The anti-inflammatory role of zDHHC23 through the promotion of macrophage M2 polarization and macrophage necroptosis in large yellow croaker ( Larimichthys crocea). Front Immunol 2024; 15:1401626. [PMID: 38868779 PMCID: PMC11167447 DOI: 10.3389/fimmu.2024.1401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Zinc finger Asp-His-His-Cys motif-containing (zDHHC) proteins, known for their palmitoyltransferase (PAT) activity, play crucial roles in diverse cellular processes, including immune regulation. However, their non-palmitoyltransferase immunomodulatory functions and involvement in teleost immune responses remain underexplored. In this study, we systematically characterized the zDHHC family in the large yellow croaker (Larimichthys crocea), identifying 22 members. Phylogenetic analysis unveiled that each of the 22 LczDHHCs formed distinct clusters with their orthologues from other teleost species. Furthermore, all LczDHHCs exhibited a highly conserved DHHC domain, as confirmed by tertiary structure prediction. Notably, LczDHHC23 exhibited the most pronounced upregulation following Pseudomonas plecoglossicida (P. plecoglossicida) infection of macrophage/monocyte cells (MO/MΦ). Silencing LczDHHC23 led to heightened pro-inflammatory cytokine expression and diminished anti-inflammatory cytokine levels in MO/MΦ during infection, indicating its anti-inflammatory role. Functionally, LczDHHC23 facilitated M2-type macrophage polarization, as evidenced by a significant skewing of MO/MΦ towards the pro-inflammatory M1 phenotype upon LczDHHC23 knockdown, along with the inhibition of MO/MΦ necroptosis induced by P. plecoglossicida infection. These findings highlight the non-PAT immunomodulatory function of LczDHHC23 in teleost immune regulation, broadening our understanding of zDHHC proteins in host-pathogen interactions, suggesting LczDHHC23 as a potential therapeutic target for immune modulation in aquatic species.
Collapse
Affiliation(s)
- Ting Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Ziyue Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Tingfang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Tate EW, Soday L, de la Lastra AL, Wang M, Lin H. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets. Nat Rev Cancer 2024; 24:240-260. [PMID: 38424304 DOI: 10.1038/s41568-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Lior Soday
- Department of Chemistry, Imperial College London, London, UK
| | | | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
8
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
9
|
Wang Y, Chen Q, Wu S, Sun X, Yin R, Ouyang Z, Yin H, Wei Y. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1. Acta Pharm Sin B 2023; 13:3906-3918. [PMID: 37719371 PMCID: PMC10502278 DOI: 10.1016/j.apsb.2023.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 09/19/2023] Open
Abstract
Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.
Collapse
Affiliation(s)
- Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
11
|
Wang L, Cai J, Zhao X, Ma L, Zeng P, Zhou L, Liu Y, Yang S, Cai Z, Zhang S, Zhou L, Yang J, Liu T, Jin S, Cui J. Palmitoylation prevents sustained inflammation by limiting NLRP3 inflammasome activation through chaperone-mediated autophagy. Mol Cell 2023; 83:281-297.e10. [PMID: 36586411 DOI: 10.1016/j.molcel.2022.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022]
Abstract
As a key component of the inflammasome, NLRP3 is a critical intracellular danger sensor emerging as an important clinical target in inflammatory diseases. However, little is known about the mechanisms that determine the kinetics of NLRP3 inflammasome stability and activity to ensure effective and controllable inflammatory responses. Here, we show that S-palmitoylation acts as a brake to turn NLRP3 inflammasome off. zDHHC12 is identified as the S-acyltransferase for NLRP3 palmitoylation, which promotes its degradation through the chaperone-mediated autophagy pathway. Zdhhc12 deficiency in mice enhances inflammatory symptoms and lethality following alum-induced peritonitis and LPS-induced endotoxic shock. Notably, several disease-associated mutations in NLRP3 are associated with defective palmitoylation, resulting in overt NLRP3 inflammasome activation. Thus, our findings identify zDHHC12 as a repressor of NLRP3 inflammasome activation and uncover a previously unknown regulatory mechanism by which the inflammasome pathway is tightly controlled by the dynamic palmitoylation of NLRP3.
Collapse
Affiliation(s)
- Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Cai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Zeng
- The Department of Rheumatology, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Lingli Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yukun Liu
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhe Cai
- The Department of Rheumatology, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Song Zhang
- The Department of Rheumatology, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahui Yang
- Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Hu D, Zou H, Chen W, Li Y, Luo Z, Wang X, Guo D, Meng Y, Liao F, Wang W, Zhu Y, Wu J, Li G. ZDHHC11 Suppresses Zika Virus Infections by Palmitoylating the Envelope Protein. Viruses 2023; 15:144. [PMID: 36680184 PMCID: PMC9863066 DOI: 10.3390/v15010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.
Collapse
Affiliation(s)
- Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haimei Zou
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yuting Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziqing Luo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianyang Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dekuan Guo
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu Meng
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Feng Liao
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wenbiao Wang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
13
|
Vila IK, Guha S, Kalucka J, Olagnier D, Laguette N. Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine Growth Factor Rev 2022; 68:54-68. [PMID: 36085258 DOI: 10.1016/j.cytogfr.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/30/2023]
Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
Collapse
Affiliation(s)
- Isabelle K Vila
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| | - Soumyabrata Guha
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France
| | - Joanna Kalucka
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - David Olagnier
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Nadine Laguette
- Institut de Génétique Humaine, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
14
|
OuYang LY, Deng ZJ, You YF, Fang JM, Chen XJ, Liu JJ, Li XZ, Lian L, Chen S. SIRGs score may be a predictor of prognosis and immunotherapy response for esophagogastric junction adenocarcinoma. Front Immunol 2022; 13:977894. [PMID: 36052090 PMCID: PMC9424497 DOI: 10.3389/fimmu.2022.977894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEsophagogastric junction adenocarcinoma (EGJA) is a special malignant tumor with unknown biological behavior. PD-1 checkpoint inhibitors have been recommended as first-line treatment for advanced EGJA patients. However, the biomarkers for predicting immunotherapy response remain controversial.MethodsWe identified stromal immune-related genes (SIRGs) by ESTIMATE from the TCGA-EGJA dataset and constructed a signature score. In addition, survival analysis was performed in both the TCGA cohort and GEO cohort. Subsequently, we explored the differences in tumor-infiltrating immune cells, immune subtypes, immune-related functions, tumor mutation burden (TMB), immune checkpoint gene expression, immunophenoscore (IPS) between the high SIRGs score and low SIRGs score groups. Finally, two validation cohorts of patients who had accepted immunotherapy was used to verify the value of SIRGs score in predicting immunotherapy response.ResultsEight of the SIRGs were selected by LASSO regression to construct a signature score (SIRGs score). Univariate and multivariate analyses in the TCGA and GEO cohort suggested that SIRGs score was an independent risk factor for the overall survival (OS) and it could increase the accuracy of clinical prediction models for survival. However, in the high SIRGs score group, patients had more immune cell infiltration, more active immune-related functions, higher immune checkpoint gene expression and higher IPS-PD1 and IPS-PD1-CTLA4 scores, which indicate a better response to immunotherapy. The external validation illustrated that high SIRGs score was significantly associated with immunotherapy response and immune checkpoint inhibitors (ICIs) can improve OS in patients with high SIRGs score.ConclusionThe SIRGs score may be a predictor of the prognosis and immune-therapy response for esophagogastric junction adenocarcinoma.
Collapse
Affiliation(s)
- Li-Ying OuYang
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Jian Deng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Yu-Feng You
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Ming Fang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xi-Jie Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jun-Jie Liu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Xian-Zhe Li
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Lei Lian
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shi Chen
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Institute of Gastroenterology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
- *Correspondence: Shi Chen,
| |
Collapse
|
15
|
Lin H. Protein cysteine palmitoylation in immunity and inflammation. FEBS J 2021; 288:7043-7059. [PMID: 33506611 PMCID: PMC8872633 DOI: 10.1111/febs.15728] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/24/2020] [Accepted: 01/25/2021] [Indexed: 07/24/2023]
Abstract
Protein cysteine palmitoylation, or S-palmitoylation, has been known for about 40 years, and thousands of proteins in humans are known to be modified. Because of the large number of proteins modified, the importance and physiological functions of S-palmitoylation are enormous. However, most of the known physiological functions of S-palmitoylation can be broadly classified into two categories, neurological or immunological. This review provides a summary on the function of S-palmitoylation from the immunological perspective. Several important immune signaling pathways are discussed, including STING, NOD1/2, JAK-STAT in cytokine signaling, T-cell receptor signaling, chemotactic GPCR signaling, apoptosis, phagocytosis, and endothelial and epithelial integrity. This review is not meant to be comprehensive, but rather focuses on specific examples to highlight the versatility of palmitoylation in regulating immune signaling, as well as the potential and challenges of targeting palmitoylation to treat immune diseases.
Collapse
Affiliation(s)
- Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Zheng S, Song Q, Zhang P. Metabolic Modifications, Inflammation, and Cancer Immunotherapy. Front Oncol 2021; 11:703681. [PMID: 34631531 PMCID: PMC8497755 DOI: 10.3389/fonc.2021.703681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has accomplished significant progresses on treatment of various cancers in the past decade; however, recent studies revealed more and more heterogeneity in tumor microenvironment which cause unneglectable therapy resistance. A central phenomenon in tumor malignancy is metabolic dysfunctionality; it reprograms metabolic homeostasis in tumor and stromal cells thus affecting metabolic modifications on specific proteins. These posttranslational modifications include glycosylation and palmitoylation, which usually alter the protein localization, stability, and function. Many of these proteins participate in acute or chronic inflammation and play critical roles in tumorigenesis and progression. Therefore, targeting these metabolic modifications in immune checkpoints and inflammation provides an attractive therapeutic strategy for certain cancers. In this review, we summarize the recent progresses on metabolic modifications in this field, focus on the mechanisms on how glycosylation and palmitoylation regulate innate immune and inflammation, and we further discuss designing new immunotherapy targeting metabolic modifications. We aim to improve immunotherapy or targeted-therapy response and achieve more accurate individual therapy.
Collapse
Affiliation(s)
- Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Zhong L, Shu HB. Mitotic inactivation of the cGAS‒MITA/STING pathways. J Mol Cell Biol 2021; 13:721-727. [PMID: 34609492 PMCID: PMC8718187 DOI: 10.1093/jmcb/mjab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
The cyclic guanosine monophosphate‒adenosine monophosphate synthase (cGAS)‒mediator of interferon response factor 3 activation/stimulator of interferon genes (MITA/STING) axis has emerged as a major pathway, which senses microbial or mislocated cellular DNA in the cytosol to trigger innate immune responses. cGAS senses cytosolic DNA without a preference of self- or nonself-DNA. How the cGAS‒MITA/STING axis is inactivated upon nuclear envelope breakdown (NEBD) at mitotic entry in vertebrate cells to avoid self-DNA sensing remains unclear until very recently. In this review, we summarize the recent advances on how cGAS responds to chromosomes upon NEBD and the mechanisms involved in the inactivation of the cGAS‒MITA/STING pathways in mitosis.
Collapse
Affiliation(s)
- Li Zhong
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases of the Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases of the Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
18
|
Zhang Y, Qin Z, Sun W, Chu F, Zhou F. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol 2021; 12:661202. [PMID: 34557182 PMCID: PMC8453015 DOI: 10.3389/fimmu.2021.661202] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Protein S-palmitoylation is a covalent and reversible lipid modification that specifically targets cysteine residues within many eukaryotic proteins. In mammalian cells, the ubiquitous palmitoyltransferases (PATs) and serine hydrolases, including acyl protein thioesterases (APTs), catalyze the addition and removal of palmitate, respectively. The attachment of palmitoyl groups alters the membrane affinity of the substrate protein changing its subcellular localization, stability, and protein-protein interactions. Forty years of research has led to the understanding of the role of protein palmitoylation in significantly regulating protein function in a variety of biological processes. Recent global profiling of immune cells has identified a large body of S-palmitoylated immunity-associated proteins. Localization of many immune molecules to the cellular membrane is required for the proper activation of innate and adaptive immune signaling. Emerging evidence has unveiled the crucial roles that palmitoylation plays to immune function, especially in partitioning immune signaling proteins to the membrane as well as to lipid rafts. More importantly, aberrant PAT activity and fluctuations in palmitoylation levels are strongly correlated with human immunologic diseases, such as sensory incompetence or over-response to pathogens. Therefore, targeting palmitoylation is a novel therapeutic approach for treating human immunologic diseases. In this review, we discuss the role that palmitoylation plays in both immunity and immunologic diseases as well as the significant potential of targeting palmitoylation in disease treatment.
Collapse
|
19
|
Liu E, Sun J, Yang J, Li L, Yang Q, Zeng J, Zhang J, Chen D, Sun Q. ZDHHC11 Positively Regulates NF-κB Activation by Enhancing TRAF6 Oligomerization. Front Cell Dev Biol 2021; 9:710967. [PMID: 34490261 PMCID: PMC8417235 DOI: 10.3389/fcell.2021.710967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a RING domain ubiquitin ligase that plays an important role in nuclear factor-κB (NF-κB) signaling by regulating activation of the TAK1 and IKK complexes. However, the molecular mechanisms that regulate TRAF6 E3 activity remain unclear. Here, we found that ZDHHC11, a member of the DHHC palmitoyl transferase family, functions as a positive modulator in NF-κB signaling. ZDHHC11 overexpression activated NF-κB, whereas ZDHHC11 deficiency impaired NF-κB activity stimulated by IL-1β, LPS, and DNA virus infection. Furthermore, Zdhhc11 knockout mice had a lower level of serum IL6 upon treatment with LPS and D-galactosamine or HSV-1 infection than control mice. Mechanistically, ZDHHC11 interacted with TRAF6 and then enhanced TRAF6 oligomerization, which increased E3 activity of TRAF6 for synthesis of K63-linked ubiquitination chains. Collectively, our study indicates that ZDHHC11 positively regulates NF-κB signaling by promoting TRAF6 oligomerization and ligase activity, subsequently activating TAK1 and IKK complexes.
Collapse
Affiliation(s)
- Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuqin Zeng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Abdulrahman DA, Meng X, Veit M. S-Acylation of Proteins of Coronavirus and Influenza Virus: Conservation of Acylation Sites in Animal Viruses and DHHC Acyltransferases in Their Animal Reservoirs. Pathogens 2021; 10:669. [PMID: 34072434 PMCID: PMC8227752 DOI: 10.3390/pathogens10060669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/21/2023] Open
Abstract
Recent pandemics of zoonotic origin were caused by members of coronavirus (CoV) and influenza A (Flu A) viruses. Their glycoproteins (S in CoV, HA in Flu A) and ion channels (E in CoV, M2 in Flu A) are S-acylated. We show that viruses of all genera and from all hosts contain clusters of acylated cysteines in HA, S and E, consistent with the essential function of the modification. In contrast, some Flu viruses lost the acylated cysteine in M2 during evolution, suggesting that it does not affect viral fitness. Members of the DHHC family catalyze palmitoylation. Twenty-three DHHCs exist in humans, but the number varies between vertebrates. SARS-CoV-2 and Flu A proteins are acylated by an overlapping set of DHHCs in human cells. We show that these DHHC genes also exist in other virus hosts. Localization of amino acid substitutions in the 3D structure of DHHCs provided no evidence that their activity or substrate specificity is disturbed. We speculate that newly emerged CoVs or Flu viruses also depend on S-acylation for replication and will use the human DHHCs for that purpose. This feature makes these DHHCs attractive targets for pan-antiviral drugs.
Collapse
Affiliation(s)
- Dina A. Abdulrahman
- Department of Virology, Animal Health Research Institute (AHRI), Giza 12618, Egypt;
| | - Xiaorong Meng
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| | - Michael Veit
- Institute of Virology, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany;
| |
Collapse
|
21
|
Wu Z, Tan R, Zhu L, Yao P, Hu Q. Protein S-Palmitoylation and Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:165-186. [PMID: 34019269 DOI: 10.1007/978-3-030-68748-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
S-palmitoylation of protein is a posttranslational, reversible lipid modification; it was catalyzed by a family of 23 mammalian palmitoyl acyltransferases in humans. S-palmitoylation can impact protein function by regulating protein sorting, secretion, trafficking, stability, and protein interaction. Thus, S-palmitoylation plays a crucial role in many human diseases including mental illness and cancers. In this chapter, we systematically reviewed the influence of S-palmitoylation on protein performance, the characteristics of S-palmitoylation regulating protein function, and the role of S-palmitoylation in pulmonary inflammation and pulmonary hypertension and summed up the treatment strategies of S-palmitoylation-related diseases and the research status of targeted S-palmitoylation agonists/inhibitors. In conclusion, we highlighted the potential role of S-palmitoylation and depalmitoylation in the treatment of human diseases.
Collapse
Affiliation(s)
- Zeang Wu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.,School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rubin Tan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medicine, Xuzhou Medical University, Xuzhou, China
| | - Liping Zhu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinghua Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Dang H, Polineni D, Pace RG, Stonebraker JR, Corvol H, Cutting GR, Drumm ML, Strug LJ, O’Neal WK, Knowles MR. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLoS One 2020; 15:e0239189. [PMID: 33253230 PMCID: PMC7703903 DOI: 10.1371/journal.pone.0239189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.
Collapse
Affiliation(s)
- Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rhonda G. Pace
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Jaclyn R. Stonebraker
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux sde Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa J. Strug
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
23
|
Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol 2020; 47:34-43. [PMID: 33100085 DOI: 10.1080/1040841x.2020.1835821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) play a pivotal role in expanding functional protein diversity. During viral infection, pathogen-associated molecular patterns derived from viruses are recognized by pattern recognition receptors present in the membrane surface and the cytoplasm of infected cells, which subsequently induces the antiviral innate immunity to protect the host from the invading viruses. Fatty acylation modification is identified as a post-translation lipid modification process. Mounting evidence is presented that lipid modification functions as a novel regulatory mechanism of antiviral innate immunity. In mammalian cells, DHHC (Asp-His-His-Cys) domain is indispensable for most of the palmitoylation modification, which belongs to fatty acylation. ZDHHC family proteins are composed of 23 members in human cells. In this review, we will summarize the recent findings of the regulatory mechanism of the palmitoylation in the process of host antiviral innate immunity against viruses.
Collapse
Affiliation(s)
- Li Yi
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol 2020; 236:3220-3233. [PMID: 33094504 DOI: 10.1002/jcp.30122] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Protein palmitoylation, in which C16 fatty acid chains are attached to cysteine residues via a reversible thioester linkage, is one of the most common lipid modifications and plays important roles in regulating protein stability, subcellular localization, membrane trafficking, interactions with effector proteins, enzymatic activity, and a variety of other cellular processes. Moreover, the unique reversibility of palmitoylation allows proteins to be rapidly shuttled between biological membranes and cytoplasmic substrates in a process usually controlled by a member of the DHHC family of protein palmitoyl transferases (PATs). Notably, mutations in PATs are closely related to a variety of human diseases, such as cancer, neurological disorders, and immune deficiency conditions. In addition to PATs, intracellular palmitoylation dynamics are also regulated by the interplay between distinct posttranslational modifications, including ubiquitination and phosphorylation. Understanding the specific mechanisms of palmitoylation may reveal novel potential therapeutic targets for many human diseases.
Collapse
Affiliation(s)
- Jiayu Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xinhong Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Dan Meng
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Guo W, Wei J, Zhong X, Zang R, Lian H, Hu MM, Li S, Shu HB, Yang Q. SNX8 modulates the innate immune response to RNA viruses by regulating the aggregation of VISA. Cell Mol Immunol 2019; 17:1126-1135. [PMID: 31511639 DOI: 10.1038/s41423-019-0285-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial virus-induced signaling adaptor (VISA, also called mitochondrial antiviral signaling, MAVS) protein is a central adaptor in the innate immune response to cytosolic viral RNA. Viral infection causes the aggregation of VISA, which is important for its recruitment of downstream signaling components. How VISA aggregation is regulated remains unknown. Here, we found that sorting nexin 8 (SNX8) is a positive regulator of the RNA virus-triggered induction of downstream effector genes and innate immune response. The brains and lungs of Snx8-/- mice infected with RNA viruses exhibited lower serum cytokine levels and higher viral titers than those of wild-type mice, resulting in higher lethality. Mechanistically, viral infection induced the translocation of SNX8 from the cytosol to mitochondria and its increased association with VISA, leading to VISA aggregation, its recruitment of downstream signaling components and the induction of downstream antiviral genes. Our findings suggest that SNX8 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by modulating VISA aggregation and activation.
Collapse
Affiliation(s)
- Wei Guo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Wei
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xuan Zhong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ru Zang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Huan Lian
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Qing Yang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Zhong X, Feng L, Xu WH, Wu X, Ding YD, Zhou Y, Lei CQ, Shu HB. The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding. Cell Mol Immunol 2019; 17:741-752. [PMID: 31388100 DOI: 10.1038/s41423-019-0265-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Recognition of viral dsRNA by Toll-like receptor 3 (TLR3) leads to the induction of downstream antiviral effectors and the innate antiviral immune response. Here, we identified the zinc-finger FYVE domain-containing protein ZFYVE1, a guanylate-binding protein (GBP), as a positive regulator of TLR3-mediated signaling. Overexpression of ZFYVE1 promoted the transcription of downstream antiviral genes upon stimulation with the synthetic TLR3 ligand poly(I:C). Conversely, ZFYVE1 deficiency had the opposite effect. Zfyve1-/- mice were less susceptible than wild-type mice to inflammatory death induced by poly(I:C) but not LPS. ZFYVE1 was associated with TLR3, and the FYVE domain of ZFYVE1 and the ectodomain of TLR3 were shown to be responsible for their interaction. ZFYVE1 was bound to poly(I:C) and increased the binding affinity of TLR3 to poly(I:C). These findings suggest that ZFYVE1 plays an important role in the TLR3-mediated innate immune and inflammatory responses by promoting the ligand binding of TLR3.
Collapse
Affiliation(s)
- Xuan Zhong
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Lu Feng
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Hua Xu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Xin Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Yi-Di Ding
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan Zhou
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Cao-Qi Lei
- College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, Wuhan University, Wuhan, 430072, China.
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|