1
|
Lorincz-Comi N, Cheng F. Bayesian estimation of shared polygenicity identifies drug targets and repurposable medicines for human complex diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.17.25324106. [PMID: 40166559 PMCID: PMC11957083 DOI: 10.1101/2025.03.17.25324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Complex diseases may share portions of their polygenic architectures which can be leveraged to identify drug targets with low off-target potential or repurposable candidates. However, the literature lacks methods which can make these inferences at scale using publicly available data. Methods We introduce a Bayesian model to estimate the polygenic structure of a trait using only gene-based association test statistics from GWAS summary data and returns gene-level posterior risk probabilities (PRPs). PRPs were used to infer shared polygenicity between 496 trait pairs and we introduce measures that can prioritize drug targets with low off-target effects or drug repurposing potential. Results Across 32 traits, we estimated that 69.5 to 97.5% of disease-associated genes are shared between multiple traits, and the estimated number of druggable genes that were only associated with a single disease ranged from 1 (multiple sclerosis) to 59 (schizophrenia). Estimating the shared genetic architecture of ALS with all other traits identified the KIT gene as a potentially harmful drug target because of its deleterious association with triglycerides, but also identified TBK1 and SCN11B as putatively safer because of their non-association with any of the other 31 traits. We additionally found 21 genes which are candidate repourposable targets for Alzheimer's disease (AD) (e.g., PLEKHA1, PPIB) and 5 for ALS (e.g., GAK, DGKQ). Conclusions The sets of candidate drug targets which have limited off-target potential are generally smaller compared to the sets of pleiotropic and putatively repurposable drug targets, but both represent promising directions for future experimental studies.
Collapse
Affiliation(s)
- Noah Lorincz-Comi
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Hui L, Chen X, Huang M, Jiang Y, Liu T. TANK-Binding Kinase 1 in the Pathogenesis and Treatment of Inflammation-Related Diseases. Int J Mol Sci 2025; 26:1941. [PMID: 40076567 PMCID: PMC11900955 DOI: 10.3390/ijms26051941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
TANK-binding kinase 1 (TBK1) is a key signaling kinase involved in innate immune and inflammatory responses. TBK1 drives immune cells to participate in the inflammatory response by activating the NF-κB and interferon regulatory factor signaling pathways in immune cells, promoting the expression of pro-inflammatory genes, and regulating immune cell function. Thus, it plays a crucial role in initiating a signaling cascade that establishes an inflammatory environment. In inflammation-related diseases, TBK1 acts as a bridge linking inflammation to immunity, metabolism, or tumorigenesis, playing an important role in the pathogenesis of immune-mediated inflammatory diseases, metabolic, inflammatory syndromes, and inflammation-associated cancers by regulating the activation of inflammatory pathways and the production of inflammatory cytokines in cells. In this review, we focused on the mechanisms of TBK1 in immune cells and inflammatory-related diseases, providing new insights for further studies targeting TBK1 as a potential treatment for inflammation-related diseases. Thus, optimizing and investigating highly selective cell-specific TBK1 inhibitors is important for their application in these diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Xiaolin Chen
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Mengke Huang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu 610041, China; (L.H.); (X.C.); (M.H.)
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Turano PS, Akbulut E, Dewald HK, Vasilopoulos T, Fitzgerald-Bocarsly P, Herbig U, Martínez-Zamudio RI. Epigenetic mechanisms regulating CD8+ T cell senescence in aging humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633634. [PMID: 39896543 PMCID: PMC11785101 DOI: 10.1101/2025.01.17.633634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Aging leads to the decline of immunity, rendering the elderly susceptible to infection and disease. In the CD8+ T cell compartment, aging leads to a substantial increase of cells with high levels of senescence-associated ß-galactosidase activity (SA-ßGal) and other senescence characteristics, including a pro-inflammatory transcriptome and impaired proliferative potential. Using senescent cell isolation coupled with multiomic profiling, here we characterized the epigenetic mechanisms regulating CD8+ T cell senescence in a cohort of younger and older donors. High levels of SA-ßGal activity defined changes to global transcriptomes and chromatin accessibility landscapes, with a minor effect of age. Widespread enhancer remodeling was required for the repression of functional CD8+ T cell genes and upregulation of inflammatory and secretory pathway genes. Mechanistically, the senescence program in CD8+ T cells was controlled by chromatin state-specific transcription factor (TF) networks whose composition was largely insensitive to donor age. Pharmacological inhibition of TF network nodes AP1, KLF5, and RUNX2 modulated the transcriptional output, demonstrating the feasibility of TF network perturbation as an approach to modulate CD8+ T cell senescence. Further, CD8+ T cell senescence gene signatures faithfully predicted refractoriness to chimeric antigen receptor (CAR) T-cell therapy in a cohort of diffuse large B cell lymphomas and were highly enriched in the transcriptomes of peripheral CD8+ T cells of individuals with active systemic lupus erythematosus. Collectively, our findings demonstrate the potential of multiomic profiling in identifying key regulators of senescence across cell types and suggest a critical role of senescent CD8+ T cells in disease progression.
Collapse
Affiliation(s)
- Paolo S Turano
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Elizabeth Akbulut
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Hannah K Dewald
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Themistoklis Vasilopoulos
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| | - Patricia Fitzgerald-Bocarsly
- Rutgers New Jersey Medical School, Department of Pathology, Immunology, and Laboratory Medicine, 185 South Orange Avenue, Newark, NJ, United States
| | - Utz Herbig
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
| | - Ricardo Iván Martínez-Zamudio
- Rutgers New Jersey Medical School Center for Cell Signaling, Department of Microbiology, Biochemistry, and Molecular Genetics, 205 South Orange Avenue, Newark, NJ, United States
- Rutgers Robert Wood Johnson Medical School, Department of Pharmacology, 675 Hoes Lane West, Piscataway, NJ, United States
| |
Collapse
|
4
|
Wang B, Zhang F, Wu X, Ji M. TBK1 is paradoxical in tumor development: a focus on the pathway mediating IFN-I expression. Front Immunol 2024; 15:1433321. [PMID: 39161768 PMCID: PMC11330819 DOI: 10.3389/fimmu.2024.1433321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
TANK-binding kinase 1 (TBK1) is a member of the IKK family and plays a crucial role in the activation of non-canonical NF-κB signaling and type I interferon responses. The aberrant activation of TBK1 contributes to the proliferation and survival of various types of tumor cells, particularly in specific mutational or tumorous contexts. Inhibitors targeting TBK1 are under development and application in both in vivo and in vitro settings, yet their clinical efficacy remains limited. Numerous literatures have shown that TBK1 can exhibit both tumor promoting and tumor inhibiting effects. TBK1 acts as a pivotal node within the innate immune pathway, mediating anti-tumor immunity through the activation of innate immune responses. Facilitating interferon-I (IFN-I) production represents a critical mechanism through which TBK1 bridges these processes. IFN has been shown to exert both beneficial and detrimental effects on tumor progression. Hence, the paradoxical role of TBK1 in tumor development may necessitate acknowledgment in light of its downstream IFN-I signaling cascade. In this paper, we review the signaling pathways mediated by TBK1 in various tumor contexts and summarize the dual roles of TBK1 and the TBK1-IFN pathways in both promoting and inhibiting tumor progression. Additionally, we highlight the significance of the TBK1-IFN pathway in clinical therapy, particularly in the context of immune response. We anticipate further advancements in the development of TBK1 inhibitors as part of novel cancer treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
5
|
Srividya K, Mir SS, Thiyagarajan S, Nazir A. Dietary factors and SARS-CoV-2 contagion: in silico studies on modulation of viral and host proteins by spice actives. J Biomol Struct Dyn 2022; 40:10771-10782. [PMID: 34256681 DOI: 10.1080/07391102.2021.1948448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The SARS-CoV-2 contagion has had a huge impact on world population. It has been observed that despite massive spread of the contagion in India particularly during the second wave, the overall case fatality rates remain low. This prompted us to look into dietary factors that can possibly modulate the viral impact and/or host response. In silico studies were carried out on forty-two commonly used spices and their 637 known active compounds with an aim of identifying such compounds that may have propensity to reduce viral impact or boost host immune response. We chose to study SARS-Cov-2 helicase on account of its functional importance in maintaining viral load within the host, and the human tank binding protein (TBK1) for its important role in host immunity. We carried out in silico virtual screening, docking studies with 637 phytochemical against these two proteins, using in silico methods. Upon assessing the strength of the ligand-target interactions and post simulation binding energy profile, our study identifies procyanidin-B4 from bay leaf, fenugreekine from fenugreek seed and gallotannin from pomegranate seed as active interactors that docked to viral helicase. Similarly, we identified eruboside B from garlic, gallotannin from pomegranate seed, as strong interacting partners to human TBK1. Our studies thus present dietary spice constituents as potential protagonists for further experimentation to understand how spices in the diet might help the hosts in countering the viral assault and mount a robust protective response against COVID and other infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kottapalli Srividya
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Snober S Mir
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
6
|
Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022; 207:1022-1037. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays a fundamental role in regulating the cellular responses and controlling several signaling cascades. It regulates inflammatory, interferon, NF-κB, autophagy, and Akt pathways. Post-translational modifications (PTM) of TBK1 control its action and subsequent cellular signaling. The dysregulation of the TBK1 pathway is correlated to many pathophysiological conditions, including cancer, that implicates the promising therapeutic advantage for targeting TBK1. The present study summarizes current updates on the molecular mechanisms and cancer-inducing roles of TBK1. Designed inhibitors of TBK1 are considered a potential therapeutic agent for several diseases, including cancer. Data from pre-clinical tumor models recommend that the targeting of TBK1 could be an attractive strategy for anti-tumor therapy. This review further highlighted the therapeutic potential of potent and selective TBK1 inhibitors, including Amlexanox, Compound II, BX795, MRT67307, SR8185 AZ13102909, CYT387, GSK8612, BAY985, and Domainex. These inhibitors may be implicated to facilitate therapeutic management of cancer and TBK1-associated diseases in the future.
Collapse
|
7
|
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M, Chrousos GP. Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 2022; 49:35. [PMID: 35059730 PMCID: PMC8815408 DOI: 10.3892/ijmm.2022.5090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
The highly heterogeneous symptomatology and unpredictable progress of COVID-19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS-CoV-2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID-19, as well as in vaccine-induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID-19-mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high-throughput experimental studies, cross-species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID-19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID-19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID-19 and 6.43 in VITT), illustrating the complexity of COVID-19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild-type genes, revealing the predisposition of the body to hypoxia-induced thrombosis, leading to the acute COVID-19 phenotype, the 'long-COVID syndrome', and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
Collapse
Affiliation(s)
- Styliani A Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Işil Takan
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey
| | | | - Marina Mantzourani
- First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - George P Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Fischer FA, Mies LFM, Nizami S, Pantazi E, Danielli S, Demarco B, Ohlmeyer M, Lee MSJ, Coban C, Kagan JC, Di Daniel E, Bezbradica JS. TBK1 and IKKε act like an OFF switch to limit NLRP3 inflammasome pathway activation. Proc Natl Acad Sci U S A 2021; 118:2009309118. [PMID: 34518217 PMCID: PMC8463895 DOI: 10.1073/pnas.2009309118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.
Collapse
Affiliation(s)
- Fabian A Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda F M Mies
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sara Danielli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Atux Iskay LLC, Plainsboro, NJ 08536
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom;
| |
Collapse
|
9
|
Alam M, Hasan GM, Hassan MI. A review on the role of TANK-binding kinase 1 signaling in cancer. Int J Biol Macromol 2021; 183:2364-2375. [PMID: 34111484 DOI: 10.1016/j.ijbiomac.2021.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
TANK-binding kinase 1 (TBK1) regulates various biological processes including, NF-κB signaling, immune response, autophagy, cell division, Ras-mediated oncogenesis, and AKT pro-survival signaling. Enhanced TBK1 activity is associated with autoimmune diseases and cancer, suggesting its role in therapeutic targeting of interferonopathies. In addition, dysregulation of TBK1 activity promotes several inflammatory disorders and oncogenesis. Structural and biochemical study reports provide the molecular process of TBK1 activation and recap the substrate selection about TBK1. This review summarizes recent findings on the molecular mechanisms by which TBK1 is involved in cancer signaling. The IKK-ε and TBK1 are together associated with inflammatory diseases by inducing type I IFNs. Furthermore, TBK1 signaling regulates radiation-induced epithelial-mesenchymal transition by controlling phosphorylation of GSK-3β and expression of Zinc finger E-box-binding homeobox 1, suggesting, TBK1 could be targeted for radiotherapy-induced metastasis therapy. Despite a considerable increase in the list of TBK1 inhibitors, only a few has potential to control cancer. Among them, a compound BX795 is considered a potent and selective inhibitor of TBK1. We discussed the therapeutic potential of small-molecule inhibitors of TBK1, particularly those with high selectivity, which will enable further exploration in the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
10
|
Duan W, Yi L, Tian Y, Huang HP, Li Z, Bi Y, Guo M, Li Y, Liu Y, Ma Y, Song X, Liu Y, Li C. Myeloid TBK1 Deficiency Induces Motor Deficits and Axon Degeneration Through Inflammatory Cell Infiltration. Mol Neurobiol 2021; 58:2435-2446. [PMID: 33439438 DOI: 10.1007/s12035-020-02235-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND TANK-binding kinase1 (TBK1) haploinsufficiency has been shown to cause both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); however, the mechanism is unclear. METHODS Myeloid Tbk1 knockout mice (Tbk1-LKO mice) were established and motor function and pathological analyses were also performed. The level of p-TBK1 was analyzed in the ALS animal model and in patient samples using flow cytometry. The expression of inflammatory proteins and mRNAs was analyzed via western blotting and RT-PCR, respectively. RESULTS The latency to fall in seven-month-old Tbk1-LKO mice was significantly reduced in evaluations conducted on two consecutive days. Overall, 25.6% of Tbk1-LKO mice presented paralysis symptoms and signs, along with a loosened myelin sheath and axon degeneration at 14-16 months of age. Furthermore, the Tbk1 deficiency in myeloid cells induced inflammatory cell infiltration and dysbacteriosis in the digestive tract. Additionally, p-TBK1 levels were reduced by 29.5% and 14.8% in monocytes of patients with definite ALS and probable ALS and decreased by 27.6% and 45.5% in monocytes and microglia of ALS animals, respectively. The use of PEI-mannose-TBK1 or PEI-mannose-SaCas9-sgRNA to delete mutant SOD1 in macrophages significantly delayed disease onset and prolonged survival in the mouse model of ALS. CONCLUSIONS Based on these data, inflammatory monocyte and macrophage infiltration and impaired innate immune defenses contribute to ALS and FTD.
Collapse
Affiliation(s)
- Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yunyun Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Huai-Peng Huang
- Shijiazhuang Pingan Hospital, Shijiazhuang, Hebei, 050021, People's Republic of China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yanqin Ma
- Jiangsu Nhwa Pharmaceutical Co. Ltd., Xuzhou, Jiangsu, People's Republic of China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China. .,Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, People's Republic of China. .,Institute of Cardiocerebrovascular Disease, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
11
|
Yang JY, Jie Z, Mathews A, Zhou X, Li Y, Gu M, Xie X, Ko CJ, Cheng X, Qi Y, Estrella JS, Wang J, Sun SC. Intestinal Epithelial TBK1 Prevents Differentiation of T-helper 17 Cells and Tumorigenesis in Mice. Gastroenterology 2020; 159:1793-1806. [PMID: 32745468 PMCID: PMC7680348 DOI: 10.1053/j.gastro.2020.07.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells (IECs) regulate intestinal immune cells, particularly development of T-helper 17 (Th17) cells. Deregulation of this process leads to intestinal inflammation and tumorigenesis, via unknown mechanisms. TANK-binding kinase 1 (TBK1) is expressed by IECs and cells in the innate immune system. We studied the functions of TBK1 in the intestinal immune response and tumorigenesis in mice. METHODS We performed studies of wild-type mice, mice with conditional disruption of Tbk1 (Tbk1IEC-KO), Tbk1IEC-KO mice crossed with ApcMin/+ mice, and Mt-/- mice crossed with ApcMin/+ mice. Some mice were given intraperitoneal injections of a neutralizing antibody against interleukin 17 (IL17) or IL1β. Intestine tissues were collected from mice and analyzed by histology, for numbers of adenomas and Th17 cells, and expression of inflammatory cytokines by real-time PCR. IECs were isolated from wild-type and Tbk1IEC-KO mice, stimulated with lipopolysaccharide, co-cultured for with bone marrow-derived macrophages, and analyzed by RNA sequencing and biochemical analyses. RESULTS Compared to ApcMin/+Tbk1WT mice, ApcMin/+Tbk1IEC-KO mice had significant increases in number and size of intestinal polyps, and significantly more Th17 cells in lamina propria. Administration of an antibody against IL17 reduced the number of intestinal polyps in ApcMin/+Tbk1IEC-KO mice to that observed in ApcMin/+Tbk1WT mice. In culture, TBK1-deficient IECs promoted expression of IL1β by macrophages, which induced differentiation of naïve CD4+ T cells into Th17 cells. RNA sequencing analysis revealed that the TBK1-deficient IECs had increased expression of metallothionein 1 (MT1), an immune regulator that promotes intestinal inflammation. Intestine tissues from ApcMin/+Mt-/- mice had significant fewer Th17 cells than ApcMin/+Mt+/+ mice, and a significantly lower number of polyps. Analyses of colorectal tumors in the Cancer Genome Atlas found colorectal tumors with high levels of MT1 and IL17 mRNAs to be associated with reduced survival times of patients. CONCLUSIONS Expression of TBK1 by IECs suppresses expression of MT1 and prevents expression of IL1β by macrophages and differentiation of Th17 cells, to prevent inflammation and tumorigenesis. Strategies to block this pathway might be developed for colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA;,Department of Biological Sciences, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Amber Mathews
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jeannelyn S. Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, Texas, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas; MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
12
|
Shirzad H, Helbi S, Bagheri N, Aminzadeh Z, Kooti W. Investigating the TANK-binding kinase expression in multiple sclerosis patients in comparison with control group in the Iranian population. ADVANCES IN HUMAN BIOLOGY 2020. [DOI: 10.4103/aihb.aihb_45_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, Ko CJ, Gao T, Hernandez BE, Cheng X, Sun SC. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol 2019; 21:1604-1614. [PMID: 31792381 PMCID: PMC6901116 DOI: 10.1038/s41556-019-0429-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
The kinase TBK1 responds to microbial stimuli and mediates type I interferon (IFN-I) induction. We show that TBK1 is also a central mediator of growth factor signaling; this function relies on a specific adaptor, TBK-binding protein 1 (TBKBP1). TBKBP1 recruits TBK1 to PKCθ via a scaffold protein, Card10, which allows PKCθ to phosphorylate TBK1 at serine-716, a crucial step for TBK1 activation by growth factors but not by innate immune stimuli. While the TBK1/TBKBP1 signaling axis is dispensable for IFN-I induction, it mediates mTORC1 activation and oncogenesis. Lung epithelial cell-conditional deletion of either TBK1 or TBKBP1 inhibits tumorigenesis in a mouse model of lung cancer. In addition to promoting tumor growth, the TBK1/TBKBP1 axis facilitates tumor-mediated immunosuppression by a mechanism involving induction of the checkpoint molecule PD-L1 and stimulation of glycolysis. These findings suggest a PKCθ-TBKBP1-TBK1 growth factor signaling axis mediating both tumor growth and immunosuppression.
Collapse
Affiliation(s)
- Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Blanca E Hernandez
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
14
|
Zentsova I, Parackova Z, Kayserova J, Palova-Jelinkova L, Vrabcova P, Volfova N, Sumnik Z, Pruhova S, Petruzelkova L, Sediva A. Monocytes contribute to DNA sensing through the TBK1 signaling pathway in type 1 diabetes patients. J Autoimmun 2019; 105:102294. [DOI: 10.1016/j.jaut.2019.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
15
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|