1
|
Kim YS. Gastric Carcinoma. Curr Top Microbiol Immunol 2025. [PMID: 40423781 DOI: 10.1007/82_2025_303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) account for about 10% of gastric cancers globally, with higher prevalence in East Asia and Latin America. These cancers develop through a "gastritis-infection-cancer sequence" and are characterized by unique molecular signatures, including CpG island methylator phenotype and mutations in ARID1A and PIK3CA genes. EBVaGCs typically present in the proximal stomach with diffuse-type histology and dense lymphocytic infiltration. Key viral proteins EBNA1 and LMP2A drive oncogenesis by altering cellular processes and immune responses. The IFN-γ signature and extensive epigenetic modifications contribute to their distinct profile. Despite often presenting at advanced stages, EBVaGCs generally have a more favorable prognosis. EBV employs sophisticated strategies to evade immune detection, utilizing latent proteins and noncoding RNAs. Paradoxically, despite an immune-hot environment, EBVaGCs demonstrate effective immune evasion, partly due to the expression of immune checkpoint molecules like PD-L1 and LAG3. Treatment approaches vary based on disease stage, from endoscopic resection for early-stage cancers to systemic therapies for advanced cases. Immunotherapy, particularly PD-1/PD-L1 inhibitors, shows promising results. Emerging research suggests combining these with LAG3 inhibitors may enhance efficacy. Ongoing research and advanced genomic techniques continue to reveal new insights, paving the way for personalized therapies and novel diagnostic approaches.
Collapse
Affiliation(s)
- Young-Sik Kim
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Suri K, Hosur V, Panchakshari R, Amiji MM. A Multimodal Therapeutic Strategy for Inflammatory Bowel Disease Using MicroRNA-146a Mimic Encapsulated in Lipid Nanoparticles. Mol Pharm 2025. [PMID: 40324972 DOI: 10.1021/acs.molpharmaceut.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Dysregulated microRNAs (miRNAs) have significant potential as diagnostic tools for various chronic diseases; however, their therapeutic applications remain largely unexplored. Given their capacity to regulate multiple pathways, miRNAs are promising candidates for treating pleiotropic diseases, such as inflammatory bowel disease (IBD). In our study, we conducted a comprehensive review of the literature of miRNA-146 levels in the inflamed tissues of IBD patients and murine colitis models. Initially, we quantified the expression of miRNA-146a and miRNA-146b in the colons of mice using the dextran sodium sulfate (DSS)-inducedacute model of IBD. We selected miRNA-146a for further study due to its anti-inflammatory properties and potential relevance in IBD treatment. We hypothesized that a macrophage model of inflammation would be well-suited to studying the effects of this miRNA. Subsequently, we investigated the use of lipid nanoparticles (LNPs) for the targeted delivery of miRNA-146a to macrophages, which play a key role in IBD. Our results indicated that miRNA-146a levels increased in the DSS model and LNP-mediated delivery effectively downregulated genes associated with inflammation. These findings highlight the critical role of miRNA-146a in modulating IBD and suggest that LNP-based delivery could be a promising therapeutic strategy for managing inflammatory responses.
Collapse
Affiliation(s)
- Kanika Suri
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Rohit Panchakshari
- Takeda Development Center Americas, Cambridge, Massachusetts 02142, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Wen M, Li J, Qiu W, Zhang J, Long K, Lu L, Jin L, Sun J, Ge L, Li X, Li M, Ma J. Identification and Functional Analysis of Key microRNAs in the Early Extrauterine Environmental Adaptation of Piglets. Int J Mol Sci 2025; 26:1316. [PMID: 39941084 PMCID: PMC11818927 DOI: 10.3390/ijms26031316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neonatal mammals must rapidly adapt to significant physiological changes during the transition from the intrauterine to extrauterine environments. This adaptation, particularly in the metabolic and respiratory systems, is essential for survival. MicroRNAs (miRNAs) are small noncoding RNAs that regulate various physiological and pathological processes by binding to the 3' untranslated regions of mRNAs. This study aimed to identify miRNAs involved in the early extrauterine adaptation of neonatal piglets and explore their functions. We performed small RNA sequencing on six tissues (heart, liver, spleen, lung, multifidus muscle, and duodenum) from piglets 24 h before birth (day 113 of gestation) and 6 h after birth. A total of 971 miRNA precursors and 1511 mature miRNAs were identified. Tissue-specific expression analysis revealed 881 tissue-specific miRNAs and 164 differentially expressed miRNAs (DE miRNAs) across the tissues. Functional enrichment analysis showed that these DE miRNAs are significantly enriched in pathways related to early extrauterine adaptation, such as the NFκB, PI3K/AKT, and Hippo pathways. Specifically, miR-22-3p was significantly upregulated in the liver post-birth and may regulate the PI3K/AKT pathway by targeting AKT3, promoting gluconeogenesis, and maintaining glucose homeostasis. Dual-luciferase reporter assays and HepG2 cell experiments confirmed AKT3 as a target of miR-22-3p, which activates the AKT/FoxO1 pathway, enhancing gluconeogenesis and glucose production. Furthermore, changes in blood glucose and liver glycogen levels in newborn piglets further support the role of miR-22-3p in glucose homeostasis. This study highlights the importance of miRNAs, particularly miR-22-3p, in the early extrauterine adaptation of neonatal piglets, offering new insights into the physiological adaptation of neonatal mammals.
Collapse
Affiliation(s)
- Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Wanling Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| |
Collapse
|
4
|
Zhou K, Gao L, Ge P, Wang L, Liu L, Ye J, Xu H, Wang L, Song L. CgmiR307 involved in the regulation of Nrf2-dependent oxidative response in the Pacific oyster Crassostrea gigas under high-temperature stress. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105306. [PMID: 39710087 DOI: 10.1016/j.dci.2024.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
miRNA, a type of endogenous small non-coding RNA, is involved in the response to various environmental stresses through post-transcriptional regulation. In the present study, the role of CgmiR307 in the regulation of oxidative response under high-temperature stress by targeting CgNrf2 was investigated in the Pacific oyster Crassostrea gigas. The binding site of CgmiR307 were predicted at 1799-1818 bp in the 3'-UTR of CgNrf2, and the binding activity of CgmiR307 with the mRNA of CgNrf2 was further proved by the dual-luciferase reporter assay. The expression levels of CgmiR307 and CgNrf2 in gill were significantly higher than in other tissues, and exhibited significant fluctuations and variations after exposure to 28 °C. There was a significant reduction in the expression levels of CgSOD, and CgCAT in gill, as well as the activities of SOD, CAT, and T-AOC, while ROS and MDA contents significantly increased in CgNrf2-RNAi oysters. After CgmiR307 agomir injection and high-temperature stress, the expression levels of CgNrf2, CgSOD and CgCAT in gill, the activities of SOD and CAT and T-AOC decreased significantly, while ROS and MDA content significantly increased. After CgmiR307 antagomir injection and high-temperature stress, the changes in the parameters of oxidative response shown exactly the opposite trend. These results demonstrated that CgmiR307 was involved in the regulation of oxidative response by inhibiting the mRNA expression of CgNrf2 under high-temperature stress.
Collapse
Affiliation(s)
- Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Pingan Ge
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiayu Ye
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
5
|
Jeon J, Jang S, Park KS, Kim HG, Lee J, Hwang TS, Koh JS, Kim J. Identification of differentially expressed miRNAs involved in vascular aging reveals pathways associated with the endocrine hormone regulation. Biogerontology 2024; 26:23. [PMID: 39644339 PMCID: PMC11625078 DOI: 10.1007/s10522-024-10167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Vascular aging refers to a series of processes where the elasticity of blood vessels diminishes, leading to stiffening, and deposition of fat components on the vessel walls, causing inflammation. Cardiovascular diseases, such as stroke and hypertension, play significant roles in morbidity and mortality rates among the elderly population. In this study, the Reactive Hyperemia Index (RHI) was measured to assess vascular endothelial function and aging-induced pathogenesis of vascular diseases in Korean subjects. We aimed to identify extracellular vesicle microRNAs (EV-miRNAs) with differential abundance between groups of individuals at the ends of a continuum in vascular aging acceleration, revealing miRNAs regulating genes in endocrine hormone regulation and tumor-related pathways. We also discovered that the principal component characterizing the global miRNA expression profile is significantly associated with clinical traits including cholesterol levels. Together, these data provide a foundation for understanding the role of miRNAs as modulators of longevity and for developing age-specific epigenetic biomarkers.
Collapse
Affiliation(s)
- Jeongwon Jeon
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Subin Jang
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Soo Park
- Department of Preventive Medicine, College of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
- Center for Farmer's Safety and Health, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Han-Gyul Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jongan Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tae-Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jin-Sin Koh
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea.
| | - Jaemin Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea.
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
6
|
Xie J, Xu P, Lin Y, Zheng M, Jia J, Tan X, Sun J, Zhao Q. LncRNA-miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity. J Cell Mol Med 2024; 28:e18590. [PMID: 39347925 PMCID: PMC11441278 DOI: 10.1111/jcmm.18590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA-miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA-miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA-miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA-miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.
Collapse
Affiliation(s)
- Jingxuan Xie
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Peng Xu
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ye Lin
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Manyu Zheng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jixuan Jia
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Xinru Tan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
7
|
Ollen-Bittle N, Roseborough AD, Wang W, Wu JLD, Whitehead SN. Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury. Neural Regen Res 2024; 19:2119-2131. [PMID: 38488547 PMCID: PMC11034607 DOI: 10.4103/1673-5374.391329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Austyn D. Roseborough
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jeng-liang D. Wu
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
8
|
Greco R, Bighiani F, Demartini C, Zanaboni A, Francavilla M, Facchetti S, Vaghi G, Allena M, Martinelli D, Guaschino E, Ghiotto N, Bottiroli S, Corrado M, Cammarota F, Antoniazzi A, Mazzotta E, Pocora MM, Grillo V, Sances G, Tassorelli C, De Icco R. Expression of miR-155 in monocytes of people with migraine: association with phenotype, disease severity and inflammatory profile. J Headache Pain 2024; 25:138. [PMID: 39187749 PMCID: PMC11348581 DOI: 10.1186/s10194-024-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND miR-155 is involved in the generation and maintenance of inflammation and pain, endothelial function and immune system homeostasis, all functions that are relevant for migraine. The present study aims to assess the levels of miR-155 in migraine subtypes (episodic and chronic) in comparison to age- and sex-matched healthy controls. METHODS This is a cross-sectional, controlled, study involving three study groups: I) episodic migraine (n = 52, EM), II) chronic migraine with medication overuse (n = 44, CM-MO), and III) healthy controls (n = 32, HCs). We assessed the interictal gene expression levels of miR-155, IL-1β, TNF-α, and IL-10 in peripheral blood monocytes using rtPCR. The monocytic differentiation toward the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes was assessed in circulating monocytes with flow cytometry analysis and cell sorting. RESULTS miR-155 gene expression was higher in CM-MO group (2.68 ± 2.47 Relative Quantification - RQ) when compared to EM group (1.46 ± 0.85 RQ, p = 0.006) and HCs (0.44 ± 0.18 RQ, p = 0.001). In addition, miR-155 gene expression was higher in EM group when compared to HCs (p = 0.001). A multivariate analysis confirmed the difference between EM and CM-MO groups after correction for age, sex, smoking habit, preventive treatment, aura, presence of psychiatric or other pain conditions. We found higher gene expression of IL-1β, TNF-α, and lower gene expression of IL-10 in migraine participants when compared to HCs (p = 0.001 for all comparisons). TNF-α and IL-10 genes alterations were more prominent in CM-MO when compared to EM participants (p = 0.001). miR-155 positively correlated with IL-1β (p = 0.001) and TNF-α (p = 0.001) expression levels. Finally, in people with CM-MO, we described an up-regulated percentage of events in both M1 and M2 monocytic profiles. CONCLUSIONS Our study shows for the first time a specific profile of activation of miR-155 gene expression levels in monocytes of selected migraine subpopulations, more pronounced in subjects with CM-MO. Interestingly, mir-155 expression correlated with markers of activation of the inflammatory and immune systems. The CM-MO subpopulation showed a peculiar increase of both pro-inflammatory and anti-inflammatory monocytes which worths further investigation. TRIAL REGISTRATION www. CLINICALTRIALS gov . (NCT05891808).
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Federico Bighiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Chiara Demartini
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Annamaria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Gloria Vaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Marta Allena
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Daniele Martinelli
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Elena Guaschino
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Natascia Ghiotto
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Sara Bottiroli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Michele Corrado
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Francescantonio Cammarota
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Alessandro Antoniazzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Elena Mazzotta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Maria Magdalena Pocora
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Valentina Grillo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Grazia Sances
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Headache Science & Neurorehabilitation Unit, IRCCS Mondino Foundation, Via Mondino 2, Pavia, 27100, Italy.
| |
Collapse
|
9
|
Besaratinia A, Tommasi S. The Untapped Biomarker Potential of MicroRNAs for Health Risk-Benefit Analysis of Vaping vs. Smoking. Cells 2024; 13:1330. [PMID: 39195220 PMCID: PMC11352591 DOI: 10.3390/cells13161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in fewer numbers and at substantially lower concentrations. Many of the same constituents of e-cig vapor and cigarette smoke induce epigenetic changes that can lead to the dysregulation of disease-related genes. MicroRNAs (MiRNAs) are key regulators of gene expression in health and disease states. Extensive research has shown that miRNAs play a prominent role in the regulation of genes involved in the pathogenesis of smoking-related diseases. However, the use of miRNAs for investigating the disease-causing potential of vaping has not been fully explored. This review article provides an overview of e-cigs as a highly consequential electronic nicotine delivery system, describes trends in e-cig use among adolescents and adults, and discusses the ongoing debate on the public health impact of vaping. Highlighting the significance of miRNAs in cell biology and disease, it summarizes the published and ongoing research on miRNAs in relation to gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. It identifies gaps in knowledge and priorities for future research while underscoring the need for empirical evidence that can inform the regulation of tobacco products to protect youth and promote public health.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA;
| | | |
Collapse
|
10
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Zhang W, Liu J, Zhou Y, Liu S, Wu J, Jiang H, Xu J, Mao H, Liu S, Chen B. Signaling pathways and regulatory networks in quail skeletal muscle development: insights from whole transcriptome sequencing. Poult Sci 2024; 103:103603. [PMID: 38457990 PMCID: PMC11067775 DOI: 10.1016/j.psj.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jiguo Xu
- Biotech Research Institute of Nanchang Normal University, Nanchang 330032, Jiangxi, P. R. China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| |
Collapse
|
12
|
Yarahmadi G, Tavakoli Ataabadi S, Dashti Z, Dehghanian M. A review on expression and regulatory mechanisms of miR-337-3p in cancer. J Biomol Struct Dyn 2024:1-10. [PMID: 38500239 DOI: 10.1080/07391102.2024.2329294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A group of diseases generally referred to as cancer represents a serious threat to people's health all over the world and has a significant negative influence on every aspect of the lives of patients. The development of cancer is influenced by several environmental, genetic, and epigenetic factors. MicroRNAs (miRNAs), a class of non-coding RNAs, can alter the expression of genes involved in cell proliferation, migration, metastasis, and apoptosis, lead to the pathogenesis of cancer. Additionally, several effectors modify miRNAs directly, including methylation, circular RNAs, and long non-coding RNAs (lncRNAs). In this review, we have explained the role of mir-337-3p in the pathways related to the pathogenesis of different cancers. Studying the functional role of miR-337-3p is necessary for detecting novel molecules as tumor markers and discovering novel targets for cancer treatment.
Collapse
Affiliation(s)
- Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sadegh Tavakoli Ataabadi
- Department of Medical Genetics School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Dashti
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Campus, Yazd, Iran
| | - Mehran Dehghanian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Ren W, Wang J, Zeng Y, Wang T, Meng J, Yao X. Differential age-related transcriptomic analysis of ovarian granulosa cells in Kazakh horses. Front Endocrinol (Lausanne) 2024; 15:1346260. [PMID: 38352714 PMCID: PMC10863452 DOI: 10.3389/fendo.2024.1346260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The Kazakh horse, renowned for its excellence as a breed, exhibits distinctive reproductive traits characterized by early maturity and seasonal estrus. While normal reproductive function is crucial for ensuring the breeding and expansion of the Kazakh horse population, a noteworthy decline in reproductive capabilities is observed after reaching 14 years of age. Methods In this study, ovarian granulosa cells (GCs) were meticulously collected from Kazakh horses aged 1, 2, 7, and above 15 years old (excluding 15 years old) for whole transcriptome sequencing. Results The analysis identified and selected differentially expressed mRNAs, lncRNAs, miRNAs, and circRNAs for each age group, followed by a thorough examination through GO enrichment analysis. The study uncovered significant variations in the expression profiles of mRNAs, lncRNAs, miRNAs, and circRNAs within GCs at different stages of maturity. Notably, eca-miR-486-3p and miR-486-y exhibited the highest degree of connectivity. Subsequent GO, KEGG, PPI, and ceRNA network analyses elucidated that the differentially expressed target genes actively participate in signaling pathways associated with cell proliferation, apoptosis, and hormonal regulation. These pathways include but are not limited to the MAPK signaling pathway, Hippo signaling pathway, Wnt signaling pathway, Calcium signaling pathway, Aldosterone synthesis and secretion, Cellular senescence, and NF-kappa B signaling pathway-essentially encompassing signal transduction pathways crucial to reproductive processes. Discussion This research significantly contributes to unraveling the molecular mechanisms governing follicular development in Kazakh horses. It establishes and preliminarily validates a differential regulatory network involving lncRNA-miRNA-mRNA, intricately associated with processes such as cell proliferation, differentiation, and apoptosis and integral to the developmental intricacies of stromal follicles. The findings of this study provide a solid theoretical foundation for delving deeper into the realm of reproductive aging in Kazakh mares, presenting itself as a pivotal regulatory pathway in the context of horse ovarian development.
Collapse
Affiliation(s)
- Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Agricultural University, Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi, China
| |
Collapse
|
14
|
Meng L, Shang H, Liu Q, Li Z, Wang X, Li Q, Li F, Zhao Z, Liu C. Lnc-PSMA8-1 activated by GEFT promotes rhabdomyosarcoma progression via upregulation of mTOR expression by sponging miR-144-3p. BMC Cancer 2024; 24:79. [PMID: 38225540 PMCID: PMC10789031 DOI: 10.1186/s12885-023-11798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND GEFT is a key regulator of tumorigenesis in rhabdomyosarcoma (RMS), and overexpression of GEFT is significantly correlated with distant metastasis, lymph node metastasis, and a poor prognosis, yet the underlying molecular mechanism is still poorly understood. This study aimed to investigate and validate the molecular mechanism of GEFT-activated lncRNAs in regulating mTOR expression to promote the progression of RMS. METHODS GEFT-regulated lncRNAs were identified through microarray analysis. The effects of GEFT-regulated lncRNAs on the proliferation, apoptosis, invasion, and migration of RMS cells were confirmed through cell functional experiments. The target miRNAs of GEFT-activated lncRNAs in the regulation of mTOR expression were predicted by bioinformatics analysis combined with quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The expression of lnc-PSMA8-1, miR-144-3p, and mTOR was measured by qRT-PCR in RMS tissue samples and cell lines. The regulatory mechanisms of the lnc-PSMA8-1-miR-144-3p-mTOR signaling axis were verified by RNA-binding protein immunoprecipitation (RIP), a luciferase reporter assay, qRT-PCR analysis, Western blot analysis, and cell functional experiments. RESULTS The microarray-based analysis identified 31 differentially expressed lncRNAs (fold change > 2.0, P < 0.05). Silencing the 4 upregulated lncRNAs (lnc-CEACAM19-1, lnc-VWCE-2, lnc-GPX7-1, and lnc-PSMA8-1) and overexpressing the downregulated lnc-FAM59A-1 inhibited the proliferation, invasion, and migration and induced the apoptosis of RMS cells. Among the factors analyzed, the expression of lnc-PSMA8-1, miR-144-3p, and mTOR in RMS tissue samples and cells was consistent with the correlations among their expression indicated by the lncRNA-miRNA-mRNA regulatory network based on the ceRNA hypothesis. lnc-PSMA8-1 promoted RMS progression by competitively binding to miR-144-3p to regulate mTOR expression. CONCLUSION Our research demonstrated that lnc-PSMA8-1 was activated by GEFT and that the former positively regulated mTOR expression by sponging miR-144-3p to promote the progression of RMS. Therefore, targeting this network may constitute a potential therapeutic approach for the management of RMS.
Collapse
Affiliation(s)
- Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
- Judicial Appraisal Institute, Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Hangzhou, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopedics, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi, China.
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Su D, Eliason S, Sun Z, Shao F, Amendt BA. Wolf-Hirschhorn syndrome candidate 1 (Whsc1) methyltransferase signals via a Pitx2-miR-23/24 axis to effect tooth development. J Biol Chem 2023; 299:105324. [PMID: 37806494 PMCID: PMC10656234 DOI: 10.1016/j.jbc.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a developmental disorder attributed to a partial deletion on the short arm of chromosome 4. WHS patients suffer from oral manifestations including cleft lip and palate, hypodontia, and taurodontism. WHS candidate 1 (WHSC1) gene is a H3K36-specific methyltransferase that is deleted in every reported case of WHS. Mutation in this gene also results in tooth anomalies in patients. However, the correlation between genetic abnormalities and the tooth anomalies has remained controversial. In our study, we aimed to clarify the role of WHSC1 in tooth development. We profiled the Whsc1 expression pattern during mouse incisor and molar development by immunofluorescence staining and found Whsc1 expression is reduced as tooth development proceeds. Using real-time quantitative reverse transcription PCR, Western blot, chromatin immunoprecipitation, and luciferase assays, we determined that Whsc1 and Pitx2, the initial transcription factor involved in tooth development, positively and reciprocally regulate each other through their gene promoters. miRNAs are known to regulate gene expression posttranscriptionally during development. We previously reported miR-23a/b and miR-24-1/2 were highly expressed in the mature tooth germ. Interestingly, we demonstrate here that these two miRs directly target Whsc1 and repress its expression. Additionally, this miR cluster is also negatively regulated by Pitx2. We show the expression of these two miRs and Whsc1 are inversely correlated during mouse mandibular development. Taken together, our results provide new insights into the potential role of Whsc1 in regulating tooth development and a possible molecular mechanism underlying the dental defects in WHS.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steve Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Zhao Sun
- College of Medicine, Washington University St Louis, St Louis, Missouri, USA
| | - Fan Shao
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA; Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
16
|
Sequeira JP, Barros-Silva D, Ferreira-Torre P, Salta S, Braga I, Carvalho J, Freitas R, Henrique R, Jerónimo C. OncoUroMiR: Circulating miRNAs for Detection and Discrimination of the Main Urological Cancers Using a ddPCR-Based Approach. Int J Mol Sci 2023; 24:13890. [PMID: 37762193 PMCID: PMC10531069 DOI: 10.3390/ijms241813890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The three most common genitourinary malignancies (prostate/kidney/bladder cancers) constitute a substantial proportion of all cancer cases, mainly in the elderly population. Early detection is key to maximizing the patients' survival, but the lack of highly accurate biomarkers that might be used through non-/minimally invasive methods has impaired progress in this domain. Herein, we sought to develop a minimally invasive test to detect and discriminate among those urological cancers based on miRNAs assessment through ddPCR. Plasma samples from 268 patients with renal cell (RCC; n = 119), bladder (BlCa; n = 73), and prostate (PCa; n = 76) carcinomas (UroCancer group), and 74 healthy donors were selected. Hsa-miR-126-3p, hsa-miR-141-3p, hsa-miR-153-5p, hsa-miR-155-5p, hsa-miR-182-5p, hsa-miR-205-5p, and hsa-miR-375-3p levels were assessed. UroCancer cases displayed significantly different circulating hsa-miR-182-5p/hsa-miR-375-3p levels compared to healthy donors. Importantly, the hsa-miR-155-5p/hsa-miR-375-3p panel detected RCC with a high specificity (80.54%) and accuracy (66.04%). Furthermore, the hsa-miR-126-3p/hsa-miR-375-3p panel identified BlCa with a 94.87% specificity and 76.45% NPV whereas higher hsa-miR-126-3p levels were found in PCa patients. We concluded that plasma-derived miRNAs can identify and discriminate among the main genitourinary cancers, with high analytical performance. Although validation in a larger cohort is mandatory, these findings demonstrate that circulating miRNA assessment by ddPCR might provide a new approach for early detection and risk stratification of the most common urological cancers.
Collapse
Affiliation(s)
- José Pedro Sequeira
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Doctoral Programme in Biomedical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
| | - Patrícia Ferreira-Torre
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Doctoral Programme in Molecular Pathology and Genetics, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Isaac Braga
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - João Carvalho
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Freitas
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
17
|
Zhang J, Li Y, Li H, Liu A, Cao J, Li X, Xia N, Zhang Z, Bai J, Zhang H. Aspirin ameliorates the neurotoxicity of benzo[a]pyrene in mice and HT22 cells: Possible role of miRNA-mRNA network. Food Chem Toxicol 2023:113919. [PMID: 37364758 DOI: 10.1016/j.fct.2023.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Benzo[a]pyrene (B[a]P) is neurotoxic, however, the mechanism and potential prevention are yet not clear. This study explored the miRNA-mRNA network in the B[a]P-induced neurotoxicity in mice and HT22 cells and the intervention of aspirin (ASP). HT22 cells were treated for 48 h with DMSO, B[a]P (20 μM), or both B[a]P (20 μM) and ASP (4 μM). Following B[a]P treatment, compared to the DMSO controls, HT22 cells showed injured cell morphology, reduced cell viability and neurotrophic factor concentrations, and increased LDH leakage, Aβ1-42, and inflammatory factor concentrations, which were improved by ASP. RNA sequencing and qPCR verified the significant differences of miRNA and mRNA profiles following B[a]P treatment, which were rescued by ASP. Bioinformatics analysis suggested the miRNA-mRNA network could be involved in the neurotoxicity of B[a]P and the intervention of ASP. The neurotoxicity and neuroinflammation were induced in mice's brains by B[a]P, and the target miRNA and mRNA were proved to be consistent with in vitro, which were ameliorated by ASP. The findings demonstrate a possible role of miRNA-mRNA network in the B[a]P-induced neurotoxicity. If this is confirmed by additional experiments, it will provide a promising pathway of intervention against B[a]P, using ASP or other agents with fewer toxic effects.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Yangyang Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China; Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Taiyuan, 030001, Shanxi, China; Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
18
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
19
|
Luo J, Zhao S, Ren Q, Wang Q, Chen Z, Cui J, Jing Y, Liu P, Yan R, Song X, Liu G, Li X. Dynamic Analysis of microRNAs from Different Life Stages of Rhipicephalus microplus (Acari: Ixodidae) by High-Throughput Sequencing. Pathogens 2022; 11:pathogens11101148. [PMID: 36297205 PMCID: PMC9611014 DOI: 10.3390/pathogens11101148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs), which are small, noncoding RNA molecules, play an important regulatory role in gene expression at the posttranscriptional level. Relatively limited knowledge exists on miRNAs in Rhipicephalus microplus ticks in China; however, understanding the physiology of miRNA functions and expression at different developmental stages is important. In this study, three small RNA libraries were constructed for R. microplus eggs, larvae, and female adults; miRNAs were detected during these developmental stages by high-throughput sequencing, with 18,162,337, 8,090,736, and 11,807,326 clean reads, respectively. A total of 5132 known miRNAs and 31 novel miRNAs were identified. A total of 1736 differentially expressed miRNAs were significantly different at a p-value of <0.01; in female adults, 467 microRNAs were upregulated and 376 miRNAs downregulated compared to larval tick controls. Using larvae as controls, 218 upregulated and 203 downregulated miRNAs were detected in eggs; in eggs, 108 miRNAs were upregulated and 364 downregulated compared to female adults controls. To verify the reliability of the sequencing data, RT−qPCR was applied to compare expression levels of novel miRNAs. Some differentially expressed miRNAs are involved in developmental physiology, signal transduction, and cell-extracellular communications based on GO annotation and KEGG pathway analyses. Here, we provide a dynamic analysis of miRNAs in R. microplus and their potential targets, which has significance for understanding the biology of ticks and lays the foundation for improved understanding of miRNA functioning in the regulation of R. microplus development. These results can assist future miRNA studies in other tick species that have great significance for human and animal health.
Collapse
Affiliation(s)
- Jin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qiaoyun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Qilin Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Zeyu Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Jingjing Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Yujiao Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Peiwen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou 730046, China
- Correspondence: (G.L.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (X.L.)
| |
Collapse
|
20
|
Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): A potential therapeutic target in acute lung injury. Genes Dis 2022; 9:1258-1268. [PMID: 35873025 PMCID: PMC9293716 DOI: 10.1016/j.gendis.2021.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022] Open
Abstract
Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Almaz Zaki
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - M. Shadab Ali
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Anita Chopra
- Lab Oncology, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| |
Collapse
|
21
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
22
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
23
|
Carney MC, Zhan X, Rangnekar A, Chroneos MZ, Craig SJC, Makova KD, Paul IM, Hicks SD. Associations between stool micro-transcriptome, gut microbiota, and infant growth. J Dev Orig Health Dis 2021; 12:876-882. [PMID: 33407969 PMCID: PMC8675179 DOI: 10.1017/s2040174420001324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid infant growth increases the risk for adult obesity. The gut microbiome is associated with early weight status; however, no study has examined how interactions between microbial and host ribonucleic acid (RNA) expression influence infant growth. We hypothesized that dynamics in infant stool micro-ribonucleic acids (miRNAs) would be associated with both microbial activity and infant growth via putative metabolic targets. Stool was collected twice from 30 full-term infants, at 1 month and again between 6 and 12 months. Stool RNA were measured with high-throughput sequencing and aligned to human and microbial databases. Infant growth was measured by weight-for-length z-score at birth and 12 months. Increased RNA transcriptional activity of Clostridia (R = 0.55; Adj p = 3.7E-2) and Burkholderia (R = -0.820, Adj p = 2.62E-3) were associated with infant growth. Of the 25 human RNAs associated with growth, 16 were miRNAs. The miRNAs demonstrated significant target enrichment (Adj p < 0.05) for four metabolic pathways. There were four associations between growth-related miRNAs and growth-related phyla. We have shown that longitudinal trends in gut microbiota activity and human miRNA levels are associated with infant growth and the metabolic targets of miRNAs suggest these molecules may regulate the biosynthetic landscape of the gut and influence microbial activity.
Collapse
Affiliation(s)
- Molly C Carney
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Xiang Zhan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | | | - Maria Z Chroneos
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Sarah J C Craig
- Department of Biology, Eberly College of Science, Penn State University, University Park, PA, USA
| | - Kateryna D Makova
- Department of Biology, Eberly College of Science, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
24
|
Integrated analysis of dysregulated microRNA and mRNA expression in intestinal epithelial cells following ethanol intoxication and burn injury. Sci Rep 2021; 11:20213. [PMID: 34642361 PMCID: PMC8510995 DOI: 10.1038/s41598-021-99281-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gut barrier dysfunction is often implicated in pathology following alcohol intoxication and burn injury. MicroRNAs (miRNAs) are negative regulators of gene expression that play a central role in gut homeostasis, although their role after alcohol and burn injury is poorly understood. We performed an integrated analysis of miRNA and RNA sequencing data to identify a network of interactions within small intestinal epithelial cells (IECs) which could promote gut barrier disruption. Mice were gavaged with ~ 2.9 g/kg ethanol and four hours later given a ~ 12.5% TBSA full thickness scald injury. One day later, IECs were harvested and total RNA extracted for RNA-seq and miRNA-seq. RNA sequencing showed 712 differentially expressed genes (DEGs) (padj < 0.05) in IECs following alcohol and burn injury. Furthermore, miRNA sequencing revealed 17 differentially expressed miRNAs (DEMs) (padj < 0.1). Utilizing the miRNet, miRDB and TargetScan databases, we identified both validated and predicted miRNA gene targets. Integration of small RNA sequencing data with mRNA sequencing results identified correlated changes in miRNA and target expression. Upregulated miRNAs were associated with decreased proliferation (miR-98-3p and miR-381-3p) and cellular adhesion (miR-29a-3p, miR-429-3p and miR3535), while downregulated miRNAs were connected to upregulation of apoptosis (Let-7d-5p and miR-130b-5p) and metabolism (miR-674-3p and miR-185-5p). Overall, these findings suggest that alcohol and burn injury significantly alters the mRNA and miRNA expression profile of IECs and reveals numerous miRNA–mRNA interactions that regulate critical pathways for gut barrier function after alcohol and burn injury.
Collapse
|
25
|
Kawahara K, Nagata M, Yoshida R, Hirosue A, Tanaka T, Matsuoka Y, Arita H, Nakashima H, Sakata J, Yamana K, Kawaguchi S, Gohara S, Nagao Y, Hirayama M, Takahashi N, Hirayama M, Nakayama H. miR-30a attenuates drug sensitivity to 5-FU by modulating cell proliferation possibly by downregulating cyclin E2 in oral squamous cell carcinoma. Biochem Biophys Rep 2021; 28:101114. [PMID: 34589618 PMCID: PMC8461355 DOI: 10.1016/j.bbrep.2021.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance. miR-30a overexpression increased the proportion of G1 phase cells. miR-30a knockdown using si-RNA reversed the effects of miR-30a overexpression. CCNE2 knockdown with si-RNA in OSCC cells decreased drug sensitivity to 5-FU.
Collapse
Affiliation(s)
- Kenta Kawahara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takuya Tanaka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Dentistry and Oral Surgery, Amakusa Central General Hospital, Amakusa 863-0033, Japan
| | - Yuichiro Matsuoka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Oral & Maxillofacial Surgery, Kyushu Central Hospital, Fukuoka 815-8588, Japan
| | - Junki Sakata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sho Kawaguchi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Corresponding author.
| |
Collapse
|
26
|
Zhu M, Jia L, Jia J. Inhibition of miR-96-5p May Reduce Aβ42/Aβ40 Ratio via Regulating ATP-binding cassette transporter A1. J Alzheimers Dis 2021; 83:367-377. [PMID: 34334400 DOI: 10.3233/jad-210411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imbalance between amyloid-β (Aβ) production and clearance results in Aβ accumulation. Regulating Aβ levels is still a hot point in the research of Alzheimer's disease (AD). OBJECTIVE To identify the differential expression of ATP-binding cassette transporter A1 (ABCA1) and its upstream microRNA (miRNA) in AD models, and to explore their relationships with Aβ levels. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the expression of ABCA1 in 5xFAD mice, SH-SY5Y cells treated with Aβ oligomers and SH-SY5YAβPP695 cells (AD models). TargetScan was used to predict the upstream miRNAs for ABCA1. Dual-luciferase assay was conducted to identify the regulation of the miRNA on ABCA1. qRT-PCR was used to measure the expression of miRNA in AD models. Finally, enzyme-linked immunosorbent assays were performed to detect Aβ42 and Aβ40 levels. RESULTS The expression of ABCA1 was significantly downregulated in AD models at both mRNA and protein levels. Dual-luciferase assay showed that miR-96-5p could regulate the expression of ABCA1 through binding to the 3 untranslated region of ABCA1. The level of miR-96-5p was significantly elevated in AD models. The expression of ABCA1 was enhanced while Aβ42 levels and Aβ42/Aβ40 ratios were reduced in SH-SY5YAβPP695 cells after treated with miR-96-5p inhibitor. CONCLUSION The current study found that miR-96-5p is the upstream miRNA for ABCA1. Suppression of miR-96-5p in AD models could reduce Aβ42/Aβ40 ratios via upregulating the expression of ABCA1, indicating that miR-96-5p plays an important role in regulating the content of Aβ.
Collapse
Affiliation(s)
- Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China
| |
Collapse
|
27
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
28
|
Bioinformatics Analysis: The Regulatory Network of hsa_circ_0007843 and hsa_circ_0007331 in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662897. [PMID: 34337040 PMCID: PMC8324362 DOI: 10.1155/2021/6662897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Objective To analyze the molecular regulation network of circular RNA (circRNA) in colon cancer (CC) by bioinformatics method. Methods hsa_circ_0007843 and hsa_circ_0007331 proved to be associated with CC in previous studies were chosen as the research object. ConSite database was used to predict the transcription factors associated with circRNA, and the CC-associated transcription factors were screened out after intersection. The CircInteractome database was used to predict the RNA-binding proteins (RBPs) interacting with circRNAs and screen out the CC-associated RBPs after an intersection. Furthermore, the CircInteractome database was used to predict the miRNAs interrelated with circRNAs, and the HMDD v3.2 database was used to search for miRNAs associated with CC. The target mRNAs of miRNA were predicted by the miRWalk v3.0 database. CC-associated target genes were screened out from the GeneCards database, and the upregulated genes were enriched and analyzed by the FunRich 3.1.3 software. Finally, the molecular regulatory network diagram of circRNA in CC was plotted. Results The ConSite database predicted a total of 14 common transcription factors of hsa_circ_0007843 and hsa_circ_0007331, among which Snail, SOX17, HNF3, C-FOS, and RORα-1 were related to CC. The CircInteractome database predicted that the RBPs interacting with these two circRNAs were AGO2 and EIF4A3, and both of them were related to CC. A total of 17 miRNAs interacting with hsa_circ_0007843 and hsa_circ_0007331 were predicted by CircInteractome database. miR-145-5p, miR-21, miR-330-5p, miR-326, and miR-766 were associated with CC according to the HMDDv3.2 database. miR-145-5p and miR-330-5p, lowly expressed in CC, were analyzed in the follow-up study. A total of 676 common target genes of these two miRNAs were predicted by the miRWalk3.0 database. And 57 target genes were involved in the occurrence and development of CC from the GeneCards database, with 23 genes downregulated and 34 genes upregulated. Additionally, GO analysis showed that the 34 upregulated genes were mainly enriched in biological processes such as signal transduction and cell communication. KEGG pathway analysis showed that the upregulated genes were closely related to integrin, ErbB receptor, and ALK1 signal pathways. Finally, a complete regulatory network of hsa_circ_0007843 and hsa_circ_0007331 in CC was proposed, whereby each one of the participants was either directly or indirectly associated and whose deregulation may result in CC progression. Conclusion Predicting the molecular regulatory network of circRNAs by bioinformatics provides a new theoretical basis for further occurrence and development pathogenesis of CC and good guidance for future experimental research.
Collapse
|
29
|
Morris NL, Choudhry MA. Maintenance of gut barrier integrity after injury: Trust your gut microRNAs. J Leukoc Biol 2021; 110:979-986. [PMID: 33577717 DOI: 10.1002/jlb.3ru0120-090rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly dynamic structure essential for digestion, nutrient absorption, and providing an interface to prevent gut bacterial translocation. In order to maintain the barrier function, the gut utilizes many defense mechanisms including proliferation, apoptosis, and apical junctional complexes. Disruption of any of these parameters due to injury or disease could negatively impact the intestinal barrier function and homeostasis resulting in increased intestine inflammation, permeability, bacterial dysbiosis, and tissue damage. MicroRNAs are small noncoding RNA sequences that are master regulators of normal cellular homeostasis. These regulatory molecules affect cellular signaling pathways and potentially serve as candidates for providing a mechanism of impaired gut barrier integrity following GI-related pathologic conditions, ethanol exposure, or trauma such as burn injury. MicroRNAs influence cellular apoptosis, proliferation, apical junction complex expression, inflammation, and the microbiome. Due to their widespread functional affiliations, altered expression of microRNAs are associated with many pathologic conditions. This review explores the role of microRNAs in regulation of intestinal barrier integrity. The studies reviewed demonstrate that microRNAs largely impact intestine barrier function and provide insight behind the observed adverse effects following ethanol and burn injury. Furthermore, these studies suggest that microRNAs are excellent candidates for therapeutic intervention or for biomarkers to manage gut barrier integrity following trauma such as burn injury and other GI-related pathologic conditions.
Collapse
Affiliation(s)
- Niya L Morris
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Current address: Department of Medicine: Pulmonary, Allergy, Critical Care and Sleep, Emory University/Atlanta VA Medical Center, Decatur, Geogia, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA
| |
Collapse
|
30
|
Morris NL, Harris FL, Brown LAS, Yeligar SM. Alcohol induces mitochondrial derangements in alveolar macrophages by upregulating NADPH oxidase 4. Alcohol 2021; 90:27-38. [PMID: 33278514 DOI: 10.1016/j.alcohol.2020.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Excessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated. Since microRNA (miR)-92a has been predicted to target Nox4 for destabilization, we hypothesized that ethanol exposure decreases miR-92a expression and leads to Nox4 upregulation. Previous studies have implicated mitochondrial-derived oxidative stress in AM dysfunction. We further hypothesized that ethanol increases mitochondrial-derived AM oxidative stress and dysfunction via miR-92a, and that treatment with the PPARγ ligand, pioglitazone, could reverse these derangements. To test these hypotheses, a mouse AM cell line, MH-S cells, was exposed to ethanol in vitro, and primary AMs were isolated from a mouse model of chronic ethanol consumption to measure Nox4, mitochondrial target mRNA (qRT-PCR) and protein levels (confocal microscopy), mitochondria-derived reactive oxygen species (confocal immunofluorescence), mitochondrial fission (electron microscopy), and mitochondrial bioenergetics (extracellular flux analyzer). Ethanol exposure increased Nox4, enhanced mitochondria-derived oxidative stress, augmented mitochondrial fission, and impaired mitochondrial bioenergetics. Transfection with a miR-92a mimic in vitro or pioglitazone treatment in vivo diminished Nox4 levels, resulting in improvements in these ethanol-mediated derangements. These findings demonstrate that pioglitazone may provide a novel therapeutic approach to mitigate ethanol-induced AM mitochondrial derangements.
Collapse
|
31
|
Henriques AD, Machado-Silva W, Leite RE, Suemoto CK, Leite KR, Srougi M, Pereira AC, Jacob-Filho W, Nóbrega OT. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech Ageing Dev 2020; 191:111352. [DOI: 10.1016/j.mad.2020.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
|
32
|
Morris NL, Cannon AR, Li X, Choudhry MA. Protective effects of PX478 on gut barrier in a mouse model of ethanol and burn injury. J Leukoc Biol 2020; 109:1121-1130. [PMID: 32964503 DOI: 10.1002/jlb.3a0820-323rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ethanol remains a confounder in postburn pathology, which is associated with an impaired intestinal barrier. Previously, we demonstrated that ethanol and burn injury reduce intestinal oxygen delivery (hypoxia) and alters microRNA (miR) expression in small intestinal epithelial cells. Hypoxia has been shown to influence expression of miRs and miR biogenesis components. Therefore, we examined whether hypoxia influences expression of miR biogenesis components (drosha, dicer, and argonaute-2 [ago-2]) and miRs (-7a and -150) and whether these changes impacted other parameters following ethanol and burn injury. Mice were gavaged with ethanol (∼2.9 g/kg) 4 h before receiving a ∼12.5% total body surface full thickness burn. Mice were resuscitated at the time of injury with normal saline with or without 5 mg/kg PX-478, a hypoxia-inducible factor-1α inhibitor. One day following injury mice were euthanized, and the expression of miRs and their biogenesis components as well as bacterial growth, tight junction proteins, intestinal transit, and permeability were assessed. Ethanol combined with burn injury significantly reduced expression of drosha, ago-2, miRs (-7a and -150), occludin, zonula occludens-1, claudin-4, zonula occludens-1, mucins-2 and -4, and intestinal transit compared to shams. Furthermore, there was an increase in intestinal permeability, total bacteria, and Enterobacteriaceae populations following the combined injury compared to shams. PX-478 treatment improved expression of drosha, ago-2, miRs (-7a and -150), occludin, claudin-4, zonula occludens-1, and mucin-2. PX-478 treatment also improved intestinal transit and reduced dysbiosis and permeability. These data suggest that PX-478 improves miR biogenesis and miR expression, and restores barrier integrity while reducing bacterial dysbiosis following ethanol and burn injury.
Collapse
Affiliation(s)
- Niya L Morris
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA.,Current address: Department of Medicine, Pulmonary, Allergy, Critical Care and Sleep, Emory University/Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Abigail R Cannon
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Xiaoling Li
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA.,Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| |
Collapse
|
33
|
Ragusa R, Di Molfetta A, Amodeo A, Trivella MG, Caselli C. Pathophysiology and molecular signalling in pediatric heart failure and VAD therapy. Clin Chim Acta 2020; 510:751-759. [PMID: 32949569 DOI: 10.1016/j.cca.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Heart Failure (HF) is a progressive clinical syndrome characterized by molecular and structural abnormalities that result in impaired ventricular filling and a reduced blood ejection. In pediatric patients, HF represents an important cause of morbidity and mortality, but underlying cause, presentation and disease course remains unclear in many cases. It is evident that a child is not a "small adult" and findings are not comparable. The adoption of a standardized clinical and surgical tools as well as increased biomolecular research and therapeutic trials targeting pediatric patients with HF would greatly improve the management of this special class of patients. This review examines the most current information about the pathophysiology and molecular mechanisms related to HF in children to identify gaps in our knowledge base to further improve clinical care and outcomes.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Arianna Di Molfetta
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Amodeo
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
34
|
Xiao QX, Wen S, Zhang XR, Xue LL, Zhang ZB, Tan YX, Du RL, Zhu ZQ, Zhu YH, Wang TH, Yu CY, Xiong LL. MiR-410-3p overexpression ameliorates neurological deficits in rats with hypoxic-ischemic brain damage. Brain Res Bull 2020; 162:218-230. [PMID: 32579902 DOI: 10.1016/j.brainresbull.2020.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/08/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is major cause of neonatal death or long-term neurodevelopmental disabilities, which becomes a major practical problem currently in clinic. Whereas, its pathophysiology and underlying molecular mechanism is not clear. MicroRNAs are involved in the normal growth and development of neuronal cells. Herein, the objective of this research was to examine the roles of miR-410-3p in neurological deficits, neuronal injury and neuron apoptosis after hypoxic-ischemic and to explore its associated mechanisms. We established the hypoxic-ischemic brain damage (HIBD) model and oxygen glucose deprivation (OGD) model. Zea-longa score and TTC staining were used to detect the acute cerebral dysfunction after HIBD. QPCR verification exhibited notable downregulation of miR-410-3p expression at 24 h in rats after HIBD as well as that in PC12, SY5Y cells and primary cortical neurons post OGD. To further determine the function of miR-410-3p, lentivirus-mediated overexpression virus was applied in vivo and in vitro. Behavioral tests, including Morris water maze, open field test, Y maze test, neurological severity score and rotating rod test, were performed to evaluate long-term behavioral changes of rats at 1 month post HIBD. The results showed that the number of cells together with the axonal length were reduced post OGD. While the increase of cells number and the axonal length was measured after upregulating miR-410-3p. Meanwhile, miR-410-3p overexpression inhibited neuron apoptosis and enhanced neuronal survival. In addition, long-term motor and cognitive functions were remarkably recovered in HIBD rats with miR-410-3p overexpression. Together, miR-410-3p exerts a critical role in protecting neuronal growth as well as promoting motor and cognitive function recovery in neonatal rats subjected to HIBD. The current study therefore provides critical insights to develop the activator of miR-410-3p for the clinical treatment of HIBD in future clinic trial.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Song Wen
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangdong, 510120, China
| | - Lu-Lu Xue
- Institute of Neuroscience and Animal Zoology Department, Kunming Medical University, Kunming, 650031, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ya-Xin Tan
- Institute of Neuroscience and Animal Zoology Department, Kunming Medical University, Kunming, 650031, China
| | - Ruo-Lan Du
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yu-Hang Zhu
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ting-Hua Wang
- Institute of Neuroscience and Animal Zoology Department, Kunming Medical University, Kunming, 650031, China; Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chang-Yin Yu
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| |
Collapse
|
35
|
Lou S, Zhu X, Zeng Z, Wang H, Jia B, Li H, Hu Z. Identification of microRNAs response to high light and salinity that involved in beta-carotene accumulation in microalga Dunaliella salina. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK. Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review. Mini Rev Med Chem 2020; 20:626-635. [DOI: 10.2174/1389557520666200122124445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/19/2022]
Abstract
The incidence of Metabolic Syndrome (MetS) has risen globally. MetS includes a combination
of features, i.e. blood glucose impairment, excess abdominal/body fat dyslipidemia and elevated
blood pressure. Other than conventional treatment with drugs, the main preventive approaches include
lifestyle changes, weight loss, diet control and adequate exercise also proves to be beneficial. MicroRNAs
(miRNAs) are small non-coding RNAs that play critical regulatory roles in most biological
and pathological processes. In the present review, we discuss various miRNAs which are related to
MetS by targeting various organs, including the pancreas, liver, skeletal muscles and adipose tissues.
These miRNAs have the effect on insulin production and secretion (miR-9, miR-124a, miR-130a,b,
miR152, miR-335, miR-375), insulin resistance (miR-29), adipogenesis (miR-143, miR148a) and lipid
metabolism (miR-192). We also discuss the miRNAs as potential biomarkers and future therapeutic
targets. This review may be beneficial for molecular biologists and clinicians dealing with MetS.
Collapse
Affiliation(s)
- Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Tarrsini Thevaraj
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | | | - Azwani Zawawi
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hazwan Hazrin Salim
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Dennis Kheng Zhou
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Dong C, Fan B, Ren Z, Liu B, Wang Y. CircSMARCA5 Facilitates the Progression of Prostate Cancer Through miR-432/PDCD10 Axis. Cancer Biother Radiopharm 2020; 36:70-83. [PMID: 32407167 DOI: 10.1089/cbr.2019.3490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Circular RNAs (circRNAs) have been reported to be implicated in the pathogenesis of prostate cancer (PCa). Herein, the authors explore the role and molecular mechanism of circRNA SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 5 (circSMARCA5) in PCa. Materials and Methods: The levels of circSMARCA5, SMARCA5, miR-432, and programmed cell death 10 (PDCD10) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The circular structure and stability of circSMARCA5 were validated by qRT-PCR using Oligo dT primer, transcriptional inhibitor actinomycin D, or RNase R treatment, respectively. Cell proliferation, migration, invasion, epithelial/mesenchymal transition (EMT), and glycolysis were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), transwell migration and invasion assays, Western blot assay, and Glucose or Lactate Detection Kit, respectively. The target relationship between miR-432 and circSMARCA5 or PDCD10 was validated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Western blot was performed to detect the protein expression of PDCD10 in PCa cells. Results: CircSMARCA5 was aberrantly upregulated, and was a circular and stable RNA in PCa cells. CircSMARCA5 accelerated the proliferation, metastasis, and glycolysis of PCa cells. MiR-432 was a direct target of circSMARCA5, and circSMARCA5 accelerated the development of PCa through miR-432 in PCa cells. PDCD10 was a direct target of miR-432, and PDCD10 addition reversed the inhibitory effects of miR-432 accumulation on the proliferation, metastasis, and glycolysis of PCa cells. CircSMARCA5 upregulated the expression of PDCD10 through sponging miR-432 in PCa cells. Conclusion: CircSMARCA5 deteriorated PCa through the miR-432/PDCD10 axis. CircSMARCA5/miR-432/PDCD10 axis might be an underlying therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Chunhui Dong
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Fan
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongtao Ren
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Liu
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanchao Wang
- Department of Urology Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
38
|
Braun M, Klingelhöfer D, Oremek GM, Quarcoo D, Groneberg DA. Influence of Second-Hand Smoke and Prenatal Tobacco Smoke Exposure on Biomarkers, Genetics and Physiological Processes in Children-An Overview in Research Insights of the Last Few Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3212. [PMID: 32380770 PMCID: PMC7246681 DOI: 10.3390/ijerph17093212] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Children are commonly exposed to second-hand smoke (SHS) in the domestic environment or inside vehicles of smokers. Unfortunately, prenatal tobacco smoke (PTS) exposure is still common, too. SHS is hazardous to the health of smokers and non-smokers, but especially to that of children. SHS and PTS increase the risk for children to develop cancers and can trigger or worsen asthma and allergies, modulate the immune status, and is harmful to lung, heart and blood vessels. Smoking during pregnancy can cause pregnancy complications and poor birth outcomes as well as changes in the development of the foetus. Lately, some of the molecular and genetic mechanisms that cause adverse health effects in children have been identified. In this review, some of the current insights are discussed. In this regard, it has been found in children that SHS and PTS exposure is associated with changes in levels of enzymes, hormones, and expression of genes, micro RNAs, and proteins. PTS and SHS exposure are major elicitors of mechanisms of oxidative stress. Genetic predisposition can compound the health effects of PTS and SHS exposure. Epigenetic effects might influence in utero gene expression and disease susceptibility. Hence, the limitation of domestic and public exposure to SHS as well as PTS exposure has to be in the focus of policymakers and the public in order to save the health of children at an early age. Global substantial smoke-free policies, health communication campaigns, and behavioural interventions are useful and should be mandatory.
Collapse
Affiliation(s)
- Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, D-60590 Frankfurt, Germany; (D.K.); (G.M.O.); (D.Q.); (D.A.G.)
| | | | | | | | | |
Collapse
|
39
|
Liu G, Li S, Liu H, Zhu Y, Bai L, Sun H, Gao S, Jiang W, Li F. The functions of ocu-miR-205 in regulating hair follicle development in Rex rabbits. BMC DEVELOPMENTAL BIOLOGY 2020; 20:8. [PMID: 32321445 PMCID: PMC7178635 DOI: 10.1186/s12861-020-00213-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/13/2020] [Indexed: 12/03/2022]
Abstract
BACKGROUND Hair follicles are an appendage of the vertebrate epithelium in the skin that arise from the embryonic ectoderm and regenerate cyclically during adulthood. Dermal papilla cells (DPCs) are the key dermal component of the hair follicle that directly regulate hair follicle development, growth and regeneration. According to recent studies, miRNAs play an important role in regulating hair follicle morphogenesis and the proliferation, differentiation and apoptosis of hair follicle stem cells. RESULTS The miRNA expression profile of the DPCs from Rex rabbits with different hair densities revealed 240 differentially expressed miRNAs (|log2(HD/LD)| > 1.00 and Q-value≤0.001). Among them, ocu-miR-205-5p was expressed at higher levels in DPCs from rabbits with low hair densities (LD) than in rabbits with high hair densities (HD), and it was expressed at high levels in the skin tissue from Rex rabbits (P < 0.05). Notably, ocu-miR-205 increased cell proliferation and the cell apoptosis rate, altered the progression of the cell cycle (P < 0.05), and modulated the expression of genes involved in the PI3K/Akt, Wnt, Notch and BMP signalling pathways in DPCs and skin tissue from Rex rabbits. It also inhibited the phosphorylation of the CTNNB1 and GSK-3β proteins, decreased the level of the noggin (NOG) protein, and increased the level of phosphorylated Akt (P < 0.05). A significant change in the primary follicle density was not observed (P > 0.05), but the secondary follicle density and total follicle density (P < 0.05) were altered upon interference with ocu-miR-205-5p expression, and the secondary/primary ratio (S/P) in the ocu-miR-205-5p interfered expression group increased 14 days after the injection (P < 0.05). CONCLUSIONS In the present study, ocu-miR-205 promoted the apoptosis of DPCs, altered the expression of genes and proteins involved in the PI3K/Akt, Wnt, Notch and BMP signalling pathways in DPCs and skin from Rex rabbits, promoted the transition of hair follicles from the growth phase to the regression and resting phase, and altered the hair density of Rex rabbits.
Collapse
Affiliation(s)
- Gongyan Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, People's Republic of China
- Animal Husbandry and Veterinary Institute, Shandong Academy of Agricultural Sciences, Jinan, 251000, People's Republic of China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, 251000, People's Republic of China
| | - Shu Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, People's Republic of China
| | - Hongli Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, People's Republic of China
| | - Yanli Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, People's Republic of China
| | - Liya Bai
- Animal Husbandry and Veterinary Institute, Shandong Academy of Agricultural Sciences, Jinan, 251000, People's Republic of China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, 251000, People's Republic of China
| | - Haitao Sun
- Animal Husbandry and Veterinary Institute, Shandong Academy of Agricultural Sciences, Jinan, 251000, People's Republic of China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, 251000, People's Republic of China
| | - Shuxia Gao
- Animal Husbandry and Veterinary Institute, Shandong Academy of Agricultural Sciences, Jinan, 251000, People's Republic of China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, 251000, People's Republic of China
| | - Wenxue Jiang
- Animal Husbandry and Veterinary Institute, Shandong Academy of Agricultural Sciences, Jinan, 251000, People's Republic of China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, 251000, People's Republic of China
| | - Fuchang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
40
|
miR-338-5p Targets Epidermal Growth Factor-Containing Fibulin-Like Extracellular Matrix Protein 1 to Inhibit the Growth and Invasion of Trophoblast Cells in Selective Intrauterine Growth Restriction. Reprod Sci 2020; 27:1357-1364. [PMID: 32056133 PMCID: PMC7190678 DOI: 10.1007/s43032-020-00160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Selective intrauterine growth restriction (sIUGR) is a disorder of monochorionic (MC) twin pregnancies. However, the underlying mechanism remains largely unknown. Trophoblast cells are the major component of the placenta. Dysfunction of trophoblast cells is associated with placental dysfunction. Our previous study identified miR-338-5p is downregulated in placenta tissues sharing larger twins of sIUGR. In the present study, we aimed to investigate the role of miR-338-5p in trophoblast cells and explored its target. Our results further indicated that miR-338-5p was downregulated in placental tissues supporting larger twins of sIUGR, whereas epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was upregulated. Moreover, miR-338-5p overexpression suppressed the growth and invasion of trophoblast cells. Importantly, results from luciferase reporter assay demonstrated that miR-338-5p bound on the 3'-UTR of EFEMP1. miR-338-5p suppressed the growth and invasion of trophoblast cells via targeting EFEMP1. Further, miR-338-5p/EFEMP1 might disrupt the function of trophoblast cells via inhibiting the phosphorylation of AKT.
Collapse
|
41
|
MiR-141–3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem Biophys Res Commun 2019; 514:699-705. [DOI: 10.1016/j.bbrc.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022]
|
42
|
Abstract
MicroRNAs (miRNAs) are naturally occurring, highly conserved families of transcripts (∼22 nucleotides in length) that are processed from larger hairpin precursors. miRNAs primarily regulate gene expression by promoting messenger RNA (mRNA) degradation or repressing mRNA translation. miRNAs have been shown to be important regulators of a variety of cellular processes involving development, differentiation, and signaling. Moreover, various human diseases, including cancer and immune dysfunction, are associated with aberrant expression of miRNAs. This review will focus on how the multifunctional miRNA, miR-155, regulates inflammatory diseases, including cancer and pulmonary disorders, and also how miR-155 expression and biogenesis are regulated. We will also provide examples of miR-155-regulated networks in coordination with other noncoding RNAs, including long noncoding RNAs as well as coding mRNAs acting as competing endogenous RNAs.
Collapse
Affiliation(s)
- Guruswamy Mahesh
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
43
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
44
|
MicroRNA-148b-3p is involved in regulating hypoxia/reoxygenation-induced injury of cardiomyocytes in vitro through modulating SIRT7/p53 signaling. Chem Biol Interact 2018; 296:211-219. [DOI: 10.1016/j.cbi.2018.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022]
|
45
|
Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/β-catenin signaling. Biomed Pharmacother 2018; 108:467-475. [DOI: 10.1016/j.biopha.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
|
46
|
miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method. Methods Mol Biol 2018; 1706:257-265. [PMID: 29423803 DOI: 10.1007/978-1-4939-7471-9_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
MicroRNAs are small noncoding RNAs that function to regulate gene expression. In general, miRNAs are posttranscriptional regulators that imperfectly bind to the 3'untranslated region (3'UTR) of target mRNAs bearing complementary sequences, and target more than half of all protein-coding genes in the human genome. The dysregulation of miRNA expression and activity has been linked with numerous diseases, including cancer, cardiovascular diseases, neurodegenerative disorders, and diabetes. To better understand the relationship between miRNAs and human disease, a variety of techniques have been used to measure and validate miRNA expression in many cells, tissues, body fluids, and organs. For many years, quantitative polymerase chain reaction (qPCR) has been the gold standard for measuring relative gene expression, and is now also widely used to assess miRNA abundance. In this chapter, we describe a quick protocol for miRNA extraction, reverse transcription, qPCR, and data analysis.
Collapse
|
47
|
Cao Y, Xia F, Wang P, Gao M. MicroRNA‑93‑5p promotes the progression of human retinoblastoma by regulating the PTEN/PI3K/AKT signaling pathway. Mol Med Rep 2018; 18:5807-5814. [PMID: 30365088 DOI: 10.3892/mmr.2018.9573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/06/2018] [Indexed: 11/06/2022] Open
Abstract
Numerous reports have indicated that microRNA‑93‑5p (miR‑93‑5p) is involved in the development and progression of human cancer, including non‑small cell lung, gastric and breast cancer; however, the role of miR‑93‑5p in retinoblastoma (RB) remains unknown. In the present study, it was reported that miR‑93‑5p expression levels were significantly upregulated in RB tissues compared with in normal tissues by reverse transcription‑quantitative polymerase chain reaction. Furthermore, it was demonstrated via cell counting kit‑8 and Transwell assays that knockdown of miR‑93‑5p significantly suppressed the proliferation, migration and invasion of RB cells, but promoted cellular apoptosis. Regarding the underlying mechanism, the present study reported that phosphatase and tensin homolog (PTEN) was a direct target of miR‑93‑5p in RB cells. Overexpression of miR‑93‑5p significantly inhibited the expression of PTEN; opposing results were observed when PTEN expression was downregulated. Furthermore, the present study revealed that PTEN expression levels were downregulated and were inversely correlated with that of miR‑93‑5p in RB tissues. Additionally, the present study demonstrated that knockdown of PTEN in miR‑93‑5p‑depleted RB cells significantly reversed the effects of miR‑93‑5p on cell proliferation, migration and invasion; miR‑93‑5p knockdown was suggested to promote PTEN expression, consequently inhibiting the activation of phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway. Collectively, the results of the present study demonstrated that miR‑93‑5p may serve a role as an oncogene by modulating the PTEN/PI3K/AKT signaling pathway in RB, indicating that miR‑93‑5p may be a potential therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Yongliang Cao
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Fei Xia
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ping Wang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Meng Gao
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
48
|
Lou S, Sun T, Li H, Hu Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:244. [PMID: 30202439 PMCID: PMC6129010 DOI: 10.1186/s13068-018-1249-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/31/2018] [Indexed: 05/30/2023]
Abstract
MicroRNAs are a class of endogenous non-coding RNAs that play a vital role in post-transcriptional gene regulation in eukaryotic cells. In plants and animals, miRNAs are implicated in diverse roles ranging from immunity against viral infections, developmental pathways, molecular pathology of cancer and regulation of protein expression. However, the role of miRNAs in the unicellular model green alga Chlamydomonas reinhardtii remains unclear. The mode of action of miRNA-induced gene silencing in C. reinhardtii is very similar to that of higher eukaryotes, in terms of the activation of the RNA-induced silencing complex and mRNA targeting. Certain studies indicate that destabilization of mRNAs and mRNA turnover could be the major possible functions of miRNAs in eukaryotic algae. Here, we summarize recent findings that have advanced our understanding of miRNA regulatory mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sulin Lou
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Ting Sun
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Key Laboratory of Optoeletronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoeletronic Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
49
|
Nguyen TC, Zaleta-Rivera K, Huang X, Dai X, Zhong S. RNA, Action through Interactions. Trends Genet 2018; 34:867-882. [PMID: 30177410 DOI: 10.1016/j.tig.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
As transcription of the human genome is quite pervasive, it is possible that many novel functions of the noncoding genome have yet to be identified. Often the noncoding genome's functions are carried out by their RNA transcripts, which may rely on their structures and/or extensive interactions with other molecules. Recent technology developments are transforming the fields of RNA biology from studying one RNA at a time to transcriptome-wide mapping of structures and interactions. Here, we highlight the recent advances in transcriptome-wide RNA interaction analysis. These technologies revealed surprising versatility of RNA to participate in diverse molecular systems. For example, tens of thousands of RNA-RNA interactions have been revealed in cultured cells as well as in mouse brain, including interactions between transposon-produced transcripts and mRNAs. In addition, most transcription start sites in the human genome are associated with noncoding RNA transcribed from other genomic loci. These recent discoveries expanded our understanding of RNAs' roles in chromatin organization, gene regulation, and intracellular signaling.
Collapse
Affiliation(s)
- Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xuerui Huang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi Shi, Jiangsu Sheng, P.R. China.
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
50
|
Cai Y, Wang W, Guo H, Li H, Xiao Y, Zhang Y. miR-9-5p, miR-124-3p, and miR-132-3p regulate BCL2L11 in tuberous sclerosis complex angiomyolipoma. J Transl Med 2018; 98:856-870. [PMID: 29540858 DOI: 10.1038/s41374-018-0051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by tumor formation in multiple organs, with over 80% of TSC patients developing angiomyolipomas (TSC-AMLs). However, the molecular events that contribute to TSC-AMLs are not well understood. Recent reports have demonstrated that microRNAs (miRNAs) are critical in TSC cortical tubers. However, little is known about the role of miRNAs in TSC-AMLs. In the current study, we analyzed changes in the miRNA and mRNA profiles in TSC-AMLs and matched normal adjacent tissues. A total of 15 differentially expressed miRNAs and 2664 mRNAs were identified. Using quantitative real-time PCR, we confirmed the results of the miRNA and mRNA profile experiments. Through bioinformatic analysis and luciferase reporter assays, we found that BCL2L11, an apoptotic activator, was the direct target of miR-9-5p, miR-124-3p, and miR-132-3p. Engineered expression of miR-9-5p, miR-124-3p, or miR-132-3p significantly regulated proliferation and apoptosis in Tsc2-/- cells. Manipulated expression of BCL2L11 also led to proliferation and apoptosis alterations in Tsc2-/- cells, in agreement with the effects of the above three miRNAs. In addition, BCL2L11 rescued the proliferation and apoptotic inhibition induced by miR-9-5p, miR-124-3p, and miR-132-3p in Tsc2-/- cells. This study provides supportive evidence that miR-9-5p, miR-124-3p, and miR-132-3p play a role in TSC-AMLs through the regulation of BCL2L11.
Collapse
Affiliation(s)
- Yi Cai
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.,Department of Urology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City, 410008, Hunan Province, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Hao Guo
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Hanzhong Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|