1
|
Mai Q, Mai X, Huang X, Zhang D, Huang K, Zhou C. Imprinting Status in Two Human Parthenogenetic Embryonic Stem Cell Lines: Analysis of 63 Imprinted Gene Expression Levels in Undifferentiated and Early Differentiated Stages. Stem Cells Dev 2018; 27:430-439. [PMID: 29402175 DOI: 10.1089/scd.2017.0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human parthenogenetic embryonic stem cells (hPESCs) represent a source of histocompatible tissues for transplantation and carry two copies of the maternal genome, but lack the paternal genome. In this study, we selected 63 known human imprinted genes to investigate the imprinting status of hPESC. The expression level of these genes, including 27 maternally and 36 paternally imprinted were illustrated in hPESC and human embryonic stem cells (hESCs) derived from fertilized embryo lines. The expression activity changes of these genes were analyzed in undifferentiated and early differentiated hPESC lines. In addition, the methylation status of four differentially methylated regions (DMRs) of the imprinted genes was analyzed in undifferentiated and early differentiated hPESC and hESC lines. As a result, we found that all the maternally imprinted genes were expressed at similar levels in the undifferentiated hPESC lines and the hESC lines, except ZNF264 and ATP10A. Twenty-one analyzed paternal imprinted genes were expressed at the same level in two separated hPESC lines as well as compared with the hESC lines, whereas 15 other paternal imprinted genes were significantly downregulated or inactivated in hPESC lines as compared with the hESC line. During prolonged passage, the expression levels of the majority of imprinted genes remained stable in two hPESC lines. The four DMRs, including PEG3/ZIM2 (DMRs), SNURF/SNRPN DMRs, and KVDMR1 DMRs are highly methylated in the genes of two undifferentiated hPESCs and its embryonic bodies (EBs), whereas the genes of the undifferentiated hESCs and its EBs are half methylated. During the early differentiation stage, the imprinted genes showed the same expression trend and the expression levels of H19, IGF2, SLC22A2, SLC22A3/SLC22A18, and CPA4 were significantly upregulated in both hPESC lines. As conclusion, hPESCs show a substantial degree of epigenetic stability with respect to some imprinted genes.
Collapse
Affiliation(s)
- Qingyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Xiuyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China .,2 Reproductive Medical Center , Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Dan Zhang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Kejun Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Canquan Zhou
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
2
|
Chi D, Zeng Y, Xu M, Si L, Qu X, Liu H, Li J. LC3-Dependent Autophagy in Pig 2-Cell Cloned Embryos Could Influence the Degradation of Maternal mRNA and the Regulation of Epigenetic Modification. Cell Reprogram 2017; 19:354-362. [PMID: 29058487 DOI: 10.1089/cell.2017.0016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this study, the distribution as well as the effect of autophagy on reprogramming in pig cloned embryos were observed immediately after somatic cell nuclear transfer. Results showed that the LC3 was at the highest level in cloned embryos at 2-cell stage, and it decreased with the development from 2-cell stage to blastocyst. Different to cloned embryos, the intensity of LC3 in parthenogenetic activation (PA) embryos was at the highest level at 4-cell stage. A markedly higher level of Bmp15, H1foo, and Dppa3 was shown in cloned embryos at 2-cell stage (p < 0.05 or p < 0.01), but a significantly lower level of LC3, Sox2, and eIF1A was observed at 4-cell stage (p < 0.05), compared with PA embryos. When the efficient interfering by the LC3 siRNA was performed on the cloned embryos (p < 0.01), not only the mRNA level of maternal Cyclin B, Bmp15, Gdf9, c-mos, H1foo, and Dppa3 was increased significantly (p < 0.05), but also the expression of Dnmt1 and Dnmt3b was obviously upregulated (p < 0.05). Although the expression of Sox2 and Oct4 is not changed, the expression of Stat3 decreased significantly (p < 0.05). Furthermore with the treatment of 200 nM rapamycin, the expression of eIF1A and Stat3 was significantly increased at 4-cell stage. In conclusion, the LC3-dependent autophagy mainly occurred in cloned embryos at 2-cell stage, but at 4-cell stage in PA embryos. In addition, the modulation of autophagy could affect genome activation by influencing the degradation of maternal mRNA and regulating the expression of DNA methyltransferase.
Collapse
Affiliation(s)
- Daming Chi
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Yaqiong Zeng
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Mingzhu Xu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Linan Si
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Xiao Qu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing Weigang No. 1, Jiangsu Province, P.R. China
| |
Collapse
|
3
|
Syed KM, Joseph S, Mukherjee A, Majumder A, Teixeira JM, Dutta D, Pillai MR. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts. J Cell Sci 2016; 129:4576-4591. [PMID: 27875275 DOI: 10.1242/jcs.194035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022] Open
Abstract
Induction of pluripotency in differentiated cells through the exogenous expression of the transcription factors Oct4, Sox2, Klf4 and cellular Myc involves reprogramming at the epigenetic level. Histones and their metabolism governed by histone chaperones constitute an important regulator of epigenetic control. We hypothesized that histone chaperones facilitate or inhibit the course of reprogramming. For the first time, we report here that the downregulation of histone chaperone Aprataxin PNK-like factor (APLF) promotes reprogramming by augmenting the expression of E-cadherin (Cdh1), which is implicated in the mesenchymal-to-epithelial transition (MET) involved in the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Downregulation of APLF in MEFs expedites the loss of the repressive MacroH2A.1 (encoded by H2afy) histone variant from the Cdh1 promoter and enhances the incorporation of active histone H3me2K4 marks at the promoters of the pluripotency genes Nanog and Klf4, thereby accelerating the process of cellular reprogramming and increasing the efficiency of iPSC generation. We demonstrate a new histone chaperone (APLF)-MET-histone modification cohort that functions in the induction of pluripotency in fibroblasts. This regulatory axis might provide new mechanistic insights into perspectives of epigenetic regulation involved in cancer metastasis.
Collapse
Affiliation(s)
- Khaja Mohieddin Syed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Sunu Joseph
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Ananda Mukherjee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, MSU, 333 Bostwick Ave, Grand Rapids, MI 49503, USA
| | - Aditi Majumder
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, MSU, 333 Bostwick Ave, Grand Rapids, MI 49503, USA
| | - Debasree Dutta
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| | - Madhavan Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, India
| |
Collapse
|
4
|
Sepulveda-Rincon LP, Solanas EDL, Serrano-Revuelta E, Ruddick L, Maalouf WE, Beaujean N. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology 2016; 86:91-8. [DOI: 10.1016/j.theriogenology.2016.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
5
|
Bai GY, Song SH, Wang ZD, Shan ZY, Sun RZ, Liu CJ, Wu YS, Li T, Lei L. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis. Dev Growth Differ 2016; 58:270-9. [PMID: 26991405 DOI: 10.1111/dgd.12271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
Abstract
Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.
Collapse
Affiliation(s)
- Guang-Yu Bai
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Si-Hang Song
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Dong Wang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhi-Yan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Rui-Zhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Chun-Jia Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Yan-Shuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Tong Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
6
|
Abstract
Most animal genomes are diploid, and mammalian development depends on specific adaptations that have evolved secondary to diploidy. Genomic imprinting and dosage compensation restrict haploid development to early embryos. Recently, haploid mammalian development has been reinvestigated since the establishment of haploid embryonic stem cells (ESCs) from mouse embryos. Haploid cells possess one copy of each gene, facilitating the generation of loss-of-function mutations in a single step. Recessive mutations can then be assessed in forward genetic screens. Applications of haploid mammalian cell systems in screens have been illustrated in several recent publications. Haploid ESCs are characterized by a wide developmental potential and can contribute to chimeric embryos and mice. Different strategies for introducing genetic modifications from haploid ESCs into the mouse germline have been further developed. Haploid ESCs therefore introduce new possibilities in mammalian genetics and could offer an unprecedented tool for genome exploration in the future.
Collapse
Affiliation(s)
- Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Hönggerberg, 8049 Zürich, Switzerland;
| |
Collapse
|
7
|
Yu Y, Gao Q, Zhao HC, Li R, Gao JM, Ding T, Bao SY, Zhao Y, Sun XF, Fan Y, Qiao J. Ascorbic acid improves pluripotency of human parthenogenetic embryonic stem cells through modifying imprinted gene expression in the Dlk1-Dio3 region. Stem Cell Res Ther 2015; 6:69. [PMID: 25879223 PMCID: PMC4425892 DOI: 10.1186/s13287-015-0054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial. Methods hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods. Results Comparison of five hpESCs with different differentiation abilities revealed that levels of paternal genes in the Dlk1-Dio3 region on chromosome 14 in the hpESCs with high differentiation potential are enhanced, but strictly methylated and silenced in the hpESCs with lower differentiation potential. Treatment with ascorbic acid, rescued their ability to support teratoma formation and altered the expression profiles of paternally expressed genes in hpESCs that could not form teratoma easily. No differences in the expression of other imprinting genes were evident between hpESCs with higher and lower differentiation potential, except for those in the Dlk1-Dio3 region. Conclusions The Dlk1-Dio3 imprinting gene cluster distinguishes the differentiation ability of hpESCs. Moreover, modification by ascorbic acid may facilitate application of hpESCs to clinical settings in the future by enhancing their pluripotency. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0054-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Qian Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Hong-cui Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Rong Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jiang-man Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Ting Ding
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Si-yu Bao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Xiao-fang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
8
|
Qi Q, Ding C, Hong P, Yang G, Xie Y, Wang J, Huang S, He K, Zhou C. X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging. Int J Mol Med 2014; 35:569-78. [PMID: 25524499 PMCID: PMC4314418 DOI: 10.3892/ijmm.2014.2044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to investigate the X chrochromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term culture in vitro (>50 passages). Karyotyping, array-based comparative genomic hybridization (aCGH), X-inactive specific transcript (XIST) RNA, immunofluorescence staining and real-time PCR were used to assess the chromosome karyotypes of these cells and the XCI status. X chromosome microdeletion was observed in the hPES-2 cells following culture for 50 passages. As early as 20 passages, XIST RNA expression was detected in the hPES-2 cells and was followed by low X-linked gene expression. The XIST RNA expression level was higher in the differentiated hPES-2 cells. The hPES-2′ cells that were subclones of hPES-2 retained the XCI status, and had low XIST and X-linked gene expression. XIST RNA expression remained at a low level in the differentiated hPES-2′ cells. The human biparental embryonic stem (hBES)-1 and hPES-1 cells did not exhibit XCI, and the differentiated hPES-1 cells had high expression levels of XIST RNA. In conclusion, the chromosome karyotypes of some hPES cell lines revealed instabilities. Similar to the hES cells, the hPES cells exhibited 3 XCI statuses. The unstable XCI status of the hPES-2 line may have been related to chromosome instability. These unstable chromosomes renedered these cells susceptible to environmental conditions and freezing processes, which may be the result of environmental adaptations.
Collapse
Affiliation(s)
- Quan Qi
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chenhui Ding
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pingping Hong
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gang Yang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanxin Xie
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Sunxing Huang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ke He
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Canquan Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
9
|
Chen YH, Yu J. Epigenetic disruptions of histone signatures for the trophectoderm and inner cell mass in mouse parthenogenetic embryos. Stem Cells Dev 2014; 24:550-64. [PMID: 25315067 DOI: 10.1089/scd.2014.0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic asymmetry has been shown to be associated with the first lineage allocation event in preimplantation development, that is, the formation of the trophectoderm (TE) and inner cell mass (ICM) lineages in the blastocyst. Since parthenogenesis causes aberrant segregation between the TE and ICM lineages, we examined several development-associated histone modifications in parthenotes, including those involved in (i) transcriptional activation [acetylated histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac), trimethylated histone H3 lysine 4 (H3K4Me3), and dimethylated histone H3 arginine 26 (H3R26Me2)] and (ii) transcriptional repression [trimethylated histone H3 lysine 9 (H3K9Me3) and lysine 27 (H3K27Me3), and mono-ubiquitinated histone H2A lysine 119 (H2AK119u1)]. Here, we report that in parthenotes, H3R26Me2 expression decreased from the morula stage, while expression patterns and levels of H3K9Ac, H3K27Me3, and H2AK119u1 were unchanged until the blastocyst stage; whereas H3K14Ac, H3K4Me3, and H3K9Me3 showed normal patterns and levels of expressions. Relative to the decrease of H3K9Ac in the ICM and increase in the TE of parthenotes, we detected reduced expression of TAT-interactive protein 60 acetyltransferase and histone deacetylase 1 deacetylase in the ICM and TE of parthenotes, respectively. Relative to the decrease of H3R26Me2, we also observed decreased expression of coactivator-associated arginine methyltransferase 1 methyltransferase and increased expression of the Wnt effector transcription factor 7L2 and miR-181c microRNA in parthenotes. Furthermore, relative to the decrease in H3K27Me3 and H2AK119u1, we found increased phosphorylation of Akt1 and enhancer of zeste homolog 2 in parthenogenetic TE. Therefore, our findings that histone signatures are impaired in parthenotes provide a mechanistic explanation for aberrant lineage segregation and TE defects.
Collapse
Affiliation(s)
- Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Taipei, Taiwan
| | | |
Collapse
|
10
|
Moniot B, Ujjan S, Champagne J, Hirai H, Aritake K, Nagata K, Dubois E, Nidelet S, Nakamura M, Urade Y, Poulat F, Boizet-Bonhoure B. Prostaglandin D2 acts through the Dp2 receptor to influence male germ cell differentiation in the foetal mouse testis. Development 2014; 141:3561-71. [DOI: 10.1242/dev.103408] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Through intercellular signalling, the somatic compartment of the foetal testis is able to program primordial germ cells to undergo spermatogenesis. Fibroblast growth factor 9 and several members of the transforming growth factor β superfamily are involved in this process in the foetal testis, counteracting the induction of meiosis by retinoic acid and activating germinal mitotic arrest. Here, using in vitro and in vivo approaches, we show that prostaglandin D2 (PGD2), which is produced through both L-Pgds and H-Pgds enzymatic activities in the somatic and germ cell compartments of the foetal testis, plays a role in mitotic arrest in male germ cells by activating the expression and nuclear localization of the CDK inhibitor p21Cip1 and by repressing pluripotency markers. We show that PGD2 acts through its Dp2 receptor, at least in part through direct effects in germ cells, and contributes to the proper differentiation of male germ cells through the upregulation of the master gene Nanos2. Our data identify PGD2 signalling as an early pathway that acts in both paracrine and autocrine manners, and contributes to the differentiation of germ cells in the foetal testis.
Collapse
Affiliation(s)
- Brigitte Moniot
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Safdar Ujjan
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Julien Champagne
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Hiroyuki Hirai
- Department of Advanced Technology and Development, BML, Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Kinya Nagata
- Department of Advanced Technology and Development, BML, Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Emeric Dubois
- Plateforme MGX, Functional Genomic Institute, CNRS UMR 5203 – INSERM U 661, Montpellier 34094, Cedex 05, France
| | - Sabine Nidelet
- Plateforme MGX, Functional Genomic Institute, CNRS UMR 5203 – INSERM U 661, Montpellier 34094, Cedex 05, France
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Francis Poulat
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| | - Brigitte Boizet-Bonhoure
- Genetic and Development department, Institute of Human Genetics, CNRS UPR1142, Montpellier 34094, Cedex 05, France
| |
Collapse
|
11
|
Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs. Anim Reprod Sci 2014; 147:47-55. [DOI: 10.1016/j.anireprosci.2014.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
|
12
|
High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Res 2013; 24:293-306. [PMID: 24381111 DOI: 10.1038/cr.2013.173] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/23/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
It remains controversial whether the abnormal epigenetic modifications accumulated in the induced pluripotent stem cells (iPSCs) can ultimately affect iPSC pluripotency. To probe this question, iPSC lines with the same genetic background and proviral integration sites were established, and the pluripotency state of each iPSC line was characterized using tetraploid (4N) complementation assay. Subsequently, gene expression and global epigenetic modifications of "4N-ON" and the corresponding "4N-OFF" iPSC lines were compared through deep sequencing analyses of mRNA expression, small RNA profile, histone modifications (H3K27me3, H3K4me3, and H3K4me2), and DNA methylation. We found that methylation of an imprinted gene, Zrsr1, was consistently disrupted in the iPSC lines with reduced pluripotency. Furthermore, the disrupted methylation could not be rescued by improving culture conditions or subcloning of iPSCs. Moreover, the relationship between hypomethylation of Zrsr1 and pluripotency state of iPSCs was further validated in independent iPSC lines derived from other reprogramming systems.
Collapse
|
13
|
Hirabayashi M, Goto T, Tamura C, Sanbo M, Hara H, Kato-Itoh M, Sato H, Kobayashi T, Nakauchi H, Hochi S. Derivation of embryonic stem cell lines from parthenogenetically developing rat blastocysts. Stem Cells Dev 2013; 23:107-14. [PMID: 24010570 DOI: 10.1089/scd.2013.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to establish rat embryonic stem (ES) cells from parthenogenetically developing blastocysts. Ten blastocysts were prepared by treatment of ovulated rat oocytes with ionomycin and cycloheximide, and three alkaline phosphatase-positive ES cell lines were established using the N2B27 medium supplemented with mitogen activated protein kinase kinase inhibitor PD0325901, glycogen synthase kinase 3 inhibitor CHIR99021, rat leukemia inhibitory factor, and forskolin. Expression of stem cell marker genes (Oct-4, rNanog, Fgf-4, and Rex-1) was confirmed in all three ES cell lines by reverse transcriptase-polymerase chain reaction (RT-PCR). Combined bisulfite restriction analysis showed that the differentially methylated region locus of five imprinted genes (H19, Meg3IG, Igf2r, Peg5, and Peg10) in these ES cells remained to be demethylated or was hypomethylated, which was similar to that in control ES cells established from normal blastocysts. Characteristics of the parthenogenetic blastocyst-derived ES cells were successfully transmitted to the next generation through a chimeric rat for one of the three ES cell lines. This is the first report on germline-competent (genuine) ES cells derived from parthenogenetically developing rat blastocysts.
Collapse
Affiliation(s)
- Masumi Hirabayashi
- 1 Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences , Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shuai L, Feng C, Zhang H, Gu Q, Jia Y, Wang L, Zhao XY, Liu Z, Zhou Q. Derivation of androgenetic embryonic stem cells from m-carboxycinnamic acid bishydroxamide (CBHA) treated androgenetic embryos. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Liu Y, Ye X, Mao L, Cheng Z, Yao X, Jia X, Mao D, Ou L, Li Z, Che Y, Liu N, Steinhoff G, Liu L, Kong D. Transplantation of parthenogenetic embryonic stem cells ameliorates cardiac dysfunction and remodelling after myocardial infarction. Cardiovasc Res 2012; 97:208-18. [PMID: 23066088 DOI: 10.1093/cvr/cvs314] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Parthenogenetic embryonic stem cells (pESCs) derived from artificially activated oocytes without fertilization presumably raise minimal ethical concerns and may serve as attractive candidates for regenerative medicine. Here we investigated whether pESCs could repair myocardial infarction (MI), in comparison to embryonic stem cells (ESCs). METHODS AND RESULTS A total of 89 mice that survived coronary artery ligation randomly received an intramyocardial injection of undifferentiated pESCs, ESCs, or saline. Sham-operated mice (n = 21) that received no treatment served as control animals. After 7 days, transplantation of pESCs increased expression of pro-angiogenic factors and reduced leucocyte infiltration. By 14 and 30 days post-MI, similar to treatment with ESCs, treatment with pESCs efficiently prevented cardiac remodelling and enhanced angiogenesis, in contrast to saline-treated hearts. Improved heart contractile function was also notable 30 days following transplantation of pESCs. Immunofluorescence staining revealed that tissues regenerated from pESCs in the infarcted myocardium were positive for markers of cardiomyocytes, endothelial cells, and smooth muscle cells. Unlike ESC-treated mice, which exhibited a high incidence of teratoma (6 of 34), the pESC-treated mice showed no teratomas (0 of 30) 30 days following transplantation. CONCLUSION Transplantation of pESCs could attenuate cardiac dysfunction and adverse ventricular remodelling post-MI, suggesting that pESCs may provide promising therapeutic sources for MI in females.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Eckardt S, Dinger TC, Kurosaka S, Leu NA, Müller AM, McLaughlin KJ. In vivo and in vitro differentiation of uniparental embryonic stem cells into hematopoietic and neural cell types. Organogenesis 2012; 4:33-41. [PMID: 19279713 DOI: 10.4161/org.6123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 04/16/2008] [Indexed: 12/12/2022] Open
Abstract
The biological role of genomic imprinting in adult tissue is central to the consideration of transplanting uniparental embryonic stem (ES) cell-derived tissues. We have recently shown that both maternal (parthenogenetic/gynogenetic) and paternal (androgenetic) uniparental ES cells can differentiate, both in vivo in chimeras and in vitro, into adult-repopulating hematopoietic stem and progenitor cells. This suggests that, at least in some tissues, the presence of two maternal or two paternal genomes does not interfere with stem cell function and tissue homeostasis in the adult. Here, we consider implications of the contribution of uniparental cells to hematopoiesis and to development of other organ systems, notably neural tissue for which consequences of genomic imprinting are associated with a known bias in development and behavioral disorders. Our findings so far indicate that there is little or no limit to the differentiation potential of uniparental ES cells outside the normal developmental paradigm. As a potentially donor MHC-matching source of tissue, uniparental transplants may provide not only a clinical resource but also a unique tool to investigate aspects of genomic imprinting in adults.
Collapse
Affiliation(s)
- Sigrid Eckardt
- Center for Animal Transgenesis and Germ Cell Research; New Bolton Center; University of Pennsylvania; Kennett Square, Pennsylvania USA
| | | | | | | | | | | |
Collapse
|
17
|
Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A. Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 2012; 139:3301-5. [PMID: 22912412 PMCID: PMC3424041 DOI: 10.1242/dev.083675] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Haploid embryonic stem cells (ESCs) have recently been derived from parthenogenetic mouse embryos and offer new possibilities for genetic screens. The ability of haploid ESCs to give rise to a wide range of differentiated cell types in the embryo and in vitro has been demonstrated. However, it has remained unclear whether haploid ESCs can contribute to the germline. Here, we show that parthenogenetic haploid ESCs at high passage have robust germline competence enabling the production of transgenic mouse strains from genetically modified haploid ESCs. We also show that differentiation of haploid ESCs in the embryo correlates with the gain of a diploid karyotype and that diploidisation is the result of endoreduplication and not cell fusion. By contrast, we find that a haploid karyotype is maintained when differentiation to an extra-embryonic fate is forced by induction of Gata6.
Collapse
Affiliation(s)
- Martin Leeb
- Centre for Stem Cell Research, Wellcome Trust and Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Chen YH, Yu J. Ectopic expression of Fgf3 leads to aberrant lineage segregation in the mouse parthenote preimplantation embryos. Dev Dyn 2012; 241:1651-64. [PMID: 22930543 DOI: 10.1002/dvdy.23851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parthenogenetic mammalian embryos were reported to die in utero no later than the 25-somite stage due to abnormal development of both embryonic and extraembryonic lineages. Interestingly, it has been shown that parthenogenetic ICM cells tend to differentiate more into primitive endoderm cells and less into epiblast and ES cells. Hence we are interested in studying the molecular mechanisms underlying lineage defects of parthenotes. RESULTS We found that parthenote inner cell masses (ICMs) contained decreased numbers of Sox2(+) /Nanog(+) epiblast cells but increased numbers of Gata4(+) primitive endoderm cells, indicating an unusual lineage segregation. We demonstrate for the first time that the increased Gata4 level in parthenotes may be explained by the strong up-regulation of Fgf3 and Fgfr2 phosphorylation. Inhibition of Fgfr2 activation by SU5402 in parthenotes restored normal Nanog and Gata4 levels without affecting Fgf3, indicating that Fgf3 is upstream of Fgfr2 activation. In parthenote trophectoderm, we detected normal Cdx2 but ectopic Gata4 expression and reduced Elf5 and Tbr2(Eomes) levels. CONCLUSIONS Taken together, our work provides for the first time the insight into the molecular mechanisms of the developmental defects of parthenogenetic embryos in both the trophectoderm and ICM.
Collapse
Affiliation(s)
- Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | | |
Collapse
|
19
|
Liu W, Guo L, He W, Li Q, Sun X. Higher copy number variation and diverse X chromosome inactivation in parthenote-derived human embryonic stem cells. J Reprod Dev 2012; 58:642-8. [PMID: 22813599 DOI: 10.1262/jrd.2012-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parthenote-derived human embryonic stem cells (phESCs) have many advantages over conventionally derived human embryonic stem cells (hESCs), but a more thorough investigation of these cells is needed before they can be implemented in cell therapies. In this work, we used a Cytogenetics Whole-Genome Array to study the copy number variation (CNV) status in phESCs and hESCs. We also investigated X chromosome inactivation (XCI) and expression levels of marker genes in these cells. More CNVs were found in phESCs than in hESCs in the present study, and gene expression appeared to be associated with the gain or loss of CNVs. In addition, a variable XCI status and different expression pattern of paternally expressed imprinted gene were also found in phESCs. In conclusion, although phESCs had a similar pluripotent profile to conventionally derived hESCs, these cells differed in imprinted gene expression, XCI status and number of CNVs. Our work highlights the need for a deeper investigation to elucidate the genetic and epigenetic characteristics of these cells.
Collapse
Affiliation(s)
- WeiQiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | | | | | | | | |
Collapse
|
20
|
Ragina NP, Schlosser K, Knott JG, Senagore PK, Swiatek PJ, Chang EA, Fakhouri WD, Schutte BC, Kiupel M, Cibelli JB. Downregulation of H19 improves the differentiation potential of mouse parthenogenetic embryonic stem cells. Stem Cells Dev 2011; 21:1134-44. [PMID: 21793658 DOI: 10.1089/scd.2011.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parthenogenetic embryonic stem cells (P-ESCs) offer an alternative source of pluripotent cells, which hold great promise for autologous transplantation and regenerative medicine. P-ESCs have been successfully derived from blastocysts of several mammalian species. However, compared with biparental embryonic stem cells (B-ESCs), P-ESCs are limited in their ability to fully differentiate into all 3 germ layers. For example, it has been observed that there is a differentiation bias toward ectoderm derivatives at the expense of endoderm and mesoderm derivatives-muscle in particular-in chimeric embryos, teratomas, and embryoid bodies. In the present study we found that H19 expression was highly upregulated in P-ESCs with more than 6-fold overexpression compared with B-ESCs. Thus, we hypothesized that manipulation of the H19 gene in P-ESCs would alleviate their limitations and allow them to function like B-ESCs. To test this hypothesis we employed a small hairpin RNA approach to reduce the amount of H19 transcripts in mouse P-ESCs. We found that downregulation of H19 led to an increase of mesoderm-derived muscle and endoderm in P-ESCs teratomas similar to that observed in B-ESCs teratomas. This phenomenon coincided with upregulation of mesoderm-specific genes such as Myf5, Myf6, and MyoD. Moreover, H19 downregulated P-ESCs differentiated into a higher percentage of beating cardiomyocytes compared with control P-ESCs. Collectively, these results suggest that P-ESCs are amenable to molecular modifications that bring them functionally closer to true ESCs.
Collapse
Affiliation(s)
- Neli P Ragina
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hu Z, Wang L, Xie Z, Zhang X, Feng D, Wang F, Zuo B, Wang L, Liu Z, Chen Z, Yang F, Liu L. Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells. Protein Cell 2011; 2:631-46. [PMID: 21904979 DOI: 10.1007/s13238-011-1081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022] Open
Abstract
Parthenogenetic embryonic stem (pES) cells isolated from parthenogenetic activation of oocytes and embryos, also called parthenogenetically induced pluripotent stem cells, exhibit pluripotency evidenced by both in vitro and in vivo differentiation potential. Differential proteomic analysis was performed using differential in-gel electrophoresis and isotope-coded affinity tag-based quantitative proteomics to investigate the molecular mechanisms underlying the developmental pluripotency of pES cells and to compare the protein expression of pES cells generated from either the in vivo-matured ovulated (IVO) oocytes or from the in vitro-matured (IVM) oocytes with that of fertilized embryonic stem (fES) cells derived from fertilized embryos. A total of 76 proteins were upregulated and 16 proteins were downregulated in the IVM pES cells, whereas 91 proteins were upregulated and 9 were downregulated in the IVO pES cells based on a minimal 1.5-fold change as the cutoff value. No distinct pathways were found in the differentially expressed proteins except for those involved in metabolism and physiological processes. Notably, no differences were found in the protein expression of imprinted genes between the pES and fES cells, suggesting that genomic imprinting can be corrected in the pES cells at least at the early passages. The germline competent IVM pES cells may be applicable for germ cell renewal in aging ovaries if oocytes are retrieved at a younger age.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Cell Biology and Genetics, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leeb M, Wutz A. Derivation of haploid embryonic stem cells from mouse embryos. Nature 2011; 479:131-4. [PMID: 21900896 PMCID: PMC3209452 DOI: 10.1038/nature10448] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/16/2011] [Indexed: 12/18/2022]
Abstract
Most animals are diploid, but haploid-only and male-haploid (such as honeybee and ant) species have been described. The diploid genomes of complex organisms limit genetic approaches in biomedical model species such as mice. To overcome this problem, experimental induction of haploidy has been used in fish. Haploid development in zebrafish has been applied for genetic screening. Recently, haploid pluripotent cell lines from medaka fish (Oryzias latipes) have also been established. In contrast, haploidy seems less compatible with development in mammals. Although haploid cells have been observed in egg cylinder stage parthenogenetic mouse embryos, most cells in surviving embryos become diploid. Here we describe haploid mouse embryonic stem cells and show their application in forward genetic screening.
Collapse
Affiliation(s)
- Martin Leeb
- Wellcome Trust Centre for Stem Cell Research University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK Phone: +44-1223760234 ; FAX: +44-1223760241 ;
| | - Anton Wutz
- Wellcome Trust Centre for Stem Cell Research University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK Phone: +44-1223760234 ; FAX: +44-1223760241 ;
| |
Collapse
|
23
|
Affiliation(s)
- J Suaudeau
- Pontifical Academy for Life, Rome, Italy.
| |
Collapse
|
24
|
Liu Z, Hu Z, Pan X, Li M, Togun TA, Tuck D, Pelizzola M, Huang J, Ye X, Yin Y, Liu M, Li C, Chen Z, Wang F, Zhou L, Chen L, Keefe DL, Liu L. Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary. Hum Mol Genet 2011; 20:1339-52. [PMID: 21239471 DOI: 10.1093/hmg/ddr016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parthenogenetic embryonic stem cells (pESCs) have been generated in several mammalian species from parthenogenetic embryos that would otherwise die around mid-gestation. However, previous reports suggest that pESCs derived from in vivo ovulated (IVO) mature oocytes show limited pluripotency, as evidenced by low chimera production, high tissue preference and especially deficiency in germline competence, a critical test for genetic integrity and pluripotency of ESCs. Here, we report efficient generation of germline-competent pESC lines (named as IVM pESCs) from parthenogenetic embryos developed from immature oocytes of adult mouse ovaries following in vitro maturation (IVM) and artificial activation. In contrast, pESCs derived from IVO oocytes show defective germline competence, consistent with previous reports. Further, IVM pESCs resemble more ESCs from fertilized embryos (fESCs) than do IVO pESCs on genome-wide DNA methylation and global protein profiles. In addition, IVM pESCs express higher levels of Blimp1, Lin28 and Stella, relative to fESCs, and in their embryoid bodies following differentiation. This may indicate differences in differentiation potentially to the germline. The mechanisms for acquisition of pluripotency and germline competency of IVM pESCs from immature oocytes remain to be determined.
Collapse
Affiliation(s)
- Zhong Liu
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu W, Yin Y, Jiang Y, Kou C, Luo Y, Huang S, Zheng Y, Li S, Li Q, Guo L, Gao S, Sun X. Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line. J Assist Reprod Genet 2010; 28:303-13. [PMID: 21161365 DOI: 10.1007/s10815-010-9517-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/19/2010] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To assess the genetic and epigenetic status of parthenogenetic human embryonic stem cells (phESCs). METHODS Cytogenetics, X chromosome inactivation (XCI) and gene expression patterns were analyzed in one phESC line (FY-phES-018) that was derived from our laboratory. RESULTS FY-phES-018 cells displayed the classical characteristics of normal hESCs. These cells had a 46, XX karyotype, and no inactive X chromosomes were observed before passage 20. After being cultured long term in vitro, some cells lost one X, and the proportion of cells with only one X gradually increased. At passage 35, almost all the cells displayed a 45, XO karyotype. Interestingly, at passage 45, the recovery of the X-chromosome was observed, and XCI became detectable; the mosaic ratio of 46, XX to 45, XO was 67:33. After passage 60, most cells displayed the 46, XX karyotype again with a mosaic ratio of 97:3. Some aberrant genomic imprinting was also observed in these cells. CONCLUSIONS The phESCs line FY-phES-018 is both genetically and epigenetically unstable; therefore, further research is needed before using these cells.
Collapse
Affiliation(s)
- Weiqiang Liu
- Guangzhou Key Laboratory of Reproductive and Genetics; Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, 510150, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang J, Okuka M, Wang F, Zuo B, Liang P, Kalmbach K, Liu L, Keefe DL. Generation of pluripotent stem cells from eggs of aging mice. Aging Cell 2010; 9:113-25. [PMID: 20003168 DOI: 10.1111/j.1474-9726.2009.00539.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oocytes can reprogram genomes to form embryonic stem (ES) cells. Although ES cells largely escape senescence, oocytes themselves do senesce in the ovaries of most mammals. It remains to be determined whether ES cells can be established using eggs from old females, which exhibit reproductive senescence. We attempted to produce pluripotent stem cell lines from artificial activation of eggs (also called pES) from reproductive aged mice, to determine whether maternal aging affects pES cell production and pluripotency. We show that pES cell lines were generated with high efficiency from reproductive aged (old) mice, although parthenogenetic embryos from these mice produced fewer ES clones by initial two passages. Further, pES cell lines generated from old mice showed telomere length, expression of pluripotency molecular markers (Oct4, Nanog, SSEA1), alkaline phosphatase activity, teratoma formation and chimera production similar to young mice. Notably, DNA damage was reduced in pES cells from old mice compared to their progenitor parthenogenetic blastocysts, and did not differ from that of pES cells from young mice. Also, global gene expression differed only minimally between pES cells from young and old mice, in contrast to marked differences in gene expression in eggs from young and old mice. These data demonstrate that eggs from old mice can generate pluripotent stem cells, and suggest that the isolation and in vitro culture of ES cells must select cells with high levels of DNA and telomere integrity, and/or with capacity to repair DNA and telomeres.
Collapse
Affiliation(s)
- Junjiu Huang
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33647, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor. PLoS One 2009; 4:e6724. [PMID: 19696928 PMCID: PMC2725300 DOI: 10.1371/journal.pone.0006724] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 07/23/2009] [Indexed: 01/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells have attracted enormous attention due to their vast potential in regenerative medicine, pharmaceutical screening and basic research. Most prior established iPS cell lines were derived and maintained on mouse embryonic fibroblast (MEF) cells supplemented with exogenous leukemia inhibitory factor (LIF). Drawbacks of MEF cells impede optimization as well as dissection of reprogramming events and limit the usage of iPS cell derivatives in therapeutic applications. In this study, we develop a reproducible protocol for efficient reprogramming mouse neural progenitor cells (NPCs) on human foreskin fibroblast (HFF) cells via retroviral transfer of human transcriptional factors OCT4/SOX2/KLF4/C-MYC. Two independent iPS cell lines are derived without exogenous LIF. They display typical undifferentiated morphology and express pluripotency markers Oct4 and Sox2. Transgenes are inactivated and the endogenous Oct4 promoter is completely demethylated in the established iPS cell lines, indicating a fully reprogrammed state. Moreover, the iPS cells can spontaneously differentiate or be induced into various cell types of three embryonic germ layers in vitro and in vivo when they are injected into immunodeficient mice for teratoma formation. Importantly, iPS cells extensively integrate with various host tissues and contribute to the germline when injected into the blastocysts. Interestingly, these two iPS cell lines, while both pluripotent, exhibit distinctive differentiation tendencies towards different lineages. Taken together, the data describe the first genuine mouse iPS cell lines generated on human feeder cells without exogenous LIF, providing a reliable tool for understanding the molecular mechanisms of nuclear reprogramming.
Collapse
|
28
|
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L. Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 2009; 18:2177-87. [PMID: 19324901 DOI: 10.1093/hmg/ddp150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell-fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells.
Collapse
Affiliation(s)
- Chao Li
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gong SP, Kim H, Lee EJ, Lee ST, Moon S, Lee HJ, Lim JM. Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod 2008; 24:805-14. [PMID: 19106175 DOI: 10.1093/humrep/den388] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND We previously established parthenogenetic mouse embryonic stem cells (ESCs) and this study was subsequently conducted for elucidating the influence of oocyte parthenogenesis on gene expression profile of ESCs. METHODS Gene expression of parthenogenetic ESC (pESC)-1 or pESC-2 was separately compared with that of two normally fertilized ESC (nfESC) lines (B6D2F1 and R1 strains), and quantification of mRNA expression was conducted for validating microarray data. RESULTS In two sets of comparison, reaction of 11 347 and 15 454 gene probes were altered by parthenogenesis, while strain difference changed the expression of 15 750 and 14 944 probes. Level of correlation coefficient was higher in the comparisons between normal fertilization and parthenogenesis (0.974-0.985) than in the comparisons between strains of nfESCs (0.97-0.971). Overall, the expression of 3276-3329 genes was changed after parthenogenesis, and 88% (96/109) of major functional genes differentially (P < 0.01) expressed in one comparison set showed the same change in the other. When we monitored imprinted genes, expression of nine paternal and eight maternal genes were altered after parthenogenesis and 88% (14/16) of these was confirmed by mRNA quantification. CONCLUSIONS The change in gene expression after parthenogenesis was similar to, or less than, the change induced by a strain difference under a certain genetic background. These results may suggest the clinical feasibility of parthenogenesis-derived, pluripotent cells.
Collapse
Affiliation(s)
- Seung Pyo Gong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Lampton PW, Crooker RJ, Newmark JA, Warner CM. Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. ACTA ACUST UNITED AC 2008; 72:448-57. [PMID: 18778324 DOI: 10.1111/j.1399-0039.2008.01132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells with the potential to differentiate into cells or tissues that may be used for transplantation therapy. Parthenogenetic ES (pES) cells have been recently derived from both mouse and human oocytes and hold promise as a cell source that is histocompatible to the oocyte donor. Because of the importance of major histocompatibility complex (MHC) antigens in mediating tissue rejection or acceptance, we examined levels of mRNA and protein expression of MHC class I proteins, as well as several MHC class I antigen processing and presentation chaperones in mouse ES cells derived from both fertilized (fES) and parthenogenetic (pES) embryos. We found that H-2K, Qa-2, TAP1, TAP2, and tapasin mRNAs were all expressed at low levels in undifferentiated and differentiating ES cells and were significantly upregulated in response to interferon-gamma (IFN-gamma) treatment following 14 days of differentiation. Likewise, expression of H-2K(b) and H-2K(k) proteins were upregulated to detectable levels by IFN-gamma after 14 days of differentiation, but Qa-2 protein expression remained low or absent. We also found that MHC class I, TAP1, TAP2, and tapasin mRNAs were all expressed at very low levels in ES cells compared with T cells, suggesting transcriptional regulation of these genes in ES cells. Calnexin, a chaperone molecule involved in other pathways than MHC expression, had mRNA levels that were similar in ES cells and T cells and was not upregulated by IFN-gamma in ES cells. Overall, ES cells derived from fertilized embryos and parthenogenetic embryos displayed remarkably similar patterns of gene expression at the mRNA and protein levels. The similarity between the fES and pES cell lines with regard to expression of MHC class I and antigen-processing machinery provides evidence for the potential usefulness of pES cells in transplantation therapy.
Collapse
Affiliation(s)
- P W Lampton
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Dinger TC, Eckardt S, Choi SW, Camarero G, Kurosaka S, Hornich V, McLaughlin KJ, Müller AM. Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 2008; 26:1474-83. [PMID: 18369101 DOI: 10.1634/stemcells.2007-0877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uniparental zygotes with two paternal (androgenetic [AG]) or two maternal (gynogenetic [GG]; parthenogenetic [PG]) genomes are not able to develop into viable offspring but can form blastocysts from which embryonic stem cells (ESCs) can be derived. Although some aspects of the in vitro and in vivo differentiation potential of PG and GG ESCs of several species have been studied, the developmental capacity of AG ESCs is much less clear. Here, we investigate the potential of murine AG ESCs to undergo neural differentiation. We observed that AG ESCs differentiate in vitro into pan-neural progenitor cells (pnPCs) that further give rise to cells that express neuronal- and astroglial-specific markers. Neural progeny of in vitro-differentiated AG ESCs exhibited fidelity of expression of six imprinted genes analyzed, with the exception of Ube3a. Bisulfite sequencing for two imprinting control regions suggested that pnPCs predominantly maintained their methylation pattern. Following blastocyst injection of AG and biparental (normal fertilized [N]) ESCs, we found widespread and evenly distributed contribution of ESC-derived cells in both AG and N chimeric early fetal brains. AG and N ESC-derived cells isolated from chimeric fetal brains by fluorescence-activated cell sorting exhibited similar neurosphere-initiating cell frequencies and neural multilineage differentiation potential. Our results indicate that AG ESC-derived neural progenitor/stem cells do not differ from N neural progenitor/stem cells in their self-renewal and neural multilineage differentiation potential. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Timo C Dinger
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|