1
|
Pádua D, Figueira P, Pombinho A, Monteiro I, Pereira CF, Almeida R, Mesquita P. HMGA1 stimulates cancer stem-like features and sensitivity to monensin in gastric cancer. Exp Cell Res 2024; 442:114257. [PMID: 39293524 DOI: 10.1016/j.yexcr.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Gastric cancer represents a serious health problem worldwide, with insufficient molecular biomarkers and therapeutic options. Consequently, several efforts have been directed towards finding specific disease markers in order to develop new therapies capable of defeating gastric cancer. Attention has been pointed to cancer stem cells (CSCs) as they are primarily responsible for tumor initiation and recurrence, making them essential therapeutic targets. Using the SORE6-GFP reporter system, based on the expression of SOX2 and/or OCT4 to drive GFP expression, we isolated gastric cancer stem-like cells (SORE6+ cells) enriched in several molecules, including SOX2, C-MYC, KLF4, HIF-1α, NOTCH1 and HMGA1. Here, we explored the previously undisclosed link of HMGA1 with gastric CSCs. Our results indicated that HMGA1 can activate a transcriptional program that includes SOX2, C-MYC, and KLF4 and endows cells with CSC features. We further showed that chemical induction of gastric CSCs using ciclopirox (CPX) can be mediated by HMGA1. Finally, we showed that HMGA1 GFP+ cells were sensitive to monensin confirming the selective activity of this drug over CSCs. Thus, HMGA1 is a key player in the cellular reprogramming of gastric non-CSCs to cancer stem-like cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal; ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Paula Figueira
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - António Pombinho
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IBMC-Institute of Molecular and Cell Biology, University of Porto, 4200-135, Porto, Portugal
| | - Inês Monteiro
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - Carlos Filipe Pereira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal; Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84, Lund, Sweden
| | - Raquel Almeida
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal
| | - Patrícia Mesquita
- i3S-Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal; IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-465, Porto, Portugal.
| |
Collapse
|
2
|
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int J Mol Sci 2024; 25:9431. [PMID: 39273379 PMCID: PMC11394755 DOI: 10.3390/ijms25179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.
Collapse
Affiliation(s)
- Ruilin Zeng
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianpeng Huang
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenhui Ji
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenyi Cai
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Niu X, Xia Y, Luo L, Chen Y, Yuan J, Zhang J, Zheng X, Li Q, Deng Z, Wang Y. iPSC-sEVs alleviate microglia senescence to protect against ischemic stroke in aged mice. Mater Today Bio 2023; 19:100600. [PMID: 36936398 PMCID: PMC10020681 DOI: 10.1016/j.mtbio.2023.100600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
The polarization of microglia plays an important role in the outcome of ischemic stroke (IS). In the aged population, senescent microglia show a predominant pro-inflammatory phenotype, which leads to worse outcomes in aged ischemic stroke compared to young ischemic stroke. Recent research demonstrated that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess the significant anti-ageing ability. We hypothesized that iPSC-sEVs could alleviate microglia senescence to regulate microglia polarization in aged ischemic stroke. In this study, we showed that treatment with iPSC-sEVs significantly alleviated microglia senescence as indicated by the decreased senescence-associated proteins including P16, P21, P53, and γ-H2AX as well as the activity of SA-β-gal, and inhibited pro-inflammatory activation of microglia both in vivo and in vitro. Furthermore, iPSC-sEVs shifted microglia from pro-inflammatory phenotype to anti-inflammatory phenotype, which reduced the apoptosis of neurons, and improved the outcome of aged stroke mice. Mechanism studies showed that iPSC-sEVs reversed the loss of Rictor and downstream p-AKT (s473) in senescent microglia, which was involved in the senescence and pro-inflammatory phenotype regulation of microglia. Inhibition of Rictor abolished the iPSC-sEVs-afforded phosphorylation of AKT and alleviation of inflammation of senescent microglia. Proteomics results indicated that iPSC-sEVs carried transforming growth factor-β1 (TGF-β1) to upregulate Rictor and p-AKT in senescent microglia, which could be hindered by blocking TGF-β1. Taken together, our work demonstrates iPSC-sEVs reverse the senescent characteristic of microglia in aged brains and therefore improve the outcome after stroke, at least, via delivering TGF-β1 to upregulate Rictor and p-AKT. Our data suggest that iPSC-sEVs might be a novelty therapeutic method for aged ischemic stroke and other diseases involving senescent microglia.
Collapse
Affiliation(s)
- Xinyu Niu
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuguo Xia
- Department of Neurosurgery; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954, Huashan Road, Shanghai 200030, China
| | - Yu Chen
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ji Yuan
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juntao Zhang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xianyou Zheng
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Institute of Microsurgery on Extremities, Department of Orthopedic Surgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Corresponding author. Department of Neurosurgery Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- The Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
5
|
Ye T, Chen Z, Zhang J, Luo L, Gao R, Gong L, Du Y, Xie Z, Zhao B, Li Q, Wang Y. Large extracellular vesicles secreted by human iPSC-derived MSCs ameliorate tendinopathy via regulating macrophage heterogeneity. Bioact Mater 2023; 21:194-208. [PMID: 36101856 PMCID: PMC9440485 DOI: 10.1016/j.bioactmat.2022.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
Tendinopathy is a common musculoskeletal disorder which results in chronic pain and reduced performance. The therapeutic effect of stem cell derived-small extracellular vesicles (sEVs) for tendinopathy has been validated in recent years. However, whether large extracellular vesicles (lEVs), another subset of extracellular vesicles, possesses the ability for the improvement of tendinopathy remains unknown. Here, we showed that lEVs secreted from iPSC-derived MSCs (iMSC-lEVs) significantly mitigated pain derived from tendinopathy in rats. Immunohistochemical analysis showed that iMSC-lEVs regulated the heterogeneity of infiltrated macrophages and several inflammatory cytokines in rat tendon tissue. Meanwhile, in vitro experiments revealed that the M1 pro-inflammatory macrophages were repolarized towards M2 anti-inflammatory macrophages by iMSC-lEVs, and this effect was mediated by regulating p38 MAPK pathway. Moreover, liquid chromatography-tandem mass spectrometry analysis identified 2208 proteins encapsulated in iMSC-lEVs, including 134 new-found proteins beyond current Vesiclepedia database. By bioinformatics and Western blot analyses, we showed that DUSP2 and DUSP3, the negative regulator of p38 phosphorylation, were enriched in iMSC-lEVs and could be transported to macrophages. Further, the immunomodulatory effect of iMSC-lEVs on macrophages was validated in explant tendon tissue from tendinopathy patients. Taken together, our results demonstrate that iMSC-lEVs could reduce inflammation in tendinopathy by regulating macrophage heterogeneity, which is mediated via the p38 MAPK pathway by delivery of DUSP2 and DUSP3, and might be a promising candidate for tendinopathy therapy. iMSC-lEVs significantly ameliorate tendinopathy both in a rat model and explant tendon tissue from human patient. iMSC-lEVs modulate macrophages polarization via p38 MAPK signaling pathway. Proteomics analysis of iMSC-lEVs discovers a new set of 134 proteins beyond current Vesiclepedia Database. The p38 MAPK signaling pathway-mediated macrophage repolarization was partly regulated by the delivery of DUSP2 and DUSP3. The immunoregulatory function of iMSC-lEVs are similar with iMSC-sEVs.
Collapse
|
6
|
Hu GW, Xu GH, Lang HL, Zhao YZ, Xiao RJ, Sun J, Chen Y. Small extracellular vesicles secreted by induced pluripotent stem cell-derived mesenchymal stem cells improve postoperative cognitive dysfunction in mice with diabetes. Neural Regen Res 2023; 18:609-617. [DOI: 10.4103/1673-5374.350205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Yoshimatsu S, Yamazaki A, Edamura K, Koushige Y, Shibuya H, Qian E, Sato T, Okahara J, Kishi N, Noce T, Yamaguchi Y, Okano H. Step-by-step protocols for non-viral derivation of transgene-free induced pluripotent stem cells from somatic fibroblasts of multiple mammalian species. Dev Growth Differ 2022; 64:325-341. [PMID: 35841539 DOI: 10.1111/dgd.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Potentials of immortal proliferation and unlimited differentiation into all the three germ layers and germ cells in induced pluripotent stem cells (iPSCs) render them important bioresources for in vitro reconstitution and modeling of intravital tissues and organs in various animal models, thus contributing to the elucidation of pathomechanisms, drug discovery and stem cell-based regenerative medicine. We previously reported promising approaches for deriving transgene-free iPSCs from somatic fibroblasts of multiple mammalian species by episomal vector or RNA transfection, although the respective step-by-step protocols and the combinatorial usage of these methods, which achieved high induction efficiency, have not been described in literature so far. Here, we provide the detailed, step-by-step description of these methods with critical tips and slight modifications (improvements) from previously reported methods. We also report novel establishment of iPSCs from the Syrian hamster (also known as golden hamster; Mesocricetus auratus), a unique animal model of hibernation. We anticipate this methodology would contribute to the scientific communities of Stem Cell Biology and Regenerative Medicine.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsushi Yamazaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan.,Vetanic Inc., Tokyo, Japan
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan.,Vetanic Inc., Tokyo, Japan
| | | | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Emi Qian
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Tsukika Sato
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Noriyuki Kishi
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology, and Development Group, Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
8
|
Gao R, Ye T, Zhu Z, Li Q, Zhang J, Yuan J, Zhao B, Xie Z, Wang Y. Small extracellular vesicles from iPSC-derived mesenchymal stem cells ameliorate tendinopathy pain by inhibiting mast cell activation. Nanomedicine (Lond) 2022; 17:513-529. [PMID: 35289187 DOI: 10.2217/nnm-2022-0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: This study aimed to explore the effect of small extracellular vesicles from induced pluripotent stem cell-derived mesenchymal stem cells (iMSC-sEVs) on acute pain and investigate the underlying mechanisms. Materials & methods: The pathology of tendons was accessed by hematoxylin and eosin staining, immunohistochemical and immunofluorescent staining. The pain degree was measured by pain-related behaviors. In vitro, we performed β-hexosaminidase release assay, RT-qPCR, toluidine blue staining, ELISA and RNA sequencing. Results: iMSC-sEVs effectively alleviated acute pain in tendinopathy as well as inhibiting activated mast cell infiltration and interactions with nerve fibers in vivo. In vitro, iMSC-sEVs reduced the degranulation of mast cells and the expression of proinflammatory cytokines and genes involved in the HIF-1 signaling pathway. Conclusion: This study demonstrated that iMSC-sEVs relieved tendinopathy-related pain through inhibiting mast cell activation via the HIF-1 signaling pathway.
Collapse
Affiliation(s)
- Renzhi Gao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Teng Ye
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zhaochen Zhu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ji Yuan
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Bizeng Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Zongping Xie
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
9
|
Bailly A, Milhavet O, Lemaitre JM. RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics 2022; 14:317. [PMID: 35214051 PMCID: PMC8876983 DOI: 10.3390/pharmaceutics14020317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cell therapy approaches to treat a wide range of pathologies have greatly benefited from cell reprogramming techniques that allow the conversion of a somatic cell into a pluripotent cell. Many technological developments have been made since the initial major discovery of this biological process. Recently reprogramming methods based on the use of RNA have emerged and seem very promising. Thus, in this review we will focus on presenting the interest of such methods for cell reprogramming but also how these RNA-based strategies can be extended to eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Anaëlle Bailly
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- INGRAALYS, SA, IRMB, Incubator Cyborg, 34295 Montpellier, France
| | - Ollivier Milhavet
- IRMB, University Montpellier, INSERM, CNRS, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
10
|
Small molecules for cell reprogramming: a systems biology analysis. Aging (Albany NY) 2021; 13:25739-25762. [PMID: 34919532 PMCID: PMC8751603 DOI: 10.18632/aging.203791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
If somatic stem cells would be able to maintain their regenerative capacity over time, this might, to a great extent, resolve rejuvenation issues. Unfortunately, the pool of somatic stem cells is limited, and they undergo cell aging with a consequent loss of functionality. During the last decade, low molecular weight compounds that are able to induce or enhance cell reprogramming have been reported. They were named “Small Molecules” (SMs) and might present definite advantages compared to the exogenous introduction of stemness-related transcription factors (e.g. Yamanaka’s factors). Here, we undertook a systemic analysis of SMs and their potential gene targets. Data mining and curation lead to the identification of 92 SMs. The SM targets fall into three major functional categories: epigenetics, cell signaling, and metabolic “switchers”. All these categories appear to be required in each SM cocktail to induce cell reprogramming. Remarkably, many enriched pathways of SM targets are related to aging, longevity, and age-related diseases, thus connecting them with cell reprogramming. The network analysis indicates that SM targets are highly interconnected and form protein-protein networks of a scale-free topology. The extremely high contribution of hubs to network connectivity suggests that (i) cell reprogramming may require SM targets to act cooperatively, and (ii) their network organization might ensure robustness by resistance to random failures. All in all, further investigation of SMs and their relationship with longevity regulators will be helpful for developing optimal SM cocktails for cell reprogramming with a perspective for rejuvenation and life span extension.
Collapse
|
11
|
Kamaraj A, Kyriacou H, Seah KTM, Khan WS. Use of human induced pluripotent stem cells for cartilage regeneration in vitro and within chondral defect models of knee joint cartilage in vivo: a Preferred Reporting Items for Systematic Reviews and Meta-Analyses systematic literature review. Cytotherapy 2021; 23:647-661. [PMID: 34059422 DOI: 10.1016/j.jcyt.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/16/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Articular cartilage has limited regenerative ability when damaged through trauma or disease. Failure to treat focal chondral lesions results in changes that inevitably progress to osteoarthritis. Osteoarthritis is a major contributor to disability globally, which results in significant medical costs and lost wages every year. Human induced pluripotent stem cells (hiPSCs) have long been considered a potential autologous therapeutic option for the treatment of focal chondral lesions. Although there are significant advantages to hiPSCs over other stem cell options, such as mesenchymal and embryonic stem cells, there are concerns regarding their ability to form bona fide cartilage and their tumorgenicity in vivo. METHODS The authors carried out a systematic literature review on the use of hiPSCs to produce differentiated progeny capable of producing high-quality cartilage in vitro and regenerate cartilage in osteochondral defects in vivo in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight studies were included in the review that used hiPSCs or their derived progeny in xenogeneic transplants in animal models to regenerate cartilage in osteochondral defects of the knee joint. The in vitro-differentiated, hiPSC-derived and in vivo defect repair ability of the hiPSC-derived progeny transplants were assessed. RESULTS Most studies reported the generation of high-quality cartilage-producing progeny that were able to successfully repair cartilage defects in vivo. No tumorigenicity was observed. CONCLUSIONS The authors conclude that hiPSCs offer a valuable source of cartilage-producing progeny that show promise as an effective cell-based therapy in treating focal chondral lesions.
Collapse
Affiliation(s)
- Achi Kamaraj
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Harry Kyriacou
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - K T Matthew Seah
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Wasim S Khan
- Division of Trauma and Orthopedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Wu XL, Zhu ZS, Xiao X, Zhou Z, Yu S, Shen QY, Zhang JQ, Yue W, Zhang R, He X, Peng S, Zhang SQ, Li N, Liao MZ, Hua JL. LIN28A inhibits DUSP family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zool Res 2021; 42:377-388. [PMID: 33998185 PMCID: PMC8175949 DOI: 10.24272/j.issn.2095-8137.2020.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.
Collapse
Affiliation(s)
- Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhen-Shuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xia Xiao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuai Yu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ju-Qing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Rui Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shi-Qiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Ming-Zhi Liao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
13
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
14
|
Mavaro I, De Felice E, Palladino A, D'Angelo L, de Girolamo P, Attanasio C. Anatomical templates for tissue (re)generation and beyond. Biotechnol Bioeng 2020; 117:3938-3951. [PMID: 32776516 DOI: 10.1002/bit.27533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Abstract
Induced pluripotent stem cells (iPSCs) represent a valuable alternative to stem cells in regenerative medicine overcoming their ethical limitations, like embryo disruption. Takahashi and Yamanaka in 2006 reprogrammed, for the first time, mouse fibroblasts into iPSCs through the retroviral delivery of four reprogramming factors: Oct3/4, Sox2, c-Myc, and Klf4. Since then, several studies started reporting the derivation of iPSC lines from animals other than rodents for translational and veterinary medicine. Here, we review the potential of using these cells for further intriguing applications, such as "cellular agriculture." iPSCs, indeed, can be a source of in vitro, skeletal muscle tissue, namely "cultured meat," a product that improves animal welfare and encourages the consumption of healthier meat along with environmental preservation. Also, we report the potential of using iPSCs, obtained from endangered species, for therapeutic treatments for captive animals and for assisted reproductive technologies as well. This review offers a unique opportunity to explore the whole spectrum of iPSC applications from regenerative translational and veterinary medicine to the production of artificial meat and the preservation of currently endangered species.
Collapse
Affiliation(s)
- Isabella Mavaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Antonio Palladino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Chiara Attanasio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Interdepartmental Center for Research in Biomaterials (CRIB), University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
15
|
Xia Y, Ling X, Hu G, Zhu Q, Zhang J, Li Q, Zhao B, Wang Y, Deng Z. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res Ther 2020; 11:313. [PMID: 32698909 PMCID: PMC7374834 DOI: 10.1186/s13287-020-01834-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Small extracellular vesicles (sEV) secreted by mesenchymal stem cells (MSC) derived from human induced pluripotent stem cells (iPSC, iMSC-sEV) are considered to have great potential in treating ischemic diseases. Angiogenesis play an important role in post-stroke recovery. However, no studies have yet been conducted to systemically examine the effect and the underlying mechanism of iMSC-sEV on angiogenesis under brain ischemia conditions. Methods Ischemic stroke model was performed in rats induced by middle cerebral artery occlusion (MCAO), and the pro-angiogenic capacity of iMSC-sEV was measured. The in vitro effects of iMSC-sEV on the migration and tube formation of endothelial cells were investigated, respectively. Autophagy and autophagy-related signaling pathway were detected in vivo and in vitro. Results We found that iMSC-sEV significantly reduced infarct volume, enhanced angiogenesis, and alleviated long-term neurological deficits in rats after stroke. We also demonstrated that iMSC-sEV increased migration and tube formation of endothelial cells in vitro. A further mechanism study revealed that the pro-angiogenic effect of iMSC-sEV was correlated with a reduction in autophagy. Furthermore, iMSC-sEV significantly activated signal transducer and activator of transcription 3 (STAT3), and suppression of STAT3 abolished iMSC-sEV-induced inhibition of autophagy and promotion of angiogenesis in vivo and in vitro. Conclusions Taken together, our data indicate that iMSC-sEV promote angiogenesis after ischemic stroke, potentially, by inhibiting autophagy, a process that is partially dependent on STAT3 activation.
Collapse
Affiliation(s)
- Yuguo Xia
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaozheng Ling
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Guowen Hu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Juntao Zhang
- Institute of Microsurgery and Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qing Li
- Institute of Microsurgery and Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Bizeng Zhao
- Institute of Microsurgery and Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yang Wang
- Institute of Microsurgery and Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
16
|
Reprogramming and transdifferentiation - two key processes for regenerative medicine. Eur J Pharmacol 2020; 882:173202. [PMID: 32562801 DOI: 10.1016/j.ejphar.2020.173202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Regenerative medicine based on transplants obtained from donors or foetal and new-born mesenchymal stem cells, encounter important obstacles such as limited availability of organs, ethical issues and immune rejection. The growing demand for therapeutic methods for patients being treated after serious accidents, severe organ dysfunction and an increasing number of cancer surgeries, exceeds the possibilities of the therapies that are currently available. Reprogramming and transdifferentiation provide powerful bioengineering tools. Both procedures are based on the somatic differentiated cells, which are easily and unlimitedly available, like for example: fibroblasts. During the reprogramming procedure mature cells are converted into pluripotent cells - which are capable to differentiate into almost any kind of desired cells. Transdifferentiation directly converts differentiated cells of one type into another differentiated cells type. Both procedures allow to obtained patient's dedicated cells for therapeutic purpose in regenerative medicine. In combination with biomaterials, it is possible to obtain even whole anatomical structures. Those patient's dedicated structures may serve for them upon serious accidents with massive tissue damage but also upon cancer surgeries as a replacement of damaged organ. Detailed information about reprogramming and transdifferentiation procedures as well as the current state of the art are presented in our review.
Collapse
|
17
|
Calvert BA, Ryan Firth AL. Application of iPSC to Modelling of Respiratory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:1-16. [PMID: 31468358 PMCID: PMC8274633 DOI: 10.1007/5584_2019_430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory disease is one of the leading causes of morbidity and mortality world-wide with an increasing incidence as the aged population prevails. Many lung diseases are treated for symptomatic relief, with no cure available, indicating a critical need for novel therapeutic strategies. Such advances are hampered by a lack of understanding of how human lung pathologies initiate and progress. Research on human lung disease relies on the isolation of primary cells from explanted lungs or the use of immortalized cells, both are limited in their capacity to represent the genomic and phenotypic variability among the population. In an era where we are progressing toward precision medicine the use of patient specific induced pluripotent cells (iPSC) to generate models, where sufficient primary cells and tissues are scarce, has increased our capacity to understand human lung pathophysiology. Directed differentiation of iPSC toward lung presented the initial challenge to overcome in generating iPSC-derived lung epithelial cells. Since then major advances have been made in defining protocols to specify and isolate specific lung lineages, with the generation of airway spheroids and multi cellular organoids now possible. This technological advance has opened up our capacity for human lung research and prospects for autologous cell therapy. This chapter will focus on the application of iPSC to studying human lung disease.
Collapse
Affiliation(s)
- Ben A Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy L Ryan Firth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Yang G, Huang X. Methods and applications of CRISPR/Cas system for genome editing in stem cells. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:33-41. [PMID: 31666940 PMCID: PMC6806369 DOI: 10.1016/j.cr.2019.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022]
Abstract
Genome editing technology holds great promise for genome manipulation and gene therapy. While widespread utilization, genome editing has been used to unravel the roles of specific genes in differentiation and pluripotency of stem cells, and reinforce the stem cell-based applications. In this review, we summarize the advances of genome editing technology, as well as the derivative technologies from CRISPR/Cas system, which show tremendous potential in various fields. We also highlight the key findings in the studies of stem cells and regeneration by genome editing technology.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
19
|
Abstract
Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.
Collapse
Affiliation(s)
- Lei Hu
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Bin Zhao
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China
| | - Songlin Wang
- 1 Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing, China.,2 Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences , Beijing, China
| |
Collapse
|
20
|
Direct conversion of pig fibroblasts to chondrocyte-like cells by c-Myc. Cell Death Discov 2019; 5:55. [PMID: 30675392 PMCID: PMC6338791 DOI: 10.1038/s41420-018-0136-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023] Open
Abstract
Unexpectedly, we found that c-Myc-expressing porcine embryonic fibroblasts (PEFs) subcutaneously implanted into nude mice formed cartilage-like tissues in vivo, while previous studies revealed the direct conversion of mouse and human somatic cells into chondrocytes by the combined use of several defined factors, including c-Myc, which prompted us to explore whether PEFs can be reprogrammed to become pig induced chondrocyte-like cells (piCLCs) via ectopic expression of c-Myc alone. In this study, c-Myc-expressing PEFs, designated piCLCs, which exhibited a significantly enhanced proliferation ability in vitro, displayed a chondrogenic phenotypes in vitro, as shown by the cell morphology, toluidine blue staining, alcian blue staining and chondrocyte marker gene expression. Additionally, piCLCs with a polygonal chondrocyte-like morphology were readily and efficiently converted from PEFs by enforced c-Myc expression within 10 days, while piCLCs maintained the chondrocytic phenotype and normal karyotype during long-term subculture. piCLC-derived single clones with a chondrogenic phenotype in vitro exhibited homogeneity in cell morphology and staining intensity compared with mixed piCLCs. Although the mixtures of cartilaginous tissues and tumorous tissues accounted for ~12% (6/51) of all xenografts (51), piCLCs generated stable, homogenous, hyaline cartilage-like tissues without tumour formation at 45 out of the 51 injected sites when subcutaneously injected into nude mice. The hyaline cartilage-like tissues remained for at least 16 weeks. Taken together, these findings demonstrate for the first time the direct induction of chondrocyte-like cells from PEFs with only c-Myc.
Collapse
|
21
|
Jung-Klawitter S, Opladen T. Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in inborn errors of metabolism. J Inherit Metab Dis 2018; 41:1103-1116. [PMID: 29980968 DOI: 10.1007/s10545-018-0225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 06/25/2018] [Indexed: 11/29/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the way of modeling human disease. Especially for the modeling of rare human monogenetic diseases with limited numbers of patients available worldwide and limited access to the mostly affected tissues, iPSCs have become an invaluable tool. To study rare diseases affecting neurotransmitter biosynthesis and neurotransmission, stem cell models carrying patient-specific mutations have become highly important as most of the cell types present in the human brain and the central nervous system (CNS), including motoneurons, neurons, oligodendrocytes, astrocytes, and microglia, can be differentiated from iPSCs following distinct developmental programs. Differentiation can be performed using classical 2D differentiation protocols, thereby generating specific subtypes of neurons or glial cells in a dish. On the other side, 3D differentiation into "organoids" opened new ways to study misregulated developmental processes associated with rare neurological and neurometabolic diseases. For the analysis of defects in neurotransmission associated with rare neurometabolic diseases, different types of brain organoids have been made available during the last years including forebrain, midbrain and cerebral organoids. In this review, we illustrate reprogramming of somatic cells to iPSCs, differentiation in 2D and 3D, as well as already available disease-specific iPSC models, and discuss current and future applications of these techniques.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis 2018; 9:893. [PMID: 30166528 PMCID: PMC6117269 DOI: 10.1038/s41419-018-0920-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/22/2018] [Indexed: 01/22/2023]
Abstract
The role of sirtuins (SIRTs) in cancer biology has been the focus of recent research. The similarities between underlying pathways involved in the induction of pluripotent stem cells and transformation of cancer cells revealed the role of SIRTs in cellular reprogramming. Seven SIRTs have been identified in mammals and downregulation of SIRT2 was found to facilitate the generation of primed pluripotent stem cells, such as human induced pluripotent stem cells. Herein, we evaluated the role of SIRT2 in naive pluripotent stem cell generation using murine cells. We found that absolute depletion of SIRT2 in mouse embryonic fibroblasts resulted in a notable reduction in reprogramming efficiency. SIRT2 depletion not only upregulated elements of the INK4/ARF locus, which in turn had an antiproliferative effect, but also significantly altered the expression of proteins related to the PI3K/Akt and Hippo pathways, which are important signaling pathways for stemness. Thus, this study demonstrated that SIRT2 is required for cellular reprogramming to naive states of pluripotency in contrast to primed pluripotency states.
Collapse
|
23
|
Plotkin BJ, Sigar IM, Swartzendruber JA, Kaminski A. Anaerobic Growth and Maintenance of Mammalian Cell Lines. J Vis Exp 2018. [PMID: 30080196 DOI: 10.3791/58049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most mucosal surfaces along with the midpoints in tumors and stem cell niches are geographic areas of the body that are anoxic. Previous studies show that the incubation in normoxic (5% CO2 in air) or hypoxic (low oxygen levels) conditions followed by an anoxic incubation (an absence of free oxygen) results in limited viability (2-3 days). A novel methodology was developed that enables an anoxic cell cultivation (for at least 17 days; the maximum time tested). The most critical aspect of this methodology is to ensure that no oxygen is introduced into the system. This is obtained by the degassing of media, and by flushing tubes, dishes, flasks, and pipettes with an anaerobic gas mixture (H2, CO2, N2) followed by permitting the materials to equilibrate to the anoxic (non-oxygen) environment prior to usage. Additional care must be exercised when acquiring photomicrographs to ensure that the micrographs obtained do not contain artifacts. In the absence of oxygen, cell morphology is significantly altered. Two distinct morphotypes are noted for all anaerobically-grown cells. The ability to grow and maintain mammalian cells in the absence of oxygen can be applied to the analysis of cell physiology, polymicrobial interactions, and the characterization of biosynthetic pathways for novel cancer drug development.
Collapse
Affiliation(s)
| | - Ira M Sigar
- Department of Microbiology and Immunology, Midwestern University
| | | | - Amber Kaminski
- Department of Microbiology and Immunology, Midwestern University
| |
Collapse
|
24
|
Mahmoodian-sani MR, Mehri-Ghahfarrokhi A. The potential of miR-183 family expression in inner ear for regeneration, treatment, diagnosis and prognosis of hearing loss. J Otol 2018; 12:55-61. [PMID: 29937838 PMCID: PMC5963458 DOI: 10.1016/j.joto.2017.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/04/2022] Open
Abstract
miRNA-183 family, in normal biology, is expressed in a harmonious and stable manner in the neurosensory organs and cells. Studies have also shown that miRNA-183 family, in different pathways, affects the neurosensory development, maintenance, survival and function. In addition, it has potential neuroprotective effects in response to neurosensory destructive stimulations. miRNA-96 mutation causes hereditary deafness in humans and mice, and therefore affects the inner ear activity and its maintenance. Certain roles have been identified for miR-96 in the maintenance and function of the inner ear. The comparison of the target genes of family-183 in transcriptomes of newborn and adult hair cells shows that hundreds of target genes in this family may affect development and maintenance of the ears. Identifying the genes that are regulated by miRNA-183 family provides researchers with important information about the complex development and environmental regulation of the inner ear, and can offer new approaches to the maintenance and regeneration of hair cells and auditory nerve.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoodian-sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Dept. of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding author. Fax: +98 381 3330709.
| | | |
Collapse
|
25
|
Duncan T, Lowe A, Sidhu K, Sachdev P, Lewis T, Lin RCY, Sytnyk V, Valenzuela M. Replicable Expansion and Differentiation of Neural Precursors from Adult Canine Skin. Stem Cell Reports 2018; 9:557-570. [PMID: 28793248 PMCID: PMC5550271 DOI: 10.1016/j.stemcr.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022] Open
Abstract
Repopulation of brain circuits by neural precursors is a potential therapeutic strategy for neurodegenerative disorders; however, choice of cell is critical. Previously, we introduced a two-step culture system that generates a high yield of neural precursors from small samples of adult canine skin. Here, we probe their gene and protein expression profiles in comparison with dermal fibroblasts and brain-derived neural stem cells and characterize their neuronal potential. To date, we have produced >50 skin-derived neural precursor (SKN) lines. SKNs can be cultured in a highly replicable fashion and uniformly express a panel of identifying markers. Upon differentiation, they self-upregulate neural specification genes, generating neurons with basic electrophysiological functionality. This unique population of neural precursors, derived from mature skin, overcomes many of the practical issues that have limited clinical translation of alternative cell types. Easily accessible, neuronally committed, and patient specific, SKNs may have potential for the treatment of brain disorders.
Collapse
Affiliation(s)
- Thomas Duncan
- Regenerative Neuroscience Group, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia
| | - Aileen Lowe
- Regenerative Neuroscience Group, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia; Stem Cell Laboratory, University of New South Wales, Sydney, NSW 2031, Australia
| | - Kuldip Sidhu
- Stem Cell Laboratory, University of New South Wales, Sydney, NSW 2031, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2031, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Trevor Lewis
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruby C Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
26
|
Lin X, Li JJ, Qian WJ, Zhang QJ, Wang ZF, Lu YQ, Dong EL, He J, Wang N, Ma LX, Chen WJ. Modeling the differential phenotypes of spinal muscular atrophy with high-yield generation of motor neurons from human induced pluripotent stem cells. Oncotarget 2018; 8:42030-42042. [PMID: 28159932 PMCID: PMC5522047 DOI: 10.18632/oncotarget.14925] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating motor neuron disease caused by mutations of the survival motor neuron 1 (SMN1) gene. SMN2, a paralogous gene to SMN1, can partially compensate for the loss of SMN1. On the basis of age at onset, highest motor function and SMN2 copy numbers, childhood-onset SMA can be divided into three types (SMA I-III). An inverse correlation was observed between SMN2 copies and the differential phenotypes of SMA. Interestingly, this correlation is not always absolute. Using SMA induced pluripotent stem cells (iPSCs), we found that the SMN was significantly decreased in both SMA III and SMA I iPSCs derived postmitotic motor neurons (pMNs) and γ-aminobutyric acid (GABA) neurons. Moreover, the significant differences of SMN expression level between SMA III (3 copies of SMN2) and SMA I (2 copies of SMN2) were observed only in pMNs culture, but not in GABA neurons or iPSCs. From these findings, we further discovered that the neurite outgrowth was suppressed in both SMA III and SMA I derived MNs. Meanwhile, the significant difference of neurite outgrowth between SMA III and SMA I group was also found in long-term cultures. However, significant hyperexcitability was showed only in SMA I derived mature MNs, but not in SMA III group. Above all, we propose that SMN protein is a major factor of phenotypic modifier. Our data may provide a new insight into recognition for differential phenotypes of SMA disease.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jin-Jing Li
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Wen-Jing Qian
- Institutes of Brain Science, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qi-Jie Zhang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zhong-Feng Wang
- Institutes of Brain Science, Institute of Neurobiology, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ying-Qian Lu
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jin He
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Li-Xiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
27
|
Borger DK, McMahon B, Roshan Lal T, Serra-Vinardell J, Aflaki E, Sidransky E. Induced pluripotent stem cell models of lysosomal storage disorders. Dis Model Mech 2018; 10:691-704. [PMID: 28592657 PMCID: PMC5483008 DOI: 10.1242/dmm.029009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/28/2017] [Indexed: 01/30/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research. Summary: This Review discusses how induced pluripotent stem cells (iPSCs) provide new opportunities to explore the biology and pathophysiology of lysosomal storage diseases, and how iPSCs have illuminated the role of lysosomes in more common disorders.
Collapse
Affiliation(s)
- Daniel K Borger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin McMahon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamanna Roshan Lal
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Serra-Vinardell
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elma Aflaki
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
29
|
Plotkin BJ, Davis JW, Strizzi L, Lee P, Christoffersen-Cebi J, Kacmar J, Rivero OJ, Elsayed N, Zanghi N, Ito B, Sigar IM. A method for the long-term cultivation of mammalian cells in the absence of oxygen: Characterization of cell replication, hypoxia-inducible factor expression and reactive oxygen species production. Tissue Cell 2017; 50:59-68. [PMID: 29429519 DOI: 10.1016/j.tice.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/29/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
The center of tumors, stem cell niches and mucosal surfaces all represent areas of the body that are reported to be anoxic. However, long-term study of anoxic cell physiology is hindered by the lack of a sustainable method permitting cell cultivation in the complete absence of oxygen. A novel methodology was developed that enabled anoxic cell cultivation (17d maximum time tested) and cell passage. In the absence of oxygen, cell morphology is significantly altered. All cells tested exhibited morphologic changes, i.e., a combination of tethered (monolayer-like) and runagate (suspension-like) morphologies. Both morphologies replicated (Vero and HeLa cells tested) and could be passaged anaerobically. In the absence of exogenous oxygen, anoxic cells produced reactive oxygen species (ROS). Anaerobic runagate HeLa and Vero cells increased ROS production from day 3 to day 10 by 2- and 3-fold, respectively. In contrast, anoxic tethered HeLa and Vero cells either showed no significant change in ROS production between days 3 and 10 or exhibited a 3-fold decrease in ROS, respectively. Detection of ROS was inversely related to detection of hypoxia-inducible factor-1α (HIF1) mRNA and HIF-1 protein expression which cycled over a 10-day period. This methodology has broad applications for the study of tumor and stem cell physiology as well as gastrointestinal cell-microbiome interactions. In addition, sustainable anaerobic cell culture may lead to the identification of novel pathways and targets for chemotherapeutic drug development.
Collapse
Affiliation(s)
- Balbina J Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA.
| | - James W Davis
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Luigi Strizzi
- Department of Pathology, Midwestern University, Downers Grove, IL 60515, USA
| | - Peter Lee
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | | | - Joan Kacmar
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Orlando J Rivero
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Norhan Elsayed
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Nicholas Zanghi
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Brent Ito
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Ira M Sigar
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
30
|
Katayama M, Hirayama T, Tani T, Nishimori K, Onuma M, Fukuda T. Chick derived induced pluripotent stem cells by the poly-cistronic transposon with enhanced transcriptional activity. J Cell Physiol 2017; 233:990-1004. [PMID: 28387938 DOI: 10.1002/jcp.25947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem (iPS) cell technology lead terminally differentiated cells into the pluripotent stem cells through the expression of defined reprogramming factors. Although, iPS cells have been established in a number of mammalian species, including mouse, human, and monkey, studies on iPS cells in avian species are still very limited. To establish chick iPS cells, six factors were used within the poly-cistronic reprogramming vector (PB-R6F), containing M3O (MyoD derived transactivation domain fused with Oct3/4), Sox2, Klf4, c-Myc, Lin28, and Nanog. The PB-R6F derived iPS cells were alkaline-phosphatase and SSEA-1 positive, which are markers of pluripotency. Elevated levels of endogenous Oct3/4 and Nanog genes were detected in the established iPS cells, suggesting the activation of the FGF signaling pathway is critical for the pluripotent status. Histological analysis of teratoma revealed that the established chick iPS cells have differentiation ability into three-germ-layer derived tissues. This is the first report of establishment of avian derived iPS cells with a single poly-cistronic transposon based expression system. The establishment of avian derived iPS cells could contribute to the genetic conservation and modification of avian species.
Collapse
Affiliation(s)
- Masafumi Katayama
- Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Takashi Hirayama
- Department of Obstetrics and Gynecology, Juntendo University, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction, Department of Agriculture, Kindai University, Nara, Japan
| | - Katsuhiko Nishimori
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Manabu Onuma
- Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Tomokazu Fukuda
- Wildlife Genome Collaborative Research Group, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- United Graduate School of Agricultural Sciences, Iwate University, Ueda, Morioka, Japan
| |
Collapse
|
31
|
Xu X, Shi D, Liu Y, Yao Y, Dai J, Xu Z, Chen D, Teng H, Jiang Q. In vivo repair of full-thickness cartilage defect with human iPSC-derived mesenchymal progenitor cells in a rabbit model. Exp Ther Med 2017; 14:239-245. [PMID: 28672920 PMCID: PMC5488398 DOI: 10.3892/etm.2017.4474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 01/20/2017] [Indexed: 12/27/2022] Open
Abstract
Cell-based tissue engineering has the potential to restore cartilage defects. Induced pluripotent stem cells (iPSCs) are regarded as an alternative cell source in regenerative medicine. The purpose of the present study was to evaluate the use of mesenchymal stem cells (MSCs) derived from human iPSCs (hiPSCs) for the regeneration of cartilage defects in a rabbit model. Cartilage defects were made in the patellar grooves of New Zealand white rabbits. The rabbits were then divided into three groups according to implantation: Control group, scaffold implantation group and scaffold/hiPSCs-MSCs (experimental) group. MSCs were generated from hiPSCs via a step of embryoid body formation. Following flow cytological analysis, the hiPSCs-MSCs were plated onto poly(lactic-co-glycolide) and then transplanted into the cartilage defects in the experimental group. Six rabbits from each group were sacrificed at each time point. The outcome was assessed macroscopically and histologically at 3 and 6 weeks post-surgery. At 3 and 6 weeks, the experimental group showed more cartilage defect filling compared with the control and scaffold implantation groups. At 3 weeks, the experimental group showed much more repair tissue in the cartilage defect, although no cartilage-like tissue was observed. At 6 weeks, cartilage-like tissue was observed in the experimental group but not in the control or scaffold implantation groups. No teratoma formation was observed in any of the groups. The results indicate that iPSCs have the potential to repair cartilage defects in vivo. Therefore, iPSCs could be a new cell source for cartilage defect repair.
Collapse
Affiliation(s)
- Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yubao Liu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yao Yao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Dai
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Dongyang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Huajian Teng
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210008, P.R. China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
32
|
Liu X, Li Q, Niu X, Hu B, Chen S, Song W, Ding J, Zhang C, Wang Y. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis. Int J Biol Sci 2017; 13:232-244. [PMID: 28255275 PMCID: PMC5332877 DOI: 10.7150/ijbs.16951] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro. iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on endothelial cells. The data provide the first evidence for the potential of iPS-MSC-Exos in treating ONFH.
Collapse
Affiliation(s)
- Xiaolin Liu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Shengbao Chen
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Wenqi Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Jian Ding
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
33
|
p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Sci Rep 2016; 6:37281. [PMID: 27874035 PMCID: PMC5118801 DOI: 10.1038/srep37281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.
Collapse
|
34
|
Nong K, Wang W, Niu X, Hu B, Ma C, Bai Y, Wu B, Wang Y, Ai K. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy 2016; 18:1548-1559. [PMID: 27592404 DOI: 10.1016/j.jcyt.2016.08.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/01/2016] [Accepted: 08/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to evaluate the effect of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury. METHODS Exosomes were isolated and concentrated from conditioned medium using ultracentrifugation and ultrafiltration. hiPSC-MSCs-Exo were injected systemically via the inferior vena cava in a rat model of 70% warm hepatic I/R injury, and the therapeutic effect was evaluated. The serum levels of transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) were measured using an automatic analyzer. The expression of inflammatory factors was measured using enzyme-linked immunosorbent assay (ELISA). Histological changes indicated changes in pathology and inflammatory infiltration in liver tissue. Apoptosis of hepatic cells in liver tissue was measured using terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) staining along with apoptotic markers. RESULTS hiPSCs were efficiently induced into hiPSC-MSCs with typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 50 to 60 nm and expressed exosomal markers (CD9, CD63 and CD81). Hepatocyte necrosis and sinusoidal congestion were markedly suppressed with a lower Suzuki score after hiPSC-MSCs-Exo administration. The levels of the hepatocyte injury markers AST and ALT were significantly lower in the treated group than in the control group. Inflammatory markers, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and high mobility group box 1 (HMGB1), were significantly reduced after administration of hiPSC-MSCs-Exo, which suggests that the exosomes have a role in suppressing the inflammatory response. Additionally, in liver tissues from the experimental group, the levels of apoptotic markers, such as caspase-3 and bax, were significantly lower and the levels of oxidative markers, such as glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were significantly higher than in the control group. These data point to an anti-apoptotic, anti-oxidative stress response role for hiPSC-MSCs-Exo. CONCLUSIONS Our results demonstrated that hiPSC-MSCs-Exo alleviate hepatic I/R injury, possibly via suppression of inflammatory responses, attenuation of the oxidative stress response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Kate Nong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weiwei Wang
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chenchao Ma
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yueqing Bai
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Kaixing Ai
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, Chen C, Li X, Zhang C, Huang Y. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci 2016; 12:639-52. [PMID: 27194942 PMCID: PMC4870708 DOI: 10.7150/ijbs.14025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/27/2016] [Indexed: 12/22/2022] Open
Abstract
The vascularization of tissue-engineered bone is a prerequisite step for the successful repair of bone defects. Hypoxia inducible factor-1α (HIF-1α) plays an essential role in angiogenesis-osteogenesis coupling during bone regeneration and can activate the expression of angiogenic factors in mesenchymal stem cells (MSCs). Dimethyloxaloylglycine (DMOG) is an angiogenic small molecule that can inhibit prolyl hydroxylase (PHD) enzymes and thus regulate the stability of HIF-1α in cells at normal oxygen tension. Human induced pluripotent stem cell-derived MSCs (hiPSC-MSCs) are promising alternatives for stem cell therapy. In this study, we evaluated the effect of DMOG on promoting hiPSC-MSCs angiogenesis in tissue-engineered bone and simultaneously explored the underlying mechanisms in vitro. The effectiveness of DMOG in improving the expression of HIF-1α and its downstream angiogenic genes in hiPSC-MSCs demonstrated that DMOG significantly enhanced the gene and protein expression profiles of angiogenic-related factors in hiPSC-MSCs by sustaining the expression of HIF-1α. Further analysis showed that DMOG-stimulated hiPSC-MSCs angiogenesis was associated with the phosphorylation of protein kinase B (Akt) and with an increase in VEGF production. The effects could be blocked by the addition of the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. In a critical-sized calvarial defect model in rats, DMOG-treated hiPSC-MSCs showed markedly improved angiogenic capacity in the tissue-engineered bone, leading to bone regeneration. Collectively, the results indicate that DMOG, via activation of the PI3K/Akt pathway, promotes the angiogenesis of hiPSC-MSCs in tissue-engineered bone for bone defect repair and that DMOG-treated hiPSC-MSCs can be exploited as a potential therapeutic tool in bone regeneration.
Collapse
Affiliation(s)
- Jieyuan Zhang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Junjie Guan
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xin Qi
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hao Ding
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hong Yuan
- 2. Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongping Xie
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chunyuan Chen
- 3. Graduate School of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaolin Li
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Changqing Zhang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yigang Huang
- 1. Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
36
|
Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. ACTA ACUST UNITED AC 2016; 67:14.13.1-14.13.27. [PMID: 26828329 DOI: 10.1002/0471140856.tx1413s67] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marc C Hansel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania
| | - Julio C Davila
- Department of Biochemistry, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Massoud Vosough
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kristen J Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas
| | - Fabio Marongiu
- Department of Biomedical Sciences, Section of Experimental Pathology, Unit of Experimental Medicine, University of Cagliari, Cagliari, Italy
| | - William Blake
- Genetically Modified Models Center of Emphasis, Pfizer, Groton, Connecticut
| | - Stephen C Strom
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Qian X, Kim JK, Tong W, Villa-Diaz LG, Krebsbach PH. DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover. Stem Cells 2015; 34:588-600. [PMID: 26661329 DOI: 10.1002/stem.2252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/19/2015] [Accepted: 10/18/2015] [Indexed: 01/16/2023]
Abstract
Although a specific group of transcription factors such as OCT4, SOX2, and NANOG are known to play essential roles in pluripotent stem cell (PSC) self-renewal, pluripotency, and reprogramming, other factors and the key signaling pathways regulating these important properties are not completely understood. Here, we demonstrate that the PSC marker Developmental Pluripotency Associated 5 (DPPA5) plays an important role in human PSC (hPSC) self-renewal and cell reprogramming in feeder-free conditions. Compared to hPSCs grown on mouse embryonic fibroblasts, cells cultured on feeder-free substrates, such as Matrigel, Laminin-511, Vitronectin, or the synthetic polymer poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide], had significantly higher DPPA5 gene expression and protein levels. Overexpression of DPPA5 in hPSCs increased NANOG protein levels via a post-transcriptional mechanism. Coimmunoprecipitation, protein stability assays, and quantitative RT-PCR, demonstrated that DPPA5 directly interacted, stabilized, and enhanced the function of NANOG in hPSCs. Additionally, DPPA5 increased the reprogramming efficiency of human somatic cells to induced pluripotent stem cells (hiPSCs). Our study provides new insight into the function of DPPA5 and NANOG regulation in hPSCs.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Wilbur Tong
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
39
|
Ben M’Barek K, Regent F, Monville C. Use of human pluripotent stem cells to study and treat retinopathies. World J Stem Cells 2015; 7:596-604. [PMID: 25914766 PMCID: PMC4404394 DOI: 10.4252/wjsc.v7.i3.596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 12/31/2014] [Indexed: 02/06/2023] Open
Abstract
Human cell types affected by retinal diseases (such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells (hPSCs), either of embryonic origin or through reprogramming of adult somatic cells, represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of hPSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.
Collapse
|
40
|
Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 2015; 6:10. [PMID: 26268554 PMCID: PMC4533800 DOI: 10.1186/scrt546] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/07/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Introduction ‘Patient-specific’ induced pluripotent stem cells (iPSCs) are attractive because they can generate abundant cells without the risk of immune rejection for cell therapy. Studies have shown that iPSC-derived mesenchymal stem cells (iMSCs) possess powerful proliferation, differentiation, and therapeutic effects. Recently, most studies indicate that stem cells exert their therapeutic effect mainly through a paracrine mechanism other than transdifferentiation, and exosomes have emerged as an important paracrine factor for stem cells to reprogram injured cells. The objective of this study was to evaluate whether exosomes derived from iMSCs (iMSCs-Exo) possess the ability to attenuate limb ischemia and promote angiogenesis after transplantation into limbs of mice with femoral artery excision. Methods Human iPSCs (iPS-S-01, C1P33, and PCKDSF001C1) were used to differentiate into iMSCs in a modified one-step method. iMSCs were characterized by flow cytometry and multipotent differentiation potential analysis. Ultrafiltration combined with a purification method was used to isolate iMSCs-Exo, and transmission electron microscopy and Western blotting were used to identify iMSCs-Exo. After establishment of mouse hind-limb ischemia with excision of femoral artery and iMSCs-Exo injection, blood perfusion was monitored at days 0, 7, 14, and 21; microvessel density in ischemic muscle was also analyzed. In vitro migration, proliferation, and tube formation experiments were used to analyze the ability of pro-angiogenesis in iMSCs-Exo, and quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay were used to identify expression levels of angiogenesis-related molecules in human umbilical vein endothelial cells (HUVECs) after being cultured with iMSCs-Exo. Results iPSCs were efficiently induced into iMSC- with MSC-positive and -negative surface antigens and osteogenesis, adipogenesis, and chondrogenesis differentiation potential. iMSCs-Exo with a diameter of 57 ± 11 nm and expressed CD63, CD81, and CD9. Intramuscular injection of iMSCs-Exo markedly enhanced microvessel density and blood perfusion in mouse ischemic limbs, consistent with an attenuation of ischemic injury. In addition, iMSCs-Exo could activate angiogenesis-related molecule expression and promote HUVEC migration, proliferation, and tube formation. Conclusion Implanted iMSCs-Exo was able to protect limbs from ischemic injury via the promotion of angiogenesis, which indicated that iMSCs-Exo may be a novel therapeutic approach in the treatment of ischemic diseases. Electronic supplementary material The online version of this article (doi:10.1186/scrt546) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-wen Hu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China. .,Jiangxi Medical College of Nanchang University, 461 BaYi Avenue, Nanchang, 330006, China.
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Juan Liu
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shu-min Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Hai-li Lang
- Jiangxi Medical College of Nanchang University, 461 BaYi Avenue, Nanchang, 330006, China.
| | - Chang-qing Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhi-feng Deng
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
41
|
Abstract
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Collapse
|
42
|
Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13:49. [PMID: 25638205 PMCID: PMC4371881 DOI: 10.1186/s12967-015-0417-0] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs) have emerged as a promising alternative for stem cell transplantation therapy. Exosomes derived from mesenchymal stem cells (MSC-Exos) can play important roles in repairing injured tissues. However, to date, no reports have demonstrated the use of hiPSC-MSC-Exos in cutaneous wound healing, and little is known regarding their underlying mechanisms in tissue repair. Methods hiPSC-MSC-Exos were injected subcutaneously around wound sites in a rat model and the efficacy of hiPSC-MSC-Exos was assessed by measuring wound closure areas, by histological and immunofluorescence examinations. We also evaluated the in vitro effects of hiPSC-MSC-Exos on both the proliferation and migration of human dermal fibroblasts and human umbilical vein endothelial cells (HUVECs) by cell-counting and scratch assays, respectively. The effects of exosomes on fibroblast collagen and elastin secretion were studied in enzyme-linked immunosorbent assays and quantitative reverse-transcriptase–polymerase chain reaction (qRT-PCR). In vitro capillary network formation was determined in tube-formation assays. Results Transplanting hiPSC-MSC-Exos to wound sites resulted in accelerated re-epithelialization, reduced scar widths, and the promotion of collagen maturity. Moreover, hiPSC-MSC-Exos not only promoted the generation of newly formed vessels, but also accelerated their maturation in wound sites. We found that hiPSC-MSC-Exos stimulated the proliferation and migration of human dermal fibroblasts and HUVECs in a dose-dependent manner in vitro. Similarly, Type I, III collagen and elastin secretion and mRNA expression by fibroblasts and tube formation by HUVECs were also increased with increasing hiPSC-MSC-Exos concentrations. Conclusions Our findings suggest that hiPSC-MSC-Exos can facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. These data provide the first evidence for the potential of hiPSC-MSC-Exos in treating cutaneous wounds.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Guan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Guowen Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China. .,Graduate School of Nanchang University, Nanchang, Jiangxi, China.
| | - Shangchun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zongping Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
43
|
Rony IK, Baten A, Bloomfield JA, Islam ME, Billah MM, Islam KD. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif 2015; 48:140-56. [PMID: 25643745 DOI: 10.1111/cpr.12162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.
Collapse
Affiliation(s)
- I K Rony
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | | | | | | | | | | |
Collapse
|
44
|
Skowron K, Tomsia M, Czekaj P. An experimental approach to the generation of human embryonic stem cells equivalents. Mol Biotechnol 2014; 56:12-37. [PMID: 24146427 DOI: 10.1007/s12033-013-9702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently, particular attention has been paid to the human embryonic stem cells (hESC) in the context of their potential application in regenerative medicine; however, ethical concerns prevent their clinical application. Induction of pluripotency in somatic cells seems to be a good alternative for hESC recruitment regarding its potential use in tissue regeneration, disease modeling, and drug screening. Since Yamanaka's team in 2006 restored pluripotent state of somatic cells for the first time, a significant progress has been made in the area of induced pluripotent stem cells (iPSC) generation. Here, we review the current state of knowledge in the issue of techniques applied to establish iPSC. Somatic cell nuclear transfer, cell fusion, cell extracts reprogramming, and techniques of direct reprogramming are described. Retroviral and lentiviral transduction are depicted as ways of cell reprogramming with the use of integrating vectors. Contrary to them, adenoviruses, plasmids, single multiprotein expression vectors, and PiggyBac transposition systems are examples of non-integrative vectors used in iPSC generation protocols. Furthermore, reprogramming with the delivery of specific proteins, miRNA or small chemical compounds are presented. Finally, the changes occurring during the reprogramming process are described. It is concluded that subject to some limitations iPSC could become equivalents for hESC in regenerative medicine.
Collapse
Affiliation(s)
- Katarzyna Skowron
- Students Scientific Society, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
45
|
Ma MS, Czepiel M, Krause T, Schäfer KH, Boddeke E, Copray S. Generation of induced pluripotent stem cells from hair follicle bulge neural crest stem cells. Cell Reprogram 2014; 16:307-13. [PMID: 25084290 DOI: 10.1089/cell.2014.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are promising candidates for the study of disease models as well as for tissue engineering purposes. Part of a strategy to develop safe reprogramming technique is reducing the number of exogenous reprogramming factors. Some cells types are more prone to reprogramming than others. iPSC induction with less reprogramming factors has been described in cells with endogenous expression levels of pluripotency genes, such as neural stem cells. Because multipotent neural crest stem cells (NCSCs) from mammalian hair follicle bulges also express pluripotency genes, we argued that this property would facilitate reprogramming of hair follicle bulge NCSCs and could substitute for the use of exogenous reprogramming factors. Although we confirmed the expression of pluripotency genes in hair follicle bulge cells, our results show that these cells do require a full set of reprogramming factors for iPSC induction. Hair follicle bulge-derived iPSCs were created with efficiencies similar to fibroblasts. We conclude that high endogenous levels of pluripotency factors are no guarantee for facilitated induction of pluripotency.
Collapse
Affiliation(s)
- Ming-San Ma
- 1 Department of Neuroscience, University Medical Center Groningen , Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Hu B, Guo Y, Chen C, Li Q, Niu X, Guo S, Zhang A, Wang Y, Deng Z. Repression of SIRT1 promotes the differentiation of mouse induced pluripotent stem cells into neural stem cells. Cell Mol Neurobiol 2014; 34:905-12. [PMID: 24832395 PMCID: PMC11488914 DOI: 10.1007/s10571-014-0071-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/27/2014] [Indexed: 12/13/2022]
Abstract
The use of transplanting functional neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) has increased for the treatment of brain diseases. As such, it is important to understand the molecular mechanisms that promote NSCs differentiation of iPSCs for future NSC-based therapies. Sirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase, has attracted significant attention over the past decade due to its prominent role in processes including organ development, longevity, and cancer. However, it remains unclear whether SIRT1 plays a role in the differentiation of mouse iPSCs toward NSCs. In this study, we produced NSCs from mouse iPSCs using serum-free medium supplemented with retinoic acid. We then assessed changes in the expression of SIRT1 and microRNA-34a, which regulates SIRT1 expression. Moreover, we used a SIRT1 inhibitor to investigate the role of SIRT1 in NSCs differentiation of iPSCs. Data revealed that the expression of SIRT1 decreased, whereas miRNAs-34a increased, during this process. In addition, the inhibition of SIRT1 enhanced the generation of NSCs and mature neurocytes. This suggests that SIRT1 negatively regulated the differentiation of mouse iPSCs into NSCs, and that this process may be regulated by miRNA-34a.
Collapse
Affiliation(s)
- Bin Hu
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Ye Guo
- Graduate School of Nanchang University, Nanchang, 330006 China
- Department of Neurosurgery, Nanchang University Affiliated Second Hospital, Nanchang, 330006 China
| | - Chunyuan Chen
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
- Graduate School of Nanchang University, Nanchang, 330006 China
| | - Qing Li
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xin Niu
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Shangchun Guo
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Aijun Zhang
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yang Wang
- Institue of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Zhifeng Deng
- Department of Neurosurgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| |
Collapse
|
47
|
Inhibition of Notch signaling facilitates the differentiation of human-induced pluripotent stem cells into neural stem cells. Mol Cell Biochem 2014; 395:291-8. [PMID: 24972705 DOI: 10.1007/s11010-014-2130-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
Neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) are becoming an appealing source of cell-based therapies of brain diseases. As such, it is important to understand the molecular mechanisms that regulate the differentiation of iPSCs toward NSCs. It is well known that Notch signaling governs the retention of stem cell features and drives stem cells fate. However, further studies are required to investigate the role of Notch signaling in the NSCs differentiation of iPSCs. In this study, we successfully generated NSCs from human iPSCs using serum-free medium supplemented with retinoic acid (RA) in vitro. We then assessed changes in the expression of Notch signaling-related molecules and some miRNAs (9, 34a, 200b), which exert their regulation by targeting Notch signaling. Moreover, we used a γ-secretase inhibitor (DAPT) to disturb Notch signaling. Data revealed that the levels of the Notch signaling-related molecules decreased, whereas those miRNAs increased, during this differentiation process. Inhibition of Notch signaling accelerated the formation of the neural rosette structures and the expression of NSC and mature neurocyte marker genes. This suggests that Notch signaling negatively regulated the neuralization of human iPSCs, and that this process may be regulated by some miRNAs.
Collapse
|
48
|
Trosko JE. Human adult stem cells as the target cells for the initiation of carcinogenesis and for the generation of "cancer stem cells". Int J Stem Cells 2014; 1:8-26. [PMID: 24855504 DOI: 10.15283/ijsc.2008.1.1.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 01/12/2023] Open
Abstract
The inference to stem cells has been found in ancient myths and the concept of stem cells has existed in the fields of plant biology, developmental biology and embryology for decades. In the field of cancer research, the stem cell theory was one of the earliest hypotheses on the origin of a cancer from a single cell. However, an opposing hypothesis had it that an adult differentiated somatic cell could "de-differentiate" to become a cancer cell. Only within the last decade, via the "cloning" of Dolly, the sheep, did the field of stem cell biology really trigger an exciting revolution in biological research. The isolation of human embryonic stem cells has created a true revolution in the life sciences that has led to the hope that these human stem cells could lead to (a) basic science understanding of gene regulation during differentiation and development; (b) stem cell therapy; (c) gene therapy via stem cells; (d) the use of stem cells for drug discovery; (e) screening for toxic effects of chemicals; and (f) understand the aging and diseases of aging processes.
Collapse
Affiliation(s)
- James E Trosko
- Department of Pediatrics/Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
49
|
Tang MK, Lo LM, Shi WT, Yao Y, Lee HSS, Lee KKH. Transient acid treatment cannot induce neonatal somatic cells to become pluripotent stem cells. F1000Res 2014; 3:102. [PMID: 25075303 PMCID: PMC4032108 DOI: 10.12688/f1000research.4092.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 01/18/2023] Open
Abstract
Currently, there are genetic- and chemical-based methods for producing pluripotent stem cells from somatic cells, but all of them are extremely inefficient. However, a simple and efficient technique has recently been reported by Obokata
et al (2014a, b) that creates pluripotent stem cells through acid-based treatment of somatic cells. These cells were named stimulus-triggered acquisition of pluripotency (STAP) stem cells. This would be a major game changer in regenerative medicine if the results could be independently replicated. Hence, we isolated CD45
+ splenocytes from five-day-old Oct4-GFP mice and treated the cells with acidified (pH 5.7) Hank’s Balanced Salt Solution (HBSS) for 25 min, using the methods described by Obokata
et al 2014c. However, we found that this method did not induce the splenocytes to express the stem cell marker Oct4-GFP when observed under a confocal microscope three to six days after acid treatment. qPCR analysis also confirmed that acid treatment did not induce the splenocytes to express the stemness markers
Oct4,
Sox2 and
Nanog. In addition, we obtained similar results from acid-treated Oct4-GFP lung fibroblasts. In summary, we have not been able to produce STAP stem cells from neonatal splenocytes or lung fibroblasts using the acid-based treatment reported by Obokata
et al (2014a, b, c).
Collapse
Affiliation(s)
- Mei Kuen Tang
- Key Laboratory for Regeneration Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lok Man Lo
- Key Laboratory for Regeneration Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wen Ting Shi
- Key Laboratory for Regeneration Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yao Yao
- Key Laboratory for Regeneration Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Henry Siu Sum Lee
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regeneration Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
50
|
Malecki M, Putzer E, Sabo C, Foorohar A, Quach C, Stampe C, Beauchaine M, Tombokan X, Malecki R, Anderson M. Directed cardiomyogenesis of autologous human induced pluripotent stem cells recruited to infarcted myocardium with bioengineered antibodies. MOLECULAR AND CELLULAR THERAPIES 2014; 2:13. [PMID: 25132967 PMCID: PMC4131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/01/2014] [Indexed: 11/21/2023]
Abstract
OBJECTIVE Myocardial infarctions constitute a major factor contributing to non-natural mortality world-wide. Clinical trials of myocardial regenerative therapy, currently pursued by cardiac surgeons, involve administration of stem cells into the hearts of patients suffering from myocardial infarctions. Unfortunately, surgical acquisition of these cells from bone marrow or heart is traumatic, retention of these cells to sites of therapeutic interventions is low, and directed differentiation of these cells in situ into cardiomyocytes is difficult. The specific aims of this work were: (1) to generate autologous, human, pluripotent, induced stem cells (ahiPSCs) from the peripheral blood of the patients suffering myocardial infarctions; (2) to bioengineer heterospecific antibodies (htAbs) and use them for recruitment of the ahiPSCs to infarcted myocardium; (3) to initiate in situ directed cardiomyogenesis of the ahiPSCs retained to infarcted myocardium. METHODS Peripheral blood was drawn from six patients scheduled for heart transplants. Mononuclear cells were isolated and reprogrammed, with plasmids carrying six genes (NANOG, POU5F1, SOX2, KLF4, LIN28A, MYC), to yield the ahiPSCs. Cardiac tissues were excised from the injured hearts of the patients, who received transplants during orthotopic surgery. These tissues were used to prepare in vitro models of stem cell therapy of infarcted myocardium. The htAbs were bioengineered, which simultaneously targeted receptors displayed on pluripotent stem cells (SSEA-4, SSEA-3, TRA-1-60, TRA-1-81) and proteins of myocardial sarcomeres (myosin, α-actinin, actin, titin). They were used to bridge the ahiPSCs to the infarcted myocardium. The retained ahiPSCs were directed with bone morphogenetic proteins and nicotinamides to differentiate towards myocardial lineage. RESULTS The patients' mononuclear cells were efficiently reprogrammed into the ahiPSCs. These ahiPSCs were administered to infarcted myocardium in in vitro models. They were recruited to and retained at the treated myocardium with higher efficacy and specificity, if were preceded with the htAbs, than with isotype antibodies or plain buffers. The retained cells differentiated into cardiomyocytes. CONCLUSIONS The proof of concept has been attained, for reprogramming the patients' blood mononuclear cells (PBMCs) into the ahiPSCs, recruiting these cells to infarcted myocardium, and initiating their cardiomyogenesis. This novel strategy is ready to support the ongoing clinical trials aimed at regeneration of infarcted myocardium.
Collapse
Affiliation(s)
- Marek Malecki
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| | - Emily Putzer
- />University of Wisconsin, Madison, Madison, WI USA
- />Latin American Youth Center, Washington, DC USA
| | - Chelsea Sabo
- />University of Wisconsin, Madison, Madison, WI USA
- />University of Sheffield, Sheffield, EU UK
| | - Afsoon Foorohar
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Lebanon, OR USA
| | - Carol Quach
- />Phoenix Biomolecular Engineering Foundation, San Francisco, CA USA
- />Western University, Pomona, CA USA
| | | | | | | | - Raf Malecki
- />San Francisco State University, San Francisco, CA USA
| | - Mark Anderson
- />National Magnetic Resonance Facility, National Institutes of Health, Madison, WI USA
- />University of Wisconsin, Madison, Madison, WI USA
| |
Collapse
|