1
|
Kinreich S, Bialer-Tsypin A, Viner-Breuer R, Keshet G, Suhler R, Lim PSL, Golan-Lev T, Yanuka O, Turjeman A, Ram O, Meshorer E, Egli D, Yilmaz A, Benvenisty N. Genome-wide screening reveals essential roles for HOX genes and imprinted genes during caudal neurogenesis of human embryonic stem cells. Stem Cell Reports 2024; 19:1598-1619. [PMID: 39486407 PMCID: PMC11589199 DOI: 10.1016/j.stemcr.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
Mapping the essential pathways for neuronal differentiation can uncover new therapeutics and models for neurodevelopmental disorders. We thus utilized a genome-wide loss-of-function library in haploid human embryonic stem cells, differentiated into caudal neuronal cells. We show that essential genes for caudal neurogenesis are enriched for secreted and membrane proteins and that a large group of neurological conditions, including neurodegenerative disorders, manifest early neuronal phenotypes. Furthermore, essential transcription factors are enriched with homeobox (HOX) genes demonstrating synergistic regulation and surprising non-redundant functions between HOXA6 and HOXB6 paralogs. Moreover, we establish the essentialome of imprinted genes during neurogenesis, demonstrating that maternally expressed genes are non-essential in pluripotent cells and their differentiated germ layers, yet several are essential for neuronal development. These include Beckwith-Wiedemann syndrome- and Angelman syndrome-related genes, for which we suggest a novel regulatory pathway. Overall, our work identifies essential pathways for caudal neuronal differentiation and stage-specific phenotypes of neurological disorders.
Collapse
Affiliation(s)
- Shay Kinreich
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Anna Bialer-Tsypin
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ruth Viner-Breuer
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Roni Suhler
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Tamar Golan-Lev
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Ofra Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Adi Turjeman
- The Center for Genomic Technologies, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Oren Ram
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Eran Meshorer
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; The Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem 91904, Israel
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Atilgan Yilmaz
- Leuven Stem Cell Institute, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium.
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
2
|
Shi D, Feng W, Zi Z. Machine learning unveils RNA polymerase II binding as a predictor for SMAD2-dependent transcription dynamics in response to Actvin signalling. IET Syst Biol 2024; 18:14-22. [PMID: 38193845 PMCID: PMC10860719 DOI: 10.1049/syb2.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 01/10/2024] Open
Abstract
The transforming growth factor-β (TGF-β) superfamily, including Nodal and Activin, plays a critical role in various cellular processes. Understanding the intricate regulation and gene expression dynamics of TGF-β signalling is of interest due to its diverse biological roles. A machine learning approach is used to predict gene expression patterns induced by Activin using features, such as histone modifications, RNA polymerase II binding, SMAD2-binding, and mRNA half-life. RNA sequencing and ChIP sequencing datasets were analysed and differentially expressed SMAD2-binding genes were identified. These genes were classified into activated and repressed categories based on their expression patterns. The predictive power of different features and combinations was evaluated using logistic regression models and their performances were assessed. Results showed that RNA polymerase II binding was the most informative feature for predicting the expression patterns of SMAD2-binding genes. The authors provide insights into the interplay between transcriptional regulation and Activin signalling and offers a computational framework for predicting gene expression patterns in response to cell signalling.
Collapse
Affiliation(s)
- Dan Shi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
| | - Weihua Feng
- Zhengzhou Tobacco Research Institute of China National Tobacco CorporationZhengzhouChina
| | - Zhike Zi
- Max Planck Institute for Molecular GeneticsOtto Warburg LaboratoryBerlinGermany
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
3
|
Sultana Z, Dorel M, Klinger B, Sieber A, Dunkel I, Blüthgen N, Schulz EG. Modeling unveils sex differences of signaling networks in mouse embryonic stem cells. Mol Syst Biol 2023; 19:e11510. [PMID: 37735975 PMCID: PMC10632733 DOI: 10.15252/msb.202211510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
For a short period during early development of mammalian embryos, both X chromosomes in females are active, before dosage compensation is ensured through X-chromosome inactivation. In female mouse embryonic stem cells (mESCs), which carry two active X chromosomes, increased X-dosage affects cell signaling and impairs differentiation. The underlying mechanisms, however, remain poorly understood. To dissect X-dosage effects on the signaling network in mESCs, we combine systematic perturbation experiments with mathematical modeling. We quantify the response to a variety of inhibitors and growth factors for cells with one (XO) or two X chromosomes (XX). We then build models of the signaling networks in XX and XO cells through a semi-quantitative modeling approach based on modular response analysis. We identify a novel negative feedback in the PI3K/AKT pathway through GSK3. Moreover, the presence of a single active X makes mESCs more sensitive to the differentiation-promoting Activin A signal and leads to a stronger RAF1-mediated negative feedback in the FGF-triggered MAPK pathway. The differential response to these differentiation-promoting pathways can explain the impaired differentiation propensity of female mESCs.
Collapse
Affiliation(s)
- Zeba Sultana
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Mathurin Dorel
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Bertram Klinger
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Anja Sieber
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Ilona Dunkel
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Nils Blüthgen
- Computational Modelling in Medicine, Institute of PathologyCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Edda G Schulz
- Systems Epigenetics, Otto‐Warburg‐LaboratoriesMax Planck Institute for Molecular GeneticsBerlinGermany
| |
Collapse
|
4
|
Sellem E, Jammes H, Schibler L. Sperm-borne sncRNAs: potential biomarkers for semen fertility? Reprod Fertil Dev 2021; 34:160-173. [PMID: 35231268 DOI: 10.1071/rd21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Semen infertility or sub-fertility, whether in humans or livestock species, remains a major concern for clinicians and technicians involved in reproduction. Indeed, they can cause tragedies in human relationships or have a dramatic overall negative impact on the sustainability of livestock breeding. Understanding and predicting semen fertility issues is therefore crucial and quality control procedures as well as biomarkers have been proposed to ensure sperm fertility. However, their predictive values appeared to be too limited and additional relevant biomarkers are still required to diagnose sub-fertility efficiently. During the last decade, the study of molecular mechanisms involved in spermatogenesis and sperm maturation highlighted the regulatory role of a variety of small non-coding RNAs (sncRNAs) and led to the discovery that sperm sncRNAs comprise both remnants from spermatogenesis and post-testicular sncRNAs acquired through interactions with extracellular vesicles along epididymis. This has led to the hypothesis that sncRNAs may be a source of relevant biomarkers, associated either with sperm functionality or embryo development. This review aims at providing a synthetic overview of the current state of knowledge regarding implication of sncRNA in spermatogenesis defects and their putative roles in sperm maturation and embryo development, as well as exploring their use as fertility biomarkers.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012 Paris, France
| | - Hélène Jammes
- Université Paris Saclay, UVSQ, INRAE, BREED, 78350 Jouy en Josas, France; and Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | | |
Collapse
|
5
|
Kumari R, Irudayam MJ, Al Abdallah Q, Jones TL, Mims TS, Puchowicz MA, Pierre JF, Brown CW. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J 2021; 35:e22018. [PMID: 34731499 DOI: 10.1096/fj.202101244r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022]
Abstract
Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.
Collapse
Affiliation(s)
- Roshan Kumari
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Johnson Irudayam
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Tamekia L Jones
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Tahliyah S Mims
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Abstract
The generation of germ cells from embryonic stem cells in vitro has current historical significance. Western blot, qPCR, immunofluorescence and flow cytometry assays were used to investigate the differences in expression levels of totipotency and specific markers for Wnt regulation and the related signalling pathways during primordial germ cell-like cell (PGCLC) induction and differentiation. During PGCLC induction, activation of WNT3a increased the expression of NANOG, SOX2 and OCT4, but Mvh, DAZL, Blimp1, TFAP2C, Gata4, SOX17, EOMES, Brachyury and PRDM1 expression levels were significantly reduced. Inhibition of the WNT signal demonstrated the opposite effect. Similarly, inhibitors of BMP and the Nodal/Activin signal were used to determine the effect of signal pathways on differentiation. CER1 affected the Wnt signal and differentiation, but the inhibitor SB only regulated differentiation. BMP-WNT-NODAL were mainly responsible for regulating differentiation. Our results provide a reliable theoretical basis and feasibility for further clinical medical research.
Collapse
|
7
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
8
|
Li Y, Cui C, Xie F, Kiełbasa S, Mei H, van Dinther M, van Dam H, Bauer A, Zhang L, Ten Dijke P. VprBP mitigates TGF-β and Activin signaling by promoting Smurf1-mediated type I receptor degradation. J Mol Cell Biol 2021; 12:138-151. [PMID: 31291647 PMCID: PMC7109606 DOI: 10.1093/jmcb/mjz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family controls embryogenesis, stem cell differentiation, and tissue homeostasis. However, how post-translation modifications contribute to fine-tuning of TGF-β family signaling responses is not well understood. Inhibitory (I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-β receptor for proteasomal degradation. A proteomic interaction screen identified Vpr binding protein (VprBP) as novel binding partner of Smad7. Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation, Smad2-Smad4 interaction, as well as TGF-β target gene expression. VprBP was found to promote Smad7-Smurf1-TβRI complex formation and induce proteasomal degradation of TGF-β type I receptor (TβRI). Moreover, VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination. In multiple adult and mouse embryonic stem cells, depletion of VprBP promotes TGF-β or Activin-induced responses. In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression, and VprBP attenuated mesoderm induction during zebrafish embryogenesis. Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-β and Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.
Collapse
Affiliation(s)
- Yihao Li
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Chao Cui
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Feng Xie
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Szymon Kiełbasa
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Maarten van Dinther
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hans van Dam
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Andreas Bauer
- Novartis Institutes for BioMedical Research, Inc., Novartis Campus, Forum 2.5.01.30, CH-4056, Basel, Switzerland
| | - Long Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Yang YR, Bu FT, Yang Y, Li H, Huang C, Meng XM, Zhang L, Lv XW, Li J. LEFTY2 alleviates hepatic stellate cell activation and liver fibrosis by regulating the TGF-β1/Smad3 pathway. Mol Immunol 2020; 126:31-39. [PMID: 32745796 DOI: 10.1016/j.molimm.2020.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/23/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Activated hepatic stellate cells (HSCs) are the major cell type involved in the deposition of extracellular matrix (ECM) during the development of hepatic fibrosis. In this study, we revealed that left-right determination factor 2 (LEFTY2), one of the proteins belonging to the transforming growth factor-β (TGF-β) protein superfamily, was remarkedly decreased in human hepatic fibrosis tissues and in a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. In addition, TGF-β1 treatment markedly reduced the level of LEFTY2 in HSCs. Importantly, overexpression of LEFTY2 suppressed the activation and proliferation of HSCs. LEFTY2 inhibited the expression of TGF-β1-induced fibrosis-associated genes (α-SMA and COL1a1) in human (LX-2) and rat (HSC-T6) HSC cell lines in vitro. Mechanistically, we demonstrated, for the first time, the role of LEFTY2 in inhibiting TGF-β1/Smad3 signaling, suggesting that there is a mutual antagonism between LEFTY2 and TGF-β1/Smad3 signaling during liver fibrosis. Similarly, we observed that LEFTY2 has a negative effect on its downstream genes, including c-MYC, CDK4, and cyclin D1, in liver fibrosis. Collectively, our data strongly indicated that LEFTY2 plays an important role in controlling the proliferation and activation of HSCs in the progression of liver fibrosis and this could be a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Ya-Ru Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiong-Wen Lv
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Ju Y, Park JS, Kim D, Kim B, Lee JH, Nam Y, Yoo HW, Lee BH, Han YM. SHP2 mutations induce precocious gliogenesis of Noonan syndrome-derived iPSCs during neural development in vitro. Stem Cell Res Ther 2020; 11:209. [PMID: 32493428 PMCID: PMC7268229 DOI: 10.1186/s13287-020-01709-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Background Noonan syndrome (NS) is a developmental disorder caused by mutations of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2). Although NS patients have diverse neurological manifestations, the mechanisms underlying the involvement of SHP2 mutations in neurological dysfunction remain elusive. Methods Induced pluripotent stem cells generated from dermal fibroblasts of three NS-patients (NS-iPSCs) differentiated to the neural cells by using two different culture systems, 2D- and 3D-cultured systems in vitro. Results Here we represent that SHP2 mutations cause aberrant neural development. The NS-iPSCs exhibited impaired development of EBs in which BMP and TGF-β signalings were activated. Defective early neuroectodermal development of NS-iPSCs recovered by inhibition of both signalings and further differentiated into NPCs. Intriguingly, neural cells developed from NS-NPCs exhibited abundancy of the glial cells, neurites of neuronal cells, and low electrophysiological property. Those aberrant phenotypes were also detected in NS-cerebral organoids. SHP2 inhibition in the NS-NPCs and NS-cerebral organoids ameliorated those anomalies such as biased glial differentiation and low neural activity. Conclusion Our findings demonstrate that SHP2 mutations contribute to precocious gliogenesis in NS-iPSCs during neural development in vitro.
Collapse
Affiliation(s)
- Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Sung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Daejeong Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Bumsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Shen J, Lyu C, Zhu Y, Feng Z, Zhang S, Hoyle DL, Ji G, Brodsky RA, Cheng T, Wang ZZ. Defining early hematopoietic-fated primitive streak specification of human pluripotent stem cells by the orchestrated balance of Wnt, activin, and BMP signaling. J Cell Physiol 2019; 234:16136-16147. [PMID: 30740687 PMCID: PMC6689260 DOI: 10.1002/jcp.28272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/25/2023]
Abstract
Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuicui Lyu
- Department of Hematology, the First Central Hospital of Tianjin, Tianjin, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zicen Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guangzhen Ji
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Robert A. Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Collaborative Innovation Center for Cancer Medicine, Tianjin, China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, Liu Z, Jiapaer Z, Wan X, Wang G, Chen W, Zhu S, Jiang C, Shi W, Kang J. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res 2019; 46:6026-6040. [PMID: 29733394 PMCID: PMC6158608 DOI: 10.1093/nar/gky347] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
Sin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter. Further studies showed that two amino acid residues (Phe147, Phe182) in the PAH1 domain of Sin3a are essential for Sin3a–Tet1 interaction and its activity in regulating pluripotency. Furthermore, genome-wide analyses of Sin3a, Tet1 and Pol II ChIP-seq and of 5mC MeDIP-seq revealed that Sin3a acted with Tet1 to facilitate the transcription of a set of their co-target genes. These results link Sin3a to epigenetic DNA modifications in transcriptional activation and have implications for understanding mechanisms underlying versatile functions of Sin3a in mouse ESCs.
Collapse
Affiliation(s)
- Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qianshu Zhu
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qingquan Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.,Institute of Regenerative Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenping Liu
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoping Wan
- Shanghai First Maternity and Infant Health Hospital, Shanghai 200120, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Cizhong Jiang
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Weiyang Shi
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
13
|
Tian TV, Di Stefano B, Stik G, Vila-Casadesús M, Sardina JL, Vidal E, Dasti A, Segura-Morales C, De Andrés-Aguayo L, Gómez A, Goldmann J, Jaenisch R, Graf T. Whsc1 links pluripotency exit with mesendoderm specification. Nat Cell Biol 2019; 21:824-834. [PMID: 31235934 DOI: 10.1038/s41556-019-0342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
How pluripotent stem cells differentiate into the main germ layers is a key question of developmental biology. Here, we show that the chromatin-related factor Whsc1 (also known as Nsd2 and MMSET) has a dual role in pluripotency exit and germ layer specification of embryonic stem cells. On induction of differentiation, a proportion of Whsc1-depleted embryonic stem cells remain entrapped in a pluripotent state and fail to form mesendoderm, although they are still capable of generating neuroectoderm. These functions of Whsc1 are independent of its methyltransferase activity. Whsc1 binds to enhancers of the mesendodermal regulators Gata4, T (Brachyury), Gata6 and Foxa2, together with Brd4, and activates the expression of these genes. Depleting each of these regulators also delays pluripotency exit, suggesting that they mediate the effects observed with Whsc1. Our data indicate that Whsc1 links silencing of the pluripotency regulatory network with activation of mesendoderm lineages.
Collapse
Affiliation(s)
- Tian V Tian
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Bruno Di Stefano
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Grégoire Stik
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Vila-Casadesús
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - José Luis Sardina
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Vidal
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alessandro Dasti
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina Segura-Morales
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luisa De Andrés-Aguayo
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Gómez
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Johanna Goldmann
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,The Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Graf
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
14
|
Narayana YV, Gadgil C, Mote RD, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports 2018; 12:152-164. [PMID: 30554918 PMCID: PMC6335602 DOI: 10.1016/j.stemcr.2018.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Endocytosis is implicated in the maintenance of embryonic stem cell (ESC) pluripotency, although its exact role and the identity of molecular players remain poorly understood. Here, we show that the clathrin heavy chain (CLTC), involved in clathrin-mediated endocytosis (CME), is vital for maintaining mouse ESC (mESC) pluripotency. Knockdown of Cltc resulted in a loss of pluripotency accompanied by reduced E-cadherin (E-CAD) levels and increased levels of transforming growth factor β (TGF-β) and extracellular signal-regulated kinase (ERK) signaling. We demonstrate that both E-CAD and TGF-β receptor type 1 (TGF-βR1) are internalized through CME in mESCs. While E-CAD is recycled, TGF-βR1 is targeted for lysosomal degradation thus maintaining inverse levels of these molecules. Finally, we show that E-CAD interacts with ERK, and that the decreased pluripotency upon CME loss can be rescued by inhibiting TGF-βR, MEK, and GSK3β, or overexpressing E-CAD. Our results demonstrate that CME is critical for balancing signaling outputs to regulate ESC pluripotency, and possibly cell fate choices in early development. Knockdown of Cltc results in loss of mESC pluripotency CME regulates E-CAD and TGF-βR1 trafficking in mESCs ESCs lacking CME can be rescued by TGF-βR1/MEK inhibition or E-CAD overexpression CME balances opposing signaling outputs to maintain ESC pluripotency
Collapse
Affiliation(s)
- Yadavalli V Narayana
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune 411007, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - Chetan Gadgil
- Chemical Engineering Department, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ridim D Mote
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune 411007, India
| | - Raghav Rajan
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, NCL Colony, Pune 411008, India
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
15
|
Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc Natl Acad Sci U S A 2018; 114:5838-5845. [PMID: 28584089 DOI: 10.1073/pnas.1610612114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3' enhancer of Hoxa1 This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.
Collapse
|
16
|
Ghimire S, Van der Jeught M, Neupane J, Roost MS, Anckaert J, Popovic M, Van Nieuwerburgh F, Mestdagh P, Vandesompele J, Deforce D, Menten B, Chuva de Sousa Lopes S, De Sutter P, Heindryckx B. Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the same genetic background. Sci Rep 2018; 8:5884. [PMID: 29650979 PMCID: PMC5897387 DOI: 10.1038/s41598-018-24051-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/13/2018] [Indexed: 01/28/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) exist in a naive, primed and ground state of pluripotency. While comparative analyses of these pluripotency states have been reported, the mESCs utilized originated from various genetic backgrounds and were derived in different laboratories. mESC derivation in conventional LIF + serum culture conditions is strain dependent, with different genetic backgrounds potentially affecting subsequent stem cell characteristics. In the present study, we performed a comprehensive characterization of naive, primed and ground state mESCs originating from the same genetic background within our laboratory, by comparing their transcriptional profiles. We showed unique transcriptional profiles for naive, primed and ground state mESCs. While naive and ground state mESCs have more similar but not identical profiles, primed state mESCs show a very distinct profile. We further demonstrate that the differentiation propensity of mESCs to specific germ layers is highly dependent on their respective state of pluripotency.
Collapse
Affiliation(s)
- Sabitri Ghimire
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Margot Van der Jeught
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jitesh Neupane
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Matthias S Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jasper Anckaert
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Jo Vandesompele
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Björn Menten
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Gent, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Dai Y, Wang L, Tang J, Cao P, Luo Z, Sun J, Kiflu A, Sai B, Zhang M, Wang F, Li G, Xiang J. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells against chemotherapeutic stress. Oncotarget 2018; 7:25478-92. [PMID: 27009858 PMCID: PMC5041919 DOI: 10.18632/oncotarget.8172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer dormancy is a stage in tumor progression in which residual disease remains occult and asymptomatic for a prolonged period. Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy. However, cancer dormancy is poorly characterized and the mechanisms of how cancer cells develop dormancy and relapse remain elusive. In this study, 5- fluorouracil (5-FU) was used to induce cancer cell dormancy. We found that cancer cells escape the cytotoxicity of 5-FU by becoming “dormant”. After exposure to 5-FU, residual non-small cell lung cancer (NSCLC) cells underwent epithelial-mesenchymal transition (EMT), followed by mesenchymal-epithelial transition (MET). These EMT-transformed NSCLC cells were in the state of cell quiescence where cells were not dividing and were arrested in the cell cycle in G0-G1. The dormant cells underwent an EMT showed characteristics of cancer stem cells. P53 is strongly accumulated in response to 5-FU-induced dormant cells through the activation of ubiquitin ligase anaphase-promoting complex (APC/C) and TGF-β/Smad signaling. In contrast to the EMT-transformed cells, MET-transformed cells showed an increased ability to proliferate, suggesting that dormant EMT cells were reactivated in the MET process. During the EMT-MET process, DNA repair including nonhomologous end joining (NHEJ) and homologous recombination (HR) is critical to dormant cell reactivation. Our findings provide a mechanism to unravel cancer cell dormancy and reactivation of the cancer cell population.
Collapse
Affiliation(s)
- Yafei Dai
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Lujuan Wang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Pengfei Cao
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Zhaohui Luo
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jun Sun
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Abraha Kiflu
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Buqing Sai
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Meili Zhang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Fan Wang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China
| | - Guiyuan Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, PR China
| | - Juanjuan Xiang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, Changsha, Hunan, PR China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, PR China
| |
Collapse
|
18
|
Perino MG, Yamanaka S, Riordon DR, Tarasova Y, Boheler KR. Ascorbic acid promotes cardiomyogenesis through SMAD1 signaling in differentiating mouse embryonic stem cells. PLoS One 2017; 12:e0188569. [PMID: 29232368 PMCID: PMC5726630 DOI: 10.1371/journal.pone.0188569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/09/2017] [Indexed: 12/03/2022] Open
Abstract
Numerous groups have documented that Ascorbic Acid (AA) promotes cardiomyocyte differentiation from both mouse and human ESCs and iPSCs. AA is now considered indispensable for the routine production of hPSC-cardiomyocytes (CMs) using defined media; however, the mechanisms involved with the inductive process are poorly understood. Using a genetically modified mouse embryonic stem cell (mESC) line containing a dsRED transgene driven by the cardiac-restricted portion of the ncx1 promoter, we show that AA promoted differentiation of mESCs to CMs in a dose- and time-dependent manner. Treatment of mPSCs with AA did not modulate total SMAD content; however, the phosphorylated/active forms of SMAD2 and SMAD1/5/8 were significantly elevated. Co-administration of the SMAD2/3 activator Activin A with AA had no significant effect, but the addition of the nodal co-receptor TDGF1 (Cripto) antagonized AA’s cardiomyogenic-promoting ability. AA could also reverse some of the inhibitory effects on cardiomyogenesis of ALK/SMAD2 inhibition by SB431542, a TGFβ pathway inhibitor. Treatment with BMP2 and AA strongly amplified the positive cardiomyogenic effects of SMAD1/5/8 in a dose-dependent manner. AA could not, however, rescue dorsomorphin-mediated inhibition of ALK/SMAD1 activity. Using an inducible model system, we found that SMAD1, but not SMAD2, was essential for AA to promote the formation of TNNT2+-CMs. These data firmly demonstrate that BMP receptor-activated SMADs, preferential to TGFβ receptor-activated SMADs, are necessary to promote AA stimulated cardiomyogenesis. AA-enhanced cardiomyogenesis thus relies on the ability of AA to modulate the ratio of SMAD signaling among the TGFβ-superfamily receptor signaling pathways.
Collapse
Affiliation(s)
- Maria Grazia Perino
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| | - Satoshi Yamanaka
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yelena Tarasova
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, SAR China
- Division of Cardiology, Johns Hopkins Medical Institute, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Sun N, Yu X, Li F, Liu D, Suo S, Chen W, Chen S, Song L, Green CD, McDermott J, Shen Q, Jing N, Han JDJ. Inference of differentiation time for single cell transcriptomes using cell population reference data. Nat Commun 2017; 8:1856. [PMID: 29187729 PMCID: PMC5707349 DOI: 10.1038/s41467-017-01860-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful method for dissecting intercellular heterogeneity during development. Conventional trajectory analysis provides only a pseudotime of development, and often discards cell-cycle events as confounding factors. Here using matched cell population RNA-seq (cpRNA-seq) as a reference, we developed an “iCpSc” package for integrative analysis of cpRNA-seq and scRNA-seq data. By generating a computational model for reference “biological differentiation time” using cell population data and applying it to single-cell data, we unbiasedly associated cell-cycle checkpoints to the internal molecular timer of single cells. Through inferring a network flow from cpRNA-seq to scRNA-seq data, we predicted a role of M phase in controlling the speed of neural differentiation of mouse embryonic stem cells, and validated it through gene knockout (KO) experiments. By linking temporally matched cpRNA-seq and scRNA-seq data, our approach provides an effective and unbiased approach for identifying developmental trajectory and timing-related regulatory events. Single cell transcriptome data can be used to determine developmental lineage trajectories. Here the authors map single cell transcriptomes onto a differentiation trajectory defined by cell population transcriptomes and show that cell cycle regulators have a role in differentiation timing.
Collapse
Affiliation(s)
- Na Sun
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoming Yu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Fang Li
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Denghui Liu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shengbao Suo
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weiyang Chen
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shirui Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lu Song
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Christopher D Green
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Joseph McDermott
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qin Shen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
20
|
Lai YL, Lin CY, Jiang WC, Ho YC, Chen CH, Yet SF. Loss of heme oxygenase-1 accelerates mesodermal gene expressions during embryoid body development from mouse embryonic stem cells. Redox Biol 2017; 15:51-61. [PMID: 29216542 PMCID: PMC5722471 DOI: 10.1016/j.redox.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO)-1 is an inducible stress response protein and well known to protect cells and tissues against injury. Despite its important function in cytoprotection against physiological stress, the role of HO-1 in embryonic stem cell (ESC) differentiation remains largely unknown. We showed previously that induced pluripotent stem (iPS) cells that lack HO-1 are more sensitive to oxidant stress-induced cell death and more prone to lose pluripotent markers upon LIF withdrawal. To elucidate the role of HO-1 in ESC differentiation and to rule out the controversy of potential gene flaws in iPS cells, we derived and established mouse HO-1 knockout ESC lines from HO-1 knockout blastocysts. Using wild type D3 and HO-1 knockout ESCs in the 3-dimensional embryoid body (EB) differentiation model, we showed that at an early time point during EB development, an absence of HO-1 led to enhanced ROS level, concomitant with increased expressions of master mesodermal regulator brachyury and endodermal marker GATA6. In addition, critical smooth muscle cell (SMC) transcription factor serum response factor and its coactivator myocardin were enhanced. Furthermore, HO-1 deficiency increased Smad2 in ESCs and EBs, revealing a role of HO-1 in controlling Smad2 level. Smad2 not only mediates mesendoderm differentiation of mouse ESCs but also SMC development. Collectively, loss of HO-1 resulted in higher level of mesodermal and SMC regulators, leading to accelerated and enhanced SMC marker SM α-actin expression. Our results reveal a previously unrecognized function of HO-1 in regulating SMC gene expressions during ESC-EB development. More importantly, our findings may provide a novel strategy in enhancing ESC differentiation toward SMC lineage. Loss of HO-1 in ESCs promotes adipogenesis but reduces osteogenesis. During early EB development, loss of HO-1 results in robust induction of brachyury. During early EB development, lack of HO-1 leads to enhanced ROS level. Loss of HO-1 increases SMC transcription factor SRF and cofactor myocardin. HO-1 deficiency promotes mesodermal SMC differentiation during EB development.
Collapse
Affiliation(s)
- Yan-Liang Lai
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wei-Cheng Jiang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Huang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan.
| |
Collapse
|
21
|
Bates LE, Silva JC. Reprogramming human cells to naïve pluripotency: how close are we? Curr Opin Genet Dev 2017; 46:58-65. [PMID: 28668635 PMCID: PMC6112416 DOI: 10.1016/j.gde.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Pluripotent stem cells (PSCs) have the potential to revolutionise biomedical science; however, while it is simple to reproducibly obtain comparable, stable cell lines in mouse, those produced from human material typically show significant variability both within and between cell lines. This is likely due to differences in the cell identity of conventional mouse and human PSCs. It is hoped that recently identified conditions to reprogram human cells to a naïve-like state will produce better PSCs resulting in reproducible experimental outcomes and more consistent differentiation protocols. In this review we discuss the latest literature on the discovery of human naïve-like stem cells and examine how similar they are to both mouse naïve cells and the preimplantation human epiblast.
Collapse
Affiliation(s)
- Lawrence E Bates
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José Cr Silva
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
22
|
Wang L, Xu X, Cao Y, Li Z, Cheng H, Zhu G, Duan F, Na J, Han JDJ, Chen YG. Activin/Smad2-induced Histone H3 Lys-27 Trimethylation (H3K27me3) Reduction Is Crucial to Initiate Mesendoderm Differentiation of Human Embryonic Stem Cells. J Biol Chem 2016; 292:1339-1350. [PMID: 27965357 DOI: 10.1074/jbc.m116.766949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/10/2016] [Indexed: 01/10/2023] Open
Abstract
Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling. Furthermore, we demonstrate that activin mediates the H3K27me3 decrease via the Smad2-mediated reduction of EZH2 protein level. Our results suggest a two-step process of ME initiation: first, epigenetic priming via removal of H3K27me3 marks and, second, transcription activation. Our findings demonstrate a critical role of H3K27me3 priming and a direct interaction between extrinsic signals and epigenetic modifications during ME initiation.
Collapse
Affiliation(s)
- Lu Wang
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuanhao Xu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqiang Cao
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Zhongwei Li
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Cheng
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Gaoyang Zhu
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- the School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Dong J Han
- the Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China, and
| | - Ye-Guang Chen
- From the State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
23
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
24
|
Zhao ZA, Yu Y, Ma HX, Wang XX, Lu X, Zhai Y, Zhang X, Wang H, Li L. The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 2016; 5:rsob.150092. [PMID: 26269429 PMCID: PMC4554925 DOI: 10.1098/rsob.150092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215000, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huai-Xiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
25
|
Hadjimichael C, Nikolaou C, Papamatheakis J, Kretsovali A. MicroRNAs for Fine-Tuning of Mouse Embryonic Stem Cell Fate Decision through Regulation of TGF-β Signaling. Stem Cell Reports 2016; 6:292-301. [PMID: 26876669 PMCID: PMC4788761 DOI: 10.1016/j.stemcr.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
Over the past years, microRNAs (miRNAs) have emerged as crucial factors that regulate self-renewal and differentiation of embryonic stem cells (ESCs). Although much is known about their role in maintaining ESC pluripotency, the mechanisms by which they affect cell fate decisions remain poorly understood. By performing deep sequencing to profile miRNA expression in mouse ESCs (mESCs) and differentiated embryoid bodies (EBs), we identified four differentially expressed miRNAs. Among them, miR-191 and miR-16-1 are highly expressed in ESCs and repress Smad2, the most essential mediator of Activin-Nodal signaling, resulting in the inhibition of mesendoderm formation. miR-23a, which is also down-regulated in the differentiated state, suppresses differentiation toward the endoderm and ectoderm lineages. We further identified miR-421 as a differentiation-associated regulator through the direct repression of the core pluripotency transcription factor Oct4 and the bone morphogenetic protein (BMP)-signaling components, Smad5 and Id2. Collectively, our findings uncover a regulatory network between the studied miRNAs and both branches of TGF-β/BMP-signaling pathways, revealing their importance for ESC lineage decisions. miR-16-1 and miR-191 suppress mesendoderm differentiation by Activin/Smad2 targeting miR-23a represses endoderm and ectoderm differentiation miR-421 promotes ectoderm and endoderm differentiation by TGF-β and Oct4 inhibition
Collapse
Affiliation(s)
- Christiana Hadjimichael
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | | | - Joseph Papamatheakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), 70013 Heraklion, Crete, Greece.
| |
Collapse
|
26
|
Malleshaiah M, Padi M, Rué P, Quackenbush J, Martinez-Arias A, Gunawardena J. Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell Rep 2016; 14:1181-1194. [PMID: 26832399 DOI: 10.1016/j.celrep.2015.12.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
Pluripotent cells give rise to distinct cell types during development and are regulated by often self-reinforcing molecular networks. How such networks allow cells to differentiate is less well understood. Here, we use integrative methods to show that external signals induce reorganization of the mouse embryonic stem cell pluripotency network and that a sub-network of four factors, Nac1, Oct4, Tcf3, and Sox2, regulates their differentiation into the alternative mesendodermal and neuroectodermal fates. In the mesendodermal fate, Nac1 and Oct4 were constrained within quantitative windows, whereas Sox2 and Tcf3 were repressed. In contrast, in the neuroectodermal fate, Sox2 and Tcf3 were constrained while Nac1 and Oct4 were repressed. In addition, we show that Nac1 coordinates differentiation by activating Oct4 and inhibiting both Sox2 and Tcf3. Reorganization of progenitor cell networks around shared factors might be a common differentiation strategy and our integrative approach provides a general methodology for delineating such networks.
Collapse
Affiliation(s)
- Mohan Malleshaiah
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | - Megha Padi
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Pau Rué
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - John Quackenbush
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | | | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Yarygin KN, Lupatov AY, Kholodenko IV. Cell-based therapies of liver diseases: age-related challenges. Clin Interv Aging 2015; 10:1909-24. [PMID: 26664104 PMCID: PMC4671765 DOI: 10.2147/cia.s97926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The scope of this review is to revise recent advances of the cell-based therapies of liver diseases with an emphasis on cell donor's and patient's age. Regenerative medicine with cell-based technologies as its integral part is focused on the structural and functional restoration of tissues impaired by sickness or aging. Unlike drug-based medicine directed primarily at alleviation of symptoms, regenerative medicine offers a more holistic approach to disease and senescence management aimed to achieve restoration of homeostasis. Hepatocyte transplantation and organ engineering are very probable forthcoming options of liver disease treatment in people of different ages and vigorous research and technological innovations in this area are in progress. Accordingly, availability of sufficient amounts of functional human hepatocytes is crucial. Direct isolation of autologous hepatocytes from liver biopsy is problematic due to related discomfort and difficulties with further expansion of cells, particularly those derived from aging people. Allogeneic primary human hepatocytes meeting quality standards are also in short supply. Alternatively, autologous hepatocytes can be produced by reprogramming of differentiated cells through the stage of induced pluripotent stem cells. In addition, fibroblasts and mesenchymal stromal cells can be directly induced to undergo advanced stage hepatogenic differentiation. Reprogramming of cells derived from elderly people is accompanied by the reversal of age-associated changes at the cellular level manifesting itself by telomere elongation and the U-turn of DNA methylation. Cell reprogramming can provide high quality rejuvenated hepatocytes for cell therapy and liver tissue engineering. Further technological advancements and establishment of national and global registries of induced pluripotent stem cell lines homozygous for HLA haplotypes can allow industry-style production of livers for immunosuppression-free transplantation.
Collapse
Affiliation(s)
| | - Alexei Y Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| | - Irina V Kholodenko
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
28
|
Lee BK, Shen W, Lee J, Rhee C, Chung H, Kim KY, Park IH, Kim J. Tgif1 Counterbalances the Activity of Core Pluripotency Factors in Mouse Embryonic Stem Cells. Cell Rep 2015; 13:52-60. [PMID: 26411691 DOI: 10.1016/j.celrep.2015.08.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/24/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
Core pluripotency factors, such as Oct4, Sox2, and Nanog, play important roles in maintaining embryonic stem cell (ESC) identity by autoregulatory feedforward loops. Nevertheless, the mechanism that provides precise control of the levels of the ESC core factors without indefinite amplification has remained elusive. Here, we report the direct repression of core pluripotency factors by Tgif1, a previously known terminal repressor of TGFβ/activin/nodal signaling. Overexpression of Tgif1 reduces the levels of ESC core factors, whereas its depletion leads to the induction of the pluripotency factors. We confirm the existence of physical associations between Tgif1 and Oct4, Nanog, and HDAC1/2 and further show the level of Tgif1 is not significantly altered by treatment with an activator/inhibitor of the TGFβ/activin/nodal signaling. Collectively, our findings establish Tgif1 as an integral member of the core regulatory circuitry of mouse ESCs that counterbalances the levels of the core pluripotency factors in a TGFβ/activin/nodal-independent manner.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, the University of Texas at Austin, Austin, TX 78712, USA
| | - Wenwen Shen
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA
| | - Jiwoon Lee
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, the University of Texas at Austin, Austin, TX 78712, USA
| | - Catherine Rhee
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, the University of Texas at Austin, Austin, TX 78712, USA
| | - Haewon Chung
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, the University of Texas at Austin, Austin, TX 78712, USA
| | - Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, the University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
29
|
Bose B, Shenoy P S. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules. Stem Cell Rev Rep 2015; 12:73-89. [PMID: 26358783 DOI: 10.1007/s12015-015-9620-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.
Collapse
Affiliation(s)
- Bipasha Bose
- School of Biological Sciences, Nanyang Technological University, 60, Nanyang Drive, Singapore, 637551, Singapore.
- Stem Cell and Tissue Engineering Division, Yenepoya Research Center, Yenepoya University, University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| | - Sudheer Shenoy P
- School of Biological Sciences, Nanyang Technological University, 60, Nanyang Drive, Singapore, 637551, Singapore.
- Stem Cell and Tissue Engineering Division, Yenepoya Research Center, Yenepoya University, University Road, Derlakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
30
|
Zhu G, Fei T, Li Z, Yan X, Chen YG. Activin Regulates Self-renewal and Differentiation of Trophoblast Stem Cells by Down-regulating the X Chromosome Gene Bcor. J Biol Chem 2015. [PMID: 26221038 DOI: 10.1074/jbc.m115.674127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of a functional placenta is largely dependent upon proper proliferation and differentiation of trophoblast stem cells (TSCs). Activin signaling has long been regarded to play important roles during this process, but the exact mechanism is largely unknown. Here, we demonstrate that the X chromosome gene BCL-6 corepressor (Bcor) is a critical downstream effector of activin to fine-tune mouse TSC fate decision. Bcor was specifically down-regulated by activin A in TSCs in a dose-dependent manner, and immediately up-regulated upon TSC differentiation. Knockdown of Bcor partially compensated for the absence of activin A in maintaining the self-renewal of TSCs together with FGF4, while promoting syncytiotrophoblast differentiation in the absence of FGF4. Moreover, the impaired trophoblast giant cell and spongiotrophoblast differentiation upon Bcor knockdown also resembled the function of activin. Reporter analysis showed that BCOR inhibited the expression of the key trophoblast regulator genes Eomes and Cebpa by binding to their promoter regions. Our findings provide us with a better understanding of placental development and placenta-related diseases.
Collapse
Affiliation(s)
- Gaoyang Zhu
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Fei
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongwei Li
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Yan
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- From the The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. J Mol Biol 2015; 428:1409-22. [PMID: 26119455 DOI: 10.1016/j.jmb.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023]
Abstract
Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation.
Collapse
|
32
|
Lei X, Deng Z, Zhang H, Zhao H, Zhou J, Liu S, Chen Q, Ning L, Cao Y, Wang X, Zhang X, Duan E. Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/β-catenin pathway. Stem Cell Rev Rep 2015; 10:526-38. [PMID: 24793926 DOI: 10.1007/s12015-014-9511-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, physical factors in the local cellular microenvironment have been confirmed with strong influences on regulating stem cell fate. Despite the recent identification of the rotary cell culture system (RCCS) as a bioreactor for culturing stem cells, the underlying biological role provided by RCCS in the lineage differentiation of embryonic stem cells (ESCs) remains largely undefined. Here, we explored the embryoid body (EB) formation and subsequent differentiation of mouse ESCs in RCCS. We demonstrated that EBs formed in RCCS were more homogeneous and bigger in size compared with those in the static condition. Further, we determined that mesendoderm differentiation was prominently enhanced, while neuroectodermal differentiation was significantly suppressed in RCCS. Surprisingly, we found that Wnt/β-catenin signaling was greatly enhanced mainly due to the increased expression of Wnt3 during ESC differentiation in RCCS. Inhibition of Wnt/β-catenin signaling by DKK1 decreased the expression of Brachyury and attenuated mesendoderm differentiation in RCCS. Intriguingly, Wnt3a markedly increased Brachyury expression under static condition rather than in RCCS. Taken together, our findings uncover a new role of rotary suspension culture in initializing the early differentiation of ESCs.
Collapse
Affiliation(s)
- Xiaohua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Z, Li W, Chen T, Yang J, Wen Z, Yan X, Shen T, Liang R. Activin A can induce definitive endoderm differentiation from human parthenogenetic embryonic stem cells. Biotechnol Lett 2015; 37:1711-7. [PMID: 25851951 DOI: 10.1007/s10529-015-1829-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES As activin/nodal signaling plays a key role in definitive endoderm (DE) differentiation, we have explored activin A-induced differentiation of DE from human parthenogenetic embryonic stem cells (hPESCs). RESULTS Administration of 5 ng activin A/ml had no effect on the expression of markers of DE differentiation. However, higher concentrations of activin A (50 and 100 ng/ml) upregulated Sox17 and Cxcr4, as well upregulating the mesendodermal precursor marker, Brachyury. CONCLUSIONS These findings demonstrate that low dose activin A can maintain the undifferentiated potency of hPESCs, whereas higher doses induce DE differentiation; 50 ng/ml is the optimal concentration for inducing DE from hPESCs.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ungefroren H, Hyder A, Hinz H, Groth S, Lange H, El-Sayed KMF, Ehnert S, Nüssler AK, Fändrich F, Gieseler F. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β. PLoS One 2015; 10:e0118097. [PMID: 25707005 PMCID: PMC4338298 DOI: 10.1371/journal.pone.0118097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s) and TGF-β(s), are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB) and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the result of reduced TGF-β/Smad3, and to a lesser extent, activin/Smad2 signaling.
Collapse
Affiliation(s)
| | - Ayman Hyder
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | - Hebke Hinz
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | | | - Hans Lange
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Kiel, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K. Nüssler
- Siegfried Weller Institute for Trauma Research, BG Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, UKSH, Kiel, Germany
| | | |
Collapse
|
35
|
Li P, Ma X, Adams IR, Yuan P. A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis 2015; 6:e1588. [PMID: 25569105 PMCID: PMC4669749 DOI: 10.1038/cddis.2014.551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Prolonged culture of embryonic stem cells (ESCs) leads them to adopt embryonal carcinoma cell features, creating enormous dangers for their further application. The mechanism involved in ESC stability has not, however, been extensively studied. We previously reported that SMAD family member 3 (Smad3) has an important role in maintaining mouse ESC stability, as depletion of Smad3 results in cancer cell-like properties in ESCs and Smad3-/- ESCs are prone to grow large, malignant teratomas. To understand how Smad3 contributes to ESC stability, we performed microarray analysis to compare the transcriptome of wild-type and Smad3-/- ESCs. We found that Rif1 (RAP1-associated protein 1), a factor important for genomic stability, is significantly upregulated in Smad3-/- ESCs. The expression level of Rif1 needs to be tightly controlled in ESCs, as a low level of Rif1 is associated with ESC differentiation, but a high level of Rif1 is linked to ESC transformation. In ESCs, Oct4 activates Rif1, whereas Smad3 represses its expression. Oct4 recruits Smad3 to bind to Rif1 promoter, but Smad3 joining facilitates the loading of a polycomb complex that generates a repressive epigenetic modification on Rif1 promoter, and thus maintains the expression of Rif1 at a proper level in ESCs. Interestingly, Rif1 short hairpin RNA (shRNA)-transduced Smad3-/- ESCs showed less malignant properties than the control shRNA-transduced Smad3-/- ESCs, suggesting a critical role of Rif1 in maintaining the stability of ESCs during proliferation.
Collapse
Affiliation(s)
- P Li
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - X Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - I R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - P Yuan
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Chemical Pathology, Stem Cell and Functional Genomics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
36
|
Tan F, Qian C, Tang K, Abd-Allah SM, Jing N. Inhibition of transforming growth factor β (TGF-β) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. J Biol Chem 2014; 290:4500-11. [PMID: 25548277 DOI: 10.1074/jbc.m114.609016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse pluripotent stem cells (PSCs), such as ES cells and induced PSCs (iPSCs), are an excellent system to investigate the molecular and cellular mechanisms involved in early embryonic development. The signaling pathways orchestrated by leukemia inhibitor factor/STAT3, Wnt/β-catenin, and FGF/MEK/ERK play key roles in the generation of pluripotency. However, the function of TGF-β signaling in this process remains elusive. Here we show that inhibiting TGF-β signaling with its inhibitor SB431542 can substitute for Oct4 during reprogramming. Moreover, inhibiting TGF-β signaling can sustain the pluripotency of iPSCs and ES cells through modulating FGF/MEK/ERK signaling. Therefore, this study reveals a novel function of TGF-β signaling inhibition in the generation and maintenance of PSCs.
Collapse
Affiliation(s)
- Fangzhi Tan
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Qian
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China, and
| | - Saber Mohamed Abd-Allah
- the Theriogenology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
37
|
Casari A, Schiavone M, Facchinello N, Vettori A, Meyer D, Tiso N, Moro E, Argenton F. A Smad3 transgenic reporter reveals TGF-beta control of zebrafish spinal cord development. Dev Biol 2014; 396:81-93. [DOI: 10.1016/j.ydbio.2014.09.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/01/2014] [Accepted: 09/17/2014] [Indexed: 11/25/2022]
|
38
|
Gaarenstroom T, Hill CS. TGF-β signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol 2014; 32:107-18. [PMID: 24503509 DOI: 10.1016/j.semcdb.2014.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Ligands of the TGF-β superfamily (including the TGF-βs, Nodal and BMPs) play instructive roles during embryonic development. This is achieved by regulation of genes important for both maintaining pluripotency and germ layer specification and differentiation. Here we review how the TGF-β superfamily ligands signal to the chromatin to regulate transcription during development. The effectors of the pathway, the Smad transcription factors, are regulated in a combinatorial and spatiotemporal manner. This occurs via post-translational modifications affecting stability, localization and activity, as well as through interactions with other transcription factors and chromatin modifying enzymes, which occur on DNA. Expression profiling and Chromatin Immunoprecipitation have defined Smad target genes and binding sites on a genome-wide scale, which vary between cell types and differentiation stages. This has led to the insight that Smad-mediated transcriptional responses are influenced by the presence of master transcription factors, such as OCT4, SOX2 and NANOG in embryonic stem cells, interaction with other signal-induced factors, as well as by the general chromatin remodeling machinery. Interplay with transcriptional repressors and the polycomb group proteins also regulates the balance between expression of self-renewal and mesendoderm-specific genes in embryonic stem cells and during early development.
Collapse
Affiliation(s)
- Tessa Gaarenstroom
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Caroline S Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
39
|
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 2014; 6:272-85. [DOI: 10.1093/jmcb/mju028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
40
|
Lei X, Deng Z, Zhang H, Zhao H, Zhou J, Liu S, Chen Q, Ning L, Cao Y, Wang X, Zhang X, Duan E. Rotary Suspension Culture Enhances Mesendoderm Differentiation of Embryonic Stem Cells Through Modulation of Wnt/β-catenin Pathway. Stem Cell Rev Rep 2014. [DOI: doi 10.1007/s12015-014-9511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Aloia L, Di Stefano B, Sessa A, Morey L, Santanach A, Gutierrez A, Cozzuto L, Benitah SA, Graf T, Broccoli V, Di Croce L. Zrf1 is required to establish and maintain neural progenitor identity. Genes Dev 2014; 28:182-97. [PMID: 24449271 PMCID: PMC3909791 DOI: 10.1101/gad.228510.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.
Collapse
Affiliation(s)
- Luigi Aloia
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hassani SN, Totonchi M, Gourabi H, Schöler HR, Baharvand H. Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells Dev 2014; 23:193-208. [DOI: 10.1089/scd.2013.0368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
43
|
Hassani SN, Totonchi M, Sharifi-Zarchi A, Mollamohammadi S, Pakzad M, Moradi S, Samadian A, Masoudi N, Mirshahvaladi S, Farrokhi A, Greber B, Araúzo-Bravo MJ, Sabour D, Sadeghi M, Salekdeh GH, Gourabi H, Schöler HR, Baharvand H. Inhibition of TGFβ Signaling Promotes Ground State Pluripotency. Stem Cell Rev Rep 2014; 10:16-30. [DOI: 10.1007/s12015-013-9473-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
|
45
|
Kim DK, Cha Y, Ahn HJ, Kim G, Park KS. Lefty1 and lefty2 control the balance between self-renewal and pluripotent differentiation of mouse embryonic stem cells. Stem Cells Dev 2013; 23:457-66. [PMID: 24147624 DOI: 10.1089/scd.2013.0220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lefty expression has been recognized as a stemness marker because Lefty is enriched both in undifferentiated embryonic stem cells (ESCs) and in blastocysts. Here, we examined the function of Lefty1 and Lefty2 in the maintenance of self-renewal and pluripotency of mouse ESCs (mESCs). Suppression of Lefty1 or Lefty2 expression in mESCs did not alter the self-renewal properties of mESCs under nondifferentiating conditions, but suppression of these genes did affect Smad2 phosphorylation and differentiation. Lefty1 knockdown mESCs showed enhanced phosphorylation of Smad2 and increased differentiation potential, whereas Lefty2 knockdown mESCs exhibited reduced phosphorylation of Smad2 and enhanced self-renewal in the presence of a differentiation signal. In vivo, teratomas developed from Lefty2 knockdown mESCs contained massive expansions of immature neuroepithelium, a marker of malignant teratomas. Taken together, these results suggest that optimal expression of Lefty1 and Lefty2 is critical for the balanced differentiation of mESCs into three germ layers.
Collapse
Affiliation(s)
- Dae-Kwan Kim
- 1 Department of Biomedical Science, College of Life Science, CHA University , Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis SE, Minchiotti G, Cobellis G. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2013; 12:323-37. [PMID: 24365598 DOI: 10.1016/j.scr.2013.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023] Open
Abstract
Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis.
Collapse
Affiliation(s)
- Antonietta Coppola
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Antonio Romito
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Maryline Gagnebin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Antonella Izzo
- Department of Molecular Medicine and Biotechnology, Università Federico II, 80131 Napoli, Italy
| | - Lucia Altucci
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Sandro Banfi
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Napoli, Italy
| | - Gilda Cobellis
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy.
| |
Collapse
|
47
|
Araf kinase antagonizes Nodal-Smad2 activity in mesendoderm development by directly phosphorylating the Smad2 linker region. Nat Commun 2013; 4:1728. [PMID: 23591895 PMCID: PMC3644095 DOI: 10.1038/ncomms2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/18/2013] [Indexed: 02/06/2023] Open
Abstract
Smad2/3-mediated transforming growth factor β signalling and the Ras-Raf-Mek-Erk cascade have important roles in stem cell and development and tissue homeostasis. However, it remains unknown whether Raf kinases directly crosstalk with Smad2/3 signalling and how this would regulate embryonic development. Here we show that Araf antagonizes mesendoderm induction and patterning activity of Nodal/Smad2 signals in vertebrate embryos by directly inhibiting Smad2 signalling. Knockdown of araf in zebrafish embryos leads to an increase of activated Smad2 with a decrease in linker phosphorylation; consequently, the embryos have excess mesendoderm precursors and are dorsalized. Mechanistically, Araf physically binds to and phosphorylates Smad2 in the linker region with S253 being indispensable in a Mek/Erk-independent manner, thereby attenuating Smad2 signalling by accelerating degradation of activated Smad2. Our findings open avenues for investigating the potential significance of Raf regulation of transforming growth factor β signalling in versatile biological and pathological processes in the future.
Collapse
|
48
|
Sinha A, Vyavahare NR. High-glucose levels and elastin degradation products accelerate osteogenesis in vascular smooth muscle cells. Diab Vasc Dis Res 2013; 10:410-9. [PMID: 23754846 PMCID: PMC5403374 DOI: 10.1177/1479164113485101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic disease in which the body either does not use or produce the glucose metabolising hormone insulin efficiently. Calcification of elastin in the arteries of diabetics is a major predictor of cardiovascular diseases. It has been previously shown that elastin degradation products work synergistically with transforming growth factor-beta 1 (TGF-β1) to induce osteogenesis in vascular smooth muscle cells. In this study, we tested the hypothesis that high concentration of glucose coupled with elastin degradation products and TGF-β1 (a cytokine commonly associated with diabetes) will cause a greater degree of osteogenesis compared to normal vascular cells. Thus, the goal of this study was to analyse the effects of high concentration of glucose, elastin peptides and TGF-β1 on bone-specific markers like alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (RUNX2). We demonstrated using relative gene expression and specific protein assays that elastin degradation products in the presence of high glucose cause the increase in expression of the specific elastin-laminin receptor-1 (ELR-1) and activin receptor-like kinase-5 (ALK-5) present on the surface of the vascular cells, in turn leading to overexpression of typical osteogenic markers like ALP, OCN and RUNX2. Conversely, blocking of ELR-1 and ALK-5 strongly suppressed the expression of the osteogenic proteins. In conclusion, our results indicate that glucose plays an important role in amplifying the osteogenesis induced by elastin peptides and TGF-β1, possibly by activating the ELR-1 and ALK-5 signalling pathways.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Elastin/pharmacology
- Glucose/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis/drug effects
- Protein Serine-Threonine Kinases
- Rats
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta
- Signal Transduction/drug effects
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Aditi Sinha
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
49
|
Dahle O, Kuehn MR. Polycomb determines responses to smad2/3 signaling in embryonic stem cell differentiation and in reprogramming. Stem Cells 2013; 31:1488-97. [PMID: 23666711 PMCID: PMC3775894 DOI: 10.1002/stem.1417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/14/2013] [Indexed: 11/08/2022]
Abstract
Integration of extrinsic signals, epigenetic regulators, and intrinsic transcription factors establishes pluripotent stem cell identity. Interplay between these components also underlies the capacity of stem cells to undergo differentiation, and of differentiated cells to re-establish the pluripotent state in direct reprogramming. Polycomb repressive complexes are epigenetic regulators that play key roles in stem cell identity and in differentiated cell fates. Smad2 and Smad3 (Smad2/3), the intracellular mediators of the Nodal/Activin/transforming growth factor (TGF) β cell-cell signaling pathway also are implicated in stem cell pluripotency and in differentiation. Here, we show that Polycomb imposes responses to Smad2/3-mediated signaling to selectively regulate expression of the master pluripotency factor Oct 4 during initiation of differentiation, but not in the self-renewing pluripotent ground state. During reprogramming back to the ground state, we find that the enhancement of reprogramming efficiency stemming from blocking Nodal/Activin/TGFβ signaling also depends on Polycomb. These context-dependent responses to Smad2/3 imposed by Polycomb action provide a mechanism for selective gene regulation that can reconcile the apparently conflicting roles of this signaling pathway in pluripotency, differentiation, and reprogramming.
Collapse
Affiliation(s)
- Oyvind Dahle
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | |
Collapse
|
50
|
Park KS, Cha Y, Kim CH, Ahn HJ, Kim D, Ko S, Kim KH, Chang MY, Ko JH, Noh YS, Han YM, Kim J, Song J, Kim JY, Tesar PJ, Lanza R, Lee KA, Kim KS. Transcription elongation factor Tcea3 regulates the pluripotent differentiation potential of mouse embryonic stem cells via the Lefty1-Nodal-Smad2 pathway. Stem Cells 2013; 31:282-92. [PMID: 23169579 DOI: 10.1002/stem.1284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
Self-renewal and pluripotency are hallmark properties of pluripotent stem cells, including embryonic stem cells (ESCs) and iPS cells. Previous studies revealed the ESC-specific core transcription circuitry and showed that these core factors (e.g., Oct3/4, Sox2, and Nanog) regulate not only self-renewal but also pluripotent differentiation. However, it remains elusive how these two cell states are regulated and balanced during in vitro replication and differentiation. Here, we report that the transcription elongation factor Tcea3 is highly enriched in mouse ESCs (mESCs) and plays important roles in regulating the differentiation. Strikingly, altering Tcea3 expression in mESCs did not affect self-renewal under nondifferentiating condition; however, upon exposure to differentiating cues, its overexpression impaired in vitro differentiation capacity, and its knockdown biased differentiation toward mesodermal and endodermal fates. Furthermore, we identified Lefty1 as a downstream target of Tcea3 and showed that the Tcea3-Lefty1-Nodal-Smad2 pathway is an innate program critically regulating cell fate choices between self-replication and differentiation commitment. Together, we propose that Tcea3 critically regulates pluripotent differentiation of mESCs as a molecular rheostat of Nodal-Smad2/3 signaling.
Collapse
Affiliation(s)
- Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|