1
|
Mousanejad E, Ezzatabadipour M, Baghalishahi M, Shojaei M, Vafaei S, Afgar A, Nematollahi-Mahani SN. The effects of green light-emitting diode irradiation and inducer factors on the differentiation of human adipose tissue-derived mesenchymal cells into myocardial-like cells. Lasers Med Sci 2025; 40:220. [PMID: 40347405 DOI: 10.1007/s10103-025-04471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/30/2025] [Indexed: 05/12/2025]
Abstract
Physical factors like LED light can influence cell behavior, impacting stem cell proliferation and differentiation. Stem cell-based therapies offer a promising alternative to heart transplantation for cardiac conditions like myocardial infarction. This study evaluated the effects of green LED light (530 nm) and a biochemical inducer cocktail (oxytocin and ascorbic acid) on human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) differentiation into cardiomyocyte-like cells. hAD-MSCs were treated with LED, the cocktail, and their combination. Cardiomyogenic markers NKX2.5, GATA4, cTnI, and CX43 were assessed via real-time PCR and western blotting. LED and the cocktail enhanced cardiac gene expression and protein synthesis, but their combination showed significantly higher effects, especially on day 7. This study demonstrates for the first time that green LED light combined with oxytocin and ascorbic acid can enhance hAD-MSC cardiac differentiation, supporting its potential in regenerative therapies following human studies.
Collapse
Affiliation(s)
- Elahe Mousanejad
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Baghalishahi
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Shayan Vafaei
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Afgar
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Kerman physiology Research Center, Institute of Neuropharmacology and Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Lee ZJ, Ng SL, Soo E, Abdullah D, Yazid F, Abdul Rahman M, Teh LA. Modified Hank's Balanced Salt Solution as a Storage Medium for Avulsed Teeth: In Vitro Assessment of Periodontal Fibroblast Viability. Dent Traumatol 2025; 41:194-202. [PMID: 39578673 DOI: 10.1111/edt.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND/AIM The optimal storage medium for an avulsed tooth should preserve the viability of periodontal fibroblasts (PDLF) to the highest degree, facilitating the re-attachment of periodontal fibers and improving the prognosis of replantation. This study compared the effect of the PDLF viability in Hank's balanced salt solution (HBSS), supplemented culture medium, that is, Dulbecco's Modified Eagle Medium (DMEM), and four modified HBSS mixtures. MATERIAL AND METHODS Periodontal tissues were obtained from extracted human teeth and processed for PDLF culture. The cells were then exposed to six experimental media: (i) HBSS, (ii) HBSS and ascorbic acid (HBSS + Vit C), (iii) HBSS and platelet-derived growth factor (HBSS + PDGF), (iv) a mixture of HBSS, PDGF, and Vit C (HBSS + PDGF + Vit C), (v) HBSS and platelet lysate (HBSS + PL), and (vi) DMEM for 3, 6, 12, and 24 h. A MTT assay was performed to determine the cell viability. RESULTS Vitamin C-containing media maintained PDLF viability significantly better than HBSS + PDGF and HBSS + PL at 3, 6, 12, and 24 h (p < 0.05). The percentages of viable PDLF at 3, 6, 12, and 24 h were significantly higher than 0 h for HBSS + Vit C, HBSS + PDGF + Vit C, HBSS + PL, and DMEM (p < 0.05). CONCLUSION All experimental media were able to maintain PDLF viability (DMEM>HBSS+Vit C; HBSS+PDGF+Vit C>HBSS+PL>HBSS+PDGF; HBSS). Although DMEM had the highest cell proliferative effect, it is impractical to be used as a transport medium due to its cost, storage, and availability. The supplementation of Vit C yielded significant cell proliferative effects; hence, HBSS + Vit C can be a better alternative as a storage medium than HBSS.
Collapse
Affiliation(s)
- Zhi Jin Lee
- Unit of Endodontology and Endodontics, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostic & Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eason Soo
- Unit of Endodontology and Endodontics, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Dalia Abdullah
- Unit of Endodontology and Endodontics, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Mariati Abdul Rahman
- Department of Craniofacial Diagnostic & Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Lay Ann Teh
- Unit of Endodontology and Endodontics, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Wang Y, Cui Y, Liu X, Liang S, Zhong L, Guo R. Cathepsin K inhibition promotes efficient differentiation of human embryonic stem cells to mature cardiomyocytes by mediating glucolipid metabolism and cellular energy homeostasis. Stem Cell Res Ther 2025; 16:118. [PMID: 40045408 PMCID: PMC11883997 DOI: 10.1186/s13287-025-04231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND AND AIM Generation of functional cardiomyocytes from human pluripotent stem cells (hPSCs) offers promising applications for cardiac regenerative medicine. Proper control of pluripotency and differentiation is vital for generating high-quality cardiomyocytes and repairing damaged myocardium. Cathepsin K, a lysosomal cysteine protease, is a potential target for cardiovascular disease treatment; however, its role in cardiomyocyte differentiation and regeneration is unclear. This study aims to investigate the effects and mechanisms of cathepsin K inhibition on the differentiation of human embryonic stem cell-induced cardiomyocytes (hESC-CMs) and myocardial generation. METHODS We cultured H9-hESCs in CDM3 medium to induce myocardial differentiation, adding cathepsin K inhibitor II (1 μM) on days 2, 5 and 8, respectively. Cells were observed and collected 48 h after each treatment. The morphology and contractile clusters of H9-hESCs were tracked with microscopy and video recording. Pluripotency and cardiac markers were assessed at each stage of differentiation. We also examined glucose and lipid metabolism, mitochondrion-related markers, apoptosis and autophagy. RESULTS CDM3 medium effectively differentiated high-density H9-hESCs into mature, spontaneously contracting cardiomyocytes. Cathepsin K inhibition accelerates the differentiation of H9-hESCs into cardiac mesoderm and cardiac precursor cells (CPCs) by reducing apoptosis, decreasing glycolysis and fatty acid metabolism at the early and middle stages, and subsequently facilitate the development and differentiation of cardiomyocytes by enhancing glucolipid metabolism and oxidative phosphorylation at the late stage. Meanwhile, cathepsin K inhibition enhanced mitochondrial function and lysosome-related gene transcription during the differentiation process. CONCLUSION Our study highlights the potential of cathepsin K inhibition for renewable cardiomyocytes and suggests exploring metabolic pathways and signaling to improve cardiac regeneration and organoid development.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yang Cui
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiaoyu Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shengxian Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Li Zhong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Lu J, Zhang L, Cao H, Ma X, Bai Z, Zhu H, Qi Y, Zhang S, Zhang P, He Z, Yang H, Liu Z, Jia W. The Low Tumorigenic Risk and Subtypes of Cardiomyocytes Derived from Human-induced Pluripotent Stem Cells. Curr Stem Cell Res Ther 2025; 20:317-335. [PMID: 40351082 DOI: 10.2174/011574888x318139240621051224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2025]
Abstract
BACKGROUND Clinical application of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is a promising approach for the treatment of heart diseases. However, the tumorigenicity of hiPSC-CMs remains a concern for their clinical applications and the composition of the hiPSC-CM subtypes need to be clearly identified. METHODS In the present study, hiPSC-CMs were induced from hiPSCs via modulation of Wnt signaling followed by glucose deprivation purification. The structure, function, subpopulation composition, and tumorigenic risk of hiPSC-CMs were evaluated by single-cell RNA sequencing (scRNAseq), whole exome sequencing (WES), and integrated molecular biology, cell biology, electrophysiology, and/or animal experiments. RESULTS The high purity of hiPSC-CMs, determined by flow cytometry analysis, was generated. ScRNAseq analysis of differentiation day (D) 25 hiPSC-CMs did not identify the transcripts representative of undifferentiated hiPSCs. WES analysis showed a few newly acquired confidently identified mutations and no mutations in tumor susceptibility genes. Further, no tumor formation was observed after transplanting hiPSC-CMs into NOD-SCID mice for 3 months. Moreover, D25 hiPSC-CMs were composed of subtypes of ventricular-like cells (23.19%) and atrial-like cells (66.45%) in different cell cycle stages or mature levels, based on the scRNAseq analysis. Furthermore, a subpopulation of more mature ventricular cells (3.21%) was identified, which displayed significantly up-regulated signaling pathways related to myocardial contraction and action potentials. Additionally, a subpopulation of cardiomyocytes in an early differentiation stage (3.44%) experiencing nutrient stress-induced injury and heading toward apoptosis was observed. CONCLUSIONS This study confirmed the biological safety of hiPSC-CMs and described the composition and expression profile of cardiac subtypes in hiPSC-CMs which provide standards for quality control and theoretical supports for the translational applications of hiPSC-CMs.
Collapse
Affiliation(s)
- Jizhen Lu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Lu Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hongxia Cao
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Xiaoxue Ma
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Zhihui Bai
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Hanyu Zhu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Yiyao Qi
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Shoumei Zhang
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhiying He
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Huangtian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine and Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
- Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), Shanghai, People's Republic of China
| | - Zhongmin Liu
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| | - Wenwen Jia
- National Stem Cell Translational Resource Center/GMP Laboratory of Stem Cell Transformation Medicine Industry Base, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University School of Life Sciences and Technology, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Aumailley L, Lebel M. Sex and organ specific proteomic responses to vitamin C deficiency in the brain, heart, liver, and spleen of Gulo-/- mice. PLoS One 2024; 19:e0311857. [PMID: 39388511 PMCID: PMC11476689 DOI: 10.1371/journal.pone.0311857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in mass spectrometry have indicated that the water-soluble antioxidant vitamin C differentially modulates the abundance of various proteins in the hepatic tissue of female and male mice. In this study, we performed LC-MS/MS to identify and quantify proteins that correlate with serum vitamin C concentrations in the whole brain, heart, liver, and spleen tissues in mice deficient for the enzyme L-Gulonolactone oxidase required for vitamin C synthesis in mammals. This work shows for the first time that various biological processes affected by a vitamin C deficiency are not only sex specific dependent but also tissue specific dependent even though many proteins have been identified and quantified in more than three organs. For example, the abundance of several complex III subunits of the mitochondrial electron transport chain correlated positively with the levels of serum vitamin C only in the liver and not in the other tissues examined in this study even though such proteins were identified in all the organs analyzed. Western blot analyses on the Uqcrc1 and Uqcrfs1 complex III subunits validated the mass spectrometry results. Interestingly, the ferritin subunits represented the few quantified protein complexes that correlated positively with serum vitamin C in all the organs examined. Concomitantly, serum ferritin light chain 1 was inversely correlated with vitamin C levels in the serum. Thus, our study provides an initial comprehensive atlas of proteins significantly correlating with vitamin C in four organs in mice that will be a useful resource to the scientific community.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City Québec, Canada
| |
Collapse
|
6
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Fetterman KA, Blancard M, Lyra-Leite DM, Vanoye CG, Fonoudi H, Jouni M, DeKeyser JML, Lenny B, Sapkota Y, George AL, Burridge PW. Independent compartmentalization of functional, metabolic, and transcriptional maturation of hiPSC-derived cardiomyocytes. Cell Rep 2024; 43:114160. [PMID: 38678564 PMCID: PMC11247623 DOI: 10.1016/j.celrep.2024.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) recapitulate numerous disease and drug response phenotypes, but cell immaturity may limit their accuracy and fidelity as a model system. Cell culture medium modification is a common method for enhancing maturation, yet prior studies have used complex media with little understanding of individual component contribution, which may compromise long-term hiPSC-CM viability. Here, we developed high-throughput methods to measure hiPSC-CM maturation, determined factors that enhanced viability, and then systematically assessed the contribution of individual maturation medium components. We developed a medium that is compatible with extended culture. We discovered that hiPSC-CM maturation can be sub-specified into electrophysiological/EC coupling, metabolism, and gene expression and that induction of these attributes is largely independent. In this work, we establish a defined baseline for future studies of cardiomyocyte maturation. Furthermore, we provide a selection of medium formulae, optimized for distinct applications and priorities, that promote measurable attributes of maturation.
Collapse
Affiliation(s)
- K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Seyama Y, Sudo K, Yamada T, Tsuchiya K, Nakamura Y. Ascorbic acid predominantly kills cancer stem cell-like cells in the hepatocellular carcinoma cell line Li-7 and is more effective at low cell density and in small spheroids. Biochem Biophys Res Commun 2024; 709:149816. [PMID: 38547607 DOI: 10.1016/j.bbrc.2024.149816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
The development of therapies that target cancer stem cells (CSCs) is an important challenge in cancer research. The antioxidant system is enhanced in CSCs, which may lead to resistance to existing therapies. Ascorbic acid (AA) has the potential to act as both an antioxidant and a pro-oxidant agent, but its effects on CSCs are a subject of current research. Here, we investigated the effect of AA focusing specifically on CSCs with the hepatocellular carcinoma cell line Li-7. The Li-7 cell line is heterogenous consisting of CD166- and CD166+ cells; CD166- cells include CSC-like cells (CD13+CD166- cells) and CD13-CD166- cells that can revert to CD13+CD166- cells. The addition of AA to the culture medium caused cell death in both cell populations in CD166- cells in a concentration dependent manner. In contrast, AA administration had a limited effect on CD166+ non-CSC cells. The level of reactive oxygen species after AA treatment was elevated only in CD166- cells. The effect of AA only occurred at low cell densities in 2D and 3D cultures. In a mouse tumor model injected with Li-7 cells, intraperitoneal administration of AA failed to prevent tumor formation but appeared to delay tumor growth. Our findings shed light on why AA administration has not become a mainstream treatment for cancer treatment; however, they also show the possibility that AA can be used in therapies to suppress CSCs.
Collapse
Affiliation(s)
- Yusuke Seyama
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kazuhiro Sudo
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| | - Takeshi Yamada
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Division of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiichiro Tsuchiya
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan.
| |
Collapse
|
9
|
Beutner G, Burris JR, Collins MP, Kulkarni CA, Nadtochiy SM, de Mesy Bentley KL, Cohen ED, Brookes PS, Porter GA. Coordinated metabolic responses to cyclophilin D deletion in the developing heart. iScience 2024; 27:109157. [PMID: 38414851 PMCID: PMC10897919 DOI: 10.1016/j.isci.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 02/03/2024] [Indexed: 02/29/2024] Open
Abstract
In the embryonic heart, the activation of the mitochondrial electron transport chain (ETC) coincides with the closure of the cyclophilin D (CypD) regulated mitochondrial permeability transition pore (mPTP). However, it remains to be established whether the absence of CypD has a regulatory effect on mitochondria during cardiac development. Using a variety of assays to analyze cardiac tissue from wildtype and CypD knockout mice from embryonic day (E)9.5 to adult, we found that mitochondrial structure, function, and metabolism show distinct transitions. Deletion of CypD altered the timing of these transitions as the mPTP was closed at all ages, leading to coupled ETC activity in the early embryo, decreased citrate synthase activity, and an altered metabolome particularly after birth. Our results suggest that manipulating CypD activity may control myocyte proliferation and differentiation and could be a tool to increase ATP production and cardiac function in immature hearts.
Collapse
Affiliation(s)
- Gisela Beutner
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jonathan Ryan Burris
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pediatrics, Division of Neonatology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael P. Collins
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chaitanya A. Kulkarni
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Karen L. de Mesy Bentley
- Department of Pathology & Laboratory Medicine and the Electron Microscope Resource, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ethan D. Cohen
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul S. Brookes
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - George A. Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Departments of Medicine (Aab Cardiovascular Research Institute) and Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Guo H, Hang C, Lin B, Lin Z, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. HAND factors regulate cardiac lineage commitment and differentiation from human pluripotent stem cells. Stem Cell Res Ther 2024; 15:31. [PMID: 38317221 PMCID: PMC10845658 DOI: 10.1186/s13287-024-03649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Fang J, Yang Q, Maas RGC, Buono M, Meijlink B, Lotgerink Bruinenberg D, Benavente ED, Mokry M, van Mil A, Qian L, Goumans MJ, Schiffelers R, Lei Z, Sluijter JPG. Vitamin C facilitates direct cardiac reprogramming by inhibiting reactive oxygen species. Stem Cell Res Ther 2024; 15:19. [PMID: 38229180 PMCID: PMC10792814 DOI: 10.1186/s13287-023-03615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge. METHODS We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming. RESULTS We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. CONCLUSIONS Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.
Collapse
Affiliation(s)
- Juntao Fang
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Qiangbing Yang
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renée G C Maas
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Michele Buono
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram Meijlink
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dyonne Lotgerink Bruinenberg
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ernest Diez Benavente
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michal Mokry
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Zhiyong Lei
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands.
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, The Netherlands.
| | - Joost P G Sluijter
- Experimental Cardiology laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Circulatory Health Laboratory, UMC Utrecht, Regenerative Medicine Center Utrecht, University Utrecht, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Bernheim S, Borgel A, Le Garrec JF, Perthame E, Desgrange A, Michel C, Guillemot L, Sart S, Baroud CN, Krezel W, Raimondi F, Bonnet D, Zaffran S, Houyel L, Meilhac SM. Identification of Greb1l as a genetic determinant of crisscross heart in mice showing torsion of the heart tube by shortage of progenitor cells. Dev Cell 2023; 58:2217-2234.e8. [PMID: 37852253 DOI: 10.1016/j.devcel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Adrien Borgel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Jean-François Le Garrec
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Emeline Perthame
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Audrey Desgrange
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Cindy Michel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laurent Guillemot
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France; Laboratoire d'Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Francesca Raimondi
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France; M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | | | - Lucile Houyel
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Sigolène M Meilhac
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France.
| |
Collapse
|
13
|
Bachamanda Somesh D, Klose K, Maring JA, Kunkel D, Jürchott K, Protze SI, Klein O, Nebrich G, Becker M, Krüger U, Nazari-Shafti TZ, Falk V, Kurtz A, Gossen M, Stamm C. Cardiomyocyte precursors generated by direct reprogramming and molecular beacon selection attenuate ventricular remodeling after experimental myocardial infarction. Stem Cell Res Ther 2023; 14:296. [PMID: 37840130 PMCID: PMC10577947 DOI: 10.1186/s13287-023-03519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Direct cardiac reprogramming is currently being investigated for the generation of cells with a true cardiomyocyte (CM) phenotype. Based on the original approach of cardiac transcription factor-induced reprogramming of fibroblasts into CM-like cells, various modifications of that strategy have been developed. However, they uniformly suffer from poor reprogramming efficacy and a lack of translational tools for target cell expansion and purification. Therefore, our group has developed a unique approach to generate proliferative cells with a pre-CM phenotype that can be expanded in vitro to yield substantial cell doses. METHODS Cardiac fibroblasts were reprogrammed toward CM fate using lentiviral transduction of cardiac transcriptions factors (GATA4, MEF2C, TBX5, and MYOCD). The resulting cellular phenotype was analyzed by RNA sequencing and immunocytology. Live target cells were purified based on intracellular CM marker expression using molecular beacon technology and fluorescence-activated cell sorting. CM commitment was assessed using 5-azacytidine-based differentiation assays and the therapeutic effect was evaluated in a mouse model of acute myocardial infarction using echocardiography and histology. The cellular secretome was analyzed using mass spectrometry. RESULTS We found that proliferative CM precursor-like cells were part of the phenotype spectrum arising during direct reprogramming of fibroblasts toward CMs. These induced CM precursors (iCMPs) expressed CPC- and CM-specific proteins and were selectable via hairpin-shaped oligonucleotide hybridization probes targeting Myh6/7-mRNA-expressing cells. After purification, iCMPs were capable of extensive expansion, with preserved phenotype when under ascorbic acid supplementation, and gave rise to CM-like cells with organized sarcomeres in differentiation assays. When transplanted into infarcted mouse hearts, iCMPs prevented CM loss, attenuated fibrotic scarring, and preserved ventricular function, which can in part be attributed to their substantial secretion of factors with documented beneficial effect on cardiac repair. CONCLUSIONS Fibroblast reprogramming combined with molecular beacon-based cell selection yields an iCMP-like cell population with cardioprotective potential. Further studies are needed to elucidate mechanism-of-action and translational potential.
Collapse
Affiliation(s)
- Dipthi Bachamanda Somesh
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Kristin Klose
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| | - Janita A Maring
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Désirée Kunkel
- Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Stephanie I Protze
- University Health Network, McEwen Stem Cell Institute, Toronto, ON, M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Oliver Klein
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Grit Nebrich
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Imaging Mass Spectrometry Core Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Matthias Becker
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Ulrike Krüger
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Institute for Medical Immunology, 13353, Berlin, Germany
| | - Timo Z Nazari-Shafti
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
| | - Volkmar Falk
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Andreas Kurtz
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany
| | - Christof Stamm
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, 13353, Berlin, Germany.
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- German Centre for Cardiovascular Research, Partner Site Berlin, 10785, Berlin, Germany.
| |
Collapse
|
14
|
Akbar N, Anum H, Razzaq SS, Salim A, Usman S, Haneef K. Ascorbic acid and salvianolic acid B enhance the valproic acid and 5-azacytidinemediated cardiac differentiation of mesenchymal stem cells. Mol Biol Rep 2023; 50:7371-7380. [PMID: 37450078 DOI: 10.1007/s11033-023-08634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cardiovascular diseases remain a major cause of death globally. Cardiac cells once damaged, cannot resume the normal functioning of the heart. Bone marrow derived mesenchymal stem cells (BM-MSCs) have shown the potential to differentiate into cardiac cells. Epigenetic modifications determine cell identity during embryo development via regulation of tissue specific gene expression. The major epigenetic mechanisms that control cell fate and biological functions are DNA methylation and histone modifications. However, epigenetic modifiers alone are not sufficient to generate mature cardiac cells. Various small molecules such as ascorbic acid (AA) and salvianolic acid B (SA) are known for their cardiomyogenic potential. Therefore, this study is aimed to examine the synergistic effects of epigenetic modifiers, valproic acid (VPA) and 5-azacytidine (5-aza) with cardiomyogenic molecules, AA and SA in the cardiac differentiation of MSCs. METHODS AND RESULTS BM-MSCs were isolated, propagated, characterized, and then treated with an optimized dose of VPA or 5-aza for 24 h. MSCs were maintained in a medium containing AA and SA for 21 days. All groups were assessed for the expression of cardiac genes and proteins through q-PCR and immunocytochemistry, respectively. Results show that epigenetic modifiers VPA or 5-aza in combination with AA and SA significantly upregulate the expression of cardiac genes MEF2C, Nkx2.5, cMHC, Tbx20, and GATA-4. In addition, VPA or 5-aza pretreatment along with AA and SA enhanced the expression of the cardiac proteins connexin-43, GATA-4, cTnI, and Nkx2.5. CONCLUSION These findings suggest that epigenetic modifiers valproic acid and 5-azacytidine in combination with ascorbic acid and salvianolic acid B promote cardiac differentiation of MSCs. This pretreatment strategy can be exploited for designing future stem cell based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Hira Anum
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shumaila Usman
- Department of Molecular Medicine, Ziauddin University, Karachi, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
15
|
Yasmin IA, Dharmarajan A, Warrier S. iPSC-Derived Glioblastoma Cells Have Enhanced Stemness Wnt/β-Catenin Activity Which Is Negatively Regulated by Wnt Antagonist sFRP4. Cancers (Basel) 2023; 15:3622. [PMID: 37509281 PMCID: PMC10377620 DOI: 10.3390/cancers15143622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Growing evidence indicates that cancer stem cells (CSCs) endow the tumor with stem-like properties. Recently, induced pluripotent stem cells (iPSCs) have gained increased attention because of their easy derivation and availability and their potential to differentiate into any cell type. A CSC model derived from iPSCs of human origin would help understand the driving force of tumor initiation and early progression. We report the efficient generation of feeder-free SSEA4, TRA-1-60 and TRA-1-81 positive iPSCs from amniotic membrane-derived mesenchymal stem cells (AMMSCs), which successfully differentiated into three germ layers. We then developed human iPSC-derived glioblastoma multiforme (GBM) model using conditioned media (CM) from U87MG cell line and CSCs derived from U87MG, which confer iPSCs with GBM and GSC-like phenotypes within five days. Both cell types overexpress MGMT and GLI2, but only GSCs overexpress CD133, CD44, ABCG2 and ABCC2. We also observed overexpression of LEF1 and β-catenin in both cell types. Down-regulation of Wnt antagonist secreted frizzled-related protein 4 (sFRP4) in GBM and GSCs, indicating activation of the Wnt/β-catenin pathway, which could be involved in the conversion of iPSCs to CSCs. From future perspectives, our study will help in the creation of a rapid cell-based platform for understanding the complexity of GBM.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| |
Collapse
|
16
|
Gao Y, Su L, Wei Y, Tan S, Hu Z, Tao Z, Kovalik JP, Soong TW, Zhang J, Pu J, Ye L. Ascorbic acid induces MLC2v protein expression and promotes ventricular-like cardiomyocyte subtype in human induced pluripotent stem cells derived cardiomyocytes. Theranostics 2023; 13:3872-3896. [PMID: 37441603 PMCID: PMC10334833 DOI: 10.7150/thno.80801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.
Collapse
Affiliation(s)
- Yu Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Yuhua Wei
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Zhonghao Tao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
17
|
Kolahdouzmohammadi M, Kolahdouz-Mohammadi R, Tabatabaei SA, Franco B, Totonchi M. Revisiting the Role of Autophagy in Cardiac Differentiation: A Comprehensive Review of Interplay with Other Signaling Pathways. Genes (Basel) 2023; 14:1328. [PMID: 37510233 PMCID: PMC10378789 DOI: 10.3390/genes14071328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Autophagy is a critical biological process in which cytoplasmic components are sequestered in autophagosomes and degraded in lysosomes. This highly conserved pathway controls intracellular recycling and is required for cellular homeostasis, as well as the correct functioning of a variety of cellular differentiation programs, including cardiomyocyte differentiation. By decreasing oxidative stress and promoting energy balance, autophagy is triggered during differentiation to carry out essential cellular remodeling, such as protein turnover and lysosomal degradation of organelles. When it comes to controlling cardiac differentiation, the crosstalk between autophagy and other signaling networks such as fibroblast growth factor (FGF), Wnt, Notch, and bone morphogenetic proteins (BMPs) is essential, yet the interaction between autophagy and epigenetic controls remains poorly understood. Numerous studies have shown that modulating autophagy and precisely regulating it can improve cardiac differentiation, which can serve as a viable strategy for generating mature cardiac cells. These findings suggest that autophagy should be studied further during cardiac differentiation. The purpose of this review article is not only to discuss the relationship between autophagy and other signaling pathways that are active during the differentiation of cardiomyocytes but also to highlight the importance of manipulating autophagy to produce fully mature cardiomyocytes, which is a tough challenge.
Collapse
Affiliation(s)
- Mina Kolahdouzmohammadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale (SSM, School of Advanced Studies), 80138 Naples, Italy
- Medical Genetics, Department of Translational Medicine, University of Naples "Federico II", Via Sergio Pansini, 80131 Naples, Italy
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran P.O. Box 16635-148, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
18
|
Metabolism-based cardiomyocytes production for regenerative therapy. J Mol Cell Cardiol 2023; 176:11-20. [PMID: 36681267 DOI: 10.1016/j.yjmcc.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Human pluripotent stem cells (hPSCs) are currently used in clinical applications such as cardiac regenerative therapy, studying disease models, and drug screening for heart failure. Transplantation of hPSC-derived cardiomyocytes (hPSC-CMs) can be used as an alternative therapy for heart transplantation. In contrast to differentiated somatic cells, hPSCs possess unique metabolic programs to maintain pluripotency, and understanding their metabolic features can contribute to the development of technologies that can be useful for their clinical applications. The production of hPSC-CMs requires stepwise specification during embryonic development and metabolic regulation is crucial for proper embryonic development. These metabolic features have been applied to hPSC-CM production methods, such as mesoderm induction, specifications for cardiac progenitors, and their maturation. This review describes the metabolic programs in hPSCs and the metabolic regulation in hPSC-CM production for cardiac regenerative therapy.
Collapse
|
19
|
Jeong S, Ahn C, Kwon JS, Kim K, Jeung EB. Effects of Sodium Arsenite on the Myocardial Differentiation in Mouse Embryonic Bodies. TOXICS 2023; 11:142. [PMID: 36851018 PMCID: PMC9965385 DOI: 10.3390/toxics11020142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic in inorganic form is a known human carcinogen; even low levels of arsenic can interfere with the endocrine system. In mammalian development, arsenic exposure can cause a malformation of fetuses and be lethal. This study examined the effects of sodium arsenite (SA) as the inorganic form of arsenic in embryonic bodies (EBs) with three germ layers in the developmental stage. This condition is closer to the physiological condition than a 2D cell culture. The SA treatment inhibited EBs from differentiating into cardiomyocytes. A treatment with 1 μM SA delayed the initiation of beating, presenting successful cardiomyocyte differentiation. In particular, mitochondria function analysis showed that SA downregulated the transcription level of the Complex IV gene. SA increased the fission form of mitochondrion identified by the mitochondria number and length. In addition, a treatment with D-penicillamine, an arsenic chelator, restored the beat of EBs against SA, but not mitochondrial dysfunction. These findings suggest that SA is a toxicant that induces mitochondrial damage and interferes with myocardial differentiation and embryogenesis. This study suggests that more awareness of SA exposure during pregnancy is required because even minuscule amounts have irreversible adverse effects on embryogenesis through mitochondria dysfunction.
Collapse
Affiliation(s)
- SunHwa Jeong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin-Sook Kwon
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - KangMin Kim
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
20
|
Ernst P, Bidwell PA, Dora M, Thomas DD, Kamdar F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front Cell Dev Biol 2023; 10:986107. [PMID: 36742199 PMCID: PMC9889838 DOI: 10.3389/fcell.2022.986107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are based on ground-breaking technology that has significantly impacted cardiovascular research. They provide a renewable source of human cardiomyocytes for a variety of applications including in vitro disease modeling and drug toxicity testing. Cardiac calcium regulation plays a critical role in the cardiomyocyte and is often dysregulated in cardiovascular disease. Due to the limited availability of human cardiac tissue, calcium handling and its regulation have most commonly been studied in the context of animal models. hiPSC-CMs can provide unique insights into human physiology and pathophysiology, although a remaining limitation is the relative immaturity of these cells compared to adult cardiomyocytes Therefore, this field is rapidly developing techniques to improve the maturity of hiPSC-CMs, further establishing their place in cardiovascular research. This review briefly covers the basics of cardiomyocyte calcium cycling and hiPSC technology, and will provide a detailed description of our current understanding of calcium in hiPSC-CMs.
Collapse
Affiliation(s)
- Patrick Ernst
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Philip A. Bidwell
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Michaela Dora
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Kim JE, Kim EM, Lee HA, Kim KS. Effective derivation of ventricular cardiomyocytes from hPSCs using ascorbic acid-containing maturation medium. Anim Cells Syst (Seoul) 2023; 27:82-92. [PMID: 36999134 PMCID: PMC10044166 DOI: 10.1080/19768354.2023.2189932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Cardiomyocytes derived from human pluripotent stem cells (hPSCs) can be used in various applications including disease modeling, drug safety screening, and novel cell-based cardiac therapies. Here, we report an optimized selection and maturation method to induce maturation of cardiomyocytes into a specific subtype after differentiation driven by the regulation of Wnt signaling. The medium used to optimize selection and maturation was in a glucose starvation conditions, supplemented with either a nutrition complex or ascorbic acid. Following optimized selection and maturation, more cardiac Troponin T (cTnT)-positive cardiomyocytes were detected using albumin and ascorbic acid than B27. In addition, ascorbic acid enriched maturation of ventricular cardiomyocytes. We compared cardiomyocyte-specific gene expression patterns under different selection and maturation conditions by next-generation sequencing (NGS) analysis. Our optimized conditions will enable simple and efficient maturation and specification of the desired cardiomyocyte subtype, facilitating both biomedical research and clinical applications.
Collapse
Affiliation(s)
- Ji-eun Kim
- Dongguk University, Seoul, Republic of Korea
| | - Eun-Mi Kim
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Hyang-Ae Lee
- Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ki-Suk Kim
- Korea Institute of Toxicology, Daejeon, Republic of Korea
- Ki-Suk Kim Korea Institute of Toxicolgoy, 141 Gajeong-ro, Yuseong-gu, Daejeon34114, Republic of Korea
| |
Collapse
|
22
|
Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr Polym 2023; 300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/08/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
23
|
Generation of human elongating multi-lineage organized cardiac gastruloids. STAR Protoc 2022; 3:101898. [PMID: 36595961 PMCID: PMC9727145 DOI: 10.1016/j.xpro.2022.101898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/11/2022] Open
Abstract
Human elongating multi-lineage organized (EMLOC) gastruloid technology captures key aspects of trunk neurodevelopment including neural integration with cardiogenesis. We generate multi-chambered, contractile EMLOC gastruloids with integrated central and peripheral neurons using defined culture conditions and signaling factors. hiPSC colonies are primed by activating FGF and Wnt signaling pathways for co-induced lineages. EMLOC gastruloids are then initialized with primed cells in suspension culture using timed exposure to FGF2, HGF, IGF1, and Y-27632. Cardiogenesis is stimulated by FGF2, VEGF, and ascorbic acid. For complete details on the use and execution of this protocol, please refer to Olmsted and Paluh (2022).1.
Collapse
|
24
|
Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120720. [PMID: 36550926 PMCID: PMC9774171 DOI: 10.3390/bioengineering9120720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be differentiated into cardiomyocytes (hESC-CMs and iPSC-CMs, respectively), which hold great promise for cardiac regenerative medicine and disease modeling efforts. However, the most widely employed differentiation protocols require undefined substrates that are derived from xenogeneic (animal) products, contaminating resultant hESC- and iPSC-CM cultures with xenogeneic proteins and limiting their clinical applicability. Additionally, typical hESC- and iPSC-CM protocols produce CMs that are significantly contaminated by non-CMs and that are immature, requiring lengthy maturation procedures. In this review, we will summarize recent studies that have investigated the ability of purified extracellular matrix (ECM) proteins to support hESC- and iPSC-CM differentiation, with a focus on commercially available ECM proteins and coatings to make such protocols widely available to researchers. The most promising of the substrates reviewed here include laminin-521 with laminin-221 together or Synthemax (a synthetic vitronectin-based peptide coating), which both resulted in highly pure CM cultures. Future efforts are needed to determine whether combinations of specific purified ECM proteins or derived peptides could further improve CM maturation and culture times, and significantly improve hESC- and iPSC-CM differentiation protocols.
Collapse
Affiliation(s)
- Ashlynn M. Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tessa B. Holmstoen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Andrew J. Bonham
- Department of Chemistry & Biochemistry, Metropolitan State University of Denver, Denver, CO 80217, USA
| | - Teisha J. Rowland
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
25
|
Vitamin C Deficiency Reduces Neurogenesis and Proliferation in the SVZ and Lateral Ventricle Extensions of the Young Guinea Pig Brain. Antioxidants (Basel) 2022; 11:antiox11102030. [PMID: 36290753 PMCID: PMC9598632 DOI: 10.3390/antiox11102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Although scurvy, the severe form of vitamin C deficiency, has been almost eradicated, the prevalence of subclinical vitamin C deficiency is much higher than previously estimated and its impact on human health might not be fully understood. Vitamin C is an essential molecule, especially in the central nervous system where it performs numerous, varied and critical functions, including modulation of neurogenesis and neuronal differentiation. Although it was originally considered to occur only in the embryonic brain, it is now widely accepted that neurogenesis also takes place in the adult brain. The subventricular zone (SVZ) is the neurogenic niche where the largest number of new neurons are born; however, the effect of vitamin C deficiency on neurogenesis in this key region of the adult brain is unknown. Therefore, through BrdU labeling, immunohistochemistry, confocal microscopy and transmission electron microscopy, we analyzed the proliferation and cellular composition of the SVZ and the lateral ventricle (LVE) of adult guinea pigs exposed to a vitamin-C-deficient diet for 14 and 21 days. We found that neuroblasts in the SVZ and LVE were progressively and significantly decreased as the days under vitamin C deficiency elapsed. The neuroblasts in the SVZ and LVE decreased by about 50% in animals with 21 days of deficiency; this was correlated with a reduction in BrdU positive cells in the SVZ and LVE. In addition, the reduction in neuroblasts was not restricted to a particular rostro–caudal area, but was observed throughout the LVE. We also found that vitamin C deficiency altered cellular morphology at the ultrastructural level, especially the cellular and nuclear morphology of ependymal cells of the LVE. Therefore, vitamin C is essential for the maintenance of the SVZ cell populations required for normal activity of the SVZ neurogenic niche in the adult guinea pig brain. Based on our results from the guinea pig brain, we postulate that vitamin C deficiency could also affect neurogenesis in the human brain.
Collapse
|
26
|
Brogi S, Tabanelli R, Calderone V. Combinatorial approaches for novel cardiovascular drug discovery: a review of the literature. Expert Opin Drug Discov 2022; 17:1111-1129. [PMID: 35853260 DOI: 10.1080/17460441.2022.2104247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In this article, authors report an inclusive discussion about the combinatorial approach for the treatment of cardiovascular diseases (CVDs) and for counteracting the cardiovascular risk factors. The mentioned strategy was demonstrated to be useful for improving the efficacy of pharmacological treatments and in CVDs showed superior efficacy with respect to the classical monotherapeutic approach. AREAS COVERED According to this topic, authors analyzed the combinatorial treatments that are available on the market, highlighting clinical studies that demonstrated the efficacy of combinatorial drug strategies to cure CVDs and related risk factors. Furthermore, the review gives an outlook on the future perspective of this therapeutic option, highlighting novel drug targets and disease models that could help the future cardiovascular drug discovery. EXPERT OPINION The use of specifically designed and increasingly rational and effective drug combination therapies can therefore be considered the evolution of polypharmacy in cardiometabolic and CVDs. This approach can allow to intervene on multiple etiopathogenetic mechanisms of the disease or to act simultaneously on different pathologies/risk factors, using the combinations most suitable from a pharmacodynamic, pharmacokinetic, and toxicological perspective, thus finding the most appropriate therapeutic option.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
27
|
Lyra-Leite DM, Gutiérrez-Gutiérrez Ó, Wang M, Zhou Y, Cyganek L, Burridge PW. A review of protocols for human iPSC culture, cardiac differentiation, subtype-specification, maturation, and direct reprogramming. STAR Protoc 2022; 3:101560. [PMID: 36035804 PMCID: PMC9405110 DOI: 10.1016/j.xpro.2022.101560] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The methods for the culture and cardiomyocyte differentiation of human embryonic stem cells, and later human induced pluripotent stem cells (hiPSC), have moved from a complex and uncontrolled systems to simplified and relatively robust protocols, using the knowledge and cues gathered at each step. HiPSC-derived cardiomyocytes have proven to be a useful tool in human disease modelling, drug discovery, developmental biology, and regenerative medicine. In this protocol review, we will highlight the evolution of protocols associated with hPSC culture, cardiomyocyte differentiation, sub-type specification, and cardiomyocyte maturation. We also discuss protocols for somatic cell direct reprogramming to cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Óscar Gutiérrez-Gutiérrez
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Meimei Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
28
|
Fang J, Li M, Zhang G, Du G, Zhou J, Guan X, Chen J. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production. Food Funct 2022; 13:5089-5101. [PMID: 35411884 DOI: 10.1039/d1fo04340d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cultured meat technology is a promising alternative strategy for supplying animal protein taking advantage of its efficiency, safety, and sustainability. The muscle stem cell (MuSC) is one of the most important seed cells for producing muscle fibers, but its weak ex vivo proliferation capacity limits the industrialization of cultured meat. Here we reported that vitamin C (VC) is an excellent supplement for the long-term culture of porcine MuSCs (pMuSCs) ex vivo with considerable proliferative and myogenic effects. After 29 days of culture with 100 μM VC, pMuSCs achieved a 2.8 × 107 ± 0.8 × 107-fold increase in the total cell number, which was 360 times higher than that of cells without VC treatment. pMuSCs that were exposed to VC were less arrested in the G0/G1 phase and showed a significant increase in the expression of cell cycle-related genes such as Cdk1, Cdk2, and Ki67. Additionally, the differentiation potential of pMuSCs was enhanced when cells were proliferated with VC, as evidenced by increased expression of MyoD and MyHC. Furthermore, we demonstrated that VC exerted its proliferative effect through activating the PI3K/AKT/mTOR pathway via the IGF-1 signaling. These findings highlighted the potential application of VC in the ex vivo expansion of pMuSCs for cultured meat production.
Collapse
Affiliation(s)
- Jiahua Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Satthenapalli R, Lee S, Bellae Papannarao J, Hore TA, Chakraborty A, Jones PP, Lamberts RR, Katare R. Stage-specific regulation of signalling pathways to differentiate pluripotent stem cells to cardiomyocytes with ventricular lineage. Stem Cell Res Ther 2022; 13:185. [PMID: 35524336 PMCID: PMC9077927 DOI: 10.1186/s13287-022-02845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Pluripotent stem cells (PSCs) can be an ideal source of differentiation of cardiomyocytes in vitro and during transplantation to induce cardiac regeneration. However, differentiation of PSCs into a heterogeneous population is associated with an increased incidence of arrhythmia following transplantation. We aimed to design a protocol to drive PSCs to a ventricular lineage by regulating Wnt and retinoic acid (RA) signalling pathways. METHODS Mouse embryonic stem cells were cultured either in monolayers or three-dimensional hanging drop method to form embryonic bodies (EBs) and exposed to different treatments acting on Wnt and retinoic acid signalling. Samples were collected at different time points to analyse cardiomyocyte-specific markers by RT-PCR, flow cytometry and immunofluorescence. RESULTS Treatment of monolayer and EBs with Wnt and RA signalling pathways and ascorbic acid, as a cardiac programming enhancer, resulted in the formation of an immature non-contractile cardiac population that expressed many of the putative markers of cardiac differentiation. The population exhibited upregulation of ventricular specific markers while suppressing the expression of pro-atrial and pro-sinoatrial markers. Differentiation of EBs resulted in early foetal like non-contractile ventricular cardiomyocytes with an inherent propensity to contract when stimulated. CONCLUSION Our results provide the first evidence of in vitro differentiation that mimics the embryonic morphogenesis towards ventricular specific cardiomyocytes through regulation of Wnt and RA signalling pathways.
Collapse
Affiliation(s)
- Ramakanth Satthenapalli
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Scott Lee
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Jayanthi Bellae Papannarao
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Timothy A Hore
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9010, New Zealand
| | - Akash Chakraborty
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
- Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Peter P Jones
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Regis R Lamberts
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
30
|
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat Biomed Eng 2022; 6:327-338. [PMID: 35478227 DOI: 10.1038/s41551-022-00885-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.
Collapse
|
31
|
Ascorbic acid in solid organ transplantation: a literature review. Clin Nutr 2022; 41:1244-1255. [DOI: 10.1016/j.clnu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
|
32
|
Zhang X, Chen L, Huang X, Chen H, Cai B, Qin Y, Chen Y, Ou S, Li X, Wu Z, Feng Z, Zeng M, Guo W, Li H, Zhou C, Yu S, Pan M, Liu J, Kang K, Cao S, Pei D. MYOCD is Required for Cardiomyocyte-like Cells Induction from Human Urine Cells and Fibroblasts Through Remodeling Chromatin. Stem Cell Rev Rep 2022; 18:2414-2430. [PMID: 35246800 DOI: 10.1007/s12015-022-10339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 01/14/2023]
Abstract
Despite direct reprogramming of human cardiac fibroblasts into induced cardiomyocytes (iCM) holds great potential for heart regeneration, the mechanisms are poorly understood. Whether other human somatic cells could be reprogrammed into cardiomyocytes is also unknown. Here, we report human urine cells (hUCs) could be converted into CM-like cells from different donors and the related chromatin accessibility dynamics (CAD) by assay for transposase accessible chromatin(ATAC)-seq. hUCs transduced by MEF2C, TBX5, MESP1 and MYOCD but without GATA4 expressed multiple cardiac specific genes, exhibited Ca2+ oscillation potential and sarcomeric structures, and contracted synchronously in coculture with mouse CM. Additionally, we found that MYOCD is required for both closing and opening critical loci, mainly by hindering the opening of loci enriched with motifs for the TEAD and AP1 family and promoting the closing of loci enriched with ETS motifs. These changes differ partially from CAD observed during iCM induction from human fibroblasts. Collectively, our study offers one practical platform for iCM generation and insights into mechanisms for iCM fate determination.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Lijun Chen
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Huan Chen
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Baomei Cai
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Yue Qin
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yating Chen
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Sihua Ou
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Xiaoxi Li
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Zichao Wu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Ziyu Feng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Mengying Zeng
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Wenjing Guo
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Heying Li
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Chunhua Zhou
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Shengyong Yu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China
| | - Mengjie Pan
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Jing Liu
- Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Science, Chinese Academic and Sciences, Guangzhou, 510530, China.,Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Shangtao Cao
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
33
|
Ellis MW, Riaz M, Huang Y, Anderson CW, Luo J, Park J, Lopez CA, Batty LD, Gibson KH, Qyang Y. Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. J Mol Cell Cardiol 2022; 163:167-174. [PMID: 34979103 PMCID: PMC8920537 DOI: 10.1016/j.yjmcc.2021.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023]
Abstract
Tissue engineered vascular grafts possess several advantages over synthetic or autologous grafts, including increased availability and reduced rates of infection and thrombosis. Engineered grafts constructed from human induced pluripotent stem cell derivatives further offer enhanced reproducibility in graft production. One notable obstacle to clinical application of these grafts is the lack of elastin in the vessel wall, which would serve to endow compliance in addition to mechanical strength. This study establishes the ability of the polyphenol compound epigallocatechin gallate, a principal component of green tea, to facilitate the extracellular formation of elastin fibers in vascular smooth muscle cells derived from human induced pluripotent stem cells. Further, this study describes the creation of a doxycycline-inducible elastin expression system to uncouple elastin production from vascular smooth muscle cell proliferative capacity to permit fiber formation in conditions conducive to robust tissue engineering.
Collapse
Affiliation(s)
- Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yan Huang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Jinkyu Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Colleen A Lopez
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Luke D Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Duelen R, Costamagna D, Gilbert G, Waele LD, Goemans N, Desloovere K, Verfaillie CM, Sipido KR, Buyse GM, Sampaolesi M. Human iPSC model reveals a central role for NOX4 and oxidative stress in Duchenne cardiomyopathy. Stem Cell Reports 2022; 17:352-368. [PMID: 35090586 PMCID: PMC8828550 DOI: 10.1016/j.stemcr.2021.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy.
Collapse
Affiliation(s)
- Robin Duelen
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium
| | - Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium; Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Guillaume Gilbert
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Liesbeth De Waele
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Nathalie Goemans
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Catherine M Verfaillie
- Stem Cell Institute Leuven, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Gunnar M Buyse
- Pediatric Neurology, University Hospitals Leuven, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49 - O&N4 - bus 804, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
35
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
36
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
37
|
Silva AC, Matthys OB, Joy DA, Kauss MA, Natarajan V, Lai MH, Turaga D, Blair AP, Alexanian M, Bruneau BG, McDevitt TC. Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids. Cell Stem Cell 2021; 28:2137-2152.e6. [PMID: 34861147 DOI: 10.1016/j.stem.2021.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/13/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
During embryogenesis, paracrine signaling between tissues in close proximity contributes to the determination of their respective cell fate(s) and development into functional organs. Organoids are in vitro models that mimic organ formation and cellular heterogeneity, but lack the paracrine input of surrounding tissues. Here, we describe a human multilineage iPSC-derived organoid that recapitulates cooperative cardiac and gut development and maturation, with extensive cellular and structural complexity in both tissues. We demonstrate that the presence of endoderm tissue (gut/intestine) in the organoids contributed to the development of cardiac tissue features characteristic of stages after heart tube formation, including cardiomyocyte expansion, compartmentalization, enrichment of atrial/nodal cells, myocardial compaction, and fetal-like functional maturation. Overall, this study demonstrates the ability to generate and mature cooperative tissues originating from different germ lineages within a single organoid model, an advance that will further the examination of multi-tissue interactions during development, physiological maturation, and disease.
Collapse
Affiliation(s)
- Ana C Silva
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Oriane B Matthys
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - David A Joy
- Gladstone Institutes, San Francisco, CA 94158, USA; UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Mara A Kauss
- Gladstone Institutes, San Francisco, CA 94158, USA; UC San Francisco Graduate Program in Biomedical Sciences, San Francisco, CA 94143, USA
| | | | | | | | | | | | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Todd C McDevitt
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
38
|
Lu V, Roy IJ, Teitell MA. Nutrients in the fate of pluripotent stem cells. Cell Metab 2021; 33:2108-2121. [PMID: 34644538 PMCID: PMC8568661 DOI: 10.1016/j.cmet.2021.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells model certain features of early mammalian development ex vivo. Medium-supplied nutrients can influence self-renewal, lineage specification, and earliest differentiation of pluripotent stem cells. However, which specific nutrients support these distinct outcomes, and their mechanisms of action, remain under active investigation. Here, we evaluate the available data on nutrients and their metabolic conversion that influence pluripotent stem cell fates. We also discuss key questions open for investigation in this rapidly expanding area of increasing fundamental and practical importance.
Collapse
Affiliation(s)
- Vivian Lu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Irena J Roy
- Developmental and Stem Cell Biology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, California NanoSystems Institute, and Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Ho BX, Yu H, Pang JKS, Hor JH, Liew LC, Szyniarowski P, Lim CYY, An O, Yang HH, Stewart CL, Chan WK, Ng SY, Soh BS. Upregulation of the JAK-STAT pathway promotes maturation of human embryonic stem cell-derived cardiomyocytes. Stem Cell Reports 2021; 16:2928-2941. [PMID: 34767749 PMCID: PMC8693666 DOI: 10.1016/j.stemcr.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/02/2023] Open
Abstract
The immature characteristics and metabolic phenotypes of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) restrict their applications for disease modeling, drug discovery, and cell-based therapy. Leveraging on the metabolic shifts from glycolysis to fatty acid oxidation as CMs mature, a human hexokinase1-GFP metabolic reporter cell line (H7 HK1-GFP) was generated to facilitate the isolation of fetal or more matured hPSC-CMs. RNA sequencing of fetal versus more matured CMs uncovered a potential role of interferon-signaling pathway in regulating CM maturation. Indeed, IFN-γ-treated CMs resulted in an upregulation of the JAK-STAT pathway, which was found to be associated with increased expression of CM maturation genes, shift from MYH6 to MYH7 expression, and improved sarcomeric structure. Functionally, IFN-γ-treated CMs exhibited a more matured electrophysiological profile, such as increased calcium dynamics and action potential upstroke velocity, demonstrated through calcium imaging and MEA. Expectedly, the functional improvements were nullified with a JAK-STAT inhibitor, ruxolitinib. RNA-seq revealed upregulation of IFN-signaling pathways during CM maturation IFN-γ-treated PSC-derived fetal CMs display increased MYH7:MYH6 ratio IFN-γ-treated PSC-derived fetal CMs exhibited improved electrophysiological profile
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongbing Yu
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jin-Hui Hor
- Neurotherapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Piotr Szyniarowski
- A∗STAR Skin Research Labs, 8A Biomedical Grove #06-40, Immunos, Singapore 138648
| | - Christina Ying Yan Lim
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Colin L Stewart
- A∗STAR Skin Research Labs, 8A Biomedical Grove #06-40, Immunos, Singapore 138648
| | - Woon Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shi-Yan Ng
- Neurotherapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Physiology, National University of Singapore, 2 Medical Dr, Singapore 117593, Singapore; National Neuroscience Institute, Singapore 308433, Singapore.
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A(∗)STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
40
|
Modeling Hypoxic Stress In Vitro Using Human Embryonic Stem Cells Derived Cardiomyocytes Matured by FGF4 and Ascorbic Acid Treatment. Cells 2021; 10:cells10102741. [PMID: 34685725 PMCID: PMC8534799 DOI: 10.3390/cells10102741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Mature cardiomyocytes (CMs) obtained from human pluripotent stem cells (hPSCs) have been required for more accurate in vitro modeling of adult-onset cardiac disease and drug discovery. Here, we found that FGF4 and ascorbic acid (AA) induce differentiation of BG01 human embryonic stem cell–cardiogenic mesoderm cells (hESC-CMCs) into mature and ventricular CMs. Co-treatment of BG01 hESC-CMCs with FGF4+AA synergistically induced differentiation into mature and ventricular CMs. FGF4+AA-treated BG01 hESC-CMs robustly released acute myocardial infarction (AMI) biomarkers (cTnI, CK-MB, and myoglobin) into culture medium in response to hypoxic injury. Hypoxia-responsive genes and potential cardiac biomarkers proved in the diagnosis and prognosis of coronary artery diseases were induced in FGF4+AA-treated BG01 hESC-CMs in response to hypoxia based on transcriptome analyses. This study demonstrates that it is feasible to model hypoxic stress in vitro using hESC-CMs matured by soluble factors.
Collapse
|
41
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
42
|
Cho J, Kim S, Lee H, Rah W, Cho HC, Kim NK, Bae S, Shin DH, Lee MG, Park IH, Tanaka Y, Shin E, Yi H, Han JW, Hwang PTJ, Jun HW, Park HJ, Cho K, Lee SW, Jung JK, Levit RD, Sussman MA, Harvey RP, Yoon YS. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nat Biomed Eng 2021; 5:880-896. [PMID: 34426676 PMCID: PMC8809198 DOI: 10.1038/s41551-021-00783-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts can be directly reprogrammed into cardiomyocytes, endothelial cells or smooth muscle cells. Here we report the reprogramming of mouse tail-tip fibroblasts simultaneously into cells resembling these three cell types using the microRNA mimic miR-208b-3p, ascorbic acid and bone morphogenetic protein 4, as well as the formation of tissue-like structures formed by the directly reprogrammed cells. Implantation of the formed cardiovascular tissue into the infarcted hearts of mice led to the migration of reprogrammed cells to the injured tissue, reducing regional cardiac strain and improving cardiac function. The migrated endothelial cells and smooth muscle cells contributed to vessel formation, and the migrated cardiomyocytes, which initially displayed immature characteristics, became mature over time and formed gap junctions with host cardiomyocytes. Direct reprogramming of somatic cells to make cardiac tissue may aid the development of applications in cell therapy, disease modelling and drug discovery for cardiovascular diseases.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyein Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woongchan Rah
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Nam Kyun Kim
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dong Hoon Shin
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Yoshiaki Tanaka
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Eric Shin
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA, USA
| | - Ji Woong Han
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Tae Joon Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyuwon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sang Wook Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jae Kyung Jung
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca D Levit
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark A Sussman
- San Diego State University Heart Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Zhou R, Xia M, Zhang L, Cheng Y, Yan J, Sun Y, Wang J, Jiang H. Fine particles in surgical smoke affect embryonic cardiomyocyte differentiation through oxidative stress and mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112259. [PMID: 33910067 DOI: 10.1016/j.ecoenv.2021.112259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Surgical smoke is widespread in operating rooms, and fine particles are the main toxic components. However, the effect of fine particles in surgical smoke on embryonic development has not yet been studied. This study evaluated the effect of fine particles in surgical smoke on embryonic development and compared it with that of atmospheric fine particles. Afterwards, differentiated cardiomyocytes were purified, and the effect of exposure to fine particles in surgical smoke on cardiomyocyte differentiation was evaluated. Fine particles in surgical smoke exhibited weak embryotoxicity toward an embryonic stem cell test model, and their inhibitory effect on cardiomyocyte differentiation was slightly stronger than that of atmospheric fine particles. Fine particles in surgical smoke specifically inhibited the differentiation of the mesoderm lineage and promoted the differentiation of the ectoderm lineage. Furthermore, fine particles in surgical smoke reduced the beating rate of purified cardiomyocytes, promoted mitophagy, reduced ATP production and increased the reactive oxygen species (ROS) content. Antioxidants attenuated the inhibition of cardiomyocyte differentiation and the reduction in the cardiomyocyte beating rate caused by fine particles in surgical smoke and simultaneously restored mitophagy and other processes to the control levels. However, mitophagy inhibitors treatment blocked only the inhibition of cardiomyocyte differentiation caused by fine particles in surgical smoke; it had little effect on other changes caused by fine particles. Based on the results described above, we propose that fine particles in surgical smoke and atmospheric fine particles exhibit similar levels of toxicity toward embryonic development. Fine particles in surgical smoke potentially affect the beating of cardiomyocytes by damaging mitochondria and increasing oxidative stress.
Collapse
Affiliation(s)
- Ren Zhou
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Ming Xia
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lei Zhang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yanyong Cheng
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jia Yan
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yu Sun
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jie Wang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Hong Jiang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| |
Collapse
|
44
|
Hipólito A, Martins F, Mendes C, Lopes-Coelho F, Serpa J. Molecular and Metabolic Reprogramming: Pulling the Strings Toward Tumor Metastasis. Front Oncol 2021; 11:656851. [PMID: 34150624 PMCID: PMC8209414 DOI: 10.3389/fonc.2021.656851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is a major hurdle to the efficient treatment of cancer, accounting for the great majority of cancer-related deaths. Although several studies have disclosed the detailed mechanisms underlying primary tumor formation, the emergence of metastatic disease remains poorly understood. This multistep process encompasses the dissemination of cancer cells to distant organs, followed by their adaptation to foreign microenvironments and establishment in secondary tumors. During the last decades, it was discovered that these events may be favored by particular metabolic patterns, which are dependent on reprogrammed signaling pathways in cancer cells while they acquire metastatic traits. In this review, we present current knowledge of molecular mechanisms that coordinate the crosstalk between metastatic signaling and cellular metabolism. The recent findings involving the contribution of crucial metabolic pathways involved in the bioenergetics and biosynthesis control in metastatic cells are summarized. Finally, we highlight new promising metabolism-based therapeutic strategies as a putative way of impairing metastasis.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Unidade de Investigação em Patobiologia Molecular (UIPM), Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisboa, Portugal
| |
Collapse
|
45
|
Soh R, Hardy A, Zur Nieden NI. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radic Biol Med 2021; 169:224-237. [PMID: 33878426 PMCID: PMC9910585 DOI: 10.1016/j.freeradbiomed.2021.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Previous views of reactive oxygen species (ROS) depicted them as harmful byproducts of metabolism as uncontrolled levels of ROS can lead to DNA damage and cell death. However, recent studies have shed light into the key role of ROS in the self-renewal or differentiation of the stem cell. The interplay between ROS levels, metabolism, and the downstream redox signaling pathways influence stem cell fate. In this review we will define ROS, explain how they are generated, and how ROS signaling can influence transcription factors, first and foremost forkhead box-O transcription factors, that shape not only the cellular redox state, but also stem cell fate. Now that studies have illustrated the importance of redox homeostasis and the role of redox signaling, understanding the mechanisms behind this interplay will further shed light into stem cell biology.
Collapse
Affiliation(s)
- Ruthia Soh
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Ariana Hardy
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA; Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA.
| |
Collapse
|
46
|
Myosin light chain 2 marks differentiating ventricular cardiomyocytes derived from human embryonic stem cells. Pflugers Arch 2021; 473:991-1007. [PMID: 34031754 DOI: 10.1007/s00424-021-02578-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great value for studies of human cardiac development, drug discovery, disease modeling, and cell therapy. However, the mixed cardiomyocyte subtypes (ventricular-, atrial-, and nodal-like myocytes) and the maturation heterogeneity of hPSC-CMs restrain their application in vitro and in vivo. Myosin light chain 2 (MYL2, encoding the ventricular/cardiac muscle isoform MLC2v protein) is regarded as a ventricular-specific marker of cardiac myocardium; however, its restricted localization to ventricles during human heart development has been questioned. Consequently, it is currently unclear whether MYL2 definitively marks ventricular hESC-CMs. Here, by using a MYL2-Venus hESC reporter line, we characterized a time-dependent increase of the MYL2-Venus positive (MLC2v-Venus+) hESC-CMs during differentiation. We also compared the molecular, cellular, and functional properties between the MLC2v-Venus+ and MYL2-Venus negative (MLC2v-Venus-) hESC-CMs. At early differentiation stages of hESC-CMs, we reported that both MLC2v-Venus- and MLC2v-Venus+ CMs displayed ventricular-like traits but the ventricular-like cells from MLC2v-Venus+ hESC-CMs displayed more developed action potential (AP) properties than that from MLC2v-Venus- hESC-CMs. Meanwhile, about a half MLC2v-Venus- hESC-CM population displayed atrial-like AP properties, and a half showed ventricular-like AP properties, whereas only ~ 20% of the MLC2v-Venus- hESC-CMs expressed the atrial marker nuclear receptor subfamily 2 group F member 2 (NR2F2, also named as COUPTFII). At late time points, almost all MLC2v-Venus+ hESC-CMs exhibited ventricular-like AP properties. Further analysis demonstrates that the MLC2v-Venus+ hESC-CMs had enhanced Ca2+ transients upon increase of the MLC2v level during cultivation. Concomitantly, the MLC2v-Venus+ hESC-CMs showed more defined sarcomeric structures and better mitochondrial function than those in the MLC2v-Venus- hESC-CMs. Moreover, the MLC2v-Venus+ hESC-CMs were more sensitive to hypoxic stimulus than the MLC2v-Venus- hESC-CMs. These results provide new insights into the development of human ventricular myocytes and reveal a direct correlation between the expression profile of MLC2v and ventricular hESC-CM development. Our findings that MLC2v is predominantly a ventricular marker in developmentally immature hESC-CMs have implications for human development, drug screening, and disease modeling, and this marker should prove useful in overcoming issues associated with hESC-CM heterogeneity.
Collapse
|
47
|
Han Z, Zhang Z, Guan Y, Chen B, Yu M, Zhang L, Fang J, Gao Y, Guo Z. New insights into Vitamin C function: Vitamin C induces JAK2 activation through its receptor-like transporter SVCT2. Int J Biol Macromol 2021; 173:379-398. [PMID: 33484802 DOI: 10.1016/j.ijbiomac.2021.01.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
Vitamin C (VitC) is a requisite nutrient for humans and other primates. Extensive research continuously illustrates the applications of VitC in promoting cell reprogramming, fine-tuning embryonic stem cell function, and fighting diseases. Given its chemical reduction property, VitC predominantly acts as an antioxidant to reduce reactive oxygen species (ROS) and as a cofactor for certain dioxygenases involved in epigenetic regulation. Here, we propose that VitC is also a bio-signaling molecule based on the finding that sodium-dependent VitC transporter (SVCT) 2 is a novel receptor-like transporter of VitC that possesses dual activities in mediating VitC uptake and Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 2 signaling pathway. Through interaction, SVCT2 induces JAK2 phosphorylation while transporting VitC into cells. Activated JAK2 phosphorylates the C-terminus of SVCT2, resulting in the recruitment and activation of STAT2. As a highlight, our results suggest that the activation of JAK2 synergistically promotes regulation of VitC in ROS scavenging and epigenetic modifications through phosphorylating pyruvate dehydrogenase kinase 1, ten-eleven translocation enzyme 3, and histone H3 Tyr41. Furthermore, VitC-activated JAK2 exhibits bidirectional effects in regulating cell pluripotency and differentiation. Our results thus reveal that the SVCT2-mediated JAK2 activation facilitates VitC functions in a previously unknown manner.
Collapse
Affiliation(s)
- Zhuo Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yian Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Bingxue Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jingshuai Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
48
|
Jara N, Ramirez E, Ferrada L, Salazar K, Espinoza F, González-Chavarría I, Nualart F. Vitamin C deficient reduces proliferation in a human periventricular tumor stem cell-derived glioblastoma model. J Cell Physiol 2021; 236:5801-5817. [PMID: 33432597 DOI: 10.1002/jcp.30264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a median survival of 14.6 months. GBM is highly resistant to radio- and chemotherapy, and remains without a cure; hence, new treatment strategies are constantly sought. Vitamin C, an essential micronutrient and antioxidant, was initially described as an antitumor molecule; however, several studies have shown that it can promote tumor progression and angiogenesis. Thus, considering the high concentrations of vitamin C present in the brain, our aim was to study the effect of vitamin C deficiency on the progression of GBM using a GBM model generated by the stereotactic injection of human GBM cells (U87-MG or HSVT-C3 cells) in the subventricular zone of guinea pig brain. Initial characterization of U87-MG and HSVT-C3 cells showed that HSVT-C3 are highly proliferative, overexpress p53, and are resistant to ferroptosis. To induce intraperiventricular tumors, animals received control or a vitamin C-deficient diet for 3 weeks, after which histopathological and confocal microscopy analyses were performed. We demonstrated that the vitamin C-deficient condition reduced the glomeruloid vasculature and microglia/macrophage infiltration in U87-MG tumors. Furthermore, tumor size, proliferation, glomeruloid vasculature, microglia/macrophage infiltration, and invasion were reduced in C3 tumors carried by vitamin C-deficient guinea pigs. In conclusion, the effect of the vitamin C deficiency was dependent on the tumor cell used for GBM induction. HSVT-C3 cells, a cell line with stem cell features isolated from a human subventricular GBM, showed higher sensitivity to the deficient condition; however, vitamin C deficiency displayed an antitumor effect in both GBM models analyzed.
Collapse
Affiliation(s)
- Nery Jara
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Eder Ramirez
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| | - Francisca Espinoza
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Iván González-Chavarría
- Department of Pathophysiology, Laboratory of Biotechnology and Biopharmaceuticals, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Department of Cellular Biology, Laboratory of Neurobiology and Stem Cells NeuroCellT, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIO BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
49
|
Bai R, Chang Y, Saleem A, Wu F, Tian L, Zhang S, Li Y, Ma S, Dong T, Guo T, Jiang Y, You Y, Lu WJ, Jiang HF, Lan F. Ascorbic acid can promote the generation and expansion of neuroepithelial-like stem cells derived from hiPS/ES cells under chemically defined conditions through promoting collagen synthesis. Stem Cell Res Ther 2021; 12:48. [PMID: 33422132 PMCID: PMC7796386 DOI: 10.1186/s13287-020-02115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a neurological, medically incurable disorder. Human pluripotent stem cells (hPSCs) have the potential to generate neural stem/progenitor cells (NS/PCs), which hold promise in the treatment of SCI by transplantation. In our study, we aimed to establish a chemically defined culture system using serum-free medium and ascorbic acid (AA) to generate and expand long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) differentiated from hPSCs effectively and stably. METHODS We induced human embryonic stem cells (hESCs)/induced PSCs (iPSCs) to neurospheres using a newly established in vitro induction system. Moreover, lt-NES cells were derived from hESC/iPSC-neurospheres using two induction systems, i.e., conventional N2 medium with gelatin-coated plates (coated) and N2+AA medium without pre-coated plates (AA), and were characterized by reverse transcription polymerase chain reaction (RT-PCR) analysis and immunocytochemistry staining. Subsequently, lt-NES cells were induced to neurons. A microelectrode array (MEA) recording system was used to evaluate the functionality of the neurons differentiated from lt-NES cells. Finally, the mechanism underlying the induction of lt-NES cells by AA was explored through RNA-seq and the use of inhibitors. RESULTS HESCs/iPSCs were efficiently induced to neurospheres using a newly established induction system in vitro. lt-NES cells derived from hESC/iPSC-neurospheres using the two induction systems (coated vs. AA) both expressed the neural pluripotency-associated genes PAX6, NESTIN, SOX1, and SOX2. After long-term cultivation, we found that they both exhibited long-term expansion for more than a dozen generations while maintaining neuropluripotency. Moreover, the lt-NES cells retained the ability to differentiate into general functional neurons that express β-tubulin at high levels. We also demonstrated that AA promotes the generation and long-term expansion of lt-NES cells by promoting collagen synthesis via the MEK-ERK1/2 pathway. CONCLUSIONS This new chemically defined culture system was stable and effective regarding the generation and culture of lt-NES cells induced from hESCs/iPSCs using serum-free medium combined with AA. The lt-NES cells induced under this culture system maintained their long-term expansion and neural pluripotency, with the potential to differentiate into functional neurons.
Collapse
Affiliation(s)
- Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yun Chang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Amina Saleem
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lei Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siyao Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ya'nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tianwei Guo
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Youxu Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi You
- Center for Clinical Translation and Innovation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hong Feng Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
- Beijing Anzhen Hospital, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Beijing Anzhen Hospital, Research Institute Building, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
50
|
The Effect of Angiotensin II, Retinoic Acid, EGCG, and Vitamin C on the Cardiomyogenic Differentiation Induction of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21228752. [PMID: 33228183 PMCID: PMC7699548 DOI: 10.3390/ijms21228752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be potentially applied in cell therapy or regenerative medicine as a new alternative source of stem cells. They could be particularly valuable in restoring cardiac tissue after myocardial infarction or other cardiovascular diseases. We investigated the potential of biologically active compounds, namely, angiotensin II, retinoic acid (RA), epigallocatechin-3-gallate (EGCG), vitamin C alone, and the combinations of RA, EGCG, and vitamin C with angiotensin II to induce cardiomyogenic differentiation of AF-MSCs. We observed that the upregulated expression of cardiac gene markers (NKX2-5, MYH6, TNNT2, and DES) and cardiac ion channel genes (sodium, calcium, the potassium) also the increased levels of Connexin 43 and Nkx2.5 proteins. Extracellular flux analysis, applied for the first time on AF-MSCs induced with biologically active compounds, revealed the switch in AF-MSCS energetic phenotype and enhanced utilization of oxidative phosphorylation for energy production. Moreover, we demonstrated changes in epigenetic marks associated with transcriptionally active (H3K4me3, H3K9ac, and H4hyperAc) or repressed (H3K27me3) chromatin. All in all, we demonstrated that explored biomolecules were able to induce alterations in AF-MSCs at the phenotypic, genetic, protein, metabolic, and epigenetic levels, leading to the formation of cardiomyocyte progenitors that may become functional heart cells in vitro or in vivo.
Collapse
|