1
|
Xu X, Wang T. Autoregulation of TRF2 through G-Quadruplex-Specific Interaction between the Gene and N-Terminal Domain of the Protein. Biochemistry 2025; 64:57-66. [PMID: 39705116 DOI: 10.1021/acs.biochem.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Telomere repeat-binding factor 2 (TRF2) is a key component of the shelterin complex which guards the integrity of the telomere. Most of the TRF2 discussed previously was focused on the telomere, and relatively less is discussed on aspects other than that. It is proved that TRF2 also localizes to other potential G-quadruplex-forming sequences among the whole genome besides the telomere. Therefore, it may participate in regulating genes generally except for the well-known function of protecting telomeres. Here, we demonstrate that the N-terminal basic domain of TRF2 (TRF2B) can interact with the G-quadruplex formed by the 5'-UTR sequence of its gene. Subsequently, this interaction was identified as G-quadruplex-specific. Using a reporter gene system, we proved that the translation of the reporter gene was dramatically reduced, triggered by the interaction between TRF2B and the G-quadruplex. Altogether, we propose that TRF2 can be "auto-regulated" through the G-quadruplex formed by its own gene sequence. This finding indicates a potential feedback mechanism in the regulation of the TRF2 gene. Additionally, it suggests a common mode in gene regulation involving the cooperation of TRF2 and the G-quadruplex.
Collapse
Affiliation(s)
- Xiaojuan Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei 230031, China
| | - Tao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Mukherjee AK, Dutta S, Singh A, Sharma S, Roy SS, Sengupta A, Chatterjee M, Vinayagamurthy S, Bagri S, Khanna D, Verma M, Soni D, Budharaja A, Bhisade SK, Anand V, Perwez A, George N, Faruq M, Gupta I, Sabarinathan R, Chowdhury S. Telomere length sensitive regulation of interleukin receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment. eLife 2024; 13:RP95106. [PMID: 39728924 PMCID: PMC11677240 DOI: 10.7554/elife.95106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Subhajit Dutta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankita Singh
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Megha Chatterjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Divya Khanna
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Dristhi Soni
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Vivek Anand
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Ahmad Perwez
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Nija George
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Mohammed Faruq
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | | | - Radhakrishnan Sabarinathan
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative BiologyNew DelhiIndia
- Trivedi School of Biosciences, Ashoka UniversitySonepatIndia
| |
Collapse
|
3
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Iachettini S, Terrenato I, Porru M, Di Vito S, Rizzo A, D'Angelo C, Petti E, Dinami R, Maresca C, Di Benedetto A, Palange A, Mulè A, Santoro A, Palazzo A, Fuso P, Stoppacciaro A, Vici P, Filomeno L, Di Lisa FS, Arcuri T, Krasniqi E, Fabi A, Biroccio A, Zizza P. TRF2 as novel marker of tumor response to taxane-based therapy: from mechanistic insight to clinical implication. J Exp Clin Cancer Res 2024; 43:75. [PMID: 38459559 PMCID: PMC10924347 DOI: 10.1186/s13046-024-02998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Breast Cancer (BC) can be classified, due to its heterogeneity, into multiple subtypes that differ for prognosis and clinical management. Notably, triple negative breast cancer (TNBC) - the most aggressive BC form - is refractory to endocrine and most of the target therapies. In this view, taxane-based therapy still represents the elective strategy for the treatment of this tumor. However, due variability in patients' response, management of TNBC still represents an unmet medical need. Telomeric Binding Factor 2 (TRF2), a key regulator of telomere integrity that is over-expressed in several tumors, including TNBC, has been recently found to plays a role in regulating autophagy, a degradative process that is involved in drug detoxification. Based on these considerations, we pointed, here, at investigating if TRF2, regulating autophagy, can affect tumor sensitivity to therapy. METHODS Human TNBC cell lines, over-expressing or not TRF2, were subjected to treatment with different taxanes and drug efficacy was tested in terms of autophagic response and cell proliferation. Autophagy was evaluated first biochemically, by measuring the levels of LC3, and then by immunofluorescence analysis of LC3-puncta positive cells. Concerning the proliferation, cells were subjected to colony formation assays associated with western blot and FACS analyses. The obtained results were then confirmed also in mouse models. Finally, the clinical relevance of our findings was established by retrospective analysis on a cohort of TNBC patients subjected to taxane-based neoadjuvant chemotherapy. RESULTS This study demonstrated that TRF2, inhibiting autophagy, is able to increase the sensitivity of TNBC cells to taxanes. The data, first obtained in in vitro models, were then recapitulated in preclinical mouse models and in a cohort of TNBC patients, definitively demonstrating that TRF2 over-expression enhances the efficacy of taxane-based neoadjuvant therapy in reducing tumor growth and its recurrence upon surgical intervention. CONCLUSIONS Based on our finding it is possible to conclude that TRF2, already known for its role in promoting tumor formation and progression, might represents an Achilles' heel for cancer. In this view, TRF2 might be exploited as a putative biomarker to predict the response of TNBC patients to taxane-based neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Sara Iachettini
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Irene Terrenato
- IRCCS - Regina Elena National Cancer Institute, Clinical Trial Center, Biostatistics and Bioinformatics Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Porru
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Serena Di Vito
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Angela Rizzo
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmen D'Angelo
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Eleonora Petti
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Roberto Dinami
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carmen Maresca
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Anna Di Benedetto
- IRCCS - Regina Elena National Cancer Institute, Pathology Unit, Via Elio Chianesi 53, Rome, Italy
| | - Aldo Palange
- IRCCS - Regina Elena National Cancer Institute, Pathology Unit, Via Elio Chianesi 53, Rome, Italy
| | - Antonino Mulè
- Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angela Santoro
- Pathology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Palazzo
- Medical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Fuso
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Patrizia Vici
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Lorena Filomeno
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Francesca Sofia Di Lisa
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Teresa Arcuri
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Eriseld Krasniqi
- IRCCS - Regina Elena National Cancer Institute, Unit of Phase IV Trials, Via Elio Chianesi 53, Rome, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annamaria Biroccio
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Pasquale Zizza
- IRCCS - Regina Elena National Cancer Institute, Translational Oncology Research Unit, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
5
|
Braun H, Xu Z, Chang F, Viceconte N, Rane G, Levin M, Lototska L, Roth F, Hillairet A, Fradera-Sola A, Khanchandani V, Sin ZW, Yong WK, Dreesen O, Yang Y, Shi Y, Li F, Butter F, Kappei D. ZNF524 directly interacts with telomeric DNA and supports telomere integrity. Nat Commun 2023; 14:8252. [PMID: 38086788 PMCID: PMC10716145 DOI: 10.1038/s41467-023-43397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing nonhomologous end joining (NHEJ) through its subunit TRF2. Here, we describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity, and reveal base-specific sequence recognition by cocrystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.
Collapse
Affiliation(s)
- Hanna Braun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Ziyan Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fiona Chang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Michal Levin
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | | | - Franziska Roth
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Alexia Hillairet
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Zi Wayne Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wai Khang Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Oliver Dreesen
- Cell Aging Laboratory, A*STAR Skin Research Labs, Singapore, 138648, Singapore
| | - Yang Yang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunyu Shi
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany.
- Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald, 17493, Germany.
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
6
|
Wolf SE, Shalev I. The shelterin protein expansion of telomere dynamics: Linking early life adversity, life history, and the hallmarks of aging. Neurosci Biobehav Rev 2023; 152:105261. [PMID: 37268182 PMCID: PMC10527177 DOI: 10.1016/j.neubiorev.2023.105261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Aging is characterized by functional decline occurring alongside changes to several hallmarks of aging. One of the hallmarks includes attrition of repeated DNA sequences found at the ends of chromosomes called telomeres. While telomere attrition is linked to morbidity and mortality, whether and how it causally contributes to lifelong rates of functional decline is unclear. In this review, we propose the shelterin-telomere hypothesis of life history, in which telomere-binding shelterin proteins translate telomere attrition into a range of physiological outcomes, the extent of which may be modulated by currently understudied variation in shelterin protein levels. Shelterin proteins may expand the breadth and timing of consequences of telomere attrition, e.g., by translating early life adversity into acceleration of the aging process. We consider how the pleiotropic roles of shelterin proteins provide novel insights into natural variation in physiology, life history, and lifespan. We highlight key open questions that encourage the integrative, organismal study of shelterin proteins that enhances our understanding of the contribution of the telomere system to aging.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA.
| | - Idan Shalev
- Department of Biobehavioral Health, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Vinayagamurthy S, Bagri S, Mergny JL, Chowdhury S. Telomeres expand sphere of influence: emerging molecular impact of telomeres in non-telomeric functions. Trends Genet 2023; 39:59-73. [PMID: 36404192 PMCID: PMC7614491 DOI: 10.1016/j.tig.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Although the impact of telomeres on physiology stands well established, a question remains: how do telomeres impact cellular functions at a molecular level? This is because current understanding limits the influence of telomeres to adjacent subtelomeric regions despite the wide-ranging impact of telomeres. Emerging work in two distinct aspects offers opportunities to bridge this gap. First, telomere-binding factors were found with non-telomeric functions. Second, locally induced DNA secondary structures called G-quadruplexes are notably abundant in telomeres, and gene regulatory regions genome wide. Many telomeric factors bind to G-quadruplexes for non-telomeric functions. Here we discuss a more general model of how telomeres impact the non-telomeric genome - through factors that associate at telomeres and genome wide - and influence cell-intrinsic functions, particularly aging, cancer, and pluripotency.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jean-Louis Mergny
- Institute of Biophysics of the CAS, v.v.i. Královopolská 135, 612 65 Brno, Czech Republic; Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
8
|
Stock AJ, McDevitt RA, Puligilla C, Wang Y, Zhang Y, Wang K, Sun C, Becker KG, Lehrmann E, Wood WH, Gong Y, Aqdas M, Sung MH, Hoffmann V, Liu C, Gorospe M, Harrington L, Ferrucci L, Liu Y. Aberrant expression and localization of the RAP1 shelterin protein contribute to age-related phenotypes. PLoS Genet 2022; 18:e1010506. [PMID: 36441670 PMCID: PMC9704629 DOI: 10.1371/journal.pgen.1010506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022] Open
Abstract
Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.
Collapse
Affiliation(s)
- Amanda J. Stock
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Ross A. McDevitt
- Comparative Medicine Section, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chandrakala Puligilla
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yajun Wang
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kun Wang
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chongkui Sun
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yi Gong
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute/National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Lea Harrington
- Institute for Research in Immunology & Cancer, Marcelle-Coutu Pavilion, Université de Montréal, Montreal, Quebec, Canada
| | - Luigi Ferrucci
- Translational Gerontology Branch, Biomedical Research Center, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
| | - Yie Liu
- Laboratory of Genetics and Genomics, National Institute on Aging/National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Iachettini S, Ciccarone F, Maresca C, D' Angelo C, Petti E, Di Vito S, Ciriolo MR, Zizza P, Biroccio A. The telomeric protein TERF2/TRF2 impairs HMGB1-driven autophagy. Autophagy 2022:1-12. [PMID: 36310382 DOI: 10.1080/15548627.2022.2138687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
TERF2/TRF2 is a pleiotropic telomeric protein that plays a crucial role in tumor formation and progression through several telomere-dependent and -independent mechanisms. Here, we uncovered a novel function for this protein in regulating the macroautophagic/autophagic process upon different stimuli. By using both biochemical and cell biology approaches, we found that TERF2 binds to the non-histone chromatin-associated protein HMGB1, and this interaction is functional to the nuclear/cytoplasmic protein localization. Specifically, silencing of TERF2 alters the redox status of the cells, further exacerbated upon EBSS nutrient starvation, promoting the cytosolic translocation and the autophagic activity of HMGB1. Conversely, overexpression of wild-type TERF2, but not the mutant unable to bind HMGB1, negatively affects the cytosolic translocation of HMGB1, counteracting the stimulatory effect of EBSS starvation. Moreover, genetic depletion of HMGB1 or treatment with inflachromene, a specific inhibitor of its cytosolic translocation, completely abolished the pro-autophagic activity of TERF2 silencing. In conclusion, our data highlighted a novel mechanism through which TERF2 modulates the autophagic process, thus demonstrating the key role of the telomeric protein in regulating a process that is fundamental, under both physiological and pathological conditions, in defining the fate of the cells.Abbreviations: ALs: autolysosomes; ALT: alternative lengthening of telomeres; ATG: autophagy related; ATM: ATM serine/threonine kinase; CQ: Chloroquine; DCFDA: 2',7'-dichlorofluorescein diacetate; DDR: DNA damage response; DHE: dihydroethidium; EBSS: Earle's balanced salt solution; FACS: fluorescence-activated cell sorting; GFP: green fluorescent protein; EGFP: enhanced green fluorescent protein; GSH: reduced glutathione; GSSG: oxidized glutathione; HMGB1: high mobility group box 1; ICM: inflachromene; IF: immunofluorescence; IP: immunoprecipitation; NAC: N-acetyl-L-cysteine; NHEJ: non-homologous end joining; PLA: proximity ligation assay; RFP: red fluorescent protein; ROS: reactive oxygen species; TIF: telomere-induced foci; TERF2/TRF2: telomeric repeat binding factor 2.
Collapse
Affiliation(s)
- Sara Iachettini
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Carmen Maresca
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D' Angelo
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Eleonora Petti
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Di Vito
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
10
|
Yu EY, Cheung NKV, Lue NF. Connecting telomere maintenance and regulation to the developmental origin and differentiation states of neuroblastoma tumor cells. J Hematol Oncol 2022; 15:117. [PMID: 36030273 PMCID: PMC9420296 DOI: 10.1186/s13045-022-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA-in order to sustain cell proliferation-is well established, recent studies suggest that the neural crest origin of neuroblastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal neural crest development. This review summarizes recent advances in the characterization of telomere structure and telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential applications to other pediatric malignancies.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Kroupa M, Tomasova K, Kavec M, Skrobanek P, Buchler T, Kumar R, Vodickova L, Vodicka P. TElomeric repeat-containing RNA (TERRA): Physiological functions and relevance in cancer. Front Oncol 2022; 12:913314. [PMID: 35982970 PMCID: PMC9380590 DOI: 10.3389/fonc.2022.913314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Telomeres are complex protective structures located at the ends of linear eukaryotic chromosomes. Their purpose is to prevent genomic instability. Research progress in telomere biology during the past decades has identified a network of telomeric transcripts of which the best-studied is TElomeric Repeat-containing RNA (TERRA). TERRA was shown to be important not only for the preservation of telomere homeostasis and genomic stability but also for the expression of hundreds of genes across the human genome. These findings added a new level of complexity to telomere biology. Herein we provide insights on the telomere transcriptome, its relevance for proper telomere function, and its implications in human pathology. We also discuss possible clinical opportunities of exosomal telomere transcripts detection as a biomarker in cancer precision medicine.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| | - Kristyna Tomasova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miriam Kavec
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Rajiv Kumar
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| |
Collapse
|
12
|
Radchenko EA, Aksenova AY, Volkov KV, Shishkin AA, Pavlov YI, Mirkin SM. Partners in crime: Tbf1 and Vid22 promote expansions of long human telomeric repeats at an interstitial chromosome position in yeast. PNAS NEXUS 2022; 1:pgac080. [PMID: 35832866 PMCID: PMC9272169 DOI: 10.1093/pnasnexus/pgac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
In humans, telomeric repeats (TTAGGG)n are known to be present at internal chromosomal sites. These interstitial telomeric sequences (ITSs) are an important source of genomic instability, including repeat length polymorphism, but the molecular mechanisms responsible for this instability remain to be understood. Here, we studied the mechanisms responsible for expansions of human telomeric (Htel) repeats that were artificially inserted inside a yeast chromosome. We found that Htel repeats in an interstitial chromosome position are prone to expansions. The propensity of Htel repeats to expand depends on the presence of a complex of two yeast proteins: Tbf1 and Vid22. These two proteins are physically bound to an interstitial Htel repeat, and together they slow replication fork progression through it. We propose that slow progression of the replication fork through the protein complex formed by the Tbf1 and Vid22 partners at the Htel repeat cause DNA strand slippage, ultimately resulting in repeat expansions.
Collapse
Affiliation(s)
| | | | - Kirill V Volkov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Youri I Pavlov
- Eppley Institute for Research In Cancer and Allied Diseases, Omaha, NE 68198, USA
| | | |
Collapse
|
13
|
Barry RM, Sacco O, Mameri A, Stojaspal M, Kartsonis W, Shah P, De Ioannes P, Hofr C, Côté J, Sfeir A. Rap1 regulates TIP60 function during fate transition between two-cell-like and pluripotent states. Genes Dev 2022; 36:313-330. [PMID: 35210222 PMCID: PMC8973845 DOI: 10.1101/gad.349039.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.
Collapse
Affiliation(s)
- Raymond Mario Barry
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Martin Stojaspal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - William Kartsonis
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pooja Shah
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Scientific Incubator, 612 65 Brno, Czech Republic
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology; CHU de Québec-Université Laval Research Center-Oncology Division, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
14
|
Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, Ostano P, Chiorino G, Trusolino L, Blandino G, Ciliberto G, Zizza P, Biroccio A. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett 2022; 533:215607. [PMID: 35240232 DOI: 10.1016/j.canlet.2022.215607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Strada Provinciale 142, Candiolo, TO, 10060, Italy; Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Candiolo, TO, 10060, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
15
|
Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet Mol Biol 2022; 45:e20220071. [DOI: 10.1590/1678-4685-gmb-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
|
16
|
Loss of telomere silencing is accompanied by dysfunction of Polo kinase and centrosomes during Drosophila oogenesis and early development. PLoS One 2021; 16:e0258156. [PMID: 34624021 PMCID: PMC8500440 DOI: 10.1371/journal.pone.0258156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/18/2021] [Indexed: 12/03/2022] Open
Abstract
Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.
Collapse
|
17
|
Imran SAM, Yazid MD, Cui W, Lokanathan Y. The Intra- and Extra-Telomeric Role of TRF2 in the DNA Damage Response. Int J Mol Sci 2021; 22:ijms22189900. [PMID: 34576063 PMCID: PMC8470803 DOI: 10.3390/ijms22189900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
- Correspondence: ; Tel.: +603-9145-7704
| |
Collapse
|
18
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
19
|
Sharma S, Mukherjee AK, Roy SS, Bagri S, Lier S, Verma M, Sengupta A, Kumar M, Nesse G, Pandey DP, Chowdhury S. Human telomerase is directly regulated by non-telomeric TRF2-G-quadruplex interaction. Cell Rep 2021; 35:109154. [PMID: 34010660 PMCID: PMC7611063 DOI: 10.1016/j.celrep.2021.109154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) remains suppressed in most normal somatic cells. Resulting erosion of telomeres leads eventually to replicative senescence. Reactivation of hTERT maintains telomeres and triggers progression of >90% of cancers. However, any direct causal link between telomeres and telomerase regulation remains unclear. Here, we show that the telomere-repeat-binding-factor 2 (TRF2) binds hTERT promoter G-quadruplexes and recruits the polycomb-repressor EZH2/PRC2 complex. This is causal for H3K27 trimethylation at the hTERT promoter and represses hTERT in cancer as well as normal cells. Two highly recurrent hTERT promoter mutations found in many cancers, including ∼83% glioblastoma multiforme, that are known to destabilize hTERT promoter G-quadruplexes, showed loss of TRF2 binding in patient-derived primary glioblastoma multiforme cells. Ligand-induced G-quadruplex stabilization restored TRF2 binding, H3K27-trimethylation, and hTERT re-suppression. These results uncover a mechanism of hTERT regulation through a telomeric factor, implicating telomere-telomerase molecular links important in neoplastic transformation, aging, and regenerative therapy.
Collapse
Affiliation(s)
- Shalu Sharma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Shuvra Shekhar Roy
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Silje Lier
- Department of Microbiology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Meenakshi Verma
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Antara Sengupta
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manish Kumar
- Imaging Facility, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Gaute Nesse
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; GNR Knowledge Centre for Genome and Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India.
| |
Collapse
|
20
|
AKT-dependent signaling of extracellular cues through telomeres impact on tumorigenesis. PLoS Genet 2021; 17:e1009410. [PMID: 33690611 PMCID: PMC7942993 DOI: 10.1371/journal.pgen.1009410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
The telomere-bound shelterin complex is essential for chromosome-end protection and genomic stability. Little is known on the regulation of shelterin components by extracellular signals including developmental and environmental cues. Here, we show that human TRF1 is subjected to AKT-dependent regulation. To study the importance of this modification in vivo, we generate knock-in human cell lines carrying non-phosphorylatable mutants of the AKT-dependent TRF1 phosphorylation sites by CRISPR-Cas9. We find that TRF1 mutant cells show decreased TRF1 binding to telomeres and increased global and telomeric DNA damage. Human cells carrying non-phosphorylatable mutant TRF1 alleles show accelerated telomere shortening, demonstrating that AKT-dependent TRF1 phosphorylation regulates telomere maintenance in vivo. TRF1 mutant cells show an impaired response to proliferative extracellular signals as well as a decreased tumorigenesis potential. These findings indicate that telomere protection and telomere length can be regulated by extracellular signals upstream of PI3K/AKT activation, such as growth factors, nutrients or immune regulators, and this has an impact on tumorigenesis potential. We show how extracellular milieu information is transmitted to the nucleus through modifications in the telomeric protein TRF1. TRF1, a component of the shelterin complex that protects the ends of our chromosomes, is modified by the PI3K/AKT signaling pathway, which senses the extracellular nutritional conditions. We generated knock-in human cell lines carrying mutant TRF1 variants unable to be modified by AKT. TRF1 mutant cells show decreased TRF1 binding to telomeres, increased DNA damage and accelerated telomere shortening. TRF1 mutant cells show an impaired TRF1 stability in response to proliferative extracellular signals and a decreased tumorigenesis potential, demonstrating that telomere function and telomere length are regulated by extracellular signals upstream of PI3K/AKT activation.
Collapse
|
21
|
Vasantha Niranjan C, Retnaraj Samue SJ, Saravanakumar V, Jackson Durairaj S. Novel and Efficient Protocol for DNA Coating-Based Identification of DNA-Protein Interaction by Antibody-Mediated Immunodetection. Rep Biochem Mol Biol 2021; 9:264-269. [PMID: 33649719 DOI: 10.29252/rbmb.9.3.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Studying protein-protein and protein-DNA interactions are prerequisites for the identification of function and mechanistic role of various proteins in the cell. Protocols for analyzing DNA-based Protein-Protein and Protein-DNA interactions are complicated and need to be simplified for efficient tracking of binding capabilities of various proteins to specific DNA molecules. Here, we demonstrated a simple yet efficient protocol for the identification of DNA coating-based Protein-DNA interaction using antibodymediated immunodetection. Methods Briefly, we have coated specific DNA in the microtiter plate followed by incubating with protein lysate. Specific protein-DNA and/or protein-protein bind with DNA interactions are identified using specific fluorophore-conjugated antibodies. Antibodies are used to detect a protein that is bound to the DNA. Results Fluorescent-based detection identifies the specific interaction between Protein-DNA with respect to coated DNA fragments. The protocol uses indirect conjugated antibodies and hence the technique is sensitive for effective identification of Protein-DNA interactions. Conclusion Based on the results we conclude that the demonstrated protocol is simple, efficient and sensitive for identification of Protein-DNA interactions.
Collapse
Affiliation(s)
- Chellathurai Vasantha Niranjan
- This The two authors are considered as the first author.,Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre,Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Selvan Johnson Retnaraj Samue
- This The two authors are considered as the first author.,Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre,Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Venkatachalam Saravanakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre,Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| | - Selvan Jackson Durairaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre,Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| |
Collapse
|
22
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
23
|
Cherfils-Vicini J, Gilson É. [Longevity clocks: The promoting role of telomeres?]. Med Sci (Paris) 2020; 36:1113-1117. [PMID: 33296627 DOI: 10.1051/medsci/2020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aging is an alteration of our physiological capacities that is accompanied by an increased susceptibility to develop a wide range of diseases and which determines in large part our longevity. Despite intensive research on the origin of aging, its etiology is still poorly understood. We discuss here the hypothesis that the telomere shortening, programmed to start at the end of embryogenesis in numerous tissues, couples development with aging by a time-dependent regulation of a set of interconnected processes essential for the somatic maintenance of genome, epigenome, metabolism, circadian clock and immunity.
Collapse
Affiliation(s)
- Julien Cherfils-Vicini
- Université Côte-d'Azur, Inserm, CNRS, Institut de recherche sur le cancer et le vieillissement (Institute for Research on Cancer and Aging, Nice IRCAN), FHU OncoAge, 28 avenue Valombrose, Nice, France
| | - Éric Gilson
- Université Côte-d'Azur, Inserm, CNRS, Institut de recherche sur le cancer et le vieillissement (Institute for Research on Cancer and Aging, Nice IRCAN), FHU OncoAge, 28 avenue Valombrose, Nice, France - Département de génétique, CHU, Nice, France
| |
Collapse
|
24
|
Vinayagamurthy S, Ganguly A, Chowdhury S. Extra-telomeric impact of telomeres: Emerging molecular connections in pluripotency or stemness. J Biol Chem 2020; 295:10245-10254. [PMID: 32444498 PMCID: PMC7383370 DOI: 10.1074/jbc.rev119.009710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Telomeres comprise specialized nucleic acid-protein complexes that help protect chromosome ends from DNA damage. Moreover, telomeres associate with subtelomeric regions through looping. This results in altered expression of subtelomeric genes. Recent observations further reveal telomere length-dependent gene regulation and epigenetic modifications at sites spread across the genome and distant from telomeres. This regulation is mediated through the telomere-binding protein telomeric repeat-binding factor 2 (TRF2). These observations suggest a role of telomeres in extra-telomeric functions. Most notably, telomeres have a broad impact on pluripotency and differentiation. For example, cardiomyocytes differentiate with higher efficacy from induced pluripotent stem cells having long telomeres, and differentiated cells obtained from human embryonic stem cells with relatively long telomeres have a longer lifespan. Here, we first highlight reports on these two seemingly distinct research areas: the extra-telomeric role of telomere-binding factors and the role of telomeres in pluripotency/stemness. On the basis of the observations reported in these studies, we draw attention to potential molecular connections between extra-telomeric biology and pluripotency. Finally, in the context of the nonlocal influence of telomeres on pluripotency and stemness, we discuss major opportunities for progress in molecular understanding of aging-related disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Soujanya Vinayagamurthy
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akansha Ganguly
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
25
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
26
|
Dinami R, Porru M, Amoreo CA, Sperduti I, Mottolese M, Buglioni S, Marinelli D, Maugeri-Saccà M, Sacconi A, Blandino G, Leonetti C, Di Rocco G, Verdina A, Spinella F, Fiorentino F, Ciliberto G, Biroccio A, Zizza P. TRF2 and VEGF-A: an unknown relationship with prognostic impact on survival of colorectal cancer patients. J Exp Clin Cancer Res 2020; 39:111. [PMID: 32539869 PMCID: PMC7294609 DOI: 10.1186/s13046-020-01612-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of most common tumors in developed countries and, despite improvements in treatment and diagnosis, mortality rate of patients remains high, evidencing the urgent need of novel biomarkers to properly identify colorectal cancer high-risk patients that would benefit of specific treatments. Recent works have demonstrated that the telomeric protein TRF2 is over-expressed in colorectal cancer and it promotes tumor formation and progression through extra-telomeric functions. Moreover, we and other groups evidenced, both in vitro on established cell lines and in vivo on tumor bearing mice, that TRF2 regulates the vascularization mediated by VEGF-A. In the present paper, our data evidence a tight correlation between TRF2 and VEGF-A with prognostic relevance in colorectal cancer patients. METHODS For this study we sampled 185 colorectal cancer patients surgically treated and diagnosed at the Regina Elena National Cancer Institute of Rome and investigated the association between the survival outcome and the levels of VEGF-A and TRF2. RESULTS Tissue microarray immunohistochemical analyses revealed that TRF2 positively correlates with VEGF-A expression in our cohort of patients. Moreover, analysis of patients' survival, confirmed in a larger dataset of patients from TCGA, demonstrated that co-expression of TRF2 and VEGF-A correlate with a poor clinical outcome in stage I-III colorectal cancer patients, regardless the mutational state of driver oncogenes. CONCLUSIONS Our results permitted to identify the positive correlation between high levels of TRF2 and VEGF-A as a novel prognostic biomarker for identifying the subset of high-risk colorectal cancer patients that could benefit of specific therapeutic regimens.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | | | - Isabella Sperduti
- Department of Biostatistics, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Daniele Marinelli
- Division of Medical Oncology 2, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical and Molecular Medicine, Sapienza - Università di Roma, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Carlo Leonetti
- SAFU, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
27
|
Babbs C, Brown J, Horsley SW, Slater J, Maifoshie E, Kumar S, Ooijevaar P, Kriek M, Dixon-McIver A, Harteveld CL, Traeger-Synodinos J, Wilkie AOM, Higgs DR, Buckle VJ. ATR-16 syndrome: mechanisms linking monosomy to phenotype. J Med Genet 2020; 57:414-421. [PMID: 32005695 PMCID: PMC7279195 DOI: 10.1136/jmedgenet-2019-106528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging. METHODS Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.3), referred to as ATR-16 syndrome. We characterised deletion extents and screened for genetic background effects, telomere position effect and compensatory upregulation of hemizygous genes. RESULTS We find the risk of developmental and neurological abnormalities arises from much smaller distal chromosome 16 deletions (~400 kb) than previously reported. Beyond this, the severity of ATR-16 syndrome increases with deletion size, but there is no evidence that critical regions determine the developmental abnormalities associated with this disorder. Surprisingly, we find no evidence of telomere position effect or compensatory upregulation of hemizygous genes; however, genetic background effects substantially modify phenotypic abnormalities. CONCLUSIONS Using ATR-16 as a general model of disorders caused by CNVs, we show the degree to which individuals with contiguous gene syndromes are affected is not simply related to the number of genes deleted but depends on their genetic background. We also show there is no critical region defining the degree of phenotypic abnormalities in ATR-16 syndrome and this has important implications for genetic counselling.
Collapse
Affiliation(s)
- Christian Babbs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jill Brown
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sharon W Horsley
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Joanne Slater
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Evie Maifoshie
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Paul Ooijevaar
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Cornelis L Harteveld
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Traeger-Synodinos
- Department of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Veronica J Buckle
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Robin JD, Jacome Burbano M, Peng H, Croce O, Thomas JL, Laberthonniere C, Renault V, Lototska L, Pousse M, Tessier F, Bauwens S, Leong W, Sacconi S, Schaeffer L, Magdinier F, Ye J, Gilson E. Mitochondrial function in skeletal myofibers is controlled by a TRF2-SIRT3 axis over lifetime. Aging Cell 2020; 19:e13097. [PMID: 31991048 PMCID: PMC7059141 DOI: 10.1111/acel.13097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere-capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2-compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2-compromised human myotubes. Altogether, these results reveal a TRF2-SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.
Collapse
Affiliation(s)
- Jérôme D. Robin
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- Marseille Medical Genetics (MMG) U1251 Aix Marseille University Marseille France
| | - Maria‐Sol Jacome Burbano
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Han Peng
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Olivier Croce
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Jean Luc Thomas
- Neuromuscular Differentiation Group Institut NeuroMyoGene (INMG) UMR5310 Inserm U1217 Ecole Normale Supérieure de Lyon Lyon France
| | | | - Valerie Renault
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Liudmyla Lototska
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Mélanie Pousse
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Florent Tessier
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Serge Bauwens
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
| | - Waiian Leong
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Sabrina Sacconi
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- Peripheral Nervous System, Muscle and ALS Neuromuscular & ALS Center of Reference FHU Oncoage Pasteur 2 Nice University Hospital Nice France
| | - Laurent Schaeffer
- Neuromuscular Differentiation Group Institut NeuroMyoGene (INMG) UMR5310 Inserm U1217 Ecole Normale Supérieure de Lyon Lyon France
| | - Frédérique Magdinier
- Marseille Medical Genetics (MMG) U1251 Aix Marseille University Marseille France
| | - Jing Ye
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
| | - Eric Gilson
- Université Côte d'Azur CNRS Inserm Institut for Research on Cancer and Aging, Nice (IRCAN) Medical School of Nice Nice France
- International Research Laboratory in “Hematology, Cancer and Aging” Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Nice University Pôle Sino‐Français de Recherche en Sciences du Vivant et Génomique Shanghai Ruijin Hospital Shanghai China
- Department of Medical Genetics Archet 2 Hospital FHU Oncoage CHU of Nice Nice France
| |
Collapse
|
29
|
Trypanosoma brucei RAP1 Has Essential Functional Domains That Are Required for Different Protein Interactions. mSphere 2020; 5:5/1/e00027-20. [PMID: 32102938 PMCID: PMC7045384 DOI: 10.1128/msphere.00027-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing. RAP1 is a telomere protein that is well conserved from protozoa to mammals. It plays important roles in chromosome end protection, telomere length control, and gene expression/silencing at both telomeric and nontelomeric loci. Interaction with different partners is an important mechanism by which RAP1 executes its different functions in yeast. The RAP1 ortholog in Trypanosoma brucei is essential for variant surface glycoprotein (VSG) monoallelic expression, an important aspect of antigenic variation, where T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. Like other RAP1 orthologs, T. brucei RAP1 (TbRAP1) has conserved functional domains, including BRCA1 C terminus (BRCT), Myb, MybLike, and RAP1 C terminus (RCT). To study functions of various TbRAP1 domains, we established a strain in which one endogenous allele of TbRAP1 is flanked by loxP repeats, enabling its conditional deletion by Cre-mediated recombination. We replaced the other TbRAP1 allele with various mutant alleles lacking individual functional domains and examined their nuclear localization and protein interaction abilities. The N terminus, BRCT, and RCT of TbRAP1 are required for normal protein levels, while the Myb and MybLike domains are essential for normal cell growth. Additionally, the Myb domain of TbRAP1 is required for its interaction with T. brucei TTAGGG repeat-binding factor (TbTRF), while the BRCT domain is required for its self-interaction. Furthermore, the TbRAP1 MybLike domain contains a bipartite nuclear localization signal that is required for its interaction with importin α and its nuclear localization. Interestingly, RAP1’s self-interaction and the interaction between RAP1 and TRF are conserved from kinetoplastids to mammals. However, details of the interaction interfaces have changed throughout evolution. IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing.
Collapse
|
30
|
Ségal-Bendirdjian E, Geli V. Non-canonical Roles of Telomerase: Unraveling the Imbroglio. Front Cell Dev Biol 2019; 7:332. [PMID: 31911897 PMCID: PMC6914764 DOI: 10.3389/fcell.2019.00332] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Telomerase plays a critical role in stem cell function and tissue regeneration that depends on its ability to elongate telomeres. For nearly two decades, it turned out that TERT regulates a broad spectrum of functions including signal transduction, gene expression regulation, and protection against oxidative damage that are independent of its telomere elongation activity. These conclusions that were mainly obtained in cell lines overexpressing telomerase were further strengthened by in vivo models of ectopic expression of telomerase or models of G1 TERT knockout mice without detectable telomere dysfunction. However, the later models were questioned due to the presence of aberrantly shortened telomere in the germline of the parents TERT+/- that were used to create the G1 TERT -/- mice. The physiological relevance of the functions associated with overexpressed telomerase raised also some concerns due to artifactual situations and localizations and complications to quantify the level of TERT. Another concern with non-canonical functions of TERT was the difficulty to separate a direct TERT-related function from secondary effects. Despite these concerns, more and more evidence accumulates for non-canonical roles of telomerase that are non-obligatory extra-telomeric. Here, we review these non-canonical roles of the TERT subunit of telomerase. Also, we emphasize recent results that link TERT to mitochondria and protection to reactive oxygen species suggesting a protective role of TERT in neurons. Throughout this review, we dissect some controversies regarding the non-canonical functions of telomerase and provide some insights to explain these discrepancies. Finally, we discuss the importance of understanding these alternative functions of telomerase for the development of anticancer strategies.
Collapse
Affiliation(s)
- Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1124, Team: Cellular Homeostasis, Cancer and Therapies, INSERM US36, CNRS UMS 2009, BioMedTech Facilities, Université de Paris, Paris, France
| | - Vincent Geli
- Marseille Cancer Research Center, U1068 INSERM, UMR 7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Equipe labellisée Ligue, Marseille, France
| |
Collapse
|
31
|
Zhang M, Wang B, Li T, Liu R, Xiao Y, Geng X, Li G, Liu Q, Price CM, Liu Y, Wang F. Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res 2019; 47:5243-5259. [PMID: 30976812 PMCID: PMC6547417 DOI: 10.1093/nar/gkz264] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/12/2022] Open
Abstract
Human CST (CTC1-STN1-TEN1) is an RPA-like complex that associates with G-rich single-strand DNA and helps resolve replication problems both at telomeres and genome-wide. We previously showed that CST binds and disrupts G-quadruplex (G4) DNA in vitro, suggesting that CST may prevent in vivo blocks to replication by resolving G4 structures. Here, we demonstrate that CST binds and unfolds G4 with similar efficiency to RPA. In cells, CST is recruited to telomeric and non-telomeric chromatin upon G4 stabilization, even when ATR/ATM pathways were inhibited. STN1 depletion increases G4 accumulation and slows bulk genomic DNA replication. At telomeres, combined STN1 depletion and G4 stabilization causes multi-telomere FISH signals and telomere loss, hallmarks of deficient telomere duplex replication. Strand-specific telomere FISH indicates preferential loss of C-strand DNA while analysis of BrdU uptake during leading and lagging-strand telomere replication shows preferential under-replication of lagging telomeres. Together these results indicate a block to Okazaki fragment synthesis. Overall, our findings indicate a novel role for CST in maintaining genome integrity through resolution of G4 structures both ahead of the replication fork and on the lagging strand template.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Bing Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Tingfang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Rui Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Yingnan Xiao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Qiang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin 300192, PR China
| | - Carolyn M Price
- Departments of Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Yang Liu
- Department of Radiobiology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin 300192, PR China
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| |
Collapse
|
32
|
Zizza P, Dinami R, Porru M, Cingolani C, Salvati E, Rizzo A, D'Angelo C, Petti E, Amoreo CA, Mottolese M, Sperduti I, Chambery A, Russo R, Ostano P, Chiorino G, Blandino G, Sacconi A, Cherfils-Vicini J, Leonetti C, Gilson E, Biroccio A. TRF2 positively regulates SULF2 expression increasing VEGF-A release and activity in tumor microenvironment. Nucleic Acids Res 2019; 47:3365-3382. [PMID: 30698737 PMCID: PMC6468246 DOI: 10.1093/nar/gkz041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 12/04/2022] Open
Abstract
The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.
Collapse
Affiliation(s)
- Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Manuela Porru
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Chiara Cingolani
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Erica Salvati
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Carla Azzurra Amoreo
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Marcella Mottolese
- Pathology, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Isabella Sperduti
- Department of Biostatistics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, via Vivaldi 43, 80100 Caserta
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Julien Cherfils-Vicini
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France
| | - Carlo Leonetti
- SAFU, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| | - Eric Gilson
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, France
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, Rome 00144, Italy
| |
Collapse
|
33
|
Mukherjee AK, Sharma S, Bagri S, Kutum R, Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D, Chowdhury S. Telomere repeat-binding factor 2 binds extensively to extra-telomeric G-quadruplexes and regulates the epigenetic status of several gene promoters. J Biol Chem 2019; 294:17709-17722. [PMID: 31575660 PMCID: PMC6879327 DOI: 10.1074/jbc.ra119.008687] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/18/2019] [Indexed: 12/22/2022] Open
Abstract
The role of the telomere repeat-binding factor 2 (TRF2) in telomere maintenance is well-established. However, recent findings suggest that TRF2 also functions outside telomeres, but relatively little is known about this function. Herein, using genome-wide ChIP-Seq assays of TRF2-bound chromatin from HT1080 fibrosarcoma cells, we identified thousands of TRF2-binding sites within the extra-telomeric genome. In light of this observation, we asked how TRF2 occupancy is organized within the genome. Interestingly, we found that extra-telomeric TRF2 sites throughout the genome are enriched in potential G-quadruplex-forming DNA sequences. Furthermore, we validated TRF2 occupancy at several promoter G-quadruplex motifs, which did adopt quadruplex forms in solution. TRF2 binding altered expression and the epigenetic state of several target promoters, indicated by histone modifications resulting in transcriptional repression of eight of nine genes investigated here. Furthermore, TRF2 occupancy and target gene expression were also sensitive to the well-known intracellular G-quadruplex-binding ligand 360A. Together, these results reveal an extensive genome-wide association of TRF2 outside telomeres and that it regulates gene expression in a G-quadruplex-dependent fashion.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Shalu Sharma
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Sulochana Bagri
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Rintu Kutum
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,CSIR Ayurgenomics Unit-TRISUTRA, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Pankaj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Asgar Hussain
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Prateek Singh
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Dhurjhoti Saha
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Anirban Kar
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Debasis Dash
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,CSIR Ayurgenomics Unit-TRISUTRA, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India.,G.N.R. Knowledge Centre for Genome Informatics, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi 110025, India
| |
Collapse
|
34
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Accumulation of critically short telomeres is proposed to be a primary molecular cause of aging and age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as or telomeropathies. The rate of telomere shortening throughout life is determined by endogenous (genetic) and external (nongenetic) factors. Therapeutic strategies based on telomerase activation are being developed to treat and prevent telomere-associated diseases, namely aging-related diseases and telomeropathies. Here, we review the molecular mechanisms underlying telomere driven diseases with particular emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Paula Martínez
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
35
|
Frenk S, Lister-Shimauchi EH, Ahmed S. Telomeric small RNAs in the genus Caenorhabditis. RNA (NEW YORK, N.Y.) 2019; 25:1061-1077. [PMID: 31239299 PMCID: PMC6800518 DOI: 10.1261/rna.071324.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Telomeric DNA is composed of simple tandem repeat sequences and has a G-rich strand that runs 5' to 3' toward the chromosome terminus. Small RNAs with homology to telomeres have been observed in several organisms and could originate from telomeres or from interstitial telomere sequences (ITSs), which are composites of degenerate and perfect telomere repeat sequences found on chromosome arms. We identified Caenorhabditis elegans small RNAs composed of the Caenorhabditis telomere sequence (TTAGGC)n with up to three mismatches, which might interact with telomeres. We rigorously defined ITSs for genomes of C. elegans and for two closely related nematodes, Caenorhabditis briggsae and Caenorhabditis remanei Most telomeric small RNAs with mismatches originated from ITSs, which were depleted from mRNAs but were enriched in introns whose genes often displayed hallmarks of genomic silencing. C. elegans small RNAs composed of perfect telomere repeats were very rare but their levels increased by several orders of magnitude in C. briggsae and C. remanei Major small RNA species in C. elegans begin with a 5' guanine nucleotide, which was strongly depleted from perfect telomeric small RNAs of all three Caenorhabditis species. Perfect G-rich or C-rich telomeric small RNAs commonly began with 5' UAGGCU and 5' UUAGGC or 5' CUAAGC, respectively. In contrast, telomeric small RNAs with mismatches had a mixture of all four 5' nucleotides. We suggest that perfect telomeric small RNAs have a mechanism of biogenesis that is distinct from known classes of small RNAs and that a dramatic change in their regulation occurred during recent Caenorhabditis evolution.
Collapse
Affiliation(s)
- Stephen Frenk
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Evan H Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
36
|
Li P, Meng Y, Wang Y, Li J, Lam M, Wang L, Di LJ. Nuclear localization of Desmoplakin and its involvement in telomere maintenance. Int J Biol Sci 2019; 15:2350-2362. [PMID: 31595153 PMCID: PMC6775319 DOI: 10.7150/ijbs.34450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/28/2019] [Indexed: 12/21/2022] Open
Abstract
The interaction between genomic DNA and protein fundamentally determines the activity and the function of DNA elements. Capturing the protein complex and identifying the proteins associated with a specific DNA locus is difficult. Herein, we employed CRISPR, the well-known gene-targeting tool in combination with the proximity-dependent labeling tool BioID to capture a specific genome locus associated proteins and to uncover the novel functions of these proteins. By applying this research tool on telomeres, we identified DSP, out of many others, as a convincing telomere binding protein validated by both biochemical and cell-biological approaches. We also provide evidence to demonstrate that the C-terminal domain of DSP is required for its binding to telomere after translocating to the nucleus mediated by NLS sequence of DSP. In addition, we found that the telomere binding of DSP is telomere length dependent as hTERT inhibition or knockdown caused a decrease of telomere length and diminished DSP binding to the telomere. Knockdown of TRF2 also negatively influenced DSP binding to the telomere. Functionally, loss of DSP resulted in the shortened telomere DNA and induced the DNA damage response and cell apoptosis. In conclusion, our studies identified DSP as a novel potential telomere binding protein and highlighted its role in protecting against telomere DNA damage and resultant cell apoptosis.
Collapse
Affiliation(s)
- Peipei Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Yuan Meng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Yuan Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Jingjing Li
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Manting Lam
- Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Li Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China.,Metabolomics Core, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| | - Li-Jun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, SAR of China
| |
Collapse
|
37
|
Calvo O, Grandin N, Jordán-Pla A, Miñambres E, González-Polo N, Pérez-Ortín JE, Charbonneau M. The telomeric Cdc13-Stn1-Ten1 complex regulates RNA polymerase II transcription. Nucleic Acids Res 2019; 47:6250-6268. [PMID: 31006804 PMCID: PMC6614848 DOI: 10.1093/nar/gkz279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.
Collapse
Affiliation(s)
- Olga Calvo
- Instituto de Biología Funcional y Genómica, CSIC-USAL, Salamanca, Spain
| | - Nathalie Grandin
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| | - Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | | | | | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - Michel Charbonneau
- GReD laboratory, CNRS UMR6293, INSERM U1103, Faculty of Medicine, University Clermont-Auvergne, 28 place Henri Dunant, BP 38, 63001 Clermont-Ferrand Cedex, France
| |
Collapse
|
38
|
Cherfils-Vicini J, Iltis C, Cervera L, Pisano S, Croce O, Sadouni N, Győrffy B, Collet R, Renault VM, Rey-Millet M, Leonetti C, Zizza P, Allain F, Ghiringhelli F, Soubeiran N, Shkreli M, Vivier E, Biroccio A, Gilson E. Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J 2019; 38:embj.2018100012. [PMID: 31000523 DOI: 10.15252/embj.2018100012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.
Collapse
Affiliation(s)
- Julien Cherfils-Vicini
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Charlene Iltis
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Ludovic Cervera
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Sabrina Pisano
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Olivier Croce
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Nori Sadouni
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Romy Collet
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Valérie M Renault
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Martin Rey-Millet
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Carlo Leonetti
- IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Pasquale Zizza
- IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Fabrice Allain
- CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, Villeneuve d'Ascq, Lille, France
| | - Francois Ghiringhelli
- INSERM, U866, UFR des Sciences de Sante, Universite de Bourgogne-Franche Comte, Dijon, France.,Centre Georges François Leclerc, Dijon, France
| | - Nicolas Soubeiran
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Eric Vivier
- Aix Marseille Univ, APHM, CNRS, INSERM, CIML, Hôpital de la Timone, Marseille-Immunopole, Marseille, France.,Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | - Eric Gilson
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France .,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, FHU Oncoage, Nice, France
| |
Collapse
|
39
|
The Emerging Roles of TERRA in Telomere Maintenance and Genome Stability. Cells 2019; 8:cells8030246. [PMID: 30875900 PMCID: PMC6468625 DOI: 10.3390/cells8030246] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The finding that transcription occurs at chromosome ends has opened new fields of study on the roles of telomeric transcripts in chromosome end maintenance and genome stability. Indeed, the ends of chromosomes are required to be protected from activation of DNA damage response and DNA repair pathways. Chromosome end protection is achieved by the activity of specific proteins that associate with chromosome ends, forming telomeres. Telomeres need to be constantly maintained as they are in a heterochromatic state and fold into specific structures (T-loops), which may hamper DNA replication. In addition, in the absence of maintenance mechanisms, chromosome ends shorten at every cell division due to limitations in the DNA replication machinery, which is unable to fully replicate the extremities of chromosomes. Altered telomere structure or critically short chromosome ends generate dysfunctional telomeres, ultimately leading to replicative senescence or chromosome instability. Telomere biology is thus implicated in multiple human diseases, including cancer. Emerging evidence indicates that a class of long noncoding RNAs transcribed at telomeres, known as TERRA for “TElomeric Repeat-containing RNA,” actively participates in the mechanisms regulating telomere maintenance and chromosome end protection. However, the molecular details of TERRA activities remain to be elucidated. In this review, we discuss recent findings on the emerging roles of TERRA in telomere maintenance and genome stability and their implications in human diseases.
Collapse
|
40
|
Zhang X, Liu Z, Liu X, Wang S, Zhang Y, He X, Sun S, Ma S, Shyh-Chang N, Liu F, Wang Q, Wang X, Liu L, Zhang W, Song M, Liu GH, Qu J. Telomere-dependent and telomere-independent roles of RAP1 in regulating human stem cell homeostasis. Protein Cell 2019; 10:649-667. [PMID: 30796637 PMCID: PMC6711945 DOI: 10.1007/s13238-019-0610-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/03/2019] [Indexed: 01/19/2023] Open
Abstract
RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiyuan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China. .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
42
|
Cacchione S, Biroccio A, Rizzo A. Emerging roles of telomeric chromatin alterations in cancer. J Exp Clin Cancer Res 2019; 38:21. [PMID: 30654820 PMCID: PMC6337846 DOI: 10.1186/s13046-019-1030-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Telomeres, the nucleoprotein structures that cap the ends of eukaryotic chromosomes, play important and multiple roles in tumorigenesis. Functional telomeres need the establishment of a protective chromatin structure based on the interplay between the specific complex named shelterin and a tight nucleosomal organization. Telomere shortening in duplicating somatic cells leads eventually to the destabilization of the telomere capping structure and to the activation of a DNA damage response (DDR) signaling. The final outcome of this process is cell replicative senescence, which constitute a protective barrier against unlimited proliferation. Cells that can bypass senescence checkpoint continue to divide until a second replicative checkpoint, crisis, characterized by chromosome fusions and rearrangements leading to massive cell death by apoptosis. During crisis telomere dysfunctions can either inhibit cell replication or favor tumorigenesis by the accumulation of chromosomal rearrangements and neoplastic mutations. The acquirement of a telomere maintenance mechanism allows fixing the aberrant phenotype, and gives the neoplastic cell unlimited replicative potential, one of the main hallmarks of cancer.Despite the crucial role that telomeres play in cancer development, little is known about the epigenetic alterations of telomeric chromatin that affect telomere protection and are associated with tumorigenesis. Here we discuss the current knowledge on the role of telomeric chromatin in neoplastic transformation, with a particular focus on H3.3 mutations in alternative lengthening of telomeres (ALT) cancers and sirtuin deacetylases dysfunctions.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
43
|
Mukherjee AK, Sharma S, Sengupta S, Saha D, Kumar P, Hussain T, Srivastava V, Roy SD, Shay JW, Chowdhury S. Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends. PLoS Genet 2018; 14:e1007782. [PMID: 30439955 PMCID: PMC6264879 DOI: 10.1371/journal.pgen.1007782] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/29/2018] [Accepted: 10/23/2018] [Indexed: 12/03/2022] Open
Abstract
Telomere-binding proteins constituting the shelterin complex have been studied primarily for telomeric functions. However, mounting evidence shows non-telomeric binding and gene regulation by shelterin factors. This raises a key question—do telomeres impact binding of shelterin proteins at distal non-telomeric sites? Here we show that binding of the telomere-repeat-binding-factor-2 (TRF2) at promoters ~60 Mb from telomeres depends on telomere length in human cells. Promoter TRF2 occupancy was depleted in cells with elongated telomeres resulting in altered TRF2-mediated transcription of distal genes. In addition, histone modifications—activation (H3K4me1 and H3K4me3) as well as silencing marks (H3K27me3)—at distal promoters were telomere length-dependent. These demonstrate that transcription, and the epigenetic state, of telomere-distal promoters can be influenced by telomere length. Molecular links between telomeres and the extra-telomeric genome, emerging from findings here, might have important implications in telomere-related physiology, particularly ageing and cancer. Telomeres (special DNA-protein assemblies that protect chromosome ends) affect ageing and diseases such as cancer. Although this has been recognized for many years, biological processes that connect telomeres to ageing, cancer and other cellular functions remain to be fully understood. Certain proteins, believed to be only telomere-associated, engage DNA outside telomeres. This raises an interesting question. Does telomere length influence how telomere-binding proteins associate with DNA at regions distal from telomeres. If so, how does this impact function? Motivated by these questions, in the present studies we tested if extra-telomeric binding of the well-known telomere-repeat-binding-actor-2 (TRF2) depends on telomere length. Our results show that the level of DNA-bound TRF2 at telomere-distal sites changes as telomeres shorten or elongate. Consequently, TRF2-mediated gene regulation affects many genes. Notably, histone modifications that dictate chromatin compaction and access to regulatory factors, at sites distant from telomere ends also depended on telomere length. Together, this links the state of telomeres to gene regulation and epigenetics directly in ways not previously appreciated that might impact a more complete understanding of molecular processes underlying ageing and cancer.
Collapse
Affiliation(s)
- Ananda Kishore Mukherjee
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shalu Sharma
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Suman Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dhurjhoti Saha
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pankaj Kumar
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Tabish Hussain
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vivek Srivastava
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sumitabho Deb Roy
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jerry W. Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shantanu Chowdhury
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- G.N.R. Knowledge Centre for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- * E-mail:
| |
Collapse
|
44
|
Ferrara-Romeo I, Martínez P, Blasco MA. Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PLoS One 2018; 13:e0204909. [PMID: 30307978 PMCID: PMC6187989 DOI: 10.1371/journal.pone.0204909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
RAP1, a component of the telomere-protective shelterin complex, has been shown to have both telomeric and non-telomeric roles. In the liver, RAP1 is involved in the regulation of metabolic transcriptional programs. RAP1-deficient mice develop obesity and hepatic steatosis, these phenotypes being more severe in females than in males. As hepatic steatosis and obesity have been related to increased liver cancer in mice and humans, we set out to address whether RAP1 deficiency resulted in increased liver cancer upon chemical liver carcinogenesis. We found that Rap1-/- females were more susceptible to DEN-induced liver damage and hepatocellular carcinoma (HCC). DEN-treated Rap1-/- female livers showed an earlier onset of both premalignant and malignant liver lesions, which were characterized by increased abundance of γH2AX-positive cells, increased proliferation and shorter telomeres. These findings highlight an important role for RAP1 in protection from liver damage and liver cancer.
Collapse
Affiliation(s)
- Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
45
|
Kosebent EG, Uysal F, Ozturk S. Telomere length and telomerase activity during folliculogenesis in mammals. J Reprod Dev 2018; 64:477-484. [PMID: 30270279 PMCID: PMC6305847 DOI: 10.1262/jrd.2018-076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomeres are repetitive non-coding DNA sequences located at the ends of chromosomes in eukaryotic cells. Their most important function is to protect chromosome ends from being recognized
as DNA damage. They are also implicated in meiosis and synapse formation. The length of telomeres inevitably shortens at the end of each round of DNA replication and, also, as a consequence
of the exposure to oxidative stress and/or genotoxic agents. The enzyme telomerase contributes to telomere lengthening. It has been reported that telomerase is exclusively expressed in germ
cells, granulosa cells, early embryos, stem cells, and various types of cancerous cells. Granulosa cells undergo many mitotic divisions and either granulosa cells or oocytes are exposed to a
variety of genotoxic agents throughout folliculogenesis; thus, telomerase plays an important role in the maintenance of telomere length. In this review article, we have comprehensively
evaluated the studies focusing on the regulation of telomerase expression and activity, as well as telomere length, during folliculogenesis from primordial to antral follicles, in several
mammalian species including mice, bovines, and humans. Also, the possible relationships between female infertility caused by follicular development defects and alterations in the telomeres
and/or telomerase activity are discussed.
Collapse
Affiliation(s)
- Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya 07070, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya 07070, Turkey
| |
Collapse
|
46
|
Smith ED, Garza-Gongora AG, MacQuarrie KL, Kosak ST. Interstitial telomeric loops and implications of the interaction between TRF2 and lamin A/C. Differentiation 2018; 102:19-26. [PMID: 29979997 DOI: 10.1016/j.diff.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022]
Abstract
The protein-DNA complexes that compose the end of mammalian chromosomes-telomeres-serve to stabilize linear genomic DNA and are involved in cellular and organismal aging. One mechanism that protects telomeres from premature degradation is the formation of structures called t-loops, in which the single-stranded 3' overhang present at the terminal end of telomeres loops back and invades medial double-stranded telomeric DNA. We identified looped structures formed between terminal chromosome ends and interstitial telomeric sequences (ITSs), which are found throughout the human genome, that we have termed interstitial telomeric loops (ITLs). While they form in a TRF2-dependent manner similar to t-loops, ITLs further require the physical interaction of TRF2 with the nuclear intermediate filament protein lamin A/C. Our findings suggest that interactions between telomeres and the nucleoskeleton broadly impact genomic integrity, including telomere stability, chromosome structure, and chromosome fragility. Here, we review the roles of TRF2 and lamin A/C in telomere biology and consider how their interaction may relate telomere homeostasis to cellular and organismal aging.
Collapse
Affiliation(s)
- Erica D Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle L MacQuarrie
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Division of Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
47
|
Purohit G, Mukherjee AK, Sharma S, Chowdhury S. Extratelomeric Binding of the Telomere Binding Protein TRF2 at the PCGF3 Promoter Is G-Quadruplex Motif-Dependent. Biochemistry 2018; 57:2317-2324. [PMID: 29589913 DOI: 10.1021/acs.biochem.8b00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomere repeat binding factor 2 (TRF2) is critical for the protection of chromosome ends. Mounting evidence suggests that TRF2 associates with extratelomeric sites and TRF2 functions may not be limited to telomeres. Here, we show that the PCGF3 promoter harbors a sequence capable of forming the DNA secondary structure G-quadruplex motif, which is required for binding of TRF2 at the PCGF3 promoter. We demonstrate that promoter binding by TRF2 mediates PCGF3 promoter activity, and both the N-terminal and C-terminal domains of TRF2 are necessary for promoter activity. Altogether, this shows for the first time that a telomere binding factor may regulate a component of the polycomb group of proteins.
Collapse
|
48
|
Abstract
The terminal regions of eukaryotic chromosomes, composed of telomere repeat sequences and sub-telomeric sequences, represent some of the most variable and rapidly evolving regions of the genome. The sub-telomeric regions are characterized by segmentally duplicated repetitive DNA elements, interstitial telomere repeat sequences and families of variable genes. Sub-telomeric repeat sequence families are shared among multiple chromosome ends, often rendering detailed sequence characterization difficult. These regions are composed of constitutive heterochromatin and are subjected to high levels of meiotic recombination. Dysfunction within telomere repeat arrays, either due to disruption in the chromatin structure or because of telomere shortening, can lead to chromosomal fusion and the generation of large-scale genomic rearrangements across the genome. The dynamic nature of telomeric regions, therefore, provides functionally useful variation to create genetic diversity, but also provides a mechanism for rapid genomic evolution that can lead to reproductive isolation and speciation. This article is part of the theme issue 'Understanding diversity in telomere dynamics'.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
49
|
Roy SS, Mukherjee AK, Chowdhury S. Insights about genome function from spatial organization of the genome. Hum Genomics 2018; 12:8. [PMID: 29458419 PMCID: PMC5819253 DOI: 10.1186/s40246-018-0140-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/11/2018] [Indexed: 03/04/2023] Open
Abstract
Over the last 15 years, development of chromosome conformation capture (3C) and its subsequent high-throughput variants in conjunction with the fast development of sequencing technology has allowed investigators to generate large volumes of data giving insights into the spatial three-dimensional (3D) architecture of the genome. This huge data has been analyzed and validated using various statistical, mathematical, genomics, and biophysical tools in order to examine the chromosomal interaction patterns, understand the organization of the chromosome, and find out functional implications of the interactions. This review summarizes the data generated by several large-scale high-throughput chromosome conformation capture studies and the functional implications obtained from the data analyses. We also discuss emerging results on factors (both CCCTC binding factor (CTCF) related and CTCF independent) that could contribute to looping interactions.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Ananda Kishore Mukherjee
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Shantanu Chowdhury
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India. .,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, India.
| |
Collapse
|
50
|
Picco V, Coste I, Giraud-Panis MJ, Renno T, Gilson E, Pagès G. ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Oncotarget 2018; 7:46615-46627. [PMID: 27366950 PMCID: PMC5216822 DOI: 10.18632/oncotarget.10316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 12/16/2022] Open
Abstract
Telomere stability is a hallmark of immortalized cells, including cancer cells. While the telomere length is maintained in most cases by the telomerase, the activity of a protein complex called Shelterin is required to protect telomeres against unsuitable activation of the DNA damage response pathway. Within this complex, telomeric repeat binding factor 2 (TRF2) plays an essential role by blocking the ataxia telangiectasia-mutated protein (ATM) signaling pathway at telomeres and preventing chromosome end fusion. We showed that TRF2 was phosphorylated in vitro and in vivo on serine 323 by extracellular signal-regulated kinase (ERK1/2) in both normal and cancer cells. Moreover, TRF2 and activated ERK1/2 unexpectedly interacted in the cytoplasm of tumor cells and human tumor tissues. The expression of non-phosphorylatable forms of TRF2 in melanoma cells induced the DNA damage response, leading to growth arrest and tumor reversion. These findings revealed that the telomere stability is under direct control of one of the major pro-oncogenic signaling pathways (RAS/RAF/MEK/ERK) via TRF2 phosphorylation.
Collapse
Affiliation(s)
- Vincent Picco
- Centre Scientifique de Monaco, Biomedical Department, MC-98000 Monaco, Principality of Monaco
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Marie-Josèphe Giraud-Panis
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Eric Gilson
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France.,Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, 06200 Nice, France
| | - Gilles Pagès
- University of Nice, Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284/INSERM U1081, Medical School, 06107 Nice, France
| |
Collapse
|