1
|
Garrido-Mesa J, Brown MA. Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies. Nat Rev Rheumatol 2025; 21:157-173. [PMID: 39920282 DOI: 10.1038/s41584-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Advances in T cell receptor (TCR) profiling techniques have substantially improved our ability to investigate T cell responses to antigens that are presented on HLA class I and class II molecules and associations between autoimmune T cells and rheumatic diseases. Early-stage studies in axial spondyloarthritis (axSpA) identified disease-associated T cell clonotypes, benefiting from the relative genetic homogeneity of the disease. However, both the genetic and the T cell immunological landscape are more complex in other rheumatic diseases. The diversity or redundancy in the TCR repertoire, epitope spreading over disease duration, genetic heterogeneity of HLA genes or other loci, and the diversity of epitopes contributing to disease pathogenesis and persistent inflammation are all likely to contribute to this complexity. TCR profiling holds promise for identifying key antigenic drivers and phenotypic T cell states that sustain autoimmunity in rheumatic diseases. Here, we review key findings from TCR repertoire studies in axSpA and other chronic inflammatory rheumatic diseases including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome. We explore how TCR profiling technologies, if applied to better controlled studies focused on early disease stages and genetically homogeneous subsets, can facilitate disease monitoring and the development of therapeutics targeting autoimmune T cells, their cognate antigens, or their underlying biology.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Genomics England, London, UK.
| |
Collapse
|
2
|
Wang Z, Yang Y, Chen G, Chen G, Luo J, Li Y, Shi J, Chen H. Unravelling T-cell dynamics and immune responses in initial and recurrent uveitis. Scand J Immunol 2024; 100:e13417. [PMID: 39511764 DOI: 10.1111/sji.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to identify novel serological targets and investigate immune responses in patients with non-infectious uveitis, focusing on differences between initial onset and recurrent episodes. Differential gene expression analysis, immunocyte typing and T-cell receptor (TCR) gene analysis were conducted on RNA-sequenced peripheral blood samples from healthy individuals (n = 6) and non-infectious uveitis patients (n = 12), divided into 6 patients each at initial onset and recurrent stages. Peripheral blood T-cell types were analysed using flow cytometry. Bioinformatics methods included tools for RNA sequencing data processing, CIBERSORT for immune cell type prediction and specialized software for TCR repertoire analysis. Findings indicated that individuals with recurrent uveitis demonstrated a stronger adaptive immune response and a more pronounced immune imbalance compared to those with initial onset. Memory T cells were predominant in recurrent episodes, suggesting their potential role as biomarkers for disease progression. Significant differences in TCR diversity and V(D)J gene usage were observed between the various uveitis groups and healthy controls. Importantly, 38 uveitis-specific TCR sequences showed substantial expansion in the uveitis patients compared to controls. An elevated expansion of these specific TCR sequences was associated with an increased risk of uveitis development. The study highlights the critical role of adaptive immune responses and specific immune cell types in the pathogenesis of recurrent uveitis. Identification of the uveitis-specific TCR repertoire set could provide deeper insights into the disease and facilitate the development of targeted therapies for uveitis patients.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, Hunan, China
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Luo
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Clinical Immunology Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Fritsch N, Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. Chemical-Specific T Cell Tests Aim to Bridge a Gap in Skin Sensitization Evaluation. TOXICS 2024; 12:802. [PMID: 39590982 PMCID: PMC11598016 DOI: 10.3390/toxics12110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024]
Abstract
T cell activation is the final key event (KE4) in the adverse outcome pathway (AOP) of skin sensitization. However, validated new approach methodologies (NAMs) for evaluating this step are missing. Accordingly, chemicals that activate an unusually high frequency of T cells, as does the most prevalent metal allergen nickel, are not yet identified in a regulatory context. T cell reactivity to chemical sensitizers might be especially relevant in real-life scenarios, where skin injury, co-exposure to irritants in chemical mixtures, or infections may trigger the heterologous innate immune stimulation necessary to induce adaptive T cell responses. Additionally, cross-reactivity, which underlies cross-allergies, can only be assessed by T cell tests. To date, several experimental T cell tests are available that use primary naïve and memory CD4+ and CD8+ T cells from human blood. These include priming and lymphocyte proliferation tests and, most recently, activation-induced marker (AIM) assays. All approaches are challenged by chemical-mediated toxicity, inefficient or unknown generation of T cell epitopes, and a low throughput. Here, we summarize solutions and strategies to confirm in vitro T cell signals. Broader application and standardization are necessary to possibly define chemical applicability domains and to strengthen the role of T cell tests in regulatory risk assessment.
Collapse
Affiliation(s)
- Nele Fritsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Biotechnology, Technical University of Berlin, 10115 Berlin, Germany
| | - Marina Aparicio-Soto
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Caterina Curato
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Franziska Riedel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Hermann-Josef Thierse
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Dermatotoxicology Study Centre, 10589 Berlin, Germany; (N.F.); (C.C.); (F.R.)
| |
Collapse
|
4
|
Simpson J, Dulek B, Schaughency P, Brenchley JM. Multi-omics analysis of SIV-specific CD8+ T cells in multiple anatomical sites. PLoS Pathog 2024; 20:e1012545. [PMID: 39250524 PMCID: PMC11412524 DOI: 10.1371/journal.ppat.1012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells exert immunological pressure against immunodeficiency lentiviruses. In previous studies, we examined the TCR repertoire of CD8+ T cells specific for a single SIV immunodominant epitope, Gag-CM9, throughout SIV infection or after vaccination, and across multiple anatomic sites. We identified both tissue specific TCR sequences and TCRs shared by multiple anatomical sites. Here we use single cell RNA sequencing to evaluate if the tissue localization or TCR sequence of a CM9-specific CD8+ T cell corresponds with unique transcriptomics. CM9-specific CD8+ T cells were sorted from blood, lymph nodes, spleen, and liver from SIV infected rhesus macaques with progressive SIV infection and in animals who spontaneously control SIV replication after cessation of antiretroviral therapy. The cells were processed through a single cell sequencing protocol, creating a TCR amplified library and an RNA gene expression library corresponding to individual cells. Gene set enrichment analysis revealed no distinct transcriptional profiles for CM9 specific CD8+ T cells between different anatomical sites and between cells with shared or tissue specific TCRs. Similarly, no clear transcriptional profiles were associated with clonotypes which were shared across individual animals. However, CM9 specific CD8+ T cells from posttreatment controllers did exhibit enrichment of pathways associated with cellular activation compared to progressively infected animals, suggesting that altered transcription in distinct cellular pathways in antigen specific CD8+ T cells may associate with viral control. Together, these studies represent a thorough analysis of the relationship between anatomical and clonal origin, and the transcriptional profile of antigen specific CD8+ T cells and unravel pathways that may be important for CD8+ T cell mediated control of SIV replication.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brittany Dulek
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Chen L, Hu Y, Zheng B, Luo L, Su Z. Human TCR repertoire in cancer. Cancer Med 2024; 13:e70164. [PMID: 39240157 PMCID: PMC11378360 DOI: 10.1002/cam4.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND T cells, the "superstar" of the immune system, play a crucial role in antitumor immunity. T-cell receptors (TCR) are crucial molecules that enable T cells to identify antigens and start immunological responses. The body has evolved a unique method for rearrangement, resulting in a vast diversity of TCR repertoires. A healthy TCR repertoire is essential for the particular identification of antigens by T cells. METHODS In this article, we systematically summarized the TCR creation mechanisms and analysis methodologies, particularly focusing on the application of next-generation sequencing (NGS) technology. We explore the TCR repertoire in health and cancer, and discuss the implications of TCR repertoire analysis in understanding carcinogenesis, cancer progression, and treatment. RESULTS The TCR repertoire analysis has enormous potential for monitoring the emergence and progression of malignancies, as well as assessing therapy response and prognosis. The application of NGS has dramatically accelerated our comprehension of TCR diversity and its role in cancer immunity. CONCLUSIONS To substantiate the significance of TCR repertoires as biomarkers, more thorough and exhaustive research should be conducted. The TCR repertoire analysis, enabled by advanced sequencing technologies, is poised to become a crucial tool in the future of cancer diagnosis, monitoring, and therapy evaluation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Bohao Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Mitchell AM, Baschal EE, McDaniel KA, Fleury T, Choi H, Pyle L, Yu L, Rewers MJ, Nakayama M, Michels AW. Tracking DNA-based antigen-specific T cell receptors during progression to type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadj6975. [PMID: 38064552 PMCID: PMC10708189 DOI: 10.1126/sciadv.adj6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRβ sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRβ sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRβ sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRβ sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M. Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen A. McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Pyle
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Fowler A, FitzPatrick M, Shanmugarasa A, Ibrahim ASF, Kockelbergh H, Yang HC, Williams-Walker A, Luu Hoang KN, Evans S, Provine N, Klenerman P, Soilleux EJ. An Interpretable Classification Model Using Gluten-Specific TCR Sequences Shows Diagnostic Potential in Coeliac Disease. Biomolecules 2023; 13:1707. [PMID: 38136579 PMCID: PMC10742135 DOI: 10.3390/biom13121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coeliac disease (CeD) is a T-cell mediated enteropathy triggered by dietary gluten which remains substantially under-diagnosed around the world. The diagnostic gold-standard requires histological assessment of intestinal biopsies taken at endoscopy while consuming a gluten-containing diet. However, there is a lack of concordance between pathologists in histological assessment, and both endoscopy and gluten challenge are burdensome and unpleasant for patients. Identification of gluten-specific T-cell receptors (TCRs) in the TCR repertoire could provide a less subjective diagnostic test, and potentially remove the need to consume gluten. We review published gluten-specific TCR sequences, and develop an interpretable machine learning model to investigate their diagnostic potential. To investigate this, we sequenced the TCR repertoires of mucosal CD4+ T cells from 20 patients with and without CeD. These data were used as a training dataset to develop the model, then an independently published dataset of 20 patients was used as the testing dataset. We determined that this model has a training accuracy of 100% and testing accuracy of 80% for the diagnosis of CeD, including in patients on a gluten-free diet (GFD). We identified 20 CD4+ TCR sequences with the highest diagnostic potential for CeD. The sequences identified here have the potential to provide an objective diagnostic test for CeD, which does not require the consumption of gluten.
Collapse
Affiliation(s)
- Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Michael FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | | | - Amro Sayed Fadel Ibrahim
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Hannah Kockelbergh
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK
| | - Han-Chieh Yang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Amelia Williams-Walker
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Kim Ngan Luu Hoang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Shelley Evans
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| | - Nicholas Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (M.F.); (P.K.)
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Elizabeth J. Soilleux
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (A.S.F.I.); (H.-C.Y.); (A.W.-W.); (K.N.L.H.); (S.E.); (E.J.S.)
| |
Collapse
|
8
|
Elster C, Ommer-Bläsius M, Lang A, Vajen T, Pfeiler S, Feige M, Yau Pang T, Böttenberg M, Verheyen S, Lê Quý K, Chernigovskaya M, Kelm M, Winkels H, Schmidt SV, Greiff V, Gerdes N. Application and challenges of TCR and BCR sequencing to investigate T- and B-cell clonality in elastase-induced experimental murine abdominal aortic aneurysm. Front Cardiovasc Med 2023; 10:1221620. [PMID: 38034381 PMCID: PMC10686233 DOI: 10.3389/fcvm.2023.1221620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Background An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response. Single-cell RNA (scRNA) T cell receptor (TCR) and B cell receptor (BCR) sequencing is a powerful tool for investigating clonality. However, difficulties such as limited numbers of isolated cells must be considered during implementation and data analysis, making biological interpretation challenging. Here, we perform a representative single-cell immune repertoire analysis in experimental murine AAA and show a reliable bioinformatic processing pipeline highlighting opportunities and limitations of this approach. Methods We performed scRNA TCR and BCR sequencing of isolated lymphocytes from the infrarenal aorta of male C57BL/6J mice 3, 7, 14, and 28 days after AAA induction via elastase perfusion of the aorta. Sham-operated mice at days 3 and 28 and non-operated mice served as controls. Results Comparison of complementarity-determining region (CDR3) length distribution of 179 B cells and 796 T cells revealed neither differences between AAA and control nor between the disease stages. We found no clonal expansion of B cells in AAA. For T cells, we identified several clones in 11 of 16 AAA samples and one of eight control samples. Immune receptor repertoire comparison indicated that only a few clones were shared between the individual AAA samples. The most frequently used V-genes in the TCR beta chain in AAA were TRBV3, TRBV19, and the splicing variant TRBV12-2 + TRBV13-2. Conclusion We found no clonal expansion of B cells but evidence for clonal expansion of T cells in elastase-induced AAA in mice. Our findings imply that a more precise characterization of TCR and BCR distribution requires a more extensive number of lymphocytes to prevent undersampling and potentially detect rare clones. Thus, further experiments are necessary to confirm our findings. In summary, this paper examines TCR and BCR sequencing results, identifies limitations and pitfalls, and offers guidance for future studies.
Collapse
Affiliation(s)
- Christin Elster
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Miriam Ommer-Bläsius
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tanja Vajen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Milena Feige
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Tin Yau Pang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Department of Biology, Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Marius Böttenberg
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Verheyen
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne V. Schmidt
- Institute of Innate Immunity, Medical Faculty and University Hospital, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Lu D, Chen Y, Jiang M, Wang J, Li Y, Ma K, Sun W, Zheng X, Qi J, Jin W, Chen Y, Chai Y, Zhang CWH, Liang H, Tan S, Gao GF. KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat Commun 2023; 14:6389. [PMID: 37828002 PMCID: PMC10570350 DOI: 10.1038/s41467-023-42010-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
KRAS mutations are broadly recognized as promising targets for tumor therapy. T cell receptors (TCRs) can specifically recognize KRAS mutant neoantigens presented by human lymphocyte antigen (HLA) and mediate T cell responses to eliminate tumor cells. In the present study, we identify two TCRs specific for the 9-mer KRAS-G12V mutant neoantigen in the context of HLA-A*11:01. The TCR-T cells are constructed and display cytokine secretion and cytotoxicity upon co-culturing with varied tumor cells expressing the KRAS-G12V mutation. Moreover, 1-2C TCR-T cells show anti-tumor activity in preclinical models in female mice. The 9-mer KRAS-G12V mutant peptide exhibits a distinct conformation from the 9-mer wildtype peptide and its 10-mer counterparts. Specific recognition of the G12V mutant by TCR depends both on distinct conformation from wildtype peptide and on direct interaction with residues from TCRs. Our study reveals the mechanisms of presentation and TCR recognition of KRAS-G12V mutant peptide and describes TCRs with therapeutic potency for tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Lu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yuan Chen
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Min Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Keke Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Wenqiao Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xing Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wenjing Jin
- YKimmu (Beijing) Biotechnology Co., Ltd, Beijing, China
| | - Yu Chen
- YKimmu (Beijing) Biotechnology Co., Ltd, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Hao Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
- Beijing Life Science Academy, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
10
|
Amin J, Gee C, Stowell K, Coulthard D, Boche D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023; 12:2283. [PMID: 37759503 PMCID: PMC10528562 DOI: 10.3390/cells12182283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia. People with DLB have an inferior prognosis compared to Alzheimer's disease (AD), but the diseases overlap in their neuropathology and clinical syndrome. It is imperative that we enhance our understanding of the aetiology and pathogenesis of DLB. The impact of peripheral inflammation on the brain in dementia has been increasingly explored in recent years, with T lymphocyte recruitment into brain parenchyma identified in AD and Parkinson's disease. There is now a growing range of literature emerging on the potential role of innate and adaptive immune cells in DLB, including T lymphocytes. In this review, we examine the profile of T lymphocytes in DLB, focusing on studies of post-mortem brain tissue, cerebrospinal fluid, and the blood compartment. We present an integrated viewpoint on the results of these studies by proposing how changes to the T lymphocyte profile in the brain and periphery may relate to each other. Improving our understanding of T lymphocytes in DLB has the potential to guide the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Claire Gee
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Kiran Stowell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Daisy Coulthard
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
11
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
12
|
Mattila J, Sormunen S, Heikkilä N, Mattila IP, Saramäki J, Arstila TP. Analysis of thymic generation of shared T-cell receptor α repertoire associated with recognition of tumor antigens shows no preference for neoantigens over wild-type antigens. Cancer Med 2023; 12:13486-13496. [PMID: 37114587 PMCID: PMC10315763 DOI: 10.1002/cam4.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The number of mutations in cancer cells is an important predictor of a positive response to cancer immunotherapy. It has been suggested that the neoantigens produced by these mutations are more immunogenic than nonmutated tumor antigens, which are likely to be protected by immunological tolerance. However, the mechanisms of tolerance as regards tumor antigens are incompletely understood. METHODS Here, we have analyzed the impact of thymic negative selection on shared T-cell receptor (TCR) repertoire associated with the recognition of either mutated or nonmutated tumor antigens by comparing previously known TCR-antigen-pairs to TCR repertoires of 21 immunologically healthy individuals. RESULTS Our results show that TCRα chains associated with either type of tumor antigens are readily generated in the thymus, at a frequency similar to TCRα chains associated with nonself. In the peripheral repertoire, the relative clone size of nonself-associated chains is higher than that of the tumor antigens, but importantly, there is no difference between TCRα chains associated with mutated or nonmutated tumor antigens. CONCLUSION This suggests that the tolerance mechanisms protecting nonmutated tumor antigens are non-deletional and therefore potentially reversible. As unmutated antigens are, unlike mutations, shared by a large number of patients, they may offer advantages in designing immunological approaches to cancer treatment.
Collapse
Affiliation(s)
- Joonatan Mattila
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
| | - Silja Sormunen
- Department of Computer ScienceAalto UniversityEspooFinland
| | - Nelli Heikkilä
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
- Faculty of Medicine, Center for Vaccinology, Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Ilkka P. Mattila
- Department of Pediatric Cardiac and Transplantation SurgeryHospital for Children and Adolescents, Helsinki University Central HospitalHelsinkiFinland
| | - Jari Saramäki
- Department of Computer ScienceAalto UniversityEspooFinland
| | - T. Petteri Arstila
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Ruiz Ortega M, Spisak N, Mora T, Walczak AM. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet 2023; 19:e1010652. [PMID: 36827454 PMCID: PMC10075420 DOI: 10.1371/journal.pgen.1010652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Adaptive immunity's success relies on the extraordinary diversity of protein receptors on B and T cell membranes. Despite this diversity, the existence of public receptors shared by many individuals gives hope for developing population-wide vaccines and therapeutics. Using probabilistic modeling, we show many of these public receptors are shared by chance in healthy individuals. This predictable overlap is driven not only by biases in the random generation process of receptors, as previously reported, but also by their common functional selection. However, the model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, suggesting strong specific antigen-driven convergent selection. We exploit this discrepancy to identify COVID-associated receptors, which we validate against datasets of receptors with known viral specificity. We study their properties in terms of sequence features and network organization, and use them to design an accurate diagnostic tool for predicting SARS-CoV-2 status from repertoire data.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| |
Collapse
|
14
|
Kanduri C, Scheffer L, Pavlović M, Rand KD, Chernigovskaya M, Pirvandy O, Yaari G, Greiff V, Sandve GK. simAIRR: simulation of adaptive immune repertoires with realistic receptor sequence sharing for benchmarking of immune state prediction methods. Gigascience 2022; 12:giad074. [PMID: 37848619 PMCID: PMC10580376 DOI: 10.1093/gigascience/giad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Machine learning (ML) has gained significant attention for classifying immune states in adaptive immune receptor repertoires (AIRRs) to support the advancement of immunodiagnostics and therapeutics. Simulated data are crucial for the rigorous benchmarking of AIRR-ML methods. Existing approaches to generating synthetic benchmarking datasets result in the generation of naive repertoires missing the key feature of many shared receptor sequences (selected for common antigens) found in antigen-experienced repertoires. RESULTS We demonstrate that a common approach to generating simulated AIRR benchmark datasets can introduce biases, which may be exploited for undesired shortcut learning by certain ML methods. To mitigate undesirable access to true signals in simulated AIRR datasets, we devised a simulation strategy (simAIRR) that constructs antigen-experienced-like repertoires with a realistic overlap of receptor sequences. simAIRR can be used for constructing AIRR-level benchmarks based on a range of assumptions (or experimental data sources) for what constitutes receptor-level immune signals. This includes the possibility of making or not making any prior assumptions regarding the similarity or commonality of immune state-associated sequences that will be used as true signals. We demonstrate the real-world realism of our proposed simulation approach by showing that basic ML strategies perform similarly on simAIRR-generated and real-world experimental AIRR datasets. CONCLUSIONS This study sheds light on the potential shortcut learning opportunities for ML methods that can arise with the state-of-the-art way of simulating AIRR datasets. simAIRR is available as a Python package: https://github.com/KanduriC/simAIRR.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| | - Knut Dagestad Rand
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Oz Pirvandy
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar-Ilan University, 5290002, Israel
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, 0373 Oslo, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0373 Oslo, Norway
- UiORealArt Convergence Environment, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
15
|
Johnson AC, Silva JAF, Kim SC, Larsen CP. Progress in kidney transplantation: The role for systems immunology. Front Med (Lausanne) 2022; 9:1070385. [PMID: 36590970 PMCID: PMC9800623 DOI: 10.3389/fmed.2022.1070385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
The development of systems biology represents an immense breakthrough in our ability to perform translational research and deliver personalized and precision medicine. A multidisciplinary approach in combination with use of novel techniques allows for the extraction and analysis of vast quantities of data even from the volume and source limited samples that can be obtained from human subjects. Continued advances in microfluidics, scalability and affordability of sequencing technologies, and development of data analysis tools have made the application of a multi-omics, or systems, approach more accessible for use outside of specialized centers. The study of alloimmune and protective immune responses after solid organ transplant offers innumerable opportunities for a multi-omics approach, however, transplant immunology labs are only just beginning to adopt the systems methodology. In this review, we focus on advances in biological techniques and how they are improving our understanding of the immune system and its interactions, highlighting potential applications in transplant immunology. First, we describe the techniques that are available, with emphasis on major advances that allow for increased scalability. Then, we review initial applications in the field of transplantation with a focus on topics that are nearing clinical integration. Finally, we examine major barriers to adapting these methods and discuss potential future developments.
Collapse
|
16
|
Li X, Zhou J, Zhang W, You W, Wang J, Zhou L, Liu L, Chen WW, Li H. Pan-Cancer Analysis Identifies Tumor Cell Surface Targets for CAR-T Cell Therapies and Antibody Drug Conjugates. Cancers (Basel) 2022; 14:cancers14225674. [PMID: 36428765 PMCID: PMC9688665 DOI: 10.3390/cancers14225674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor cells can be recognized through tumor surface antigens by immune cells and antibodies, which therefore can be used as drug targets for chimeric antigen receptor-T (CAR-T) therapies and antibody drug conjugates (ADCs). In this study, we aimed to identify novel tumor-specific antigens as targets for more effective and safer CAR-T cell therapies and ADCs. Here, we performed differential expression analysis of pan-cancer data obtained from the Cancer Genome Atlas (TCGA), and then performed a series of conditional screenings including Cox regression analysis, Pearson correlation analysis, and risk-score calculation to find tumor-specific cell membrane genes. A tumor tissue-specific and highly expressed gene set containing 3919 genes from 17 cancer types was obtained. Moreover, the prognostic roles of these genes and the functions of these highly expressed membrane proteins were assessed. Notably, 427, 584, 431 and 578 genes were identified as risk factors for LIHC, KIRC, UCEC, and KIRP, respectively. Functional enrichment analysis indicated that these tumor-specific surface proteins might confer tumor cells the ability to invade and metastasize. Furthermore, correlation analysis displayed that most overexpressed membrane proteins were positively correlated to each other. In addition, 371 target membrane protein-coding genes were sifted out by excluding proteins expressed in normal tissues. Apart from the identification of well-validated genes such as GPC3, MSLN and EGFR in the literature, we further confirmed the differential protein expression of 23 proteins: ADD2, DEF6, DOK3, ENO2, FMNL1, MICALL2, PARVG, PSTPIP1, FERMT1, PLEK2, CD109, GNG4, MAPT, OSBPL3, PLXNA1, ROBO1, SLC16A3, SLC26A6, SRGAP2, and TMEM65 in four types of tumors. In summary, our findings reveal novel tumor-specific antigens, which could be potentially used for next-generation CAR-T cell therapies and ADC discovery.
Collapse
Affiliation(s)
- Xinhui Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian Zhou
- Institute of Hepatology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiwen Zhang
- Department of Gynaecology and Obstetrics, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Wenhua You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Jun Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linlin Zhou
- College of Medical Sciences, Qingdao Binhai University, Qingdao 266555, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Wei-Wei Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Correspondence: (W.-W.C.); (H.L.)
| | - Hanjie Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Correspondence: (W.-W.C.); (H.L.)
| |
Collapse
|
17
|
Pan M, Li B. T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies. eLife 2022; 11:e81952. [PMID: 36350695 PMCID: PMC9683788 DOI: 10.7554/elife.81952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
T cells are potent at eliminating pathogens and playing a crucial role in the adaptive immune response. T cell receptor (TCR) convergence describes T cells that share identical TCRs with the same amino acid sequences but have different DNA sequences due to codon degeneracy. We conducted a systematic investigation of TCR convergence using single-cell immune profiling and bulk TCRβ-sequence (TCR-seq) data obtained from both mouse and human samples and uncovered a strong link between antigen-specificity and convergence. This association was stronger than T cell expansion, a putative indicator of antigen-specific T cells. By using flow-sorted tetramer+ single T cell data, we discovered that convergent T cells were enriched for a neoantigen-specific CD8+ effector phenotype in the tumor microenvironment. Moreover, TCR convergence demonstrated better prediction accuracy for immunotherapy response than the existing TCR repertoire indexes. In conclusion, convergent T cells are likely to be antigen-specific and might be a novel prognostic biomarker for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Mingyao Pan
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo Li
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
18
|
Huisman W, de Gier M, Hageman L, Shomuradova AS, Leboux DA, Amsen D, Falkenburg JF, Jedema I. Amino acids at position 5 in the peptide/MHC binding region of a public virus-specific TCR are completely inter-changeable without loss of function. Eur J Immunol 2022; 52:1819-1828. [PMID: 36189878 PMCID: PMC9828479 DOI: 10.1002/eji.202249975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Anti-viral T-cell responses are usually directed against a limited set of antigens, but often contain many T cells expressing different T-cell receptors (TCRs). Identical TCRs found within virus-specific T-cell populations in different individuals are known as public TCRs, but also TCRs highly-similar to these public TCRs, with only minor variations in amino acids on specific positions in the Complementary Determining Regions (CDRs), are frequently found. However, the degree of freedom at these positions was not clear. In this study, we used the HLA-A*02:01-restricted EBV-LMP2FLY -specific public TCR as model and modified the highly-variable position 5 of the CDR3β sequence with all 20 amino acids. Our results demonstrate that amino acids at this particular position in the CDR3β region of this TCR are completely inter-changeable, without loss of TCR function. We show that the inability to find certain variants in individuals is explained by their lower recombination probability rather than by steric hindrance.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of HematologyLeiden University Medical CenterThe Netherlands,Department of HematopoiesisSanquin Research and Landsteiner Laboratory for Blood Cell ResearchAmsterdamThe Netherlands
| | - Melanie de Gier
- Department of HematologyLeiden University Medical CenterThe Netherlands
| | - Lois Hageman
- Department of HematologyLeiden University Medical CenterThe Netherlands
| | - Alina S. Shomuradova
- Laboratory for Transplantation ImmunologyNational Research Center for HematologyMoscowRussia
| | | | - Derk Amsen
- Department of HematopoiesisSanquin Research and Landsteiner Laboratory for Blood Cell ResearchAmsterdamThe Netherlands
| | | | - Inge Jedema
- Department of HematologyLeiden University Medical CenterThe Netherlands
| |
Collapse
|
19
|
Ma K, Chai Y, Guan J, Tan S, Qi J, Kawana-Tachikawa A, Dong T, Iwamoto A, Shi Y, Gao GF. Molecular Basis for the Recognition of HIV Nef138-8 Epitope by a Pair of Human Public T Cell Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1652-1661. [PMID: 36130828 DOI: 10.4049/jimmunol.2200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the β-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.
Collapse
Affiliation(s)
- Keke Ma
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Guan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; and
| | - Aikichi Iwamoto
- Department of Research Promotion, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yi Shi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Frimpong A, Ofori MF, Degoot AM, Kusi KA, Gershom B, Quartey J, Kyei-Baafour E, Nguyen N, Ndifon W. Perturbations in the T cell receptor β repertoire during malaria infection in children: A preliminary study. Front Immunol 2022; 13:971392. [PMID: 36311775 PMCID: PMC9606469 DOI: 10.3389/fimmu.2022.971392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The changes occurring in the T cell repertoire during clinical malaria infection in children remain unknown. In this study, we undertook the first detailed comparative study of the T cell repertoire in African children with and without clinical malaria to test the hypothesis that clonotypic expansions that occur during P. falciparum infection will contribute to the generation of a T cell repertoire that is unique to each disease state. We profiled the complementarity-determining region 3 (CDR3) of the TCRβ chain sequences from children with Plasmodium falciparum infections (asymptomatic, uncomplicated and severe malaria) and compared these with sequences from healthy children. Interestingly, we discovered that children with symptomatic malaria have a lower TCR diversity and frequency of shared (or “public”) TCR sequences compared to asymptomatic children. Also, TCR diversity was inversely associated with parasitemia. Furthermore, by clustering TCR sequences based on their predicted antigen specificities, we identified a specificity cluster, with a 4-mer amino acid motif, that is overrepresented in the asymptomatic group compared to the diseased groups. Further investigations into this finding may help in delineating important antigenic targets for vaccine and therapeutic development. The results show that the T cell repertoire in children is altered during malaria, suggesting that exposure to P. falciparum antigens disrupts the adaptive immune response, which is an underlying feature of the disease.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- African Institute for Mathematical Sciences, Accra, Ghana
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| | - Michael Fokuo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abdoelnaser M. Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Buri Gershom
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jacob Quartey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
- African Institute for Mathematical Sciences, Cape Town, South Africa
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| |
Collapse
|
21
|
Garrido-Mesa J, Brown MA. T cell Repertoire Profiling and the Mechanism by which HLA-B27 Causes Ankylosing Spondylitis. Curr Rheumatol Rep 2022; 24:398-410. [PMID: 36197645 PMCID: PMC9666335 DOI: 10.1007/s11926-022-01090-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Purpose of Review Ankylosing spondylitis (AS) is strongly associated with the HLA-B27 gene. The canonical function of HLA-B27 is to present antigenic peptides to CD8 lymphocytes, leading to adaptive immune responses. The ‘arthritogenic peptide’ theory as to the mechanism by which HLA-B27 induces ankylosing spondylitis proposes that HLA-B27 presents peptides derived from exogenous sources such as bacteria to CD8 lymphocytes, which subsequently cross-react with antigens at the site of inflammation of the disease, causing inflammation. This review describes findings of studies in AS involving profiling of T cell expansions and discusses future research opportunities based on these findings. Recent Findings Consistent with this theory, there is an expanding body of data showing that expansion of a restricted pool of CD8 lymphocytes is found in most AS patients yet only in a small proportion of healthy HLA-B27 carriers. Summary These exciting findings strongly support the theory that AS is driven by presentation of antigenic peptides to the adaptive immune system by HLA-B27. They point to new potential approaches to identify the exogenous and endogenous antigens involved and to potential therapies for the disease.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, England
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, England.
- Genomics England, Charterhouse Square, London, EC1M 6BQ, England.
| |
Collapse
|
22
|
Zhuo Y, Yang X, Shuai P, Yang L, Wen X, Zhong X, Yang S, Xu S, Liu Y, Zhang Z. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood. Front Immunol 2022; 13:916430. [PMID: 36159829 PMCID: PMC9493076 DOI: 10.3389/fimmu.2022.916430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The adaptive immune system plays an important role in defending against different kinds of diseases, including infection and cancer. There has been a longtime need for a simple method to quantitatively evaluate the potency of adaptive immunity in our bodies. The tremendously diversified T-cell receptor (TCR) repertoires are the foundation of the adaptive immune system. In this study, we analyzed the expressed TCRβ repertoires in the peripheral blood of 582 healthy donors and 60 cancer patients. The TCR repertoire in each individual is different, with different usages of TCR Vβ and Jβ genes. Importantly, the TCR diversity and clonality change along with age and disease situation. Most elder individuals and cancer patients have elevated numbers of large TCRβ clones and reduced numbers of shared common clones, and thus, they have very low TCR diversity index (D50) values. These results reveal the alteration of the expressed TCRβ repertoire with aging and oncogenesis, and thus, we hypothesize that the TCR diversity and clonality in the peripheral blood might be used to evaluate and compare the adaptive immunities among different individuals in clinical practice.
Collapse
Affiliation(s)
- Yue Zhuo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangliang Yang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueping Wen
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Xuemei Zhong
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shihan Yang
- Department of Technology, Chengdu ExAb Biotechnology, LTD, Chengdu, China
| | - Shaoxian Xu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuping Liu
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| | - Zhixin Zhang
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Zhixin Zhang, ; Yuping Liu,
| |
Collapse
|
23
|
Tanaka Y, Sato T, Yagishita N, Yamauchi J, Araya N, Aratani S, Takahashi K, Kunitomo Y, Nagasaka M, Kanda Y, Uchimaru K, Morio T, Yamano Y. Potential role of HTLV-1 Tax-specific cytotoxic t lymphocytes expressing a unique t-cell receptor to promote inflammation of the central nervous system in myelopathy associated with HTLV-1. Front Immunol 2022; 13:993025. [PMID: 36081501 PMCID: PMC9446235 DOI: 10.3389/fimmu.2022.993025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 01/09/2023] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) infection causes two serious diseases: adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy (HAM). Immunological studies have revealed that HTLV-1 Tax-specific CD8+ cytotoxic T-cells (Tax-CTLs) in asymptomatic carriers (ACs) and ATL patients play an important role in the elimination of HTLV-1-infected host cells, whereas Tax-CTLs in HAM patients trigger an excessive immune response against HTLV-1-infected host cells infiltrating the central nervous system (CNS), leading to local inflammation. Our previous evaluation of HTLV-1 Tax301-309 (SFHSLHLLF)-specific Tax-CTLs (Tax301-309-CTLs) revealed that a unique T-cell receptor (TCR) containing amino acid (AA)-sequence motif PDR, was shared among HLA-A*24:02+ ACs and ATL patients and behaved as an eliminator by strong activity against HTLV-1. However, it remains unclear whether PDR+Tax301-309-CTLs also exist in HLA-A*24:02+ HAM patients and are involved in the pathogenesis of HAM. In the present study, by high-throughput TCR repertoire analysis technology, we revealed TCR repertoires of Tax301-309-CTLs in peripheral blood (PB) of HLA-A*24:02+ HAM patients were skewed, and a unique TCR-motif PDR was conserved in HAM patients (10 of 11 cases). The remaining case dominantly expressed (-DR, P-R, and PD-), which differed by one AA from PDR. Overall, TCRs with unique AA-sequence motifs PDR, or (-DR, P-R, and PD-) accounted for a total of 0.3-98.1% of Tax301-309-CTLs repertoires of HLA-A*24:02+ HAM patients. Moreover, TCR repertoire analysis of T-cells in the cerebrospinal fluid (CSF) from four HAM patients demonstrated the possibility that PDR+Tax301-309-CTLs and (-DR, P-R, and PD-)+Tax301-309-CTLs efficiently migrated and accumulated in the CSF of HAM patients fostering increased inflammation, although we observed no clear significant correlation between the frequencies of them in PB and the levels of CSF neopterin, a known disease activity biomarker of HAM. Furthermore, to better understand the potential function of PDR+Tax301-309-CTLs, we performed immune profiling by single-cell RNA-sequencing of Tax301-309-CTLs, and the result showed that PDR+Tax301-309-CTLs up-regulated the gene expression of natural killer cell marker KLRB1 (CD161), which may be associated with T-cell activation and highly cytotoxic potential of memory T-cells. These findings indicated that unique and shared PDR+Tax301-309-CTLs have a potential role in promoting local inflammation within the CNS of HAM patients.
Collapse
Affiliation(s)
- Yukie Tanaka
- Department of Molecular Microbiology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan,Research Core, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Satoko Aratani
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Advanced Business Promotion Department, Business Development Segment, LSI Medience Corporation, Tokyo, Japan
| | - Katsunori Takahashi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuo Kunitomo
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Misako Nagasaka
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan,Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, United States
| | - Yoshinobu Kanda
- Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan,Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Uchimaru
- Department of Hematology and Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan,*Correspondence: Yoshihisa Yamano,
| |
Collapse
|
24
|
Mitchell AM, Baschal EE, McDaniel KA, Simmons KM, Pyle L, Waugh K, Steck AK, Yu L, Gottlieb PA, Rewers MJ, Nakayama M, Michels AW. Temporal development of T cell receptor repertoires during childhood in health and disease. JCI Insight 2022; 7:161885. [PMID: 35998036 PMCID: PMC9675557 DOI: 10.1172/jci.insight.161885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-β chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.4 years) from children who progressed to T1D (n = 29) and age/sex-matched islet autoantibody-negative controls (n = 25). From 53 million TCR-β sequences, we show that the repertoire is extraordinarily diverse early in life and narrows with age independently of disease. We demonstrate the ability to identify specific TCR sequences, including those known to recognize influenza A and, separately, those specific for insulin and its precursor, preproinsulin. Insulin-reactive TCR-β sequences were more common and frequent in number as the disease progressed in those who developed T1D compared with genetically at risk nondiabetic children, and this was not the case for influenza-reactive sequences. As an independent validation, we sequenced and analyzed TCR-β repertoires from a cohort of new-onset T1D patients (n = 143), identifying the same preproinsulin-reactive TCRs. These results demonstrate an enrichment of preproinsulin-reactive TCR sequences during the progression to T1D, highlighting the importance of using disease-relevant TCR sequences as powerful biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Erin E Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Kristen A McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Laura Pyle
- Department of Biostatistics and Informatics, University of Colorado School of Pubic Health, Aurora, United States of America
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, United States of America
| |
Collapse
|
25
|
Grace BE, Backlund CM, Morgan DM, Kang BH, Singh NK, Huisman BD, Rappazzo CG, Moynihan KD, Maiorino L, Dobson CS, Kyung T, Gordon KS, Holec PV, Mbah OCT, Garafola D, Wu S, Love JC, Wittrup KD, Irvine DJ, Birnbaum ME. Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma. Front Immunol 2022; 13:886683. [PMID: 35812387 PMCID: PMC9260506 DOI: 10.3389/fimmu.2022.886683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.
Collapse
Affiliation(s)
- Beth E. Grace
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Coralie M. Backlund
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Byong H. Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nishant K. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Brooke D. Huisman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - C. Garrett Rappazzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Connor S. Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Khloe S. Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick V. Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- *Correspondence: Michael E. Birnbaum,
| |
Collapse
|
26
|
Kanduri C, Pavlović M, Scheffer L, Motwani K, Chernigovskaya M, Greiff V, Sandve GK. Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification. Gigascience 2022; 11:giac046. [PMID: 35639633 PMCID: PMC9154052 DOI: 10.1093/gigascience/giac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Machine learning (ML) methodology development for the classification of immune states in adaptive immune receptor repertoires (AIRRs) has seen a recent surge of interest. However, so far, there does not exist a systematic evaluation of scenarios where classical ML methods (such as penalized logistic regression) already perform adequately for AIRR classification. This hinders investigative reorientation to those scenarios where method development of more sophisticated ML approaches may be required. RESULTS To identify those scenarios where a baseline ML method is able to perform well for AIRR classification, we generated a collection of synthetic AIRR benchmark data sets encompassing a wide range of data set architecture-associated and immune state-associated sequence patterns (signal) complexity. We trained ≈1,700 ML models with varying assumptions regarding immune signal on ≈1,000 data sets with a total of ≈250,000 AIRRs containing ≈46 billion TCRβ CDR3 amino acid sequences, thereby surpassing the sample sizes of current state-of-the-art AIRR-ML setups by two orders of magnitude. We found that L1-penalized logistic regression achieved high prediction accuracy even when the immune signal occurs only in 1 out of 50,000 AIR sequences. CONCLUSIONS We provide a reference benchmark to guide new AIRR-ML classification methodology by (i) identifying those scenarios characterized by immune signal and data set complexity, where baseline methods already achieve high prediction accuracy, and (ii) facilitating realistic expectations of the performance of AIRR-ML models given training data set properties and assumptions. Our study serves as a template for defining specialized AIRR benchmark data sets for comprehensive benchmarking of AIRR-ML methods.
Collapse
Affiliation(s)
- Chakravarthi Kanduri
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo 0373, Norway
| | - Milena Pavlović
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo 0373, Norway
| | - Lonneke Scheffer
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo 0373, Norway
| | - Keshav Motwani
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida,
FL 32610, USA
| | - Maria Chernigovskaya
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, 0372, Norway
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, 0372, Norway
| | - Geir K Sandve
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo 0373, Norway
| |
Collapse
|
27
|
Huisman W, Hageman L, Leboux DAT, Khmelevskaya A, Efimov GA, Roex MCJ, Amsen D, Falkenburg JHF, Jedema I. Public T-Cell Receptors (TCRs) Revisited by Analysis of the Magnitude of Identical and Highly-Similar TCRs in Virus-Specific T-Cell Repertoires of Healthy Individuals. Front Immunol 2022; 13:851868. [PMID: 35401538 PMCID: PMC8987591 DOI: 10.3389/fimmu.2022.851868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 01/11/2023] Open
Abstract
Since multiple different T-cell receptor (TCR) sequences can bind to the same peptide-MHC combination and the number of TCR-sequences that can theoretically be generated even exceeds the number of T cells in a human body, the likelihood that many public identical (PUB-I) TCR-sequences frequently contribute to immune responses has been estimated to be low. Here, we quantitatively analyzed the TCR-repertoires of 190 purified virus-specific memory T-cell populations, directed against 21 epitopes of Cytomegalovirus, Epstein-Barr virus and Adenovirus isolated from 29 healthy individuals, and determined the magnitude, defined as prevalence within the population and frequencies within individuals, of PUB-I TCR and of TCR-sequences that are highly-similar (PUB-HS) to these PUB-I TCR-sequences. We found that almost one third of all TCR nucleotide-sequences represented PUB-I TCR amino-acid (AA) sequences and found an additional 12% of PUB-HS TCRs differing by maximally 3 AAs. We illustrate that these PUB-I and PUB-HS TCRs were structurally related and contained shared core-sequences in their TCR-sequences. We found a prevalence of PUB-I and PUB-HS TCRs of up to 50% among individuals and showed frequencies of virus-specific PUB-I and PUB-HS TCRs making up more than 10% of each virus-specific T-cell population. These findings were confirmed by using an independent TCR-database of virus-specific TCRs. We therefore conclude that the magnitude of the contribution of PUB-I and PUB-HS TCRs to these virus-specific T-cell responses is high. Because the T cells from these virus-specific memory TCR-repertoires were the result of successful control of the virus in these healthy individuals, these PUB-HS TCRs and PUB-I TCRs may be attractive candidates for immunotherapy in immunocompromised patients that lack virus-specific T cells to control viral reactivation.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Didier A T Leboux
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Khmelevskaya
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Grigory A Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Marthe C J Roex
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
28
|
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, Serdyuk Y, Dianov DV, Efimov GA, Pierce BG, Mariuzza RA. Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun 2022; 13:19. [PMID: 35013235 PMCID: PMC8748687 DOI: 10.1038/s41467-021-27669-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- K562 Cells
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Surface Plasmon Resonance/methods
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alexander Kolesnikov
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Johnathan D Guest
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Simnica D, Schultheiß C, Mohme M, Paschold L, Willscher E, Fitzek A, Püschel K, Matschke J, Ciesek S, Sedding DG, Zhao Y, Gagliani N, Maringer Y, Walz JS, Heide J, Schulze-Zur-Wiesch J, Binder M. Landscape of T-cell repertoires with public COVID-19-associated T-cell receptors in pre-pandemic risk cohorts. Clin Transl Immunology 2021; 10:e1340. [PMID: 34484739 PMCID: PMC8401425 DOI: 10.1002/cti2.1340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/27/2021] [Accepted: 08/15/2021] [Indexed: 01/19/2023] Open
Abstract
Objectives T cells have an essential role in the antiviral defence. Public T-cell receptor (TCR) clonotypes are expanded in a substantial proportion of COVID-19 patients. We set out to exploit their potential use as read-out for COVID-19 T-cell immune responses. Methods We searched for COVID-19-associated T-cell clones with public TCRs, as defined by identical complementarity-determining region 3 (CDR3) beta chain amino acid sequence that can be reproducibly detected in the blood of COVID-19 patients. Of the different clonotype identification algorithms used in this study, deep sequencing of brain tissue of five patients with fatal COVID-19 delivered 68 TCR clonotypes with superior representation across 140 immune repertoires of unrelated COVID-19 patients. Results Mining of immune repertoires from subjects not previously exposed to the virus showed that these clonotypes can be found in almost 20% of pre-pandemic immune repertoires of healthy subjects, with lower representation in repertoires from risk groups like individuals above the age of 60 years or patients with cancer. Conclusion Together, our data show that at least a proportion of the SARS-CoV-2 T-cell response is mediated by public TCRs that are present in repertoires of unexposed individuals. The lower representation of these clones in repertoires of risk groups or failure to expand such clones may contribute to more unfavorable clinical COVID-19 courses.
Collapse
Affiliation(s)
- Donjete Simnica
- Department of Internal Medicine IV Oncology/Hematology Martin-Luther-University Halle-Wittenberg Halle (Saale) Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV Oncology/Hematology Martin-Luther-University Halle-Wittenberg Halle (Saale) Germany
| | - Malte Mohme
- Department of Neurosurgery University Medical Center Hamburg-Eppendorf (UKE) Hamburg Germany
| | - Lisa Paschold
- Department of Internal Medicine IV Oncology/Hematology Martin-Luther-University Halle-Wittenberg Halle (Saale) Germany
| | - Edith Willscher
- Department of Internal Medicine IV Oncology/Hematology Martin-Luther-University Halle-Wittenberg Halle (Saale) Germany
| | - Antonia Fitzek
- Institute of Legal Medicine University Medical Center Hamburg-Eppendorf (UKE) Hamburg Germany
| | - Klaus Püschel
- Institute of Legal Medicine University Medical Center Hamburg-Eppendorf (UKE) Hamburg Germany
| | - Jakob Matschke
- Department of Neuropathology University Medical Center Hamburg-Eppendorf (UKE) Hamburg Germany
| | - Sandra Ciesek
- Institute of Medical Virology University Hospital Frankfurt Frankfurt am Main Germany
| | - Daniel G Sedding
- Mid-German Heart Center Department of Cardiology and Intensive Care Medicine University Hospital Martin Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Yu Zhao
- III. Department of Medicine Division of Translational Immunology University Medical Center Hamburg-Eppendorf Hamburg Germany.,Institute of Medical Systems Biology University Medical Center Hamburg-Eppendorf Hamburg Germany.,Hamburg Center for Translational Immunology (HCTI) University Medical Center Hamburg-Eppendorf Hamburg Germany.,Center for Biomedical AI University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI) University Medical Center Hamburg-Eppendorf Hamburg Germany.,I. Department of Medicine and Department for General Visceral and Thoracic Surgery Hamburg Germany.,Immunology and Allergy Unit Department of Medicine Solna Karolinska Institute and University Hospital Stockholm Sweden
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology German Cancer Consortium (DKTK) Department of Internal Medicine University Hospital Tübingen Tübingen Germany.,Institute for Cell Biology Department of Immunology University of Tübingen Tübingen Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies" University of Tübingen Tübingen Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology German Cancer Consortium (DKTK) Department of Internal Medicine University Hospital Tübingen Tübingen Germany.,Institute for Cell Biology Department of Immunology University of Tübingen Tübingen Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies" University of Tübingen Tübingen Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT) Stuttgart Germany
| | - Janna Heide
- I. Department of Medicine (with section Gastroenterology and Infectious Diseases) University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Julian Schulze-Zur-Wiesch
- I. Department of Medicine (with section Gastroenterology and Infectious Diseases) University Medical Center Hamburg-Eppendorf Hamburg Germany
| | - Mascha Binder
- Department of Internal Medicine IV Oncology/Hematology Martin-Luther-University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
30
|
Zhang J, Wang Y, Yu H, Chen G, Wang L, Liu F, Yuan J, Ni Q, Xia X, Wan Y. Mapping the spatial distribution of T cells in repertoire dimension. Mol Immunol 2021; 138:161-171. [PMID: 34428621 DOI: 10.1016/j.molimm.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/01/2021] [Accepted: 08/15/2021] [Indexed: 01/13/2023]
Abstract
T cells mediate adaptive immunity in diverse anatomic compartments through recognition of specific antigens via unique T cell receptor (TCR) structures. However, little is known about the spatial distribution of an organism's TCR repertoire. Here, using high-throughput TCR sequencing (TCRseq), we investigated the TCR repertoires of sixteen tissues in healthy C57B/L6 mice. We found that TCR repertoires generally classified into three categories (lymph nodes, non-lymph node tissues and small intestine) based on sequence similarity. Clonal distribution and diversity analyses showed that small intestine compartment had a more skewed repertoire as compared to lymph nodes and non-lymph node tissues. However, analysis of TRBV and TRBJ gene usage across tissue compartments, as well as comparison of CDR3 length distributions, showed no significant tissue-dependent differences. Interestingly, analysis of clonotype sharing between mice showed that although non-redundant public clonotypes were found more easily in lymph nodes, small intestinal CD4 + T cells harbored more abundant public clonotypes. These findings under healthy physiological conditions offer an important reference dataset, which may contribute to our ability to better manipulate T cell responses against infection and vaccination.
Collapse
Affiliation(s)
- Junying Zhang
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China
| | - Yu Wang
- Zunyi Medical University, Zunyi, 563003, China
| | - Haili Yu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Fang Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jiangbei Yuan
- Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong Province, 518036, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China.
| | - Xuefeng Xia
- School of Pharmaceutical Sciences and Innovative Drug Research Center, Chongqing University, Chongqing, 401331, China.
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China; School of Big Data & Software Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
31
|
Lamacchia C, Calderin Sollet Z, Courvoisier D, Mongin D, Palmer G, Studer O, Gabay C, Villard J, Buhler S, Finckh A. Detection of circulating highly expanded T-cell clones in at-risk individuals for rheumatoid arthritis before the clinical onset of the disease. Rheumatology (Oxford) 2021; 60:3451-3460. [PMID: 33291148 DOI: 10.1093/rheumatology/keaa790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES To quantitatively profile the T-cell repertoire in the peripheral blood of individuals genetically at risk for RA, namely first-degree relatives of RA patients (RA-FDR) at different phases of disease development. METHODS Next-generation sequencing of the TCR CDR3β repertoire was performed on genomic DNA isolated from whole blood samples of RA-FDR selected at three different pre-clinical stages and of matched RA patients (n = 20/group). T-cell clones were identified by their unique sequence and their degree of expansion (frequency) within each sample was characterized. Clones with a frequency over 0.5% were considered highly expanded clones (HEC). RESULTS The absolute number of HEC was significantly higher in established RA patients (mean 4.65) and tended to be higher in symptomatic RA-FDR (mean 3.4) compared with asymptomatic RA-FDR (mean 1.55, P =0.003 and P =0.07, respectively). Asymptomatic individuals with high levels of ACPA did not differ from asymptomatic RA-FDR in terms of absolute number and frequency of clones. The number of HEC tended to be slightly higher at the time of RA onset (P =0.055). Neither clones shared by several patients, nor clones previously associated with RA, were preferentially present within or between the different groups. Finally, a longitudinal analysis did not allow to uncover a kinetic expansion of RA-specific clones closely correlated with disease development. CONCLUSIONS HEC were detected in the peripheral blood before the clinical onset of RA, in particular in the later pre-clinical phase of RA development, and their presence increased over time.
Collapse
Affiliation(s)
- Céline Lamacchia
- Division of Rheumatology, Department of Internal Medicine Specialities
| | - Zuleika Calderin Sollet
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals
| | | | - Denis Mongin
- Division of Rheumatology, Department of Internal Medicine Specialities
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialities.,Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Oliva Studer
- Division of Rheumatology, Department of Internal Medicine Specialities
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialities.,Department of Pathology-Immunology, University of Geneva School of Medicine, Geneva, Switzerland
| | - Jean Villard
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals
| | - Stéphane Buhler
- Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Diagnostic, Geneva University Hospitals
| | - Axel Finckh
- Division of Rheumatology, Department of Internal Medicine Specialities
| |
Collapse
|
32
|
Mazouz S, Boisvert M, Abdel-Hakeem MS, Khedr O, Bruneau J, Shoukry NH. Expansion of Unique Hepatitis C Virus-Specific Public CD8 + T Cell Clonotypes during Acute Infection and Reinfection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1180-1193. [PMID: 34341170 DOI: 10.4049/jimmunol.2001386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-β V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.
Collapse
Affiliation(s)
- Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Omar Khedr
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Département de Médecine Familiale et de Médecine d'Urgence, Université de Montréal, Montreal, Quebec, Canada; and
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; .,Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Smith NP, Ruiter B, Virkud YV, Tu AA, Monian B, Moon JJ, Love JC, Shreffler WG. Identification of antigen-specific TCR sequences based on biological and statistical enrichment in unselected individuals. JCI Insight 2021; 6:140028. [PMID: 34032640 PMCID: PMC8410028 DOI: 10.1172/jci.insight.140028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent advances in high-throughput T cell receptor (TCR) sequencing have allowed for new insights into the human TCR repertoire. However, methods for capturing antigen-specific repertoires remain an area of development. Here, we describe a potentially novel approach that utilizes both a biological and statistical enrichment to define putatively antigen-specific complementarity-determining region 3 (CDR3) repertoires in unselected individuals. The biological enrichment entailed FACS of in vitro antigen-activated memory CD4+ T cells, followed by TCRβ sequencing. The resulting TCRβ sequences were then filtered by selecting those that are statistically enriched when compared with their frequency in the autologous resting T cell compartment. Applying this method to define putatively peanut protein-specific repertoires in 27 peanut-allergic individuals resulted in a library of 7345 unique CDR3β amino acid sequences that had similar characteristics to other validated antigen-specific repertoires in terms of homology and diversity. In-depth analysis of these CDR3βs revealed 36 public sequences that demonstrated high levels of convergent recombination. In a network analysis, the public CDR3βs were shown to be core sequences with more edges than their private counterparts. This method has the potential to be applied to a wide range of T cell-mediated disorders and to yield new biomarkers and biological insights.
Collapse
Affiliation(s)
- Neal P. Smith
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bert Ruiter
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Yamini V. Virkud
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ang A. Tu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brinda Monian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James J. Moon
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wayne G. Shreffler
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
35
|
Zhao L, Ren L, Gao S, Wang J, Li X, Zhang L, Zhu Y, Li H. Tumor immunology in the age of single-cell genomics. J Leukoc Biol 2021; 110:1069-1079. [PMID: 34184318 DOI: 10.1002/jlb.5mr0321-170r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapies that were developed based on our understandings of tumor immunology have revolutionized cancer treatment. However, the success of immunotherapy is eclipsed by several grand challenges, including low response rate, intrinsic/acquired resistance and adverse effects. While a deeper understanding of the interaction between tumor and our immune system, especially the tumor immune niche, is essential to overcome those challenges, we are limited by the fact that most of our knowledge about tumor immunology is based on studies analyzing bulk populations of cells, which are often unable to fully characterize the various cell types and states engaged in immune cell functions. The advent of cutting single-cell genomic technologies empowers us to dissect the tumor immune niche in a genome-wide and spatially resolved manner in single cells, trace their clonal histories, and unveil their regulatory circuits. Future studies on tumor immunology in the age of single-cell genomics, therefore, hold the promise to develop more effective and precise immunotherapies for human cancers. In this perspective, we will discuss how advanced single-cell genomics approaches will revolutionize tumor immunology research and immunotherapies by catering the demand in the field of tumor immunology.
Collapse
Affiliation(s)
- Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Zhang
- Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen, China
| | - Yuanyuan Zhu
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanjie Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
36
|
Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS, Choudhury D, Zhang J, Aparicio L, Bom S, Rashid R, Caushi JX, Hsiue EHC, Cascino K, Thompson EA, Kwaa AK, Singh D, Thapa S, Ordonez AA, Pekosz A, D'Alessio FR, Powell JD, Yegnasubramanian S, Zhou S, Pardoll DM, Ji H, Cox AL, Blankson JN, Smith KN. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J Clin Invest 2021; 131:146922. [PMID: 33830946 DOI: 10.1172/jci146922] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC crossreactivity and assessments of functional avidity were performed using a TCR cloning and transfection system.RESULTSMemory CD4+ T cell clonotypes that crossrecognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Crossreactive T cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to monospecific CD4+ T cells, which was consistent with lower functional avidity of their TCRs for SARS-CoV-2 relative to CCC.CONCLUSIONSOur data confirm, for what we believe is the first time, the existence of unique memory CD4+ T cell clonotypes crossrecognizing SARS-CoV-2 and CCCs. The lower avidity of crossreactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that preexisting CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these crossreactive T cell responses affect clinical outcomes in COVID-19 patients.FUNDINGNIH funding (U54CA260492, P30CA006973, P41EB028239, R01AI153349, R01AI145435-A1, R21AI149760, and U19A1088791) was provided by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, and the National Institute of Biomedical Imaging and Bioengineering. The Bloomberg~Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University Provost, and The Bill and Melinda Gates Foundation provided funding for this study.
Collapse
Affiliation(s)
- Arbor G Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Boyang Zhang
- Department of Biostatistics, School of Public Health
| | | | | | - Laurene S Cheung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Dilshad Choudhury
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Jiajia Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Luis Aparicio
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sadhana Bom
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Rufiaat Rashid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Justina X Caushi
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Emily Han-Chung Hsiue
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | | | - Elizabeth A Thompson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Dipika Singh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sampriti Thapa
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Shibin Zhou
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health
| | - Andrea L Cox
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Department of Medicine, School of Medicine, and
| | | | - Kellie N Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| |
Collapse
|
37
|
Nelson ND, Meng W, Rosenfeld AM, Bullman S, Sekhar Pedamallu C, Nomburg JL, Wertheim GB, Paessler ME, Pinkus G, Hornick JL, Meyerson M, Luning Prak ET, Pillai V. Characterization of Plasmacytoid Dendritic Cells, Microbial Sequences, and Identification of a Candidate Public T-Cell Clone in Kikuchi-Fujimoto Disease. Pediatr Dev Pathol 2021; 24:193-205. [PMID: 33530869 DOI: 10.1177/1093526620987961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Kikuchi-Fujimoto disease (KFD) is a self-limited lymphadenitis of unclear etiology. We aimed to further characterize this disease in pediatric patients, including evaluation of the CD123 immunohistochemical (IHC) staining and investigation of potential immunologic and infectious causes. METHODS Seventeen KFD cases and 12 controls were retrospectively identified, and the histologic and clinical features were evaluated. CD123 IHC staining was quantified by digital image analysis. Next generation sequencing was employed for comparative microbial analysis via RNAseq (5 KFD cases) and to evaluate the immune repertoire (9 KFD cases). RESULTS In cases of lymphadenitis with necrosis, >0.85% CD123+ cells by IHC was found to be six times more likely in cases with a final diagnosis of KFD (sensitivity 75%, specificity 87.5%). RNAseq based comparative microbial analysis did not detect novel or known pathogen sequences in KFD. A shared complementarity determining region 3 (CDR3) sequence and use of the same T-cell receptor beta variable region family was identified in KFD LNs but not controls, and was not identified in available databases. CONCLUSIONS Digital quantification of CD123 IHC can distinguish KFD from other necrotizing lymphadenitides. The presence of a unique shared CDR3 sequence suggests that a shared antigen underlies KFD pathogenesis.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan Bullman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chandra Sekhar Pedamallu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason L Nomburg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michele E Paessler
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Geraldine Pinkus
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew Meyerson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Bhatt D, Kang B, Sawant D, Zheng L, Perez K, Huang Z, Sekirov L, Wolak D, Huang JY, Liu X, DeVoss J, Manzanillo PS, Pierce N, Zhang Z, Symons A, Ouyang W. STARTRAC analyses of scRNAseq data from tumor models reveal T cell dynamics and therapeutic targets. J Exp Med 2021; 218:212026. [PMID: 33900375 PMCID: PMC8077174 DOI: 10.1084/jem.20201329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Single-cell RNA sequencing is a powerful tool to examine cellular heterogeneity, novel markers and target genes, and therapeutic mechanisms in human cancers and animal models. Here, we analyzed single-cell RNA sequencing data of T cells obtained from multiple mouse tumor models by PCA-based subclustering coupled with TCR tracking using the STARTRAC algorithm. This approach revealed various differentiated T cell subsets and activation states, and a correspondence of T cell subsets between human and mouse tumors. STARTRAC analyses demonstrated peripheral T cell subsets that were developmentally connected with tumor-infiltrating CD8+ cells, CD4+ Th1 cells, and T reg cells. In addition, large amounts of paired TCRα/β sequences enabled us to identify a specific enrichment of paired public TCR clones in tumor. Finally, we identified CCR8 as a tumor-associated T reg cell marker that could preferentially deplete tumor-associated T reg cells. We showed that CCR8-depleting antibody treatment provided therapeutic benefit in CT26 tumors and synergized with anti–PD-1 treatment in MC38 and B16F10 tumor models.
Collapse
Affiliation(s)
- Dev Bhatt
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Boxi Kang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Deepali Sawant
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Liangtao Zheng
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Kristy Perez
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Zhiyu Huang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Laura Sekirov
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Dan Wolak
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Julie Y Huang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Xian Liu
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Jason DeVoss
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Paolo S Manzanillo
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Nathan Pierce
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Zemin Zhang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| | - Antony Symons
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Research, Amgen, South San Francisco, CA
| |
Collapse
|
39
|
Baptista MJ, Baskar S, Gaglione EM, Keyvanfar K, Ahn IE, Wiestner A, Sun C. Select Antitumor Cytotoxic CD8 + T Clonotypes Expand in Patients with Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4624-4633. [PMID: 33875521 DOI: 10.1158/1078-0432.ccr-20-4894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), the T-cell receptor (TCR) repertoire is skewed and tumor-derived antigens are hypothesized as drivers of oligoclonal expansion. Ibrutinib, a standard treatment for CLL, inhibits not only Bruton tyrosine kinase of the B-cell receptor signaling pathway, but also IL2-inducible kinase of the TCR signaling pathway. T-cell polarization and activation are affected by ibrutinib, but it is unknown whether T cells contribute to clinical response. EXPERIMENTAL DESIGN High-throughput TCRβ sequencing was performed in 77 longitudinal samples from 26 patients with CLL treated with ibrutinib. TCRβ usage in CD4+ and CD8+ T cells and granzyme B expression were assessed by flow cytometric analysis. Antitumor cytotoxicity of T cells expanded with autologous CLL cells or with antigen-independent anti-CD3/CD28/CD137 beads was tested. RESULTS The clonality of the TCR repertoire increased at the time of response. With extended treatment, TCR clonality remained stable in patients with sustained remission and decreased in patients with disease progression. Expanded clonotypes were rarely shared between patients, indicating specificity for private antigens. Flow cytometry demonstrated a predominance of CD8+ cells among expanded clonotypes. Importantly, bulk T cells from responding patients were cytotoxic against autologous CLL cells in vitro and selective depletion of major expanded clonotypes reduced CLL cell killing. CONCLUSIONS In patients with CLL, established T-cell responses directed against tumor are suppressed by disease and reactivated by ibrutinib.See related commentary by Zent, p. 4465.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.,Lymphoid Neoplasms, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
40
|
Yiu HH, Schoettle LN, Garcia‐Neuer M, Blattman JN, Johnson PLF. Selection influences naive CD8+ TCR-β repertoire sharing. Immunology 2021; 162:464-475. [PMID: 33345304 PMCID: PMC7968400 DOI: 10.1111/imm.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 11/28/2022] Open
Abstract
Within each individual, the adaptive immune system generates a repertoire of cells expressing receptors capable of recognizing diverse potential pathogens. The theoretical diversity of the T-cell receptor (TCR) repertoire exceeds the actual size of the T-cell population in an individual by several orders of magnitude - making the observation of identical TCRs in different individuals extremely improbable if all receptors were equally likely. Despite this disparity between the theoretical and the realized diversity of the repertoire, these 'public' receptor sequences have been identified in autoimmune, cancer and pathogen interaction contexts. Biased generation processes explain the presence of public TCRs in the naive repertoire, but do not adequately explain the different abundances of these public TCRs. We investigate and characterize the distribution of genomic TCR-β sequences of naive CD8+ T cells from three genetically identical mice, comparing non-productive (non-functional sequences) and productive sequences. We find public TCR-β sequences at higher abundances compared with unshared sequences in the productive, but not in the non-productive, repertoire. We show that neutral processes such as recombination biases, codon degeneracy and generation probability do not fully account for these differences, and conclude that thymic or peripheral selection plays an important role in increasing the abundances of public TCR-β sequences.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/physiology
- Cells, Cultured
- Clonal Selection, Antigen-Mediated
- Codon Usage
- Genes, T-Cell Receptor beta/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Hao H. Yiu
- Department of BiologyUniversity of MarylandCollege ParkMDUSA
| | - Louis N. Schoettle
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Marlene Garcia‐Neuer
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | - Joseph N. Blattman
- School of Life SciencesThe Biodesign InstituteArizona State UniversityTempeAZUSA
| | | |
Collapse
|
41
|
Yohannes DA, Kaukinen K, Kurppa K, Saavalainen P, Greco D. Clustering based approach for population level identification of condition-associated T-cell receptor β-chain CDR3 sequences. BMC Bioinformatics 2021; 22:159. [PMID: 33765908 PMCID: PMC7993519 DOI: 10.1186/s12859-021-04087-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Deep immune receptor sequencing, RepSeq, provides unprecedented opportunities for identifying and studying condition-associated T-cell clonotypes, represented by T-cell receptor (TCR) CDR3 sequences. However, due to the immense diversity of the immune repertoire, identification of condition relevant TCR CDR3s from total repertoires has mostly been limited to either "public" CDR3 sequences or to comparisons of CDR3 frequencies observed in a single individual. A methodology for the identification of condition-associated TCR CDR3s by direct population level comparison of RepSeq samples is currently lacking. RESULTS We present a method for direct population level comparison of RepSeq samples using immune repertoire sub-units (or sub-repertoires) that are shared across individuals. The method first performs unsupervised clustering of CDR3s within each sample. It then finds matching clusters across samples, called immune sub-repertoires, and performs statistical differential abundance testing at the level of the identified sub-repertoires. It finally ranks CDR3s in differentially abundant sub-repertoires for relevance to the condition. We applied the method on total TCR CDR3β RepSeq datasets of celiac disease patients, as well as on public datasets of yellow fever vaccination. The method successfully identified celiac disease associated CDR3β sequences, as evidenced by considerable agreement of TRBV-gene and positional amino acid usage patterns in the detected CDR3β sequences with previously known CDR3βs specific to gluten in celiac disease. It also successfully recovered significantly high numbers of previously known CDR3β sequences relevant to each condition than would be expected by chance. CONCLUSION We conclude that immune sub-repertoires of similar immuno-genomic features shared across unrelated individuals can serve as viable units of immune repertoire comparison, serving as proxy for identification of condition-associated CDR3s.
Collapse
Affiliation(s)
- Dawit A Yohannes
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Katri Kaukinen
- Department of Internal Medicine, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Kalle Kurppa
- Department of Pediatrics, Tampere University Hospital and Center for Child Health Research, Tampere University, Tampere, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Translational Immunology, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,BioMediTech Institute, Tampere University, Tampere, Finland. .,Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
42
|
Heikkilä N, Sormunen S, Mattila J, Härkönen T, Knip M, Ihantola EL, Kinnunen T, Mattila IP, Saramäki J, Arstila TP. Generation of self-reactive, shared T-cell receptor α chains in the human thymus. J Autoimmun 2021; 119:102616. [PMID: 33652347 DOI: 10.1016/j.jaut.2021.102616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
The T-cell receptor (TCR) repertoire is generated in a semistochastic process of gene recombination and pairing of TCRα to TCRβ chains with the estimated total TCR diversity of >108. Despite this high diversity, similar or identical TCR chains are found to recur in immune responses. Here, we analyzed the thymic generation of TCR sequences previously associated with recognition of self- and nonself-antigens, represented by sequences associated with autoimmune diabetes and HIV, respectively. Unexpectedly, in the CD4+ compartment TCRα chains associated with the recognition of self-antigens were generated in significantly higher numbers than TCRα chains associated with the recognition of nonself-antigens. The analysis of the circulating repertoire further showed that these chains are not lost in negative selection nor predominantly converted to the regulatory T-cell lineage. The high abundance of self-reactive TCRα chains in multiple individuals suggests that the human thymus has a predilection to generate self-reactive TCRα chains independently of the HLA-type and that the individual risk of autoimmunity may be modulated by the TCRβ repertoire associated with these chains.
Collapse
Affiliation(s)
- Nelli Heikkilä
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Silja Sormunen
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - Joonatan Mattila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland; Folkhälsan Research Center, Topeliuksenkatu 25, 00250, Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, Elämänaukio 2, 33520, Tampere, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Puijonlaaksontie 2, 70210, Kuopio, Finland; Eastern Finland Laboratory Centre (ISLAB), Puijonlaaksontie 2, 70210, Kuopio, Finland
| | - Ilkka P Mattila
- Department of Pediatric Cardiac and Transplantation Surgery, Hospital for Children and Adolescents, Helsinki University Central Hospital, Stenbäckinkatu 9, 00290, Helsinki, Finland
| | - Jari Saramäki
- Department of Computer Science, Aalto University, Konemiehenkatu 2, 02150, Espoo, Finland
| | - T Petteri Arstila
- Research Programs Unit, Translational Immunology, and Medicum, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland
| |
Collapse
|
43
|
Nozuma S, Enose-Akahata Y, Johnson KR, Monaco MC, Ngouth N, Elkahloun A, Ohayon J, Zhu J, Jacobson S. Immunopathogenic CSF TCR repertoire signatures in virus-associated neurologic disease. JCI Insight 2021; 6:144869. [PMID: 33616082 PMCID: PMC7934934 DOI: 10.1172/jci.insight.144869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined and characterized disease-specific TCR signatures in cerebrospinal fluid (CSF) of patients with HTLV-1–associated myelopathy/tropical spastic paraparesis (HAM/TSP). TCR β libraries using unique molecular identifier–based methodologies were sequenced in paired peripheral blood mononuclear cells (PBMCs) and CSF cells from HAM/TSP patients and normal healthy donors (NDs). The sequence analysis demonstrated that TCR β repertoires in CSF of HAM/TSP patients were highly expanded and contained both TCR clonotypes shared with PBMCs and uniquely enriched within the CSF. In addition, we analyzed TCR β repertoires of highly expanded and potentially immunopathologic HTLV-1 Tax11-19–specific CD8+ T cells from PBMCs of HLA-A*0201+ HAM/TSP and identified a conserved motif (PGLAG) in the CDR3 region. Importantly, TCR β clonotypes of expanded clones in HTLV-1 Tax11-19–specific CD8+ T cells were also expanded and enriched in the CSF of the same patient. These results suggest that exploring TCR repertoires of CSF and antigen-specific T cells may provide a TCR repertoire signature in virus-associated neurologic disorders.
Collapse
Affiliation(s)
| | | | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | | | - Nyater Ngouth
- Viral Immunology Section, Neuroimmunology Branch and
| | - Abdel Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Jun Zhu
- Mokobio Biotechnology R&D Center, Rockville, Maryland, USA
| | | |
Collapse
|
44
|
Foth S, Völkel S, Bauersachs D, Zemlin M, Skevaki C. T Cell Repertoire During Ontogeny and Characteristics in Inflammatory Disorders in Adults and Childhood. Front Immunol 2021; 11:611573. [PMID: 33633732 PMCID: PMC7899981 DOI: 10.3389/fimmu.2020.611573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first day of life, a newborn has to deal with various pathogens from the environment. While passive immune protection is provided by diaplacental maternal antibodies, the development of cellular immunity is ongoing. A mature immune system should be able not only to defend against pathogens, but should also be able to differentiate between self- and non-self-antigens. Dysregulation in the development of cellular immunity can lead to severe disorders like immunodeficiency, autoimmunity and chronic inflammation. In this review, we explain the role of T cell immunity in antigen detection and summarize the characteristics of a mature TCR repertoire as well as the current state of knowledge about the development of the TCR repertoire in ontogenesis. In addition, methods of assessments are outlined, with a focus on the advantages and disadvantages of advanced methods such as next generation sequencing. Subsequently, we provide an overview of various disorders occuring in early childhood like immunodeficiencies, autoimmunity, allergic diseases and chronic infections and outline known changes in the TCR repertoire. Finally, we summarize the latest findings and discuss current research gaps as well as potential future developments.
Collapse
Affiliation(s)
- Svenja Foth
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Sara Völkel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Daniel Bauersachs
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
45
|
Philip H, Snir T, Gordin M, Shugay M, Zilberberg A, Efroni S. A T cell repertoire timestamp is at the core of responsiveness to CTLA-4 blockade. iScience 2021; 24:102100. [PMID: 33604527 PMCID: PMC7876555 DOI: 10.1016/j.isci.2021.102100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Biology of the response to anti-CTLA-4 involves the dynamics of specific T cell clones. Reasons for clinical success and failure of this treatment are still largely unknown. Here, we quantified the dynamics of the T cell receptor (TCR) repertoire, throughout 4 weeks involving treatment with anti-CTLA-4, in a syngeneic mouse model for colorectal cancer. These dynamics show an initial increase in clonality in tandem with a decrease in diversity, effects which gradually subside. Furthermore, response to treatment is tightly connected to the shared and public parts of the T cell repertoire. We were able to recognize time-dependent behaviors of specific TCR sequences and cell types and to show the response is dominated by specific motifs. We see that a single, specific time point might be useful to inform a physician of the true response to treatmentThe research further highlights the importance of temporal analyses of the immune response. Response to ICI is associated with pre-treatment TCR repertoire in mice TCR repertoire goes through distinct, ICI-dependent changes with time Tumor size and its response to ICI can be tracked by TCR repertoire metrics A single time point is found to be a focal point of the immune response
Collapse
Affiliation(s)
- Hagit Philip
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tom Snir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Miri Gordin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
46
|
Diagnostic differentiation of Zika and dengue virus exposure by analyzing T cell receptor sequences from peripheral blood of infected HLA-A2 transgenic mice. PLoS Negl Trop Dis 2020; 14:e0008896. [PMID: 33270635 PMCID: PMC7738164 DOI: 10.1371/journal.pntd.0008896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
Abstract
Zika virus (ZIKV) is a significant global health threat due to its potential for rapid emergence and association with severe congenital malformations during infection in pregnancy. Despite the urgent need, accurate diagnosis of ZIKV infection is still a major hurdle that must be overcome. Contributing to the inaccuracy of most serologically-based diagnostic assays for ZIKV, is the substantial geographic and antigenic overlap with other flaviviruses, including the four serotypes of dengue virus (DENV). Within this study, we have utilized a novel T cell receptor (TCR) sequencing platform to distinguish between ZIKV and DENV infections. Using high-throughput TCR sequencing of lymphocytes isolated from DENV and ZIKV infected mice, we were able to develop an algorithm which could identify virus-associated TCR sequences uniquely associated with either a prior ZIKV or DENV infection in mice. Using this algorithm, we were then able to separate mice that had been exposed to ZIKV or DENV infection with 97% accuracy. Overall this study serves as a proof-of-principle that T cell receptor sequencing can be used as a diagnostic tool capable of distinguishing between closely related viruses. Our results demonstrate the potential for this innovative platform to be used to accurately diagnose Zika virus infection and potentially the next emerging pathogen(s). Diagnostic differentiation between dengue virus and Zika virus infections is a challenge due to serological cross-reactivity. In this study, we used a novel T cell receptor sequencing platform to identify T cell receptor sequences significantly associated with either dengue or Zika virus infection in HLA-A2 transgenic mice. These libraries were used to computationally train diagnostic classifiers which were capable of distinguishing between dengue and Zika virus in independent cohorts of infected mice.
Collapse
|
47
|
Abstract
T cells are an integral component of the adaptive immune response via the recognition of peptides by the cell surface-expressed T cell receptor (TCR). Rearrangement of the TCR genes results in a highly polymorphic repertoire on the T cells within a given individual. Although the diverse repertoire is beneficial for immune responses to foreign pathogens, recognition of self-peptides by T cells can contribute to the development of autoimmune disorders. Increasing evidence supports a pathogenic role for T cells in autoimmune pathology, and it is of interest to determine the TCR repertoires involved in autoimmune disease development. In this review, we summarize methodologies and advancements in the TCR sequencing field and discuss recent studies focused on TCR sequencing in a variety of autoimmune conditions. The rapidly evolving methodology of TCR sequencing has the potential to allow for a better understanding of autoimmune disease pathogenesis, identify disease-specific biomarkers, and aid in developing therapies to prevent and treat a number of these disorders.
Collapse
Affiliation(s)
- Angela M Mitchell
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA, 80045
| |
Collapse
|
48
|
Starke CE, Vinton CL, Ladell K, McLaren JE, Ortiz AM, Mudd JC, Flynn JK, Lai SH, Wu F, Hirsch VM, Darko S, Douek DC, Price DA, Brenchley JM. SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues. J Clin Invest 2020; 130:789-798. [PMID: 31661461 DOI: 10.1172/jci129161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell-mediated efficacy against SIV.
Collapse
Affiliation(s)
- Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carol L Vinton
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph C Mudd
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Stephen H Lai
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fan Wu
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Vanessa M Hirsch
- Nonhuman Primate Virology Section, Laboratory of Molecular Microbiology, and
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Schober K, Fuchs P, Mir J, Hammel M, Fanchi L, Flossdorf M, Busch DH. The CMV-Specific CD8 + T Cell Response Is Dominated by Supra-Public Clonotypes with High Generation Probabilities. Pathogens 2020; 9:pathogens9080650. [PMID: 32823573 PMCID: PMC7460440 DOI: 10.3390/pathogens9080650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Evolutionary processes govern the selection of T cell clonotypes that are optimally suited to mediate efficient antigen-specific immune responses against pathogens and tumors. While the theoretical diversity of T cell receptor (TCR) sequences is vast, the antigen-specific TCR repertoire is restricted by its peptide epitope and the presenting major histocompatibility complex (pMHC). It remains unclear how many TCR sequences are recruited into an antigen-specific T cell response, both within and across different organisms, and which factors shape both of these distributions. Infection of mice with ovalbumin-expressing cytomegalovirus (IE2-OVA-mCMV) represents a well-studied model system to investigate T cell responses given their size and longevity. Here we investigated > 180,000 H2kb/SIINFEKL-recognizing TCR CDR3α or CDR3β sequences from 25 individual mice spanning seven different time points during acute infection and memory inflation. In-depth repertoire analysis revealed that from a pool of highly diverse, but overall limited sequences, T cell responses were dominated by public clonotypes, partly with unexpectedly extreme degrees of sharedness between individual mice ("supra-public clonotypes"). Public clonotypes were found exclusively in a fraction of TCRs with a high generation probability. Generation probability and degree of sharedness select for highly functional TCRs, possibly mediated through elevating intraindividual precursor frequencies of clonotypes.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Correspondence: (K.S.); (D.H.B.); Tel.: +49-89-4140-6870 (K.S.); +49-89-4140-4120 (D.H.B.)
| | - Pim Fuchs
- ENPICOM B.V., 5211 AX ‘s-Hertogenbosch, The Netherlands; (P.F.); (L.F.)
| | - Jonas Mir
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Lorenzo Fanchi
- ENPICOM B.V., 5211 AX ‘s-Hertogenbosch, The Netherlands; (P.F.); (L.F.)
| | - Michael Flossdorf
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (J.M.); (M.H.); (M.F.)
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Correspondence: (K.S.); (D.H.B.); Tel.: +49-89-4140-6870 (K.S.); +49-89-4140-4120 (D.H.B.)
| |
Collapse
|
50
|
Hanson AL, Nel HJ, Bradbury L, Phipps J, Thomas R, Lê Cao KA, Kenna TJ, Brown MA. Altered Repertoire Diversity and Disease-Associated Clonal Expansions Revealed by T Cell Receptor Immunosequencing in Ankylosing Spondylitis Patients. Arthritis Rheumatol 2020; 72:1289-1302. [PMID: 32162785 DOI: 10.1002/art.41252] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Ankylosing spondylitis (AS) is a common spondyloarthropathy primarily affecting the axial skeleton and strongly associated with HLA-B*27 carriage. Genetic evidence implicates both autoinflammatory processes and autoimmunity against an HLA-B*27-restricted autoantigen in immunopathology. In addition to articular symptoms, up to 70% of AS patients present with concurrent bowel inflammation, suggesting that adverse interactions between a genetically primed host immune system and the gut microbiome contribute to the disease. Accordingly, this study aimed to characterize adaptive immune responses to antigenic stimuli in AS. METHODS The peripheral CD4 and CD8 T cell receptor (TCR) repertoire was profiled in AS patients (n = 47) and HLA-B*27-matched healthy controls (n = 38). Repertoire diversity was estimated using the Normalized Shannon Diversity Entropy (NSDE) index, and univariate and multivariate statistical analyses were performed to characterize AS-associated clonal signatures. Furthermore, T cell proliferation and cytokine production in response to immunogenic antigen exposure were investigated in vitro in peripheral blood mononuclear cells from AS patients (n = 19) and HLA-B*27-matched healthy controls (n = 14). RESULTS Based on the NSDE measure of sample diversity across CD4 and CD8 T cell repertoires, AS patients showed increased TCR diversity compared to healthy controls (for CD4 T cells, P = 7.8 × 10-6 ; for CD8 T cells, P = 9.3 × 10-4 ), which was attributed to a significant reduction in the magnitude of peripheral T cell expansions globally. Upon in vitro stimulation, fewer T cells from AS patients than from healthy controls expressed interferon-γ (for CD8 T cells, P = 0.03) and tumor necrosis factor (for CD4 T cells, P = 0.01; for CD8 T cells, P = 0.002). In addition, the CD8 TCR signature was altered in HLA-B*27+ AS patients compared to healthy controls, with significantly expanded Epstein-Barr virus-specific clonotypes (P = 0.03) and cytomegalovirus-specific clonotypes (P = 0.02). HLA-B*27+ AS patients also showed an increased incidence of "public" CD8 TCRs, representing identical clonotypes emerging in response to common antigen encounters, including homologous clonotypes matching those previously isolated from individuals with bacterial-induced reactive arthritis. CONCLUSION The dynamics of peripheral T cell responses in AS patients are altered, suggesting that differential antigen exposure and disrupted adaptive immunity are underlying features of the disease.
Collapse
Affiliation(s)
- Aimee L Hanson
- University of Queensland, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland, Brisbane, Queensland, Australia
| | - Linda Bradbury
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Julie Phipps
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Ranjeny Thomas
- University of Queensland, Brisbane, Queensland, Australia
| | | | - Tony J Kenna
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia, and Guy's and St Thomas' NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, King's College London, UK
| |
Collapse
|