1
|
Attia YM, Tadros SA, Fahim SA, Badr DM. Role of noncoding RNA as a pacemaker in cancer stem cell regulation: a review article. J Egypt Natl Canc Inst 2025; 37:9. [PMID: 40122959 DOI: 10.1186/s43046-025-00266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Accumulated evidence supported the crucial role of a tiny population of cells within the tumor called cancer stem cells (CSCs) in cancer origination, and proliferation. Additionally, these cells are distinguished by their self-renewal, differentiation, and therapeutic resistance capabilities. Interestingly, many studies recorded dysregulation of different types of noncoding RNAs, such as microRNA (miRNA) and long non-coding RNA (LncRNA), in cancer cells as well as CSCs. Moreover, several studies also supported the regulation of the transcription factors and signaling pathways required for CSC progression by these noncoding RNAs. However, the exact biological functions of all these noncoding RNAs are not well understood yet. These findings are of great interest, implying usage of noncoding RNA as therapeutic tool to target these cells. In this review, we provide an insight into how noncoding RNAs regulate CSCs and how this correlation is manipulated to develop new therapies to eradicate cancer cells successfully.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Samer A Tadros
- Department of Biochemistry, Faculty of Pharmacy, 110123october University for Modern Sciences and Arts (MSA), 6th of October City, Egypt
| | - Sally A Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, Giza, 12577, Egypt.
| | - Doaa M Badr
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| |
Collapse
|
2
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Wang Q, Zuo H, Sun H, Xiao X, Wang Z, Li T, Luo X, Wang Y, Wang T, Li J, Gao L. Ntoco Promotes Ferroptosis via Hnrnpab-Mediated NF-κB/Lcn2 Axis Following Traumatic Brain Injury in Mice. CNS Neurosci Ther 2025; 31:e70282. [PMID: 39976282 PMCID: PMC11840698 DOI: 10.1111/cns.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/11/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE Emerging evidence highlights the involvement of long non-coding RNAs (lncRNAs) and ferroptosis in the pathogenesis of traumatic brain injury (TBI). However, the regulatory role of lncRNAs in TBI-induced ferroptosis remains poorly understood. This study aims to investigate the role of a specific lncRNA, noncoding transcript of chemokine (C-C motif) ligand 4 (Ccl4) overlapping (Ntoco), in the regulation of ferroptosis following TBI and explore its potential as a therapeutic target. METHODS The expression levels of Ntoco following controlled cortical injury (CCI) in mice were measured using real-time PCR. Behavioral tests post-injury were assessed using the rotarod test and Morris water maze, and lesion volume was evaluated using micro-MRI. Ntoco binding proteins were identified using RNA pull-down and RNA immunoprecipitation. RNA sequencing was employed to identify Ntoco-related pathways. Western blotting and co-immunoprecipitation were used to measure protein levels and ubiquitination processes. RESULTS Ntoco upregulation was observed in CCI mice. Ntoco knockdown inhibited neuron ferroptosis, reduced lesion volume, and improved spatial memory following TBI. Ntoco overexpression promoted ferroptosis in neurons. Mechanistically, Ntoco facilitated K48-linked ubiquitination and degradation of proteins by binding to Hnrnpab, suppressing the NF-κB/Lcn2 signaling pathway. This included reduced phosphorylation of IkBα, increased phosphorylation of IKKα/β, nuclear translocation of the NF-κB p65 subunit, and elevated Lcn2 expression. CONCLUSION Our findings suggest that Ntoco plays a crucial role in TBI-induced ferroptosis by modulating the NF-κB/Lcn2 signaling pathway. Targeting Ntoco may provide a promising therapeutic strategy to mitigate ferroptosis and improve outcomes following TBI.
Collapse
Affiliation(s)
- Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Hanjun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Huaqin Sun
- SCU‐CUHK Joint Laboratory for Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of PediatricsWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Zhao Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Tingyu Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Tao Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| | - Juanjuan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Fadebi OO, Miya TV, Khanyile R, Dlamini Z, Marima R. Long Intergenic Non-Coding RNAs and BRCA1 in Breast Cancer Pathogenesis: Neighboring Companions or Nemeses? Noncoding RNA 2025; 11:9. [PMID: 39997609 PMCID: PMC11857994 DOI: 10.3390/ncrna11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Breast cancer is one of the leading causes of mortality among women, primarily due to its complex molecular landscape and heterogeneous nature. The tendency of breast cancer patients to develop metastases poses significant challenges in clinical management. Notably, mutations in the breast cancer gene 1 (BRCA1) significantly elevate breast cancer risk. The current research endeavors employ diverse molecular approaches, including RNA, DNA, and protein studies, to explore avenues for the early diagnosis and treatment of breast cancer. Recent attention has shifted towards long non-coding RNAs (lncRNAs) as promising diagnostic, prognostic, and therapeutic targets in the multifaceted progression of breast cancer. Among these, long intergenic non-coding RNAs (lincRNAs), a specific class of lncRNAs, play critical roles in regulating various aspects of tumorigenesis, including cell proliferation, apoptosis, epigenetic modulation, tumor invasion, and metastasis. Their distinctive expression patterns in cellular and tissue contexts underscore their importance in breast cancer development and progression. Harnessing lincRNAs' sensitivity and precision as diagnostic, therapeutic, and prognostic markers holds significant promise for the clinical management of breast cancer. However, the potential of lincRNAs remains relatively underexplored, particularly in the context of BRCA1-mutated breast cancer and other clinicopathological parameters such as receptor status and patient survival. Consequently, there is an urgent need for comprehensive investigations into novel diagnostic and prognostic breast cancer biomarkers. This review examines the roles of lincRNAs associated with BRCA1 in the landscape of breast cancer, highlighting the potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Olalekan Olatunde Fadebi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Richard Khanyile
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
5
|
Song J, Cui Q, Gao J. Roles of lncRNAs related to the p53 network in breast cancer progression. Front Oncol 2024; 14:1453807. [PMID: 39479021 PMCID: PMC11521785 DOI: 10.3389/fonc.2024.1453807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
The p53 is a crucial tumor suppressor and transcription factor that participates in apoptosis and senescence. It can be activated upon DNA damage to regulate the expression of a series of genes. Previous studies have demonstrated that some specific lncRNAs are part of the TP53 regulatory network. To enhance our understanding of the relationship between lncRNAs and P53 in cancers, we review the localization, structure, and function of some lncRNAs that are related to the mechanisms of the p53 pathway or serve as p53 transcriptional targets.
Collapse
Affiliation(s)
| | - Qiuxia Cui
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
6
|
Lai G, Shen J, Hu Y, Yang F, Zhang C, Le D, Liu Q, Liang Y. LncRNA RNA ROR Aggravates Hypoxia/Reoxygenation-Induced Cardiomyocyte Ferroptosis by Targeting miR-769-5p/CBX7 Axis. Biochem Genet 2024; 62:3586-3604. [PMID: 38157079 DOI: 10.1007/s10528-023-10587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Ferroptosis is a new way of cell death which is reported to participate in the pathology of myocardial ischemia-reperfusion (MI/R) injury, but it's mechanism remains unclear. The present investigation is to study the emerging role of long non-coding RNA (lncRNA) regulator of reprogramming (ROR) in cardiomyocyte ferroptosis after hypoxia/reoxygenation (H/R) administration. RT-qPCR and/or Western blot methods were performed to examine the gene/or protein levels, and CCK-8, ELISA, and DCFH-DA staining determined the cellular viability and ferroptosis. Dual-luciferase and RNA immunoprecipitation were applied to verify molecular interaction. LncRNA ROR and miR-769-5p were overexpressed and reduced in blood samples from MI patients and H/R-treated AC16 cells, respectively. Mechanistically, lncROR sponged to miR-769-5p, thus upregulating CBX7 expression. Functional experiments presented that lncRNA ROR silence mitigated H/R-stimulated inflammatory damage, oxidative stress, and ferroptosis in AC16 cells, whereas these roles could be reversed by co-downregulation of miR-769-5p or co-overexpression of CBX7. These data uncovered that lncRNA ROR prevented against H/R-induced cardiomyocyte ferroptosis by modulating miR-769-5p/CBX7 signaling, emphasizing the therapeutic value of lncRNA ROR in MI/R injury.
Collapse
Affiliation(s)
- Guorong Lai
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jie Shen
- Department of Rehabilitation, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yanhui Hu
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Fan Yang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Zhang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Dongsheng Le
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qin Liu
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yingping Liang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
7
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Sharma S, Houfani AA, Foster LJ. Pivotal functions and impact of long con-coding RNAs on cellular processes and genome integrity. J Biomed Sci 2024; 31:52. [PMID: 38745221 PMCID: PMC11092263 DOI: 10.1186/s12929-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
Vahedi F, Javan B, Sharbatkhari M, Soltani A, Shafiee M, Memarian A, Erfani-Moghadam V. Synergistic anticancer effects of co-delivery of linc-RoR siRNA and curcumin using polyamidoamine dendrimers against breast cancer. Biochem Biophys Res Commun 2024; 705:149729. [PMID: 38452515 DOI: 10.1016/j.bbrc.2024.149729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer resistance to chemotherapy necessitates novel combination therapeutic approaches. Linc-RoR is a long intergenic noncoding RNA that regulates stem cell differentiation and promotes metastasis and invasion in breast cancer. Herein, we report a dual delivery system employing polyamidoamine dendrimers to co-administer the natural compound curcumin and linc-RoR siRNA for breast cancer treatment. Polyamidoamine dendrimers efficiently encapsulated curcumin and formed complexes with linc-RoR siRNA at an optimal N/P ratio. In MCF-7 breast cancer cells, the dendriplexes were effectively internalized and the combination treatment synergistically enhanced cytotoxicity, arresting the cell cycle at the G1 phase and inducing apoptosis. Linc-RoR gene expression was also significantly downregulated. Individual treatments showed lower efficacy, indicating synergism between components. Mechanistic studies are warranted to define the molecular underpinnings of this synergistic interaction. Our findings suggest dual delivery of linc-RoR siRNA and curcumin via dendrimers merits further exploration as a personalized therapeutic approach for overcoming breast cancer resistance.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Bita Javan
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Alireza Soltani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shafiee
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran; Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
10
|
Wang J, Mi Y, Sun X, Xue X, Zhao H, Zhang M, Hu B, Bukhari I, Zheng P. Lnc-PTCHD4-AS inhibits gastric cancer through MSH2-MSH6 dimerization and ATM-p53-p21 activation. Aging (Albany NY) 2023; 15:13558-13578. [PMID: 38016120 DOI: 10.18632/aging.205329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Conserved long non-coding RNAs (lncRNAs) have not thoroughly been studied in many cancers, including gastric cancer (GC). We have identified a novel lncRNA PTCHD4-AS which was highly conserved between humans and mice and naturally downregulated in GC cell lines and tissues. Notably, PTCHD4-AS was found to be transcriptionally induced by DNA damage agents and its upregulation led to cell cycle arrest at the G2/M phase, in parallel, it facilitated the cell apoptosis induced by cisplatin (CDDP) in GC. Mechanistically, PTCHD4-AS directly bound to the DNA mismatch repair protein MSH2-MSH6 dimer, and facilitated the binding of dimer to ATM, thereby promoting the expression of phosphorylated ATM, p53 and p21. Here we conclude that the upregulation of PTCHD4-AS inhibits proliferation and increases CDDP sensitivity of GC cells via binding with MSH2-MSH6 dimer, activating the ATM-p53-p21 pathway.
Collapse
Affiliation(s)
- Jingyun Wang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Xia Xue
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huanjie Zhao
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Mengfei Zhang
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Baitong Hu
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
| | - Ihtisham Bukhari
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori and Microbiota and GI Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450000, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
11
|
Kim YH, Lee YK, Park SS, Park SH, Eom SY, Lee YS, Lee WJ, Jang J, Seo D, Kang HY, Kim JC, Lim SB, Yoon G, Kim HS, Kim JH, Park TJ. Mid-old cells are a potential target for anti-aging interventions in the elderly. Nat Commun 2023; 14:7619. [PMID: 37993434 PMCID: PMC10665435 DOI: 10.1038/s41467-023-43491-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed "mid-old status" cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction.
Collapse
Affiliation(s)
- Young Hwa Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
| | - Young-Kyoung Lee
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Soon Sang Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - So Hyun Park
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - So Yeong Eom
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Wonhee John Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Juhee Jang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Daeha Seo
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Korea
| | - Hee Young Kang
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Jin Cheol Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Dermatology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Su Bin Lim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Gyesoon Yoon
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jang-Hee Kim
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Pathology, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Tae Jun Park
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, 16499, Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|
12
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
13
|
Wu Y, Zhang Z, Wu S, Chen Z, Pu Y. Estimating residual undifferentiated cells in human chemically induced pluripotent stem cell derived islets using lncRNA as biomarkers. Sci Rep 2023; 13:16435. [PMID: 37777562 PMCID: PMC10542758 DOI: 10.1038/s41598-023-43798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate insulin-producing beta cells for diabetes treatment, but residual undifferentiated cells may cause tumors. We developed a highly sensitive assay to detect these cells in islet cells derived from human chemically induced pluripotent stem cells (hCiPSCs), which are transgene-free and safer. We used RNA-seq data to find protein-coding and non-coding RNAs that were only expressed in hCiPSCs, not in islet cells. We confirmed these biomarkers by RT-qPCR and ddPCR. We chose long non-coding RNA (lncRNA) markers, which performed better than protein-coding RNA markers. We found that LNCPRESS2, LINC00678 and LOC105370482 could detect 1, 1 and 3 hCiPSCs in 106 islet cells by ddPCR, respectively. We tested our method on several hCiPSC lines, which could quantify 0.0001% undifferentiated cell in 106 islet cells by targeting hCiPSCs-specific lncRNA transcripts, ensuring the safety and quality of hCiPSC-derived islet cells for clinical use.
Collapse
Affiliation(s)
- Yandan Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhenzhen Zhang
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Shuangshuang Wu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Zhaolong Chen
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China
| | - Yue Pu
- Hangzhou Reprogenix Bioscience Co., Ltd, Hangzhou, 310023, China.
| |
Collapse
|
14
|
Mahdi Khanifar M, Zafari Z, Sheykhhasan M. Crosstalk between long non-coding RNAs and p53 signaling pathway in colorectal cancer: A review study. Pathol Res Pract 2023; 249:154756. [PMID: 37611430 DOI: 10.1016/j.prp.2023.154756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide and the third leading cause of cancer-related fatalities. Long non-coding RNAs (lncRNAs) are key regulators of diverse physiological processes and are dysregulated in a wide range of pathophysiological circumstances such as CRC. Studies revealed that aberrant expressions of lncRNAs clearly modulate the expression level of p53 gene in CRC, thereby transactivating multiple downstream pathways. P53 is regarded as a crucial tumor suppressor gene which promotes cell-cycle arrest, DNA repair, senescence or apoptosis in response to cellular stresses. P53 is also mutated in CRC as well as various types of human malignancies. Therefore, lncRNAs interact with the p53 signaling pathway in numerus ways and significantly influence CRC-related processes. The current findings in the investigation of the crosstalk between lncRNAs and the P53 pathway in controlling CRC carcinogenesis, tumor progression, and therapeutic resistance are summarized in the this review. A deeper knowledge of CRC carcinogenesis may also have implications in CRC prevention and treatment through more research.
Collapse
Affiliation(s)
- Mohammad Mahdi Khanifar
- School of Molecular Science, University of Western Australia, Perth, Western Australia, Australia; Department of Biology, Shahed University, Tehran, Iran
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran.
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran.
| |
Collapse
|
15
|
Ntostis P, Swanson G, Kokkali G, Iles D, Huntriss J, Pantou A, Tzetis M, Pantos K, Picton HM, Krawetz SA, Miller D. Trophectoderm non-coding RNAs reflect the higher metabolic and more invasive properties of young maternal age blastocysts. Syst Biol Reprod Med 2023; 69:3-19. [PMID: 36576378 DOI: 10.1080/19396368.2022.2153636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increasing female age is accompanied by a corresponding fall in her fertility. This decline is influenced by a variety of factors over an individual's life course including background genetics, local environment and diet. Studying both coding and non-coding RNAs of the embryo could aid our understanding of the causes and/or effects of the physiological processes accompanying the decline including the differential expression of sub-cellular biomarkers indicative of various diseases. The current study is a post-hoc analysis of the expression of trophectoderm RNA data derived from a previous high throughput study. Its main aim is to determine the characteristics and potential functionalities that characterize long non-coding RNAs. As reported previously, a maternal age-related component is potentially implicated in implantation success. Trophectoderm samples representing the full range of maternal reproductive ages were considered in relation to embryonic implantation potential, trophectoderm transcriptome dynamics and reproductive maternal age. The long non-coding RNA (lncRNA) biomarkers identified here are consistent with the activities of embryo-endometrial crosstalk, developmental competency and implantation and share common characteristics with markers of neoplasia/cancer invasion. Corresponding genes for expressed lncRNAs were more active in the blastocysts of younger women are associated with metabolic pathways including cholesterol biosynthesis and steroidogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Georgia Kokkali
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - David Iles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Huntriss
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Agni Pantou
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - Maria Tzetis
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Helen M Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Miller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Wen X, Wu Y, Lou Y, Xia Y, Yu X. The roles of Linc-ROR in the regulation of cancer stem cells. Transl Oncol 2022; 28:101602. [PMID: 36535192 PMCID: PMC9791587 DOI: 10.1016/j.tranon.2022.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to be a kind of tumor cell population characterized by self-renewal, easy to metastasize and drug resistance, which play an indispensable role in the occurrence, development, metastasis and drug resistance of tumors, and their existence is an important reason for high metastasis and recurrence of tumors. Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length, have a close relationship with the malignant progression of cancer.In recent years, abundant studies have reavling that LncRNAs are beneficial to the regulation of various cancer stem cells. Linc-ROR, as a newly discovered intergenic non-protein-coding RNA in recent years, is considered to be a key regulator affecting the development of human tumors. Dysregulation of Linc-ROR is related to stemness phenotype and functional regulation of cancer stem cells. For that, Linc-ROR has the potential to be used as a diagnostic biomarker for cancer patients and can serve as a clinically meaningful potential therapeutic target. In this review, we generalize the existing research results on the important role of Linc-ROR in regulation of CSCs.
Collapse
Affiliation(s)
- Xiaoling Wen
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Yingying Wu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Yanhui Lou
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China..
| | - Yufang Xia
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| | - Xiao Yu
- Department of Gynecology, the Affiliated Hospital of Qingdao University, Qingdao, 266003,China
| |
Collapse
|
17
|
Context-Dependent Function of Long Noncoding RNA PURPL in Transcriptome Regulation during p53 Activation. Mol Cell Biol 2022; 42:e0028922. [PMID: 36342127 PMCID: PMC9753727 DOI: 10.1128/mcb.00289-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPL is a p53-induced lncRNA that suppresses basal p53 levels. Here, we investigated PURPL upon p53 activation in liver cancer cells, where it is expressed at significantly higher levels than other cell types. Using isoform sequencing, we discovered novel PURPL transcripts that have a retained intron and/or previously unannotated exons. To determine PURPL function upon p53 activation, we performed transcriptome sequencing (RNA-Seq) after depleting PURPL using CRISPR interference (CRISPRi), followed by Nutlin treatment to induce p53. Strikingly, although loss of PURPL in untreated cells altered the expression of only 7 genes, loss of PURPL resulted in altered expression of ~800 genes upon p53 activation, revealing a context-dependent function of PURPL. Pathway analysis suggested that PURPL is important for fine-tuning the expression of specific genes required for mitosis. Consistent with these results, we observed a significant decrease in the percentage of mitotic cells upon PURPL depletion. Collectively, these data identify novel transcripts from the PURPL locus and suggest that PURPL delicately moderates the expression of mitotic genes in the context of p53 activation to control cell cycle arrest.
Collapse
|
18
|
Low expression of PEBP1P2 promotes metastasis of clear cell renal cell carcinoma by post-transcriptional regulation of PEBP1 and KLF13 mRNA. Exp Hematol Oncol 2022; 11:87. [DOI: 10.1186/s40164-022-00346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Pseudogenes play an essential role in tumor occurrence and progression. However, the functions and mechanisms of pseudogenes in clear cell renal cell carcinoma (ccRCC) remain largely elusive.
Methods
We quantified PEBP1P2 expression in ccRCC tissues and cells using fluorescence in situ hybridization and real-time PCR. Besides, we evaluated the role of PEBP1P2 in ccRCC using a lung metastasis model and a transwell assay. Finally, we documented the interactions between PEBP1P2, PEBP1, and KLF13 by performing luciferase, RNA immunoprecipitation, RNA pulldown, and targeted RNA demethylation assays.
Results
Low PEBP1P2 expression correlates significantly with advanced stages and poor prognosis in ccRCC patients. Besides, PEBP1P2 overexpression inhibits ccRCC metastasis formation in vivo and in vitro. Interestingly, PEBP1P2 directly interacted with 5-methylcytosine (m5C)-containing PEBP1 mRNA and recruited the YBX1/ELAVL1 complex, stabilizing PEBP1 mRNA. In addition, PEBP1P2 increased KLF13 mRNA levels by acting as a sponge for miR-296, miR-616, and miR-3194.
Conclusions
PEBP1P2 inhibits ccRCC metastasis formation and regulates both PEBP1 and KLF13. Therefore, molecular therapies targeting PEBP1P2 might be an effective treatment strategy against ccRCC and other cancers with low PEBP1P2 levels.
Collapse
|
19
|
Soghala S, Harsiny K, Momeni P, Hatami M, Kholghi Oskooei V, Hussen BM, Taheri M, Ghafouri-Fard S. Down-regulation of LINC-ROR, HOXA-AS2 and MEG3 in gastric cancer. Heliyon 2022; 8:e11155. [PMID: 36299522 PMCID: PMC9589166 DOI: 10.1016/j.heliyon.2022.e11155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as modulators of gastric carcinogenesis. Evaluation of expression amounts of these transcripts is a primary but essential step for recognition of the role of lncRNAs in the carcinogenesis. Therefore, we compared expressions of LINC-ROR, HOXA-AS2, MEG3 and HOTTIP lncRNAs in gastric cancer samples and nearby non-cancerous samples. Expression levels of LINC-ROR, HOXA-AS2 and MEG3 lncRNAs have been lower in gastric cancer samples compared with nearby non-cancerous samples (Expression ratios = 0.26, 0.37 and 0.36; P values = 0.021, 0.015 and 0.032, respectively). However, expression levels of HOTTIP were not significantly different between gastric cancer tissues and nearby tissues (P value = 0.43). HOTTIP expression was associated with tumor size (P value = 0.04). In addition, MEG3 expression was associated with site of primary tumor (P = 0.0003). Expressions of LINC-ROR and HOXA-AS2 were not associated with any clinical or pathological parameter. ROC curve analysis revealed that HOXA-AS2 and LINC-ROR could significantly differentiate between gastric cancer samples and nearby non-cancerous tissues (AUC values = 0.68 and 0.64; P values = 0.01 and 0.04, respectively). Taken together, the current investigation provides clues for contribution of LINC-ROR, HOXA-AS2 and MEG3 lncRNAs in gastric carcinogenesis and warrants further mechanistical assays.
Collapse
Affiliation(s)
- Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiana Harsiny
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parto Momeni
- Department of Cellular and Molecular Biology-Molecular Cellular Science, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Hatami
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi Oskooei
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran,Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany,Corresponding author.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding author.
| |
Collapse
|
20
|
Zhang Y, Yang M, Yang S, Hong F. Role of noncoding RNAs and untranslated regions in cancer: A review. Medicine (Baltimore) 2022; 101:e30045. [PMID: 35984196 PMCID: PMC9388041 DOI: 10.1097/md.0000000000030045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most prevalent diseases worldwide, and poses a threat to human health. Noncoding RNAs (ncRNAs) constitute most transcripts, but they cannot be translated into proteins. Studies have shown that ncRNAs can act as tumor suppressors or oncogenes. This review describes the role of several ncRNAs in various cancers, including microRNAs (miRNAs) such as the miR-34 family, let-7, miR-17-92 cluster, miR-210, and long noncoding RNAs (lncRNAs) such as HOX transcript antisense intergenic RNA (HOTAIR), Metastasis associated lung adenocarcinoma transcript 1 (MALAT1), H19, NF-κB-interacting lncRNA (NKILA), as well as circular RNAs (circRNAs) and untranslated regions (UTRs), highlighting their effects on cancer growth, invasion, metastasis, angiogenesis, and apoptosis. They function as tumor suppressors or oncogenes that interfere with different axes and pathways, including p53 and IL-6, which are involved in the progression of cancer. The characteristic expression of some ncRNAs in cancer also allows them to be used as biomarkers for early diagnosis and therapeutic candidates. There is a complex network of interactions between ncRNAs, with some lncRNAs and circRNAs acting as competitive endogenous RNAs (ceRNAs) to decoy miRNAs and repress their expression. The ceRNA network is a part of the ncRNA network and numerous ncRNAs work as nodes or hubs in the network, and disruption of their interactions can cause cancer development. Therefore, the balance and stabilization of this network are important for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yiping Zhang
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Shulong Yang
- Department of Physiology, Key Research Laboratory of Chronic Diseases, Fuzhou Medical College, Nanchang University, Fuzhou, China
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Wang T, Yao Y, Hu X, Zhao Y. Message in hand: the application of CRISPRi, RNAi, and LncRNA in adenocarcinoma. Med Oncol 2022; 39:148. [PMID: 35834017 DOI: 10.1007/s12032-022-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Gene editing interference technology has been flourishing for more than 30 years. It has always been a common means to interfere with the expression of particular genes. Today it has shown a broad application prospect in clinical treatment, especially in adenocarcinoma treatment. In just a few years, the CRISPRi technology has attracted much z attention with its precise targeting and convenient operability significantly promoted the transformation from bench to bedside, and won the Nobel Prize in Chemistry 2020. In recent years, the importance of non-coding RNA has led LncRNA research to the center. At the same time, it also recalls the surprises obtained in laboratory and clinic research by RNAi technologies such as microRNA, siRNA, and shRNA at the beginning of the century. Therefore, this article focuses on CRISPRi, RNAi, and LncRNA to review their gene interference mechanisms currently expected to be translational research. Their applications and differences in adenocarcinoma research will also be described powerfully. It will provide a helpful reference for scientists to understand better and apply several RNA interference technologies.
Collapse
Affiliation(s)
- Ting Wang
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Yunhong Yao
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China
| | - Xinrong Hu
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China.
- Pathology Department, Guangdong Medical University, Dongguan, 523808, China.
| | - Yi Zhao
- Cancer Research Institute, Guangdong Medical University, Dongguan, 523808, China.
- Microbiology and Immunology Department, Guangdong Medical University, Dongguan, 523808, China.
- Department of Traditional Chinese Medicine, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523713, China.
| |
Collapse
|
22
|
Yang X, Qin C, Zhao B, Li T, Wang Y, Li Z, Li T, Wang W. Long Noncoding RNA and Circular RNA: Two Rising Stars in Regulating Epithelial-Mesenchymal Transition of Pancreatic Cancer. Front Oncol 2022; 12:910678. [PMID: 35719940 PMCID: PMC9204003 DOI: 10.3389/fonc.2022.910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with especially poor prognosis. However, the molecular mechanisms of pancreatic oncogenesis and malignant progression are not fully elucidated. Epithelial-mesenchymal transition (EMT) process is important to drive pancreatic carcinogenesis. Recently, long noncoding RNAs (lncRNAs) and circular RNAs(circRNAs) have been characterized to participate in EMT in PDAC, which can affect the migration and invasion of tumor cells by playing important roles in epigenetic processes, transcription, and post-transcriptional regulation. LncRNAs can act as competing endogenous RNAs (ceRNA) to sequester target microRNAs(miRNAs), bind to the genes which localize physically nearby, and directly interact with EMT-related proteins. Currently known circRNAs mostly regulate the EMT process in PDAC also by acting as a miRNA sponge, directly affecting the protein degradation process. Therefore, exploring the functions of lncRNAs and circRNAs in EMT during pancreatic cancer might help pancreatic cancer treatments.
Collapse
Affiliation(s)
- Xiaoying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, Adelian S, Chaleshtori SR, Shah-Amiri K, Ahmadi A, Aref AR. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 2022; 65:61-74. [PMID: 35597701 DOI: 10.1016/j.cytogfr.2022.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Sahar Parkhideh
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setare Samizade
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Sahar Samsami
- Biotechnology department of Fasa University of medical science, Fasa, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University Of Isfahan, Isfahan, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Kamal Shah-Amiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Kovalenko TF, Yadav B, Anufrieva KS, Rubtsov YP, Zatsepin TS, Shcherbinina EY, Solyus EM, Staroverov DB, Larionova TD, Latyshev YA, Shakhparonov MI, Pandey AK, Pavlyukov MS. Functions of long non-coding RNA ROR in patient-derived glioblastoma cells. Biochimie 2022; 200:131-139. [PMID: 35654242 DOI: 10.1016/j.biochi.2022.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer in adult patients. A variety of long non-coding RNAs play an important role in the pathogenesis of GBM, however the molecular functions of most of them still remain elusive. Here, we investigated linc-RoR (long intergenic non-protein coding RNA, regulator of reprogramming) using GBM neurospheres obtained from 12 different patients. We demonstrated that the highest level of this transcript is detected in cells with increased EGFR expression. According to our data, linc-RoR knockdown decreases cell proliferation, increases sensitivity to DNA damage, and downregulates the level of cancer stem cell (CSC) markers. On the other hand, linc-RoR overexpression promote cell growth and increases the proportion of CSCs. Analysis of RNA sequencing data revealed that linc-RoR affects expression of genes involved in the regulation of mitosis. In agreement with this observation, we have showen that the highest level of linc-RoR is detected in the G2/M phase of the cell cycle, when linc-RoR is localized on the chromosomes of dividing cells. Based on our results, we can propose that linc-RoR performs pro-oncogenic functions in human gliobalstoma cells, which may be associated with the regulation of mitotic progression and GBM stemness.
Collapse
Affiliation(s)
| | - Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India
| | - Ksenia S Anufrieva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Yury P Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Timofey S Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ekaterina M Solyus
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Department of Neuroscience, University of Gettingen, Germany
| | | | | | - Yaroslav A Latyshev
- Federal State Autonomous Institution, N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | | | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, India
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| |
Collapse
|
25
|
Downregulation of long non-coding RNAs in patients with bipolar disorder. Sci Rep 2022; 12:7479. [PMID: 35523833 PMCID: PMC9076844 DOI: 10.1038/s41598-022-11674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The abnormal function of signaling cascades is currently a candidate in the pathophysiology of bipolar disorder (BD). One of the factors involved in activating these signals is oxidative stress. Some long non-coding RNAs (lncRNA) are involved in the oxidative stress. In this study, we compared expression levels of lincRNA-p21, lincRNA-ROR, and lincRNA-PINT in the peripheral blood mononuclear cells (PBMC) from BD patients (n = 50) and healthy individuals (n = 50). Expression levels of lincRNA-p21, lincRNA-ROR, and lincRNA-PINT were significantly reduced in patients with BD compared to controls. In sex-based analyses, down-regulation of these lncRNAs was revealed only in male BD patients compared to male healthy subjects. Also, in BD patients, all three lncRNAs showed a significant pairwise positive correlation in expression level. The area under curve values for lincRNA-p21, lincRNA-ROR, and lincRNA-PINT was 0.66, 0.75, and 0.66, respectively. Thus, the ROC curve analysis showed that lncRNA-ROR might serve as a diagnostic biomarker for distinguishing between BD patients and controls. Altogether, the current study proposes a role for lincRNA-p21, lincRNA-ROR, and lincRNA-PINT in the pathogenesis of bipolar disorder. Moreover, the peripheral expression of these lncRNAs might be useful as potential biomarkers for BD.
Collapse
|
26
|
Ghafouri-Fard S, Hussen BM, Shaterabadi D, Abak A, Shoorei H, Taheri M, Rakhshan A. The Interaction Between Human Papilloma Viruses Related Cancers and Non-coding RNAs. Pathol Res Pract 2022; 234:153939. [DOI: 10.1016/j.prp.2022.153939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
27
|
Shaalan AAM, Mokhtar SH, Ahmedah HT, Almars AI, Toraih EA, Ibrahiem AT, Fawzy MS, Salem MA. Prognostic Value of LINC-ROR (rs1942347) Variant in Patients with Colon Cancer Harboring BRAF Mutation: A Propensity Score-Matched Analysis. Biomolecules 2022; 12:569. [PMID: 35454158 PMCID: PMC9028515 DOI: 10.3390/biom12040569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging studies show that long intergenic non-protein coding RNA, regulator of reprogramming (LINC-ROR) is aberrantly expressed in several types of cancer, including colon cancer (CC). LINC-ROR intronic variant rs1942347 may impact gene regulation and disease phenotype. We aimed to explore the potential association of LINC-ROR (rs1942347) with the clinicopathological features and outcome of CC cases. Archived FFPE (n = 180) CC samples were enrolled. Taq-Man allelic discrimination PCR was used for genotyping in propensity-matched cohorts with/without positive staining for mutant BRAF protein after eliminating confounders bias. The rs1942347*A allele variant was associated with high pathological grade, larger tumor size, distant metastasis, and mortality. Multiple logistic regression analysis adjusted by sex and BRAF mutation showed A/A genotype carriers to have 3 times more risk of early onset of cancer (OR = 3.13, 95%CI = 1.28-7.69, p = 0.034) than T/T genotype carriers. Overall analysis showed that rs1942347*A allele carriers had higher risk of mortality under heterozygote (OR = 2.13, 95%CI = 1.08-4.35, p = 0.003), homozygote (OR = 5.0, 95%CI = 1.69-14.29, p = 0.003), dominant (OR = 3.33, 95%CI = 1.20-9.09, p = 0.003), and recessive (OR = 2.63, 95%CI = 1.37-5.0, p = 0.011) models compared to T/T allele carriers. Stratified analysis by BRAF status revealed that the ancestor T/T allele conferred protection in BRAF mutant CC patients and was associated with a 73-93% reduced risk of mortality under heterozygote/homozygote comparison models. Using Kaplan-Meier curves, carriers of the A/A genotype had shorter survival times than T/T cohorts. The univariate Cox regression model revealed that the A/A genotype was associated with a 3.5 times greater mortality risk than the T/T genotype. However, after adjustment by multiple Cox regression analysis, the risk was insignificant. In conclusion, this is the first study identifying the potential association of the LINC-ROR (rs1942347) variant with CC prognosis.
Collapse
Affiliation(s)
- Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Sara H. Mokhtar
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
| | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 21911, Saudi Arabia;
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.H.M.); (A.I.A.)
- Center of Innovation in Personalized Medicine (CIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eman A. Toraih
- Department of Surgery, Division of Endocrine and Oncologic Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Mai A. Salem
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
28
|
Yang F, Ao X, Ding L, Ye L, Zhang X, Yang L, Zhao Z, Wang J. Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications. Bioessays 2022; 44:e2100256. [PMID: 35355301 DOI: 10.1002/bies.202100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.
Collapse
Affiliation(s)
- Fuqing Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ye
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lanting Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Zhonghao Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
30
|
Abdi E, Latifi-Navid S, Latifi-Navid H. LncRNA polymorphisms and breast cancer risk. Pathol Res Pract 2022; 229:153729. [PMID: 34952422 DOI: 10.1016/j.prp.2021.153729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Breast cancer (BC) is the most prevalent cancer in females and the second reason of cancer-related mortality in females in the world. It is thought to be a complex interaction of variables like personal lifestyle, climate, genetics, and reproductive factors. Many polymorphisms have been linked to cancer in genome-wide association experiments, and they are linked to long non-coding RNAs (lncRNAs). LncRNAs, which have > 200 nucleotides in their transcripts, affect many biological processes, including differentiation, migration, apoptosis, cell cycle, and cell proliferation. Different lncRNAs with tumor suppressor and oncogenic roles have been shown to have elevated expression levels in the development of BC. Single-nucleotide polymorphisms (SNPs) in lncRNAs can affect the expression level, structure, and function of lncRNAs. LncRNA polymorphisms are predictive of cancer incidence, making them useful for early detection and customized therapy control. SNPs may affect genetic susceptibility to BC. This study was set to see whether there was a link between lncRNA polymorphisms and the risk of BC. Accordingly, the individual and combined genotypes of lncRNA-related variants could predict BC and clinical and care outcomes. However, further large-scale trials of diverse ethnic groups and comprehensive health records should be performed to validate the results. Furthermore, adequate functional assessments should be carried out to shed light on the etiology of BC. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367 Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367 Iran.
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
31
|
Homayoonfal M, Asemi Z, Yousefi B. Targeting long non coding RNA by natural products: Implications for cancer therapy. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34783279 DOI: 10.1080/10408398.2021.2001785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In spite of achieving substantial progress in its therapeutic strategies, cancer-associated prevalence and mortality are persistently rising globally. However, most malignant cancers either cannot be adequately diagnosed at the primary phase or resist against multiple treatments such as chemotherapy, surgery, radiotherapy as well as targeting therapy. In recent decades, overwhelming evidences have provided more convincing words on the undeniable roles of long non-coding RNAs (lncRNAs) in incidence and development of various cancer types. Recently, phytochemical and nutraceutical compounds have received a great deal of attention due to their inhibitory and stimulatory effects on oncogenic and tumor suppressor lncRNAs respectively that finally may lead to attenuate various processes of cancer cells such as growth, proliferation, metastasis and invasion. Therefore, application of phytochemicals with anticancer characteristics can be considered as an innovative approach for treating cancer and increasing the sensitivity of cancer cells to standard prevailing therapies. The purpose of this review was to investigate the effect of various phytochemicals on regulation of lncRNAs in different human cancer and evaluate their capabilities for cancer treatment and prevention.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Tian C, Abudoureyimu M, Lin X, Chu X, Wang R. Linc-ROR facilitates progression and angiogenesis of hepatocellular carcinoma by modulating DEPDC1 expression. Cell Death Dis 2021; 12:1047. [PMID: 34741030 PMCID: PMC8571363 DOI: 10.1038/s41419-021-04303-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023]
Abstract
Linc-ROR have been well-demonstrated to play important roles in cancer progression and angiogenesis. However, the underlying oncogenic mechanism of Linc-ROR in hepatocellular carcinoma is poorly understood. In this study, we demonstrate that Linc-ROR plays an oncogenic role in part through its positive regulation of DEPDC1 expression. Mechanistically, Linc-ROR acts as competing endogenous RNA to stabilize DEPDC1 mRNA and regulates DEPDC1 mRNA stability by binding HNRNPK. Thus, these findings suggest that function of Linc-ROR-mediated DEPDC1 could predispose hepatocellular carcinoma patients to progression and angiogenesis, and may serve as a potential target for anticancer therapies.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/genetics
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Female
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Heterogeneous-Nuclear Ribonucleoprotein K/metabolism
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Protein Binding
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Chuan Tian
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Zhang J, Shan B, Lin L, Dong J, Sun Q, Zhou Q, Chen J, Han X. Dissecting the Role of N6-Methylandenosine-Related Long Non-coding RNAs Signature in Prognosis and Immune Microenvironment of Breast Cancer. Front Cell Dev Biol 2021; 9:711859. [PMID: 34692676 PMCID: PMC8526800 DOI: 10.3389/fcell.2021.711859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Breast cancer (BC) represents a molecularly and clinically heterogeneous disease. Recent progress in immunotherapy has provided a glimmer of hope for several BC subtypes. The relationship between N6-methyladenosine (m6A) modification and long non-coding RNAs (LncRNAs) is still largely unexplored in BC. Here, with the intention to dissect the landscape of m6A-related lncRNAs and explore the immunotherapeutic value of the m6A-related lncRNA signature, we identified m6A-related lncRNAs by co-expression analysis from The Cancer Genome Atlas (TCGA) and stratified BC patients into different subgroups. Furthermore, we generated an m6A-related lncRNA prognostic signature. Four molecular subtypes were identified by consensus clustering. Cluster 3 preferentially had favorable prognosis, upregulated immune checkpoint expression, and high level of immune cell infiltration. Twenty-one m6A-related lncRNAs were applied to construct the m6A-related lncRNA model (m6A-LncRM). Survival analysis and receiver operating characteristic (ROC) curves further confirmed the prognostic value and prediction performance of m6A-LncRM. Finally, high- and low-risk BC subgroups displayed significantly different clinical features and immune cell infiltration status. Overall, our study systematically explored the prognostic value of the m6A-related LncRNAs and identified a high immunogenicity BC subtype. The proposed m6A-related LncRNA model might serve as a robust prognostic signature and attractive immunotherapeutic targets for BC treatment.
Collapse
Affiliation(s)
- Jinguo Zhang
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Benjie Shan
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Lin Lin
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jie Dong
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Qingqing Sun
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Qiong Zhou
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jian Chen
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Division of Life Science and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Huang Y, Xie B, Cao M, Lu H, Wu X, Hao Q, Zhou X. LncRNA RNA Component of Mitochondrial RNA-Processing Endoribonuclease Promotes AKT-Dependent Breast Cancer Growth and Migration by Trapping MicroRNA-206. Front Cell Dev Biol 2021; 9:730538. [PMID: 34621748 PMCID: PMC8490808 DOI: 10.3389/fcell.2021.730538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
The RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) was recently shown to play a role in cancer development. However, the function and mechanism of RMRP during cancer progression remain incompletely understood. Here, we report that RMRP is amplified and highly expressed in various malignant cancers, and the high level of RMRP is significantly associated with their poor prognosis, including breast cancer. Consistent with this, ectopic RMRP promotes proliferation and migration of TP53-mutated breast cancer cells, whereas depletion of RMRP leads to inhibition of their proliferation and migration. RNA-seq analysis reveals AKT as a downstream target of RMRP. Interestingly, RMRP indirectly elevates AKT expression by preventing AKT mRNA from miR-206-mediated targeting via a competitive sequestering mechanism. Remarkably, RMRP endorses breast cancer progression in an AKT-dependent fashion, as knockdown of AKT completely abolishes RMRP-induced cancer cell growth and migration. Altogether, our results unveil a novel role of the RMRP-miR-206-AKT axis in breast cancer development, providing a potential new target for developing an anti-breast cancer therapy.
Collapse
Affiliation(s)
- Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing, China.,Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
36
|
He YH, Yeh MH, Chen HF, Wang TS, Wong RH, Wei YL, Huynh TK, Hu DW, Cheng FJ, Chen JY, Hu SW, Huang CC, Chen Y, Yu J, Cheng WC, Shen PC, Liu LC, Huang CH, Chang YJ, Huang WC. ERα determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:536-553. [PMID: 34589276 PMCID: PMC8463322 DOI: 10.1016/j.omtn.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.
Collapse
Affiliation(s)
- Yu-Hao He
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsin Yeh
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsiao-Fan Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ruey-Hong Wong
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Dai-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jhen-Yu Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shu-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Chen Huang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yeh Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taiwan 40402, Taiwan
| | - Wei-Chung Cheng
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chun Shen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Huang
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ya-Jen Chang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chien Huang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
37
|
Barik GK, Sahay O, Behera A, Naik D, Kalita B. Keep your eyes peeled for long noncoding RNAs: Explaining their boundless role in cancer metastasis, drug resistance, and clinical application. Biochim Biophys Acta Rev Cancer 2021; 1876:188612. [PMID: 34391844 DOI: 10.1016/j.bbcan.2021.188612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022]
Abstract
Cancer metastasis and drug resistance are two major obstacles in the treatment of cancer and therefore, the leading cause of cancer-associated mortalities worldwide. Hence, an in-depth understanding of these processes and identification of the underlying key players could help design a better therapeutic regimen to treat cancer. Earlier thought to be merely transcriptional junk and having passive or secondary function, recent advances in the genomic research have unravelled that long noncoding RNAs (lncRNAs) play pivotal roles in diverse physiological as well as pathological processes including cancer metastasis and drug resistance. LncRNAs can regulate various steps of the complex metastatic cascade such as epithelial-mesenchymal transition (EMT), invasion, migration and metastatic colonization, and also affect the sensitivity of cancer cells to various chemotherapeutic drugs. A substantial body of literature for more than a decade of research evince that lncRNAs can regulate gene expression at different levels such as epigenetic, transcriptional, posttranscriptional, translational and posttranslational levels, depending on their subcellular localization and through their ability to interact with DNA, RNA and proteins. In this review, we mainly focus on how lncRNAs affect cancer metastasis by modulating expression of key metastasis-associated genes at various levels of gene regulation. We also discuss how lncRNAs confer cancer cells either sensitivity or resistance to various chemo-therapeutic drugs via different mechanisms. Finally, we highlight the immense potential of lncRNAs as prognostic and diagnostic biomarkers as well as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bhargab Kalita
- Proteomics Laboratory, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
38
|
Li X, Zuo C, Wu M, Zhang Z. Linc-ROR promotes arsenite-transformed keratinocyte proliferation by inhibiting P53 activity. Metallomics 2021; 12:963-973. [PMID: 32373892 DOI: 10.1039/d0mt00076k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linc-ROR is an oncogenic long non-coding RNA over-expressed in many kinds of cancer that promotes cancer cell proliferation. Arsenite is a determined carcinogen that increases the risk of skin cancer, but the carcinogenic mechanism of arsenite remains unclear. To explore whether and how linc-ROR plays a role in arsenite-induced carcinogenesis of skin cancer, we established arsenite-transformed keratinocyte HaCaT cells by exposing them to 1 μM arsenite for 50 passages. Then we examined the linc-ROR expression during the transformation and explored the effect of linc-ROR on the cell proliferation of arsenite-transformed HaCaT cells. We found that the linc-ROR level in HaCaT cells was gradually increased during arsenite-induced malignant transformation, and the activity of P53 was decreased, but the P53 expression was not significantly altered, indicating that linc-ROR may play a role in arsenite-induced HaCaT cell transformation that is associated with P53 activity but not P53 expression. We further demonstrated that linc-ROR down-regulation by siRNA significantly inhibited the cellular proliferation and restored P53 activity in arsenite-transformed HaCaT cells, suggesting that linc-ROR promotes proliferation of arsenite-transformed HaCaT cells by inhibiting P53 activity. Moreover, linc-ROR siRNA also down-regulated the PI3K/AKT pathway in arsenite-transformed HaCaT cells, and treatment with AKT inhibitor wortmannin restored P53 activity, implying that linc-ROR inhibits P53 activity by activating the PI3K/AKT pathway. Taken together, the present study shows that linc-ROR promotes arsenite-transformed keratinocyte proliferation by inhibiting P53 activity through activating PI3K/AKT, providing a novel carcinogenic mechanism of arsenite-induced skin cancer.
Collapse
Affiliation(s)
- Xinyang Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Chao Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Mei Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| | - Zunzhen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nanlu, Chengdu 610041, People's Republic of China.
| |
Collapse
|
39
|
Yin RH, Guo ZB, Zhou YY, Wang C, Yin RL, Bai WL. LncRNA-MEG3 Regulates the Inflammatory Responses and Apoptosis in Porcine Alveolar Macrophages Infected with Haemophilus parasuis Through Modulating the miR-210/TLR4 Axis. Curr Microbiol 2021; 78:3152-3164. [PMID: 34191053 DOI: 10.1007/s00284-021-02590-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Haemophilus parasuis (H. parasuis, HPS) can elicit serious inflammatory responses and cause enormous economic loss to swine industry worldwide. However, the factors responsible for systemic infection and inflammatory responses of HPS have not yet been fully clarified. In this study, we found that lncRNA-MEG3 was significantly up-regulated in porcine alveolar macrophages (PAMs) infected with HPS. The gain- and loss-of-function analysis confirmed that lncRNA-MEG3 participated in the inflammatory responses and apoptosis in HPS-infected PAMs, which was assessed via several inflammatory cytokine genes (TNF-α, IL-1β, and IL-6) and apoptotic factors (Bcl-2, Bax, and C-caspase-3). Based on biotin-labeled RNA pull-down assay, we found that lncRNA-MEG3 bound with miR-210 in HPS-infected PAMs. Based on both overexpression and knockdown analysis of lncRNA-MEG3, our results indicated that lncRNA-MEG3 promoted the expression of TLR4 in HPS-infected PAMs. Using dual-luciferase reporter assays, we showed that lncRNA-MEG3 positively regulated the expression of TLR4 gene in HPS-infected PAMs through miR-210 pathway. Taken together, our results indicated that lncRNA-MEG3 participated in the inflammatory responses and apoptosis in HPS-infected PAMs through modulating the miR-210/TLR4 axis. The results from this investigation provided significant information for a novel target to control HPS infection in swine.
Collapse
Affiliation(s)
- Rong H Yin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhong B Guo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuan Y Zhou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chao Wang
- Liaoning Agricultural Technical College, Yingkou, 115009, China
| | - Rong L Yin
- Research Academy of Animal Husbandry and Veterinary Medicine Sciences of Jilin Province, Changchun, 130062, China
| | - Wen L Bai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Aninal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
40
|
De Martino M, Esposito F, Pallante P. Long non-coding RNAs regulating multiple proliferative pathways in cancer cell. Transl Cancer Res 2021; 10:3140-3157. [PMID: 35116622 PMCID: PMC8797882 DOI: 10.21037/tcr-21-230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs) belong to an extremely heterogeneous class of non-coding RNAs with a length ranging from 200 to 100,000 bp. They modulate a series of cellular pathways in both physiological and pathological context. It is no coincidence that they are expressed in an aberrant way in pathologies such as cancer, so as to deserve to be subclassified as oncogenes or tumor suppressors. These molecules are also involved in the regulation of cancer cell proliferation. Several lncRNAs are able to modulate cell growth both positively and negatively, and in this review we have focused on a small group of them, characterized by the simultaneous action on different pathways regulating cell proliferation. They have been considered in the light of their behavior in three different subtypes of proliferative pathways that we can define as (I) tumor suppressor, (II) oncogenic and (III) transcriptionally-driven. More specifically, we have characterized some lncRNAs considered oncogenes (such as H19, linc-ROR, MALAT1, HULC, HOTAIR and ANRIL), tumor suppressors (such as MEG3 and lincRNA-p21), and both oncogenes/tumor suppressors (UCA1 and TUG1) in a little more detail. As can be understood from the review, the interactions between lncRNAs and their molecular targets, only in the context of controlling cell proliferation, give rise to an intricate molecular network, the understanding of which, in the future, will certainly be of help for the treatment of molecular diseases such as cancer.
Collapse
Affiliation(s)
- Marco De Martino
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Francesco Esposito
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
41
|
Wang MQ, Zhu WJ, Gao P. New insights into long non-coding RNAs in breast cancer: Biological functions and therapeutic prospects. Exp Mol Pathol 2021; 120:104640. [PMID: 33878314 DOI: 10.1016/j.yexmp.2021.104640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) has become one of the most common malignant tumors in the world, seriously endangering women's health and life. However, the underlying molecular mechanisms of BC remain unclear. Over the past decade, long non-coding RNAs (lncRNAs) were gradually discovered and appreciated to play pivotal regulatory role in the progression of BC. It has been demonstrated that lncRNAs are implicated in regulating plenty of biological phenomena including cell proliferation, apoptosis, invasion and metastasis by interacting with DNA, RNA or proteins. In addition to these, the function of lncRNAs in tumor resistance has increasingly attracted more attention. In this review, we summarized the emerging impact of lncRNAs on the occurrence and progression of human BC, specifically focusing on the functions and mechanisms of them, with the aim of exploring the potential value of lncRNAs as oncogenic drivers or tumor suppressors. Furthermore, the potential clinical application of lncRNAs as diagnostic biomarkers and therapeutic targets in BC was also discussed.
Collapse
Affiliation(s)
- Meng-Qi Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, CheeLoo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Wen-Jie Zhu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, CheeLoo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, CheeLoo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pathology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
42
|
Shuai T, Khan MR, Zhang XD, Li J, Thorne RF, Wu M, Shao F. lncRNA TRMP-S directs dual mechanisms to regulate p27-mediated cellular senescence. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:971-985. [PMID: 34094715 PMCID: PMC8141606 DOI: 10.1016/j.omtn.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) undergo extensive alternative splicing, but little is known about isoform functions. A prior investigation of lncRNA RP11-369C8.1 reported that its splice variant TRMP suppressed p27 translation through PTBP1. Here we characterize a second major splice variant, TRMP-S (short variant), whose enforced loss promotes cancer cell-cycle arrest and p27-dependent entry into cellular senescence. Remarkably, despite sharing a single common exon with TRMP, TRMP-S restrains p27 expression through distinct mechanisms. First, TRMP-S stabilizes UHRF1 protein levels, an epigenetic inhibitor of p27, by promoting interactions between UHRF1 and its deubiquitinating enzyme USP7. Alternatively, binding interactions between TRMP-S and FUBP3 prevent p53 mRNA interactions with RPL26 ribosomal protein, the latter essential for promoting p53 translation with ensuing suppression of p53 translation limiting p27 expression. Significantly, as TRMP-S is itself transactivated by p53, this identifies negative feedback regulation between p53 and TRMP-S. Different splicing variants of the RP11-369C8.1 gene thereby exert distinct roles that converge on the homeostatic control of p27 expression, providing an important precedent for understanding the actions of alternatively spliced lncRNAs.
Collapse
Affiliation(s)
- Tian Shuai
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Muhammad Riaz Khan
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.,School of Biomedical Sciences & Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jingmin Li
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.,School of Environmental & Life Sciences, The University of Newcastle, Callaghan, NSW 2258, Australia
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.,CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| |
Collapse
|
43
|
Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenkо NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int 2021; 45:1583-1598. [PMID: 33760334 DOI: 10.1002/cbin.11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, chennai, India
| | - Laith A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Najaf, Iraq
| | | | | | - Yulianna Ivanovna Enina
- Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Natalya A Yushchenkо
- Department of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Michail V Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Association Between Genetic Variants in the lncRNA-p53 Regulatory Network and Ischemic Stroke Prognosis. Neurotox Res 2021; 39:1171-1180. [PMID: 33797738 DOI: 10.1007/s12640-021-00357-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) serve as regulators or effectors of the p53 regulatory pathway. The lncRNA-p53 regulatory network plays an important role in ischemia-induced apoptosis and may be important for post-stroke recovery. Eight genetic variants of p53-related lncRNAs were genotyped in 982 patients to explore the association of single nucleotide polymorphisms (SNPs) in the genes related to the p53 regulatory pathway with ischemic stroke (IS) prognosis in a northern Chinese population. Long- and short-term outcomes were assessed by stroke recurrence and modified Rankin Scale score 3 months after stroke, respectively. We first identified that p53 rs1042522 and LINC-ROR rs2027701 could be associated with IS recurrence risk. On further cumulative effect analysis, we found that these two polymorphisms could jointly be associated with IS recurrence. Patients carrying 2-4 risk alleles showed a significantly higher IS recurrence risk than those harboring no or a single risk allele. In contrast to rs2027701 and rs1042522, the other SNPs were not associated with IS recurrence. Subsequently, we found that TUG1 rs2240183 CC genotype was associated with a favorable IS outcome after adjusting for confounding factors. However, the other seven genetic variants of p53-related lncRNAs were not associated with a functional outcome after stroke. p53 rs1042522 and LINC-ROR rs2027701 may exert combined effects on IS recurrence, and TUG1 rs2240183 may be a new biomarker to predict short-term IS outcomes as it modulates p53-mediated apoptosis.
Collapse
|
45
|
Ferretti VA, León IE. Long Non-coding RNAs in Cisplatin Resistance in Osteosarcoma. Curr Treat Options Oncol 2021; 22:41. [PMID: 33745006 DOI: 10.1007/s11864-021-00839-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
OPINION STATEMENT Osteosarcoma (OS), the most common primary malignant bone tumor, is a vastly aggressive disease in children and adolescents. Although dramatic progress in therapeutic strategies have achieved over the past several decades, the outcome remains poor for most patients with metastatic or recurrent OS. Nowadays, conventional treatment for OS patients is surgery combined with multidrug chemotherapy including doxorubicin, methotrexate, and cisplatin (CDDP). In this sense, cisplatin (CDDP) is one of the most drugs used in the treatment of OS but drug resistance to CDDP appears as a serious problem in the use of this drug in the treatment of OS. Thus, we consider that the understanding the molecular mechanisms and the genes involved that lead to CDDP resistance is essential to developing more effective treatments against OS. In this review, we present an outline of the key role of the long non-coding RNAs (lncRNAs) in CDDP resistance in OS. This overview is expected to contribute to understand the mechanisms of CDDP resistance in OS and the relationship of the expression regulation of several lncRNAs.
Collapse
Affiliation(s)
- Valeria A Ferretti
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv, 120 1465, La Plata, Argentina.
| |
Collapse
|
46
|
Li L, Miao H, Chang Y, Yao H, Zhao Y, Wu F, Song X. Multidimensional crosstalk between RNA-binding proteins and noncoding RNAs in cancer biology. Semin Cancer Biol 2021; 75:84-96. [PMID: 33722631 DOI: 10.1016/j.semcancer.2021.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
RNA-binding proteins (RBPs) are well-known to bind RNA via a set of RNA-binding domains (RBDs) and determine the fate and function of their RNA targets; inversely, some RBPs, in certain cases, may be modulated by the bound RNAs rather than regulate their RNA partners. Current proteome-wide studies reveal that almost half of RBPs have no canonical RBDs, and the discovery of tens of thousands of noncoding RNAs (ncRNAs), especially those with the size larger than 200 nt (namely long noncoding RNAs, lncRNAs), makes the crosstalk between RBPs and RNAs more complicated. It is clear that macromolecular complexes formed by RBP and RNA are not only a form of existence of their RBP and RNA components in cells, but also represent a functional entity through which those RBPs and regulatory ncRNAs participate in the construction of regulatory networks in organism. In this review, we summarize the multidimensional crosstalk between RBPs and ncRNAs in cancer and discuss how RBPs achieve their function via the bound ncRNAs in different aspects of gene expression as well as how RBPs direct modification and processing of ncRNAs, in order to better understand tumor biology and provide new insights into development of strategies for cancer therapy and early detection.
Collapse
Affiliation(s)
- Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yanbo Chang
- Sichuan Institute for Food and Drug Control, Department of Forensic Analytical Toxicology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hong Yao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Fan Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
48
|
Guiducci G, Stojic L. Long Noncoding RNAs at the Crossroads of Cell Cycle and Genome Integrity. Trends Genet 2021; 37:528-546. [PMID: 33685661 DOI: 10.1016/j.tig.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The cell cycle is controlled by guardian proteins that coordinate the process of cell growth and cell division. Alterations in these processes lead to genome instability, which has a causal link to many human diseases. Beyond their well-characterized role of influencing protein-coding genes, an increasing body of evidence has revealed that long noncoding RNAs (lncRNAs) actively participate in regulation of the cell cycle and safeguarding of genome integrity. LncRNAs are versatile molecules that act via a wide array of mechanisms. In this review, we discuss how lncRNAs are implicated in control of the cell cycle and maintenance of genome stability and how changes in lncRNA-regulatory networks lead to proliferative diseases such as cancer.
Collapse
Affiliation(s)
- Giulia Guiducci
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lovorka Stojic
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
49
|
Multilevel Regulation of Protein Kinase CδI Alternative Splicing by Lithium Chloride. Mol Cell Biol 2021; 41:e0033820. [PMID: 33288642 PMCID: PMC8088272 DOI: 10.1128/mcb.00338-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lithium chloride (LiCl) is commonly used in treatment of mood disorders; however, its usage leads to weight gain, which promotes metabolic disorders. Protein kinase C delta (PKCδ), a serine/threonine kinase, is alternatively spliced to PKCδI and PKCδII in 3T3-L1 cells. We previously demonstrated that PKCδI is the predominantly expressed isoform in 3T3-L1 preadipocytes. Here, we demonstrate that LiCl treatment decreases PKCδI levels, increases formation of lipid droplets, and increases oxidative stress. Hence, we investigated the molecular mechanisms underlying the regulation of PKCδI alternative splicing by LiCl. We previously demonstrated that the splice factor SFRS10 is essential for PKCδI splicing. Our results demonstrate that glycogen synthase kinase 3 beta (GSK3β) phosphorylates SFRS10, and SFRS10 is in a complex with long noncoding RNA NEAT1 to promote PKCδI splicing. Using PKCδ splicing minigene and RNA immunoprecipitation assays, our results demonstrate that upon LiCl treatment, NEAT1 levels are reduced, GSK3β activity is inhibited, and SFRS10 phosphorylation is decreased, which leads to decreased expression of PKCδI. Integration of the GSK3β signaling pathway with the ribonucleoprotein complex of long noncoding RNA (lncRNA) NEAT1 and SFRS10 enables fine-tuning of PKCδI expression during adipogenesis. Knowledge of the molecular pathways impacted by LiCl provides an understanding of the ascent of obesity as a comorbidity in disease management.
Collapse
|
50
|
Grubelnik G, Boštjančič E, Aničin A, Dovšak T, Zidar N. MicroRNAs and Long Non-Coding RNAs as Regulators of NANOG Expression in the Development of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:579053. [PMID: 33643897 PMCID: PMC7906007 DOI: 10.3389/fonc.2020.579053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
NANOG is a stem cell transcription factor that is believed to play an important role in the development of oral squamous cell carcinoma (OSCC), but there is limited data regarding the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of NANOG expression. We therefore analyzed expression of NANOG, NANOG-regulating miRNAs and lncRNAs in OSCC cancerogenesis, using oral biopsy samples from 66 patients including normal mucosa, dysplasia, and OSCC. Expression analysis of NANOG, miR-34a, miR-145, RoR, SNHG1, AB209630, and TP53 was performed using qPCR and immunohistochemistry for NANOG protein detection. NANOG protein showed no staining in normal mucosa, very weak in low-grade dysplasia, and strong staining in high-grade dysplasia and OSCC. NANOG, miR-145, RoR, and SNHG1 showed up-regulation, TP53 and miR-34a showed down-regulation, and AB209630 showed variable expression during cancerogenesis. NANOG mRNA was up-regulated early in cancerogenesis, before strong protein expression can be detected. NANOG was in correlation with miR-145 and RoR. Our results suggest that miRNAs and lncRNAs, particularly miR-145 and RoR, might be important post-transcription regulatory mechanisms of NANOG in OSCC cancerogenesis. Furthermore, NANOG protein detection has a diagnostic potential for oral high-grade dysplasia, distinguishing it from low-grade dysplasia and non-neoplastic reactive lesions.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleksandar Aničin
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Dovšak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Maxillofacial and Oral Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|