1
|
Barger LN, Wang D, Saravia A, Mezzano V, Ward G, Loomis C, Feldman C, Tuluc M, Seedor RS, Gaskill PJ, Coghill AE, Suneja G, Dehzangi I, Hope JL, Jour G, Romano G. Population analysis and immunologic landscape of melanoma in people living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.17.648995. [PMID: 40313919 PMCID: PMC12045344 DOI: 10.1101/2025.04.17.648995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
People living with HIV (PLWH) diagnosed with melanoma have consistently exhibited worse clinical outcomes than HIV-negative individuals (PLw/oH) with the same cancer, even in the era of antiretroviral therapy (ART). To investigate the underlying factors contributing to these disparities, we analyzed electronic health records from 922 PLWH and 334,972 PLw/oH with melanoma. PLWH were diagnosed with melanoma at a younger age and had a higher representation of Hispanic and Black individuals. Notably, PLWH had a markedly increased risk of brain metastases. Additionally, despite similar treatment durations, PLWH experienced significant delays in initiating immune checkpoint therapy (ICI) and exhibited worse survival outcomes at both five- and ten-years post-treatment with ICI. To explore potential biological determinants of these disparities, we conducted spatial immune transcriptomics on melanoma tumors (n=11). This analysis revealed a more immunosuppressive tumor landscape in PLWH, characterized by upregulated immune checkpoints (e.g., PD1, LAG3, CTLA4) and diminished antigen presentation (e.g., HLA-DRB, B2M ), with distinct spatial distributions in the tumors versus the tumor microenvironments. Downstream validation via multiplex immunofluorescence (n=15 PLWH, n=14 PLw/oH) confirmed an exhausted CD8 + T cell compartment, marked by enrichment of PD1 int LAG3 - and PD1 int LAG3 + subpopulations, along with a significant accumulation of immunosuppressive myeloid-derived suppressor cells (CD11b + HLA-DR - CD33 + ) in PLWH. These distinct immune profiles suggest chronic HIV infection fosters a permissive tumor microenvironment that might undermine effective immune responses and contribute to poor clinical outcomes for PLWH with melanoma. Targeting the actionable immune pathways identified in this study could inform tailored therapeutic strategies to mitigate these disparities.
Collapse
|
2
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Chen L, Xu G, Song X, Zhang L, Chen C, Xiang G, Wang S, Zhang Z, Wu F, Yang X, Zhang L, Ma X, Yu J. A novel antagonist of the CCL5/CCR5 axis suppresses the tumor growth and metastasis of triple-negative breast cancer by CCR5-YAP1 regulation. Cancer Lett 2024; 583:216635. [PMID: 38237887 DOI: 10.1016/j.canlet.2024.216635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) with a high mortality rate, and few effective therapeutic strategies are available. CCL5/CCR5 is an appealing immunotherapeutic target for TNBC. However, its signaling mechanism is poorly understood and its direct antagonists have not been reported. Here, we developed a high-throughput screening (HTS) assay for discovering its antagonists. Verteporfin was identified as a more selective and potent antagonist than the known CCR5 antagonist maraviroc. Without photodynamic therapy, verteporfin demonstrated significant inhibition on TNBC tumor growth through immune regulation, remarkable suppression of lung metastasis by cell-intrinsic mechanism, and a significant extension of overall survival in vivo. Mechanistically, CCR5 was found to be essential for expression of the key hippo effector YAP1. It promoted YAP1 transcription via HIF-1α and exerted further control over the migration of CD8+ T, NK, and MDSC immune cells through chemokines CXCL16 and CXCL8 which were identified from RNA-seq. Moreover, the CCR5-YAP1 axis played a vital role in promoting metastasis by modulating β-catenin and core epithelial-mesenchymal transition transcription factors ZEB1 and ZEB2. It is noteworthy that the regulatory relationship between CCR5 and YAP1 was observed across various BC subtypes, TNBC patients, and showed potential relevance in fifteen additional cancer types. Overall, this study introduced an easy-to-use HTS assay that streamlines the discovery of CCL5/CCR5 axis antagonists. Verteporfin was identified as a specific molecular probe of this axis with great potentials as a therapeutic agent for treating sixteen malignant diseases characterized by heightened CCR5 and YAP1 levels.
Collapse
Affiliation(s)
- Ling Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiying Xu
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Xiaoxu Song
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lianbo Zhang
- Department of Breast Surgery, Jilin Cancer Hospital, Changchun, 130000, Jilin, China
| | - Chuyu Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gang Xiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuxuan Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zijian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuanming Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Zhang XF, Zhang XL, Wang YJ, Fang Y, Li ML, Liu XY, Luo HY, Tian Y. The regulatory network of the chemokine CCL5 in colorectal cancer. Ann Med 2023; 55:2205168. [PMID: 37141250 PMCID: PMC10161960 DOI: 10.1080/07853890.2023.2205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The chemokine CCL5 plays a potential role in the occurrence and development of colorectal cancer (CRC). Previous studies have shown that CCL5 directly acts on tumor cells to change tumor metastatic rates. In addition, CCL5 recruits immune cells and immunosuppressive cells into the tumor microenvironment (TME) and reshapes the TME to adapt to tumor growth or increase antitumor immune efficacy, depending on the type of secretory cells releasing CCL5, the cellular function of CCL5 recruitment, and the underlying mechanisms. However, at present, research on the role played by CCL5 in the occurrence and development of CRC is still limited, and whether CCL5 promotes the occurrence and development of CRC and its role remain controversial. This paper discusses the cells recruited by CCL5 in patients with CRC and the specific mechanism of this recruitment, as well as recent clinical studies of CCL5 in patients with CRC.Key MessagesCCL5 plays dual roles in colorectal cancer progression.CCL5 remodels the tumor microenvironment to adapt to colorectal cancer tumor growth by recruiting immunosuppressive cells or by direct action.CCL5 inhibits colorectal cancer tumor growth by recruiting immune cells or by direct action.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-Jing Wang
- Department of General Surgery, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Fang
- Organ Transplant Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-Li Li
- Honghui Hospital affiliated to Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Hamid R, Alaziz M, Mahal AS, Ashton AW, Halama N, Jaeger D, Jiao X, Pestell RG. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023; 12:2237. [PMID: 37759462 PMCID: PMC10526962 DOI: 10.3390/cells12182237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.
Collapse
Affiliation(s)
- Rasha Hamid
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | - Mustafa Alaziz
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
| | | | - Anthony W. Ashton
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Lankenau Institute for Medical Research Philadelphia, Wynnewood, PA 19096, USA
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, 69120 Heidelberg, Germany; (N.H.); (D.J.)
- Clinical Cooperation Unit Applied Tumor-Immunity, 69120 Heidelberg, Germany
| | - Xuanmao Jiao
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G. Pestell
- Xavier University School of Medicine, Oranjestad, Aruba (A.S.M.)
- Lightseed Inc., Wynnewood, PA 19096, USA
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Zhang Y, Wang W, Min J, Liu S, Wang Q, Wang Y, Xiao Y, Li X, Zhou Z, Liu S. ZNF451 favors triple-negative breast cancer progression by enhancing SLUG-mediated CCL5 transcriptional expression. Cell Rep 2023; 42:112654. [PMID: 37342906 DOI: 10.1016/j.celrep.2023.112654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with limited effective therapies because of the absence of definitive targets. Here, we demonstrate that the expression of ZNF451, a poorly characterized vertebrate zinc-finger protein, is upregulated in TNBC and associated with a poor prognosis. Elevated ZNF451 expression facilitates TNBC progression by interacting with and enhancing the activity of the transcriptional activator snail family transcriptional repressor 2 (SLUG). Mechanistically, the ZNF451-SLUG complex preferentially recruits the acetyltransferase p300/CBP-associated factor (PCAF) to the CCL5 promoter, selectively facilitating CCL5 transcription by enhancing the acetylation of SLUG and local chromatin, leading to recruitment and activation of tumor-associated macrophages (TAMs). Disturbing the ZNF451-SLUG interaction using a peptide suppresses TNBC progression by reducing CCL5 expression and counteracting the migration and activation of TAMs. Collectively, our work provides mechanistic insights into the oncogene-like functions of ZNF451 and suggests that ZNF451 is a potential target for development of effective therapies against TNBC.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wanyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China.
| |
Collapse
|
7
|
González-Arriagada WA, García IE, Martínez-Flores R, Morales-Pison S, Coletta RD. Therapeutic Perspectives of HIV-Associated Chemokine Receptor (CCR5 and CXCR4) Antagonists in Carcinomas. Int J Mol Sci 2022; 24:ijms24010478. [PMID: 36613922 PMCID: PMC9820365 DOI: 10.3390/ijms24010478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The interaction between malignant cells and the tumor microenvironment is critical for tumor progression, and the chemokine ligand/receptor axes play a crucial role in this process. The CXCR4/CXCL12 and CCR5/CCL5 axes, both related to HIV, have been associated with the early (epithelial-mesenchymal transition and invasion) and late events (migration and metastasis) of cancer progression. In addition, these axes can also modulate the immune response against tumors. Thus, antagonists against the receptors of these axes have been proposed in cancer therapy. Although preclinical studies have shown promising results, clinical trials are needed to include these drugs in the oncological treatment protocols. New alternatives for these antagonists, such as dual CXCR4/CCR5 antagonists or combined therapy in association with immunotherapy, need to be studied in cancer therapy.
Collapse
Affiliation(s)
- Wilfredo Alejandro González-Arriagada
- Facultad de Odontología, Universidad de Los Andes, Santiago 7620086, Chile
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de los Andes, Santiago 7620086, Chile
- Patología Oral y Maxilofacial, Hospital El Carmen Luis Valentín Ferrada, Maipú 9251521, Chile
- Correspondence: ; Tel.: +562-2618-1000
| | - Isaac E. García
- Laboratorio de Fisiología y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Sebastián Morales-Pison
- Centro de Oncología de Precisión (COP), Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 7560908, Chile
| | - Ricardo D. Coletta
- Department of Oral Diagnosis and Graduate Program in Oral Biology, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| |
Collapse
|
8
|
Ding Z, Zhang Y. Differentiation and Immunological Function of MDSC-Derived Dendritic Cells. Glob Med Genet 2022; 9:290-299. [PMID: 36567953 PMCID: PMC9771685 DOI: 10.1055/s-0042-1756659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a key role in initiating and regulating immune responses, and in addition to their roles in vivo, DCs are used as natural adjuvants for various tumor vaccines. In vitro, monocytes can be used to induce DCs, but in tumor patients, due to insufficient bone marrow hematopoiesis, extramedullary hematopoiesis and tumor-associated myeloid cells expand, and monocytes mainly exist in the form of myeloid-derived suppressor cells (MDSCs). The purpose of this experiment was to explore the differences in the differentiation and immune function of DCs induced by MDSCs in tumor patients. In a mouse model, we used normal mouse bone marrow cell-derived DCs as control cells, and in a tumor-bearing model, we induced MDSCs in the spleen to generate DCs (MDSC-DCs). Through flow cytometry, we found that the production of MDSC-DCs was significantly higher than that of control mice, and the secretion of interferon-γ of MDSC-DCs was significantly reduced. Through OVA antigen presentation experiments, we found that the antigen presentation ability of MDSC-DCs was significantly decreased. Through adoptive treatment of tumor-bearing mice cells, we found that the antitumor immune function of MDSC-DCs was significantly reduced. After that, we explored the mechanism of the decrease of immune function activity of MDSC-DCs. We determined that the surface markers of MDSC-DCs were changed by flow cytometry. Through flow sorting and RNA sequencing, we found that some pathways and key gene expression in MDSC-DCs were changed. In conclusion, this study found that the immune function of MDSC-DCs decreased and explored the mechanism of the decreased immune function activity.
Collapse
Affiliation(s)
- Zequn Ding
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China,Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,Address for correspondence Yan Zhang, PhD Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityNo.1954 Huashan Road, ShanghaiChina, 200127
| |
Collapse
|
9
|
Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232214226. [PMID: 36430701 PMCID: PMC9692513 DOI: 10.3390/ijms232214226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The C-C chemokine motif ligand 5 (CCL5) and its receptors have recently been thought to be substantially involved in the development of obesity-associated adipose tissue inflammation and insulin resistance. However, the respective contributions of tissue-derived and myeloid-derived CCL5 to the etiology of obesity-induced adipose tissue inflammation and insulin resistance, and the involvement of monocytic myeloid-derived suppressor cells (MDSCs), remain unclear. This study used CCL5-knockout mice combined with bone marrow transplantation (BMT) and mice with local injections of shCCL5/shCCR5 or CCL5/CCR5 lentivirus into bilateral epididymal white adipose tissue (eWAT). CCL5 gene deletion significantly ameliorated HFD-induced inflammatory reactions in eWAT and protected against the development of obesity and insulin resistance. In addition, tissue (non-hematopoietic) deletion of CCL5 using the BMT method not only ameliorated adipose tissue inflammation by suppressing pro-inflammatory M-MDSC (CD11b+Ly6G-Ly6Chi) accumulation and skewing local M1 macrophage polarization, but also recruited reparative M-MDSCs (CD11b+Ly6G-Ly6Clow) and M2 macrophages to the eWAT of HFD-induced obese mice, as shown by flow cytometry. Furthermore, modulation of tissue-derived CCL5/CCR5 expression by local injection of shCCL5/shCCR5 or CCL5/CCR5 lentivirus substantially impacted the distribution of pro-inflammatory and reparative M-MDSCs as well as macrophage polarization in bilateral eWAT. These findings suggest that an obesity-induced increase in adipose tissue CCL5-mediated signaling is crucial in the recruitment of tissue M-MDSCs and their trans-differentiation to tissue pro-inflammatory macrophages, resulting in adipose tissue inflammation and insulin resistance.
Collapse
|
10
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
11
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
12
|
Sharma V, Sachdeva N, Gupta V, Nada R, Jacob J, Sahni D, Aggarwal A. CCR4 + monocytic myeloid-derived suppressor cells are associated with the increased epithelial-mesenchymal transition in pancreatic adenocarcinoma patients. Immunobiology 2022; 227:152210. [PMID: 35358941 DOI: 10.1016/j.imbio.2022.152210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Among all the cancer-related deaths globally, pancreatic ductal adenocarcinoma (PDAC) accounts for the seventh leading cause of mortality. A dysregulated immune system disrupts anti-tumor immunity by abnormal accumulation of myeloid-derived suppressor cells (MDSCs), but the underlying mechanisms are still inconclusive. To gain new insights into the role of MDSCs in tumor settings, we aimed to determine the mechanism of expansion of various subsets of MDSCs in PDAC patients and their role in promoting invasiveness. We assessed the load of MDSCs, chemokines responsible for the recruitment of MDSCs in PDAC patients by flow cytometry. We investigated the chemokine profile of tumor tissue using qRT-PCR and the status of epithelial-mesenchymal transition (EMT) related markers E-Cadherin, N-Cadherin, Snail, and ZEB1 by qRT-PCR and immunohistochemistry. We found a higher frequency of tumor infiltrated MDSCs in PDAC patients. Chemokine ligands CCL2 and the receptor CCR4 were markedly elevated in the PDAC tumor, while CCR4+ monocytic MDSCs (M-MDSCs) were found significantly elevated in peripheral blood and tumor tissue. In tumor tissue, expression of E-Cadherin was significantly reduced, while N-Cadherin, Snail, and ZEB1 were markedly raised. The frequency of CCR4+ M-MDSCs significantly correlated with the expression of mesenchymal transition markers N-Cadherin, Snail, and ZEB1. Collectively, these results suggest that the CCL2-CCR4 axis plays a crucial role in driving the recruitment of M-MDSCs, which is associated with increased invasiveness in PDAC. This study sheds light on the expansion mechanism of MDSCs, which can serve as a crucial target of future anti-cancer strategies to inhibit tumor cell invasiveness.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
13
|
Zhao N, Zhang C, Ding J, Wu H, Cheng W, Li M, Zhu R, Li H. Altered T lymphocyte subtypes and cytokine profiles in follicular fluid associated with diminished ovary reserve. Am J Reprod Immunol 2022; 87:e13522. [PMID: 35006631 DOI: 10.1111/aji.13522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
PROBLEM Diminished ovarian reserve (DOR) is a daunting obstacle in in vitro fertilization (IVF) or intra cytoplasmic sperm injection (ICSI), leading to poor reproductive outcomes. We aim to characterize the T cell and cytokine profiles in follicular fluid (FF) and elucidate its contribution to the development of DOR. METHOD OF STUDY A total of 92 infertile women were enrolled in the study. We assessed the ultrastructure, proliferation, and apoptosis of granulosa cells (GCs). The levels of CCL5 and cytokines in FF was measured. Additionally, we classified the T cells and analyzed cytokines production in T cell. We further verified whether CCL5 can recruit specific T cell subcytes to the follicles. RESULTS Cytoplasmic vacuolization, nucleolar dissociation, partial shortening, swelling, and fusion of mitochondrial cristae were obvious in GCs with DOR. The proliferation of GCs decreased and the proportion of apoptosis increased in DOR. The down-regulation of Bcl-2 and up-regulation of caspase3 were seen in GCs with DOR. The number of CD8+ T cells and proportion of CD8+ /CD4+ T cells in DOR exceeded the control. Higher positive percentage of CD69, CCR5, and IFN-γ in CD8+ T cells, lower positive percentage of IL-10 in CD4+ T cells and PD-1 in CD8+ T cells were detected in DOR. CCL5 accumulated promoting the recruitment of CD8+ T cells to the follicles on interaction with CCR5. CONCLUSION The abnormal proportion of CD8+ T cells and elevated CCL5 and IFN-γ may change the immune balance in FF and impair the growth of GCs, which in turn fuel the progression of DOR.
Collapse
Affiliation(s)
- Nannan Zhao
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Huang L, Ding Z, Zhang Y. CD24+ MDSC-DCs Induced by CCL5-Deficiency Showed Improved Antitumor Activity as Tumor Vaccines. Glob Med Genet 2022; 9:97-109. [PMID: 35707772 PMCID: PMC9192183 DOI: 10.1055/s-0042-1743569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background
Dendritic cell (DC) tumor vaccine has been extensively utilized in preclinical and clinical studies; however, this technique has encountered many difficulties, particularly in late-stage tumor patients. For those, ex vivo-induced DCs are actuallymyeloid-derived suppressive cells-derived DCs (MDSC-DCs). MDSCs with immunosuppressive activity, but not monocytes, became the major DC precursor. Thus, how to enhance antitumor activity of MDSC-DCs is urgent need to address.
Methods
We utilized 4T1 and MC38 tumor-bearing both wildtype and CC chemokine ligand 5
−/−
(CCL5
−/−
) mice as animal models. MDSC-DCs were induced from splenocytes of these mice by granulocyte macrophage–colony stimulating factor/interleukin-4 with or without all-trans-retinoic acid (ATRA) in vitro for 7 days, then incubated with tumor-cell-lysis to treat mouse models for total three doses. For human MDSC-DCs, peripheral bloods from colorectal cancer patients were induced in vitro as murine cells with or without T- lymphocytes depletion to get rid of CCL5.
Results
Flow cytometry analysis showed that MDSCs from
CCL5−/−
mice could be induced into a new type of CD24
+
MDSC-DCs in the presence of ATRA, which had more antitumor activity than control. Antibody blocking and adoptive transfer experiments demonstrated that downregulation of regulatory T cells (Tregs) mediated the inhibition of CD24
+
MDSC-DCs on tumor growth. Mechanically, CD24
+
MDSC-DCs inhibited Tregs' polarization by secreting cytokine or coactivators' expression. What's important, decreasing CCL5 protein levels by T- lymphocytes depletion during both murine and human MDSC-DCs in vitro induction could also acquire CD24
+
MDSC-DCs.
Conclusion
Knockdown of CCL5 protein during MDSC-DCs culture might provide a promising method to acquire DC-based tumor vaccines with high antitumor activity.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zequn Ding
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Zhang PF, Wang C, Zhang L, Li Q. Reversing chemokine/chemokine receptor mismatch to enhance the antitumor efficacy of CAR-T cells. Immunotherapy 2022; 14:459-473. [PMID: 35232284 DOI: 10.2217/imt-2021-0228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Currently, the antitumor efficacy of chimeric antigen receptor T cells in solid tumors is modest. Both chemokines and their receptors play a key role in the proliferation of cancer cells, tumor angiogenesis, organ-selective metastasis and migration of immune cells to solid tumors. Unfortunately, frequent chemokine/chemokine receptor 'mismatch' between effector cells and the tumor microenvironment results in inefficient T-cell infiltration and antitumor efficacy. Thus, reversing the 'mismatch' of chemokines and chemokine receptors appears to be a promising method for promoting T-cell infiltration into the tumor and enhancing their antitumor efficacy. In this review, we discuss functions of the chemokine/chemokine receptor axis in cancer immunity and the current understanding, challenges and prospects for improving the effect of chimeric antigen receptor T cells by reversing the mismatch between chemokines and chemokine receptors.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, & Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,Laboratory of Human Diseases & Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute of Immunology & Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, & Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,Laboratory of Human Diseases & Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.,Institute of Immunology & Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, 610065, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, & Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
16
|
CCL5 Deficiency Enhanced Cryo–Thermal-Triggered Long-Term Anti-Tumor Immunity in 4T1 Murine Breast Cancer. Biomedicines 2022; 10:biomedicines10030559. [PMID: 35327361 PMCID: PMC8945488 DOI: 10.3390/biomedicines10030559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer remains one of the most common solid tumors. Tumor immunosuppressive factors mainly hinder the control of tumors. We previously developed an innovative cryo–thermal therapy that was shown to significantly suppress distal metastasis and improve long-term survival in murine B16F10 melanoma and 4T1 mammary carcinoma models. However, the effect of cryo–thermal therapy on the 4T1 model was not excellent. CCL5 has been reported to help the progression of breast cancer, so in this study, CCL5−/− was used to explore the role of host-derived CCL5 after cryo–thermal therapy. CCL5−/− could not completely resist tumor development, but it significantly improved survival rates when combined with cryo–thermal therapy. Mechanically, CCL5−/− mildly decreases the percentage of MDSCs, increases DC maturation and macrophage’s inflammatory function at an early stage after tumor inoculation, and later up-regulate the level of Th1 and down-regulate the level of Tregs. When combined with cryo–thermal therapy, CCL5−/− dramatically down-regulated the proportion of MDSCs and induced full M1 macrophage polarization, which further promoted Th1 differentiation and the cytotoxicity of CD8+ T cells. Our results indicated that CCL5−/− contributed to cryo–thermal-triggered, long-lasting anti-tumor memory immunity. The combination of cryo–thermal therapy and CCL5 blockades might extend the survival rates of patients with aggressive breast cancer.
Collapse
|
17
|
Zilio S, Bicciato S, Weed D, Serafini P. CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. J Immunother Cancer 2022; 10:jitc-2021-003131. [PMID: 35064009 PMCID: PMC8785210 DOI: 10.1136/jitc-2021-003131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cancer-induced ‘emergency’ myelopoiesis plays a key role in tumor progression by inducing the accumulation of myeloid cells with a suppressive phenotype peripherally and in the tumor. Chemokine receptors (CCRs) and, in particular, CCR1, CCR2, CCR5, and CCR7 are emerging as key regulators of myeloid cell trafficking and function but their precise role has not been completely clarified yet because of the signal redundancy, integration, and promiscuity of chemokines and of the expression of these CCRs on other leukocyte subsets. Methods We used the 4PD nanoparticle for the in vivo targeted silencing of CCR1, CCR2, CCR5, and/or CCR7 in the myeloid cells of tumor bearing mice to evaluate the effect of treatments on tumor growth, myeloid cell trafficking and polarization. We used flow and image cytometry and functional assays to monitor changes in the tumor microenvironment and depletion experiments and immune deficient mice to determine the role of Ly6G+cells during tumor progression. We further evaluated in vitro the impact of chemokine receptor inhibition and tumor derived factors on myeloid cell differentiation from mouse and human hematopoietic stem and precursors cells (HSPCs) using flow cytometry, transcriptome analysis, cytokines beads arrays, functional assays, and mice deficient for CCR1 or CCR5. Results 4PD-mediated in vivo silencing of CCR1 and CCR5 on myeloid cells and myeloid precursors was necessary and sufficient to inhibit tumor progression. Functional studies indicated that this antitumor effect was not mediated by alteration of myeloid cell chemotaxes but rather by the repolarization of polymorphonuclear myeloid-derived suppressor cells (MDSCs) into tumoricidal neutrophils. Transcriptome functional and cytokine analysis indicated that tumor derived factors induced CCL3 and CCL4 in HSPCs that, through the autocrine engagement of CCR1 and CCR5, induced HSPCs differentiation in MDSCs. These finding were confirmed across mice with different genetic backgrounds and using HSPCs from umbilical cord blood and peripheral blood of patients with cancer. Conclusions Our data support the notion that CCR1 and CCR5 and their ligands are a master immunological hub activated by several tumor derived factors. Activation of this pathway is necessary for the differentiation of MDSCs and protumoral macrophages.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Donald Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
18
|
Xiao G, Gao X, Li L, Liu C, Liu Z, Peng H, Xia X, Yi X, Zhou R. An Immune-Related Prognostic Signature for Predicting Clinical Outcomes and Immune Landscape in IDH-Mutant Lower-Grade Gliomas. JOURNAL OF ONCOLOGY 2021; 2021:3766685. [PMID: 34961815 PMCID: PMC8710162 DOI: 10.1155/2021/3766685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND IDH mutation is the most common in diffuse LGGs, correlated with a favorable prognosis. However, the IDH-mutant LGGs patients with poor prognoses need to be identified, and the potential mechanism leading to a worse outcome and treatment options needs to be investigated. METHODS A six-gene immune-related prognostic signature in IDH-mutant LGGs was constructed based on two public datasets and univariate, multivariate, and LASSO Cox regression analysis. Patients were divided into low- and high-risk groups based on the median risk score in the training and validation sets. We analyzed enriched pathways and immune cell infiltration, applying the GSEA and the immune evaluation algorithms. RESULTS Stratification and multivariate Cox analysis unveiled that the six-gene signature was an independent prognostic factor. The signature (0.806/0.795/0.822) showed a remarkable prognostic performance, with 1-, 3-, and 5-year time-dependent AUC, higher than for grade (0.612/0.638/0.649) and 1p19q codeletion status (0.606/0.658/0.676). High-risk patients had higher infiltrating immune cells. However, the specific immune escape was observed in the high-risk group after immune activation, owing to increasing immunosuppressive cells, inhibitory cytokines, and immune checkpoint molecules. Moreover, a novel nomogram model was developed to evaluate the survival in IDH-mutant LGGs patients. CONCLUSION The six-gene signature could be a promising prognostic biomarker, which is promising to promote individual therapy and improve the clinical outcomes of IDH-mutant gliomas. The study also refined the current classification system of IDH-mutant gliomas, classifying patients into two subtypes with distinct immunophenotypes and overall survival.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen 518122, China
| | - Lifeng Li
- Geneplus-Beijing, Beijing 102205, China
| | - Chao Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiyuan Liu
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiqin Peng
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | - Xin Yi
- Geneplus-Beijing, Beijing 102205, China
| | - Rongrong Zhou
- Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
19
|
Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers (Basel) 2021; 13:cancers13236132. [PMID: 34885241 PMCID: PMC8656932 DOI: 10.3390/cancers13236132] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Various immune cells are involved in host immune responses to cancer. T-helper (Th) 1 cells, cytotoxic CD8+ T cells, and natural killer cells are the major effector cells in anti-tumor immunity, whereas cells such as regulatory T cells and myeloid-derived suppressor cells are negatively involved in anti-tumor immunity. Th2 cells and Th17 cells have been shown to have both pro-tumor and anti-tumor activities. The migratory properties of various immune cells are essential for their function and critically regulated by the chemokine superfamily. In this review, we summarize the roles of various immune cells in tumor immunity and their migratory regulation by the chemokine superfamily. We also assess the therapeutic possibilities of targeting chemokines and chemokine receptors in cancer immunotherapy. Abstract Various immune cells are involved in host tumor immune responses. In particular, there are many T cell subsets with different roles in tumor immunity. T-helper (Th) 1 cells are involved in cellular immunity and thus play the major role in host anti-tumor immunity by inducing and activating cytotoxic T lymphocytes (CTLs). On the other hand, Th2 cells are involved in humoral immunity and suppressive to Th1 responses. Regulatory T (Treg) cells negatively regulate immune responses and contribute to immune evasion of tumor cells. Th17 cells are involved in inflammatory responses and may play a role in tumor progression. However, recent studies have also shown that Th17 cells are capable of directly inducting CTLs and thus may promote anti-tumor immunity. Besides these T cell subsets, there are many other innate immune cells such as dendritic cells (DCs), natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs) that are involved in host immune responses to cancer. The migratory properties of various immune cells are critical for their functions and largely regulated by the chemokine superfamily. Thus, chemokines and chemokine receptors play vital roles in the orchestration of host immune responses to cancer. In this review, we overview the various immune cells involved in host responses to cancer and their migratory properties regulated by the chemokine superfamily. Understanding the roles of chemokines and chemokine receptors in host immune responses to cancer may provide new therapeutic opportunities for cancer immunotherapy.
Collapse
|
20
|
Nalawade SA, Shafer P, Bajgain P, McKenna MK, Ali A, Kelly L, Joubert J, Gottschalk S, Watanabe N, Leen A, Parihar R, Vera Valdes JF, Hoyos V. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003237. [PMID: 34815355 PMCID: PMC8611441 DOI: 10.1136/jitc-2021-003237] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Successful targeting of solid tumors such as breast cancer (BC) using chimeric antigen receptor (CAR) T cells has proven challenging, largely attributed to the immunosuppressive tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) inhibit CAR T cell function and persistence within the breast TME. To overcome this challenge, we have developed CAR T cells targeting tumor-associated mucin 1 (MUC1) with a novel chimeric costimulatory receptor that targets tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TR2) expressed on MDSCs. METHODS The function of the TR2.41BB costimulatory receptor was assessed by exposing non-transduced (NT) and TR2.41BB transduced T cells to recombinant TR2, after which nuclear translocation of NFκB was measured by ELISA and western blot. The cytolytic activity of CAR.MUC1/TR2.41BB T cells was measured in a 5-hour cytotoxicity assay using MUC1+ tumor cells as targets in the presence or absence of MDSCs. In vivo antitumor activity was assessed using MDSC-enriched tumor-bearing mice treated with CAR T cells with or without TR2.41BB. RESULTS Nuclear translocation of NFκB in response to recombinant TR2 was detected only in TR2.41BB T cells. The presence of MDSCs diminished the cytotoxic potential of CAR.MUC1 T cells against MUC1+ BC cell lines by 25%. However, TR2.41BB expression on CAR.MUC1 T cells induced MDSC apoptosis, thereby restoring the cytotoxic activity of CAR.MUC1 T cells against MUC1+ BC lines. The presence of MDSCs resulted in an approximately twofold increase in tumor growth due to enhanced angiogenesis and fibroblast accumulation compared with mice with tumor alone. Treatment of these MDSC-enriched tumors with CAR.MUC1.TR2.41BB T cells led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared with CAR.MUC1 (469.79±81.46 mm3) or TR2.41BB (434.86±64.25 mm3) T cells alone. CAR.MUC1.TR2.41BB T cells also demonstrated improved T cell proliferation and persistence at the tumor site, thereby preventing metastases. We observed similar results using CAR.HER2.TR2.41BB T cells in a HER2+ BC model. CONCLUSIONS Our findings demonstrate that CAR T cells that coexpress the TR2.4-1BB receptor exhibit superior antitumor potential against breast tumors containing immunosuppressive and tumor promoting MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.
Collapse
Affiliation(s)
- Saisha A Nalawade
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip Bajgain
- Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Arushana Ali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Lauren Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jarrett Joubert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Gottschalk
- Bone Marrow Transplant Department, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Ann Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Robin Parihar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
21
|
Cen Y, Lou Y, Wang J, Wang S, Peng P, Zhang A, Liu P. Supplementation with Serum-Derived Extracellular Vesicles Reinforces Antitumor Immunity Induced by Cryo-Thermal Therapy. Int J Mol Sci 2021; 22:ijms222011021. [PMID: 34681680 PMCID: PMC8539038 DOI: 10.3390/ijms222011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Effective cancer therapies should reshape immunosuppression and trigger antitumor immunity. Previously, we developed a novel cryo-thermal therapy through applying local rapid cooling followed by rapid heating of tumor tissue. It could not only ablate local tumors, but also, subsequently, induce systemic long-term antitumor immunity. Hyperthermia can induce the release of extracellular vesicles (EVs) to stimulate antitumor immunity. We examine whether EVs are released after cryo-thermal therapy and whether they could improve the efficacy of cryo-thermal therapy in the 4T1 model. In this study, serum extracellular vesicles (sEVs) are isolated and characterized 3 h after cryo-thermal therapy of subcutaneous tumors. sEV phagocytosis is observed in vitro and in vivo by using laser confocal microscopy and flow cytometry. After cryo-thermal therapy, sEVs are administered to mice via the tail vein, and changes in immune cells are investigated by using flow cytometry. After cryo-thermal therapy, a large number of sEVs are released to the periphery carrying danger signals and tumor antigens, and these sEVs could be phagocytosed by peripheral blood monocytes and differentiated macrophages. After cryo-thermal therapy, supplementation with sEVs released after treatment promotes the differentiation of myeloid-derived suppressor cells (MDSCs), monocytes into macrophages and CD4+ T cells into the Th1 subtype, as well as prolonging the long-term survival of the 4T1 subcutaneous tumor-bearing mice. sEVs released after cryo-thermal tumor treatment could clinically serve as an adjuvant in subsequent cryo-thermal therapy to improve the therapeutic effects on malignant tumors.
Collapse
Affiliation(s)
- Yinuo Cen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yue Lou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junjun Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shicheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peng Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.C.); (Y.L.); (J.W.); (S.W.); (P.P.); (A.Z.)
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: ; Tel.: +86-(21)-6293-2304
| |
Collapse
|
22
|
Papafragkos I, Markaki E, Kalpadakis C, Verginis P. Decoding the Myeloid-Derived Suppressor Cells in Lymphoid Malignancies. J Clin Med 2021; 10:jcm10163462. [PMID: 34441758 PMCID: PMC8397155 DOI: 10.3390/jcm10163462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid precursors which emerged as a potent regulator of the immune system, exerting suppressive properties in diverse disease settings. In regards to cancer, MDSCs have an established role in solid tumors; however, their contribution to immune regulation during hematologic malignancies and particularly in lymphomas remains ill-defined. Herein focused on lymphoma, we discuss the literature on MDSC cells in all histologic types, and we also refer to lessons learned by animal models of lymphoma. Furthermore, we elaborate on future directions and unmet needs and challenges in the MDSC field related to lymphoma malignancies which may shed light on the complex nature of the immune system in malignancies.
Collapse
Affiliation(s)
- Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Efrosyni Markaki
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
| | - Christina Kalpadakis
- Laboratory of Haematology, Division of Laboratory Medicine, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece; (I.P.); (E.M.)
- Department of Laboratory Haematology, University Hospital of Heraklion, 71500 Heraklion, Greece
- Correspondence: (C.K.); (P.V.); Tel.: +30-69-4458-2738 (C.K.); +30-28-1039-4553 (P.V.)
| |
Collapse
|
23
|
Zheng H, Siddharth S, Parida S, Wu X, Sharma D. Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers (Basel) 2021; 13:cancers13133357. [PMID: 34283088 PMCID: PMC8269090 DOI: 10.3390/cancers13133357] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network composed of various cells, signaling molecules, and extra cellular matrix. TME plays a crucial role in triple negative breast cancer (TNBC) immunomodulation and tumor progression, paradoxically, acting as an immunosuppressive as well as immunoreactive factor. Research regarding tumor immune microenvironment has contributed to a better understanding of TNBC subtype classification. Shall we treat patients precisely according to specific subtype classification? Moving beyond traditional chemotherapy, multiple clinical trials have recently implied the potential benefits of immunotherapy combined with chemotherapy. In this review, we aimed to elucidate the paradoxical role of TME in TNBC immunomodulation, summarize the subtype classification methods for TNBC, and explore the synergistic mechanism of chemotherapy plus immunotherapy. Our study may provide a new direction for the development of combined treatment strategies for TNBC. Abstract Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
- Correspondence: (H.Z.); (X.W.)
| | - Sumit Siddharth
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Sheetal Parida
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| | - Xinhong Wu
- Hubei Provincial Clinical Research Center for Breast Cancer, Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
- Correspondence: (H.Z.); (X.W.)
| | - Dipali Sharma
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA; (S.S.); (S.P.); (D.S.)
| |
Collapse
|
24
|
Deng F, Weng Y, Li X, Wang T, Fan M, Shi Q. Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer. Pathol Res Pract 2021; 223:152824. [PMID: 34000674 DOI: 10.1016/j.prp.2020.152824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) is a type of malignant and heterogeneous tumor in premenopausal females with ineffective therapeutic targets. IL-8 is one of the earliest discovered chemotaxis cytokines which expression is closely related to the progress of various cancers. Previous studies show that IL-8 determines the prognosis of TNBC patients, nevertheless how IL-8 influence the progress of TNBC is unclear. In our studies, we discovered that overexpression of IL-8 promotes TNBC cells (TNBCs) migration and tumor growth via the PI3K-Akt and MAPK signaling pathway. Cell-cycle of TNBCs arrest at S phase by overexpression of IL-8, however, there is no significant difference on the cell viability and cell apoptosis of TNBCs. Besides, overexpression of IL-8 result in the downregulation of E-cadherin and the upregulation of Cyclin B1 in MDA-MB-231 cells. Taken together, our results suggest that IL-8 plays a crucial role in the progress of TNBC, and it could be a novel therapeutic target of TNBC.
Collapse
Affiliation(s)
- Fang Deng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yaguang Weng
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing 400016, PR China
| | - Xian Li
- Department of Pathology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing 400016, PR China
| | - Teng Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengtian Fan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, PR China
| | - Qiong Shi
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing 400016, PR China.
| |
Collapse
|
25
|
Sharma V, Aggarwal A, Jacob J, Sahni D. Myeloid-derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scand J Immunol 2021; 93:e13021. [PMID: 33455004 DOI: 10.1111/sji.13021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer has been identified as one of the deadliest malignancies because it remains asymptomatic and usually presents in the advanced stage. Tumour immune evasion is a well-known mechanism of tumorigenesis in various forms of human malignancies. Chronic inflammation via complex networking of various inflammatory cytokines in the local tissue microenvironment dysregulates the immune system and support tumour development. Pro-inflammatory mediators present in the tumour microenvironment increase the tumour burden by causing immune suppression through the generation of myeloid-derived suppressor cells (MDSCs) and T regulatory cells. These cells, along-with myofibroblasts, create a highly immunosuppressive and resistant tumour microenvironment and are thus considered as one of the culprits for the failure of anti-cancer chemotherapies in pancreatic adenocarcinoma patients. Targeting these MDSCs using various combinatorial approaches might have the potential for abrogating the resistance and suppressive nature of the pancreatic tumour microenvironment. Therefore, there is more curiosity in studying the crosstalk of MDSCs with other immune cells during pathological conditions and the underlying mechanisms of immunosuppression in the current scenario. In this article, the possible role of MDSCs in inflammation-mediated tumour progression of pancreatic adenocarcinoma has been discussed.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
26
|
Suenaga M, Zhang WU, Mashima T, Schirripa M, Cao S, Okazaki S, Berger MD, Miyamoto Y, Barzi A, Yamaguchi T, Lenz HJ. Potential Molecular Cross Talk Among CCR5 Pathway Predicts Regorafenib Responsiveness in Metastatic Colorectal Cancer Patients. Cancer Genomics Proteomics 2021; 18:317-324. [PMID: 33893084 DOI: 10.21873/cgp.20262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic variants in the CCL5/CCR5 pathway have been shown to predict regorafenib efficacy in patients with metastatic colorectal cancer (mCRC). This study investigated the biological role of CCL4 and CCL3 gene polymorphisms in patients with refractory mCRC treated using regorafenib. PATIENTS AND METHODS We analyzed the genomic DNA extracted from mCRC patients receiving regorafenib. Serum factor levels at baseline, day 21, and progressive disease (PD) were measured using ELISA. RESULTS Decreased CCL4 levels at day 21 or increased CCL3 levels at PD were associated with better clinical outcomes. In patients with any CCL5 rs2280789 G allele, CCL3 significantly increased between BL and day 21 compared with the A/A variant (72.7% vs. 23.1%, p=0.006), but CCL4 decreased (31.8% vs. 69.2%, p=0.043). CONCLUSION Increased CCL3 and decreased CCL4 seen in specific genotypes may serve as potential biomarkers of regorafenib in mCRC patients.
Collapse
Affiliation(s)
- Mitsukuni Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A.; .,Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Specialized Surgeries, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - W U Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Marta Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Satoshi Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Afsaneh Barzi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - Toshiharu Yamaguchi
- Gastroenterology Center, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| |
Collapse
|
27
|
Lechner J, Schulz T, Lejeune B, von Baehr V. Jawbone Cavitation Expressed RANTES/CCL5: Case Studies Linking Silent Inflammation in the Jawbone with Epistemology of Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:225-240. [PMID: 33859496 PMCID: PMC8044077 DOI: 10.2147/bctt.s295488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 12/04/2022]
Abstract
Background The role of signaling pathways as part of the cell-cell communication within cancer progression becomes a crucial area. Chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted), also known as the chemokine C-C motif ligand 5 (CCL5) (R/C), is a protein on which cancer research focus due to its link with aggressive cancer development. Objective Research on fatty-degenerative osteonecrosis in jawbone (FDOJ) shows striking overexpression of R/C in these areas. Here we try to elucidate a potential link between jawbone-derived R/C and breast cancer (BC) and compare these findings by immunohistochemical staining. Methods Thirty-nine FDOJ samples extracted from 39 BC patients and samples from 19 healthy control were analyzed for R/C expression using bead-based Luminex® analysis. R/C levels from 5 BC patients were measured in serum before and after FDOJ surgery. Bone density, histology, R/C expression, and immunohistochemistry were analysed in 4 clinical case studies. The R/C staining of two FDOJ BC patients is compared with the immunohistochemical staining of BC cell preparations. Results A high overexpression of R/C was seen in all FDOJ samples. R/C levels in serum were statistically downregulated after FDOJ surgery (p=0.0241). Discussion R/C induced “silent inflammation” in BC is widely discussed in scientific papers along with R/C triggering of different signaling pathways, which might be a key point in the development of BC. Conclusion Hypothesis that FDOJ may serve as a trigger of BC progression through R/C overexpression was set by the authors, who thus inspire clinicians to make aware of FDOJ throughout the dental and medical community in BC cases.
Collapse
|
28
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 1300] [Impact Index Per Article: 325.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Sheng G, Yuan H, Jin L, Ranjit S, Panov J, Lu X, Levi M, Glazer RI. Reduction of fibrosis and immune suppressive cells in ErbB2-dependent tumorigenesis by an LXR agonist. PLoS One 2021; 16:e0248996. [PMID: 33780491 PMCID: PMC8007044 DOI: 10.1371/journal.pone.0248996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
One of the central challenges for cancer therapy is the identification of factors in the tumor microenvironment that increase tumor progression and prevent immune surveillance. One such element associated with breast cancer is stromal fibrosis, a histopathologic criterion for invasive cancer and poor survival. Fibrosis is caused by inflammatory factors and remodeling of the extracellular matrix that elicit an immune tolerant microenvironment. To address the role of fibrosis in tumorigenesis, we developed NeuT/ATTAC transgenic mice expressing a constitutively active NeuT/erbB2 transgene, and an inducible, fat-directed caspase-8 fusion protein, which upon activation results in selective and partial ablation of mammary fat and its replacement with fibrotic tissue. Induction of fibrosis in NeuT/ATTAC mice led to more rapid tumor development and an inflammatory and fibrotic stromal environment. In an effort to explore therapeutic options that could reduce fibrosis and immune tolerance, mice were treated with the oxysterol liver X receptor (LXR) pan agonist, N,N-dimethyl-3-β-hydroxy-cholenamide (DMHCA), an agent known to reduce fibrosis in non-malignant diseases. DMHCA reduced tumor progression, tumor multiplicity and fibrosis, and improved immune surveillance by reducing infiltrating myeloid-derived suppressor cells and increasing CD4 and CD8 effector T cells. These effects were associated with downregulation of an LXR-dependent gene network related to reduced breast cancer survival that included Spp1, S100a9, Anxa1, Mfge8 and Cd14. These findings suggest that the use of DMHCA may be a potentially effective approach to reduce desmoplasia and immune tolerance and increase the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Gao Sheng
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- Department of Breast, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Lu Jin
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
| | - Suman Ranjit
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Julia Panov
- Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Xun Lu
- George Washington University, Washington, DC, United States of America
| | - Moshe Levi
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Robert I. Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
30
|
Xiong J, Wang H, Wang Q. Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Adv Biol (Weinh) 2021; 5:e1900311. [PMID: 33729699 DOI: 10.1002/adbi.201900311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/09/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the outcome of the conflict between the host immune system and cancer cells. The crosstalk between immune cells and tumor cells within the tumor microenvironment (TME) influences tumor progression and metastasis. Many studies have clarified the cellular and molecular events that can induce cancer cells to escape immune surveillance, including those involving tumor-induced myeloid cell-mediated immunosuppression. Emerging evidence indicates that tumor-infiltrating myeloid cells (TIMs) accelerate tumor growth and induce angiogenesis, metastasis, and therapy resistance once converted into potent immunosuppressive cells. Here, how tumor infiltrating myeloid cells participate in tumor immune evasion and the prospects of these cells in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| | - Hui Wang
- China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, 310058, China
| |
Collapse
|
31
|
Wu SY, Sharma S, Wu K, Tyagi A, Zhao D, Deshpande RP, Watabe K. Tamoxifen suppresses brain metastasis of estrogen receptor-deficient breast cancer by skewing microglia polarization and enhancing their immune functions. Breast Cancer Res 2021; 23:35. [PMID: 33736709 PMCID: PMC7977276 DOI: 10.1186/s13058-021-01412-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Brain metastasis of breast cancer exhibits exceedingly poor prognosis, and both triple negative (TN) and Her2+ subtypes have the highest incidence of brain metastasis. Although estrogen blockers are considered to be ineffective for their treatment, recent evidence indicates that estrogen blockade using tamoxifen showed certain efficacy. However, how estrogen affects brain metastasis of triple negative breast cancer (TNBC) remains elusive. METHODS To examine the effect of estrogen on brain metastasis progression, nude mice were implanted with brain metastatic cells and treated with either estrogen supplement, tamoxifen, or ovariectomy for estrogen depletion. For clinical validation study, brain metastasis specimens from pre- and post-menopause breast cancer patients were examined for microglia polarization by immunohistochemistry. To examine the estrogen-induced M2 microglia polarization, microglia cells were treated with estrogen, and the M1/M2 microglia polarization was detected by qRT-PCR and FACS. The estrogen receptor-deficient brain metastatic cells, SkBrM and 231BrM, were treated with conditioned medium (CM) derived from microglia that were treated with estrogen in the presence or absence of tamoxifen. The effect of microglia-derived CM on tumor cells was examined by colony formation assay and sphere forming ability. RESULTS We found that M2 microglia were abundantly infiltrated in brain metastasis of pre-menopausal breast cancer patients. A similar observation was made in vivo, when we treated mice systemically with estrogen. Blocking of estrogen signaling either by tamoxifen treatment or surgical resection of mice ovaries suppressed M2 microglial polarization and decreased the secretion of C-C motif chemokine ligand 5, resulting in suppression of brain metastasis. The estrogen modulation also suppressed stemness in TNBC cells in vitro. Importantly, estrogen enhanced the expression of signal regulatory protein α on microglia and restricted their phagocytic ability. CONCLUSIONS Our results indicate that estrogen promotes brain metastasis by skewing polarity of M2 microglia and inhibiting their phagocytic ability, while tamoxifen suppresses brain metastasis by blocking the M2 polarization of microglia and increasing their anti-tumor phagocytic ability. Our results also highlight a potential therapeutic utility of tamoxifen for treating brain metastasis of hormone receptor-deficient breast cancer.
Collapse
Affiliation(s)
- Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sambad Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ravindra Pramod Deshpande
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
32
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Liu Z, Wang L, Liu L, Lu T, Jiao D, Sun Y, Han X. The Identification and Validation of Two Heterogenous Subtypes and a Risk Signature Based on Ferroptosis in Hepatocellular Carcinoma. Front Oncol 2021; 11:619242. [PMID: 33738257 PMCID: PMC7961086 DOI: 10.3389/fonc.2021.619242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ferroptosis is essential for tumorigenesis and progression of hepatocellular carcinoma (HCC). The heterogeneity of ferroptosis and its relationship with tumor microenvironment (TME) have still remain elusive. METHODS Based on 74 ferroptosis related genes (FRGs) and 3,933 HCC samples from 32 datasets, we comprehensively explored the heterogenous ferroptosis subtypes. The clinical significance, functional status, immune infiltration, immune escape mechanisms, and genomic alterations of different subtypes were further investigated. RESULTS We identified and validated two heterogeneous ferroptosis subtypes: C1 was metabolismlowimmunityhigh subtype and C2 was metabolismhighimmunitylow subtype. Compared to C2, C1 owned worse prognosis, and C1 tended to occur in the patients with clinical characteristics such as younger, female, advanced stage, higher grade, vascular invasion. C1 and C2 were more sensitive to immunotherapy and sorafenib, respectively. The immune escape mechanisms of C1 might be accumulating more immunosuppressive cells, inhibitory cytokines, and immune checkpoints, while C2 was mainly associated with inferior immunogenicity, defecting in antigen presentation, and lacking leukocytes. In addition, C1 was characterized by BAP1 mutation, MYC amplification, and SCD1 methylation, while C2 was characterized by the significant alterations in cell cycle and chromatin remodeling processes. We also constructed and validated a robust and promising signature termed ferroptosis related risk score (FRRS) for assessing prognosis and immunotherapy. CONCLUSION We identified and validated two heterogeneous ferroptosis subtypes and a reliable risk signature which used to assess prognosis and immunotherapy. Our results facilitated the understood of ferroptosis as well as clinical management and precise therapy of HCC.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Wang J, Cheng CS, Lu Y, Sun S, Huang S. Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling. Front Oncol 2021; 11:610514. [PMID: 33718164 PMCID: PMC7952859 DOI: 10.3389/fonc.2021.610514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/22/2021] [Indexed: 11/27/2022] Open
Abstract
Volatile anesthetics are widely used inhalation anesthetics in clinical anesthesia. In recent years, the regulation of anti-cancer relevant signaling of volatile anesthetics has drawn the attention of investigators. However, their underlying mechanism remains unclear. This review summarizes the research progress on the regulation of anti-cancer relevant signaling of volatile anesthetics, including sevoflurane, desflurane, xenon, isoflurane, and halothane in vitro, in vivo, and clinical studies. The present review article aims to provide a general overview of regulation of anti-cancer relevant signaling and explore potential underlying molecular mechanisms of volatile anesthetics. It may promote promising insights of guiding clinical anesthesia procedure and instructing enhance recovery after surgery (ERAS) with latent benefits.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shen Sun
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaoqiang Huang
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
35
|
Sun HW, Wu WC, Chen HT, Xu YT, Yang YY, Chen J, Yu XJ, Wang Z, Shuang ZY, Zheng L. Glutamine Deprivation Promotes the Generation and Mobilization of MDSCs by Enhancing Expression of G-CSF and GM-CSF. Front Immunol 2021; 11:616367. [PMID: 33603745 PMCID: PMC7884351 DOI: 10.3389/fimmu.2020.616367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
Solid tumors are often challenged by hypoxic and nutrient-deprived tumor microenvironments (TME) as tumors progress, due to limited perfusion and rapid nutrient consumption. While cancer cells can demonstrate the ability to survive in nutrient-deprived conditions through multiple intrinsic alterations, it is poorly understood how nutrient-deprived cancer cells co-opt the TME to promote cancer cell survival and tumor progression. In the present study, we found that glutamine deprivation markedly potentiated the expression of G-CSF and GM-CSF in mouse mammary cancer cells. The IRE1α-JNK pathway, which is activated by glutamine starvation, was found to be important for the upregulation of these cytokines. G-CSF and GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic progenitor cells (HPC). Consistently, as tumors progressed, we found that several myeloid HPC compartments were gradually decreased in the bone marrow but were significantly increased in the spleen. Mechanistically, the HPC-maintaining capacity of the bone marrow was significantly impaired in tumor-bearing mice, with lower expression of HPC maintaining genes (i.e., CXCL12, SCF, ANGPT1, and VCAM1), and reduced levels of mesenchymal stem cells and CXCL12-producing cells. Furthermore, the mobilized HPCs that displayed the capacity for myelopoiesis were also found to accumulate in tumor tissue. Tumor-infiltrating HPCs were highly proliferative and served as important sources of immunosuppressive myeloid-derived suppressor cells (MDSCs) in the TME. Our work has identified an important role for glutamine starvation in regulating the expression of G-CSF and GM-CSF, and in facilitating the generation of immunosuppressive MDSCs in breast cancer.
Collapse
Affiliation(s)
- Hong-Wei Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Chao Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hai-Tian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi-Tuo Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Yan Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xing-Juan Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Yu Shuang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Limin Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Karin N. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Front Immunol 2020; 11:557586. [PMID: 33193327 PMCID: PMC7649122 DOI: 10.3389/fimmu.2020.557586] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of immature myeloid cells. Under normal conditions, they differentiate into macrophages, dendritic cells, and granulocytes. Under pathological conditions, such as chronic inflammation, or cancer, they tend to maintain their immature state as immature myeloid cells that, within the tumor microenvironment, become suppressor cells and assist tumor escape from immune eradication. MDSC are comprised of two major subsets: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC). Monocytic myeloid cells give rise to monocytic cells, whereas PMN-MDSC share similarities with neutrophils. Based on their biological activities, a two-stage model that includes the mobilization of the periphery as myeloid cells and their activation within the tumor microenvironment converting them into suppressor cells was previously suggested by D. Gabrilovich. From the migratory viewpoint, we are suggesting a more complex setup. It starts with crosstalk between the tumor site and the hematopoietic stem and progenitor cells (HSPCs) at the bone marrow (BM) and secondary lymphatic organs, resulting in rapid myelopoiesis followed by mobilization to the blood. Although myelopoiesis is coordinated by several cytokines and transcription factors, mobilization is selectively directed by chemokine receptors and may differ between M-MDSC and PMN-MDSC. These myeloid cells may then undergo further expansion at these secondary lymphatic organs and then home to the tumor site. Finally, selective homing of T cell subsets has been associated with retention at the target organs directed by adhesion molecules or chemokine receptors. The possible relevance to myeloid cells is still speculative but is discussed.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
37
|
Zonneville J, Colligan S, Grant S, Miller A, Wallace P, Abrams SI, Bakin AV. Blockade of p38 kinase impedes the mobilization of protumorigenic myeloid populations to impact breast cancer metastasis. Int J Cancer 2020; 147:2279-2292. [PMID: 32452014 PMCID: PMC7484223 DOI: 10.1002/ijc.33050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022]
Abstract
Patients with metastatic breast cancer (MBC) have limited therapeutic options and novel treatments are critically needed. Prior research implicates tumor-induced mobilization of myeloid cell populations in metastatic progression, as well as being an unfavorable outcome in MBC; however, the underlying mechanisms for these relationships remain unknown. Here, we provide evidence for a novel mechanism by which p38 promotes metastasis. Using triple-negative breast cancer models, we showed that a selective inhibitor of p38 (p38i) significantly reduced tumor growth, angiogenesis, and lung metastasis. Importantly, p38i decreased the accumulation of myeloid populations, namely, myeloid-derived suppressor cells (MDSCs) and CD163+ tumor-associated macrophages (TAMs). p38 controlled the expression of tumor-derived chemokines/cytokines that facilitated the recruitment of protumor myeloid populations. Depletion of MDSCs was accompanied by reduced TAM infiltration and phenocopied the antimetastatic effects of p38i. Reciprocally, p38i increased tumor infiltration by cytotoxic CD8+ T cells. Furthermore, the CD163+ /CD8+ expression ratio inversely correlated with metastasis-free survival in breast cancer, suggesting that targeting p38 may improve clinical outcomes. Overall, our study highlights a previously unknown p38-driven pathway as a therapeutic target in MBC.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antineoplastic Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Chemokines/metabolism
- Cytokines/metabolism
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- MAP Kinase Signaling System/drug effects
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/metabolism
- Myeloid-Derived Suppressor Cells/pathology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptors, Cell Surface/metabolism
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sean Colligan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Sydney Grant
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | | | - Paul Wallace
- Department of Flow & Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
| | - Andrei V. Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263
- Sechenov Medical University, Moscow, Russia 119991
| |
Collapse
|
38
|
Weber R, Riester Z, Hüser L, Sticht C, Siebenmorgen A, Groth C, Hu X, Altevogt P, Utikal JS, Umansky V. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma. J Immunother Cancer 2020; 8:jitc-2020-000949. [PMID: 32788238 PMCID: PMC7422659 DOI: 10.1136/jitc-2020-000949] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSC) play a major role in the immunosuppressive melanoma microenvironment. They are generated under chronic inflammatory conditions characterized by the constant production of inflammatory cytokines, chemokines and growth factors, including IL-6. Recruitment of MDSC to the tumor is mediated by the interaction between chemokines and chemokine receptors, in particular C–C chemokine receptor (CCR)5. Here, we studied the mechanisms of CCR5 upregulation and increased immunosuppressive function of CCR5+ MDSC. Methods The immortalized myeloid suppressor cell line MSC-2, primary immature myeloid cells and in vitro differentiated MDSC were used to determine factors and molecular mechanisms regulating CCR5 expression and immunosuppressive markers at the mRNA and protein levels. The relevance of the identified pathways was validated on the RET transgenic mouse melanoma model, which was also used to target the identified pathways in vivo. Results IL-6 upregulated the expression of CCR5 and arginase 1 in MDSC by a STAT3-dependent mechanism. MDSC differentiated in the presence of IL-6 strongly inhibited CD8+ T cell functions compared with MDSC differentiated without IL-6. A correlation between IL-6 levels, phosphorylated STAT3 and CCR5 expression in tumor-infiltrating MDSC was demonstrated in the RET transgenic melanoma mouse model. Surprisingly, IL-6 overexpressing tumors grew significantly slower in mice accompanied by CD8+ T cell activation. Moreover, transgenic melanoma-bearing mice treated with IL-6 blocking antibodies showed significantly accelerated tumor development. Conclusion Our in vitro and ex vivo findings demonstrated that IL-6 induced CCR5 expression and a strong immunosuppressive activity of MDSC, highlighting this cytokine as a promising target for melanoma immunotherapy. However, IL-6 blocking therapy did not prove to be effective in RET transgenic melanoma-bearing mice but rather aggravated tumor progression. Further studies are needed to identify particular combination therapies, cancer entities or patient subsets to benefit from the anti-IL-6 treatment.
Collapse
Affiliation(s)
- Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Zeno Riester
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Carsten Sticht
- Medical Research Center (ZMF), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Alina Siebenmorgen
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Xiaoying Hu
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Jochen S Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center, Mannheim, Baden-Württemberg, Germany
| |
Collapse
|
39
|
Niu M, Yi M, Dong B, Luo S, Wu K. Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer and promotes the proliferation of colon cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:951. [PMID: 32953751 PMCID: PMC7475405 DOI: 10.21037/atm-20-4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men and women globally. Investigating genetic ground differences between normal and CRC tissues would be significant for identifying some key oncogenic pathways and developing anti-cancer agents. Methods Weighted gene co-expression network analysis (WGCNA) method was used to screen out core pathways related to the clinical traits of CRC patients. Then, multiple databases were utilized to further verify the hub genes obtained from data mining. Finally, to explore the role of hub genes in CRC, cell counting and EdU assays were performed. Results The results of the WGCNA analysis showed that a module (turquoise module) was highly related with CRC differentiation grade (R =0.53, P<0.0001). Enrichment analysis indicated that genes of the turquoise module were remarkably enriched in multiple inflammatory processes and pathways. Among all hub genes of the turquoise module, the mRNA levels of STAT1 and CCL5 were significantly higher in CRC than in normal colon tissues. STAT1 expression was highly positively correlated with the level of CCL5. The results of the cell counting, EdU, CCK-8, and CFSE staining assays showed that interfering with STAT1 and CCL5 could inhibit the proliferation of CRC cells. Conclusions Our study indicated that the STAT1-CCL5 axis is an important modulator in the development of CRC through promoting cell proliferation. Moreover, the levels of STAT1 and CCL5 might be valuable biomarkers for CRC screening.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Cha YJ, Koo JS. Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells 2020; 9:E1785. [PMID: 32726950 PMCID: PMC7464644 DOI: 10.3390/cells9081785] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Stromal immune cells constitute the tumor microenvironment. These immune cell subsets include myeloid cells, the so-called tumor-associated myeloid cells (TAMCs), which are of two types: tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). Breast tumors, particularly those in human epidermal growth factor receptor 2 (HER-2)-positive breast cancer and triple-negative breast cancer, are solid tumors containing immune cell stroma. TAMCs drive breast cancer progression via immune mediated, nonimmune-mediated, and metabolic interactions, thus serving as a potential therapeutic target for breast cancer. TAMC-associated breast cancer treatment approaches potentially involve the inhibition of TAM recruitment, modulation of TAM polarization/differentiation, reduction of TAM products, elimination of MDSCs, and reduction of MDSC products. Furthermore, TAMCs can enhance or restore immune responses during cancer immunotherapy. This review describes the role of TAMs and MDSCs in breast cancer and elucidates the clinical implications of TAMs and MDSCs as potential targets for breast cancer treatment.
Collapse
Affiliation(s)
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, Korea;
| |
Collapse
|
41
|
The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel) 2020; 12:cancers12071765. [PMID: 32630699 PMCID: PMC7407580 DOI: 10.3390/cancers12071765] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cells can “hijack” chemokine networks to support tumor progression. In this context, the C-C chemokine ligand 5/C-C chemokine receptor type 5 (CCL5/CCR5) axis is gaining increasing attention, since abnormal expression and activity of CCL5 and its receptor CCR5 have been found in hematological malignancies and solid tumors. Numerous preclinical in vitro and in vivo studies have shown a key role of the CCL5/CCR5 axis in cancer, and thus provided the rationale for clinical trials using the repurposed drug maraviroc, a CCR5 antagonist used to treat HIV/AIDS. This review summarizes current knowledge on the role of the CCL5/CCR5 axis in cancer. First, it describes the involvement of the CCL5/CCR5 axis in cancer progression, including autocrine and paracrine tumor growth, ECM (extracellular matrix) remodeling and migration, cancer stem cell expansion, DNA damage repair, metabolic reprogramming, and angiogenesis. Then, it focuses on individual hematological and solid tumors in which CCL5 and CCR5 have been studied preclinically. Finally, it discusses clinical trials of strategies to counteract the CCL5/CCR5 axis in different cancers using maraviroc or therapeutic monoclonal antibodies.
Collapse
|
42
|
Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor relapses. Pro-thrombotic microenvironment created by inflammatory cytokines and chemokines from TAMs, MDSCs and CAFs is also involved in EMT and MDR. MDSCs are the most common mediators of immunosuppression and are also involved in resistance to targeted therapies, e.g. BRAF inhibitors and oncolytic viruses-based therapies. Expansion of both cancer and stroma cells causes hypoxia by hypoxia-inducible transcription factors (e.g. HIF-1α) resulting in drug resistance. TME factors induce the expression of transcriptional EMT factors, MDR and metabolic adaptation of cancer cells. Promoters of several ATP-binding cassette (ABC) transporter genes contain binding sites for canonical EMT transcription factors, e.g. ZEB, TWIST and SNAIL. Changes in glycolysis, oxidative phosphorylation and autophagy during EMT also promote MDR. Conclusively, EMT signaling simultaneously increases MDR. Owing to the multifactorial nature of MDR, targeting one mechanism seems to be non-sufficient to overcome resistance. Targeting inflammatory processes by immune modulatory compounds such as mTOR inhibitors, demethylating agents, low-dosed histone deacetylase inhibitors may decrease MDR. Targeting EMT and metabolic adaptation by small molecular inhibitors might also reverse MDR. In this review, we summarize evidence for TME components as causative factors of EMT and anticancer drug resistance.
Collapse
|
43
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
44
|
Liu H, Yang Z, Lu W, Chen Z, Chen L, Han S, Wu X, Cai T, Cai Y. Chemokines and chemokine receptors: A new strategy for breast cancer therapy. Cancer Med 2020; 9:3786-3799. [PMID: 32253815 PMCID: PMC7286460 DOI: 10.1002/cam4.3014] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokines and chemokine receptors not only participate in the development of tissue differentiation, hematopoiesis, inflammation, and immune regulation but also play an important role in the process of tumor development. The role of chemokines and chemokine receptors in tumors has been emphasized in recent years. More and more studies have shown that chemokines and chemokine receptors are closely related to the occurrence, angiogenesis, metastasis, drug resistance, and immunity of breast cancer. Here, we review recent progression on the roles of chemokines and chemokine receptors in breast cancer, and discuss the possible mechanism in breast cancer that might facilitate the development of new therapies by targeting chemokines as well as chemokine receptors. Chemokines and chemokine receptors play an important role in the occurrence and development of breast cancer. In-depth study of chemokines and chemokine receptors can provide intervention targets for breast cancer biotherapy. The regulation of chemokines and chemokine receptors may become a new strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Hui Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhenjiang Yang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenping Lu
- Guangan' Men Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lianyu Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai, China.,Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuyan Han
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang, China
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, China.,Cancer Research Institute of Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Deng F, Weng Y, Li X, Wang T, Fan M, Shi Q. Overexpression of IL-8 promotes cell migration via PI3K-Akt signaling pathway and EMT in triple-negative breast cancer. Pathol Res Pract 2020; 216:152902. [PMID: 32147274 DOI: 10.1016/j.prp.2020.152902] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is a type of malignant and heterogeneous tumor in premenopausal females with ineffective therapeutic targets. IL-8 is one of the earliest discovered chemotaxis cytokines which expression is closely related to the progress of various cancers. Previous studies showed that IL-8 determines the prognosis of TNBC patients, nevertheless how IL-8 influences the progress of TNBC is unclear. In our studies, we discovered that overexpression of IL-8 promotes TNBC cells (TNBCs) migration and tumor growth via the PI3K-Akt and MAPK signaling pathway. Cell-cycle of TNBCs arrest at S phase by overexpression of IL-8, however, there is no significant variation on the cell viability and cell apoptosis of TNBCs. Besides, overexpression of IL-8 result in the downregulation of E-cadherin and the upregulation of Cyclin B1 in MDA-MB-231 cells. Taken together, our results suggest that IL-8 performs a crucial role in the progress of TNBC, and it could be a novel therapeutic target of TNBC.
Collapse
Affiliation(s)
- Fang Deng
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yaguang Weng
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, PR China
| | - Xian Li
- Department of Pathology, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, PR China
| | - Teng Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Mengtian Fan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qiong Shi
- Department of Laboratory Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, PR China.
| |
Collapse
|
46
|
Torretta S, Colombo G, Travelli C, Boumya S, Lim D, Genazzani AA, Grolla AA. The Cytokine Nicotinamide Phosphoribosyltransferase (eNAMPT; PBEF; Visfatin) Acts as a Natural Antagonist of C-C Chemokine Receptor Type 5 (CCR5). Cells 2020; 9:cells9020496. [PMID: 32098202 PMCID: PMC7072806 DOI: 10.3390/cells9020496] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. It has been shown, using surface plasma resonance, that eNAMPT binds to the C-C chemokine receptor type 5 (CCR5), although the physiological meaning of this finding is unknown. The aim of the present work was to characterize the pharmacodynamics of eNAMPT on CCR5. (2) Methods: HeLa CCR5-overexpressing stable cell line and B16 melanoma cells were used. We focused on some phenotypic effects of CCR5 activation, such as calcium release and migration, to evaluate eNAMPT actions on this receptor. (3) Results: eNAMPT did not induce ERK activation or cytosolic Ca2+-rises alone. Furthermore, eNAMPT prevents CCR5 internalization mediated by Rantes. eNAMPT pretreatment inhibits CCR5-mediated PKC activation and Rantes-dependent calcium signaling. The effect of eNAMPT on CCR5 was specific, as the responses to ATP and carbachol were unaffected. This was strengthened by the observation that eNAMPT inhibited Rantes-induced Ca2+-rises and Rantes-induced migration in a melanoma cell line. (4) Conclusions: Our work shows that eNAMPT binds to CCR5 and acts as a natural antagonist of this receptor.
Collapse
Affiliation(s)
- Simone Torretta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, Università di Pavia, 27100 Pavia, Italy;
| | - Sara Boumya
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
| | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (S.T.); (G.C.); (S.B.); (D.L.); (A.A.G.)
- Correspondence: ; Tel.: +39-0321-375822; Fax: +39-0321-375821
| |
Collapse
|
47
|
Chen J, Wang Z, Ding Y, Huang F, Huang W, Lan R, Chen R, Wu B, Fu L, Yang Y, Liu J, Hong J, Zhang W, Zhang L. Hypofractionated Irradiation Suppressed the Off-Target Mouse Hepatocarcinoma Growth by Inhibiting Myeloid-Derived Suppressor Cell-Mediated Immune Suppression. Front Oncol 2020; 10:4. [PMID: 32117702 PMCID: PMC7026455 DOI: 10.3389/fonc.2020.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Stereotactic radiotherapy treats hepatocellular carcinoma (HCC) at different stages effectively and safely. Besides its direct killing of cancer cells, radiotherapy stimulates host immunity against hepatoma. However, the role of myeloid-derived suppressor cells (MDSCs) in on-target and off-target anti-HCC effects induced by hypofractionated irradiation (IR) is unclear. Methods and Materials: Hepa1-6 and H22 allogeneic transplanted tumors on hind limbs of C57BL/6 and Institute of Cancer Research (ICR) mice, respectively, were irradiated with 0, 2.5, 4, 6, or 8 Gy/fraction until the total dose reached 40 Gy. The off-target effect induced by the IR was investigated by subsequently inoculating the same HCC cells subcutaneously on the abdomen. MDSCs in peripheral blood and tumor tissues were measured by flow cytometry or immunofluorescence microscopy analysis. IL-6, regulated on activation normal T cell expressed and secreted (RANTES), and granulocyte colony-stimulating factor (G-CSF) in irradiated mouse plasma and hepatoma cell cultures were measured with ELISA kits. Conditioned media (CM) from irradiated HCC cell cultures on bone marrow cell differentiation and MDSC proliferation were examined by co-culture and flow cytometry. Results: Our study showed that the IR of primarily inoculated HCC on hind limbs created an “in situ tumor vaccine” and triggered the antitumor immunity. The immunity was capable of suppressing the growth of the same type of HCC subcutaneously implanted on the abdomen, accompanied with reduced MDSCs in both blood and tumors. The decreased MDSCs were associated with low plasma levels of IL-6, RANTES, and G-CSF. The cytokines IL-6 and RANTES in the CM were lower in the high single IR dose group than in the control groups, but G-CSF was higher. The CM from high single-dose IR-Hepa1-6 cell culture reduced the differentiation of C57BL/6 mouse bone marrow cells into MDSCs, whereas CM from high single-dose IR-H22 cells reduced the proliferation of MDSCs, which might be due to the decreased p-STAT3 in bone marrow cells. Conclusions: The hypofractionated IR on transplanted tumors at the primary location exerted a strong antitumor effect on the same tumor at a different location (off target). This abscopal effect is most likely through the reduction of MDSCs and decrease of IL-6, RANTES, and G-CSF.
Collapse
Affiliation(s)
- Junying Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Zeng Wang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Yuxiong Ding
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Fei Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Weikang Huang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Ruilong Lan
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Ruiqing Chen
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Bing Wu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Lengxi Fu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Yunhua Yang
- Department of Otolaryngology, Fujian Provincial Geriatric Hospital, Fuzhou, China
| | - Jun Liu
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Jinsheng Hong
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Weijian Zhang
- First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cancer Immunotherapy and Key Laboratory of Radiation Biology, Fujian Province Universities, Fuzhou, China
| | - Lurong Zhang
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
48
|
The ICOSL Expression Predicts Better Prognosis for Nasopharyngeal Carcinoma via Enhancing Oncoimmunity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9756732. [PMID: 31998801 PMCID: PMC6973197 DOI: 10.1155/2020/9756732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/15/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor prognosis, high morbidity, and mortality. Currently, immunocheckpoint therapy has led to new treatment strategies for almost all cancers, including nasopharyngeal carcinoma. Inducible T-cell aggregation ligand (ICOSL) belongs to the b7-cd28 immunoglobulin superfamily, which is a ligand of ICOS, and also begins to draw attention for its potential usage in cancer treatment. Previous studies from our laboratory have suggested that ICOS expression in tumor-infiltrating lymphocytes is correlated with beneficial outcome, but little is known about the role of ICOSL in NPC. In the current study, ICOSL expression in NPC tumor sections was stained by immunohistochemistry (IHC), and both lymphatic metastasis and distant metastasis showed decreased expression, which was negatively correlated with TNM stage of nasopharyngeal carcinoma. Importantly, high ICOSL expression was significantly associated with overall survival (OS) in patients with NPC (n = 225, p < 0.001), and multivariate analysis confirmed that high ICOSL expression was an independent prognostic factor. Fresh nasopharyngeal carcinoma specimens were excised, and the specific expression of cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). The expression level of ICOSL is positively correlated with interferon-gamma (IFN-γ) concentration in tumor tissues, which is characteristic of T helper 1 (Th1) cells. Knocking down ICOSL by RNAi did not influence the proliferation, migration, and invasion ability of NPC cells. Conclusively, ICOSL expression is associated with increased survival rate in patients with nasopharyngeal carcinoma, which may be a clinical biomarker for prognosis of nasopharyngeal carcinoma.
Collapse
|
49
|
Fujimoto Y, Inoue N, Morimoto K, Watanabe T, Hirota S, Imamura M, Matsushita Y, Katagiri T, Okamura H, Miyoshi Y. Significant association between high serum CCL5 levels and better disease-free survival of patients with early breast cancer. Cancer Sci 2019; 111:209-218. [PMID: 31724785 PMCID: PMC6942441 DOI: 10.1111/cas.14234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Analysis of anticancer immunity aids in assessing the prognosis of patients with breast cancer. From 250 operated breast cancers, we focused on serum levels of C‐C motif chemokine ligand 5 (CCL5), which is involved in cancer immune reactions. Serum levels of CCL5 were measured using a cytometric bead‐based immunoassay kit and CCL5 expression in cancer cells was determined using immunohistochemical staining. In addition, mRNA in cancer and stromal cells was analyzed by microdissection and comparison with the public dataset. Disease‐free survival (DFS) of patients with high CCL5 levels (cut‐off, 13.87 ng/mL; n = 192) was significantly better than those with low CCL5 levels (n = 58; hazard ratio, 0.20; 95% confidence interval, 0.10‐0.39; P < .0001). An improved overall survival was observed in patients with high CCL5 levels compared to those with low CCL5 levels (P = .024). On the contrary, high immunohistochemical expression of CCL5 in cancer cells was significantly associated with decreased DFS. As serum CCL5 levels did not correlate with CCL5 expression in cancer cells and the relative expression of mRNA CCL5 was elevated in stromal cells in relation to cancer cells, serum CCL5 might be derived not from cancer cells, but from stromal cells. Expression of CCL5 in serum, but not in cancer cells, might contribute to improved patient prognosis mediating through not only immune reaction, but through other mechanisms. Determination of circulating CCL5 levels could be useful for predicting patient prognosis.
Collapse
Affiliation(s)
- Yukie Fujimoto
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Natsuko Inoue
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koji Morimoto
- Osaka Ryokuryo High School, Fujiidera, Japan.,Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Takahiro Watanabe
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michiko Imamura
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
50
|
Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2019; 117:201-215. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) expand in tumor-bearing host. They suppress anti-tumor immune response and promote tumor growth. Chemokines play a vital role in recruiting MDSCs into tumor tissue. They can also induce the generation of MDSCs in the bone marrow, maintain their suppressive activity, and promote their proliferation and differentiation. Here, we review CCL2/CCL12-CCR2, CCL3/4/5-CCR5, CCL15-CCR1, CX3CL1/CCL26-CX3CR1, CXCL5/2/1-CXCR2, CXCL8-CXCR1/2, CCL21-CCR7, CXCL13-CXCR5 signaling pathways, their role in MDSCs recruitment to tumor tissue, and their correlation with tumor development, metastasis and prognosis. Targeting chemokines and their receptors may serve as a promising strategy in immunotherapy, especially combined with other strategies such as chemotherapy, cyclin-dependent kinase or immune checkpoints inhibitors.
Collapse
|