1
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Xie D, Deng T, Zhai Z, Qin T, Song C, Xu Y, Sun T. Moschus exerted protective activity against H 2O 2-induced cell injury in PC12 cells through regulating Nrf-2/ARE signaling pathways. Biomed Pharmacother 2023; 159:114290. [PMID: 36708701 DOI: 10.1016/j.biopha.2023.114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The pivotal characteristics of Alzheimer's disease (AD) are irreversible memory loss and progressive cognitive decline, eventually causing death from brain failure. In the various proposed hypotheses of AD, oxidative stress is also regarded as a symbolic pathophysiologic cascade contributing to brain diseases. Using Chinese herbal medicine may be beneficial for treating and preventing AD. As a rare and valuable animal medicine, Moschus possesses antioxidant and antiapoptotic efficacy and is extensively applied for treating unconsciousness, stroke, coma, and cerebrovascular diseases. We aim to evaluate whether Moschus protects PC12 cells from hydrogen peroxide (H2O2)-induced cellular injury. The chemical constituents of Moschus are analyzed by GC-MS assay. The cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP) levels, oxidative stress-related indicators, and apoptotic proteins are determined. Through GC-MS analysis, nineteen active contents were identified. The cell viability loss, lactate dehydrogenase releases, MMP levels, ROS productions, and Malondialdehyde (MDA) activities decreased, and BAX, Caspase-3, and Kelch-like ECH-associated protein 1 expression also significantly down-regulated and heme oxygenase 1, nuclear factor erythroid-2-related factor 2 (Nrf-2), and quinine oxidoreductase 1 expression upregulated after pretreatment of Moschus. The result indicated Moschus has neuroprotective activity in relieving H2O2-induced cellular damage, and the potential mechanism might be associated with regulating the Nrf-2/ARE signaling pathway. A more in-depth and comprehensive understanding of Moschus in the pathogenesis of AD will provide a fundamental basis for in vivo AD animal model research, which may be able to provide further insights and new targets for AD therapy.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting Deng
- Jintang Second People' s Hospital, Chengdu 610404, China.
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Caiyou Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
4
|
Gleixner AM, Verdone BM, Otte CG, Anderson EN, Ramesh N, Shapiro OR, Gale JR, Mauna JC, Mann JR, Copley KE, Daley EL, Ortega JA, Cicardi ME, Kiskinis E, Kofler J, Pandey UB, Trotti D, Donnelly CJ. NUP62 localizes to ALS/FTLD pathological assemblies and contributes to TDP-43 insolubility. Nat Commun 2022; 13:3380. [PMID: 35697676 PMCID: PMC9192689 DOI: 10.1038/s41467-022-31098-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2022] [Indexed: 01/12/2023] Open
Abstract
A G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier. However, the relationship between FG nups and TDP-43 pathology remains elusive. Our studies show that nuclear depletion and cytoplasmic mislocalization of one FG nup, NUP62, is linked to TDP-43 mislocalization in C9-ALS/FTLD iPSC neurons. Poly-glycine arginine (GR) DPR accumulation initiates the formation of cytoplasmic RNA granules that recruit NUP62 and TDP-43. Cytoplasmic NUP62 and TDP-43 interactions promotes their insolubility and NUP62:TDP-43 inclusions are frequently found in C9orf72 ALS/FTLD as well as sporadic ALS/FTLD postmortem CNS tissue. Our findings indicate NUP62 cytoplasmic mislocalization contributes to TDP-43 proteinopathy in ALS/FTLD.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Brandie Morris Verdone
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Charlton G Otte
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Olivia R Shapiro
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jocelyn C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Jacob R Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katie E Copley
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Elizabeth L Daley
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Juan A Ortega
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Elena Cicardi
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia Kofler
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Udai B Pandey
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davide Trotti
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- LiveLikeLou Center for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Li X, Nian BB, Tan CP, Liu YF, Xu YJ. Deep-frying oil induces cytotoxicity, inflammation and apoptosis on intestinal epithelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3160-3168. [PMID: 34786719 DOI: 10.1002/jsfa.11659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Deep-frying oil has been found to cause inflammatory bowel disease (IBD). However, the molecular mechanism of the effect of deep-frying palm oil on IBD still remains undetermined. RESULTS In the present study, bioinformatics and cell biology were used to investigate the functions and signal pathway enrichments of differentially expressed genes. The bioinformatics analysis of three original microarray datasets (GSE73661, GSE75214 and GSE126124) in the NCBI-Gene Expression Omnibus database showed 17 down-regulated genes (logFC < 0) and 2 up-regulated genes (logFC > 0) existed in the enteritis tissue. Meanwhile, pathway enrichment and protein-protein interaction network analysis suggested that IBD is relevant to cytotoxicity, inflammation and apoptosis. Furthermore, Caco-2 cells were treated with the main oxidation products of deep-frying oil-total polar compounds (TPC) and its components (polymerized triglyceride, oxidized triglycerides and triglyceride degradation products) isolated from deep-frying oil. The flow cytometry experiment revealed that TPC and its components could induce apoptosis, especially for oxidized triglyceride. A quantitative polymerase chain reaction analysis demonstrated that TPC and its component could induce Caco-2 cell apoptosis through AQP8/CXCL1/TNIP3/IL-1. CONCLUSION The present study provides fundamental knowledge for understanding the effects of deep-frying oils on the cytotoxic and inflammatory of Caco-2 cells, in addition to clarifying the molecular function mechanism of deep-frying oil in IBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Bin-Bin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Seri Kembangan, Malaysia
| | - Yuan-Fa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yan H, Xu JJ, Ali I, Zhang W, Jiang M, Li G, Teng Y, Zhu G, Cai Y. CDK5RAP3, an essential regulator of checkpoint, interacts with RPL26 and maintains the stability of cell growth. Cell Prolif 2022; 55:e13240. [PMID: 35509151 PMCID: PMC9136512 DOI: 10.1111/cpr.13240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE AND MATERIALS CDK5RAP3 (CDK5 regulatory subunit associated protein 3) was originally identified as a binding protein of CDK5. It is a crucial gene controlling biological functions, such as cell proliferation, apoptosis, invasion, and metastasis. Although previous studies have also shown that CDK5RAP3 is involved in a variety of signalling pathways, however, the mechanism of CDK5RAP3 remains largely undefined. This study utilized MEFs from conditional knockout mice to inhibit CDK5RAP3 and knockdown CDK5RAP3 in MCF7 to explore the role of CDK5RAP3 in cell growth, mitosis, and cell death. RESULTS CDK5RAP3 was found to be widely distributed throughout the centrosome, spindle, and endoplasmic reticulum, indicating that it is involved in regulating a variety of cellular activities. CDK5RAP3 deficiency resulted in instability of cell growth. CDK5RAP3 deficiency partly blocks the cell cycle in G2 /M by downregulating CDK1 (Cyclin-dependent kinase 1) and CCNB1 (Cyclin B1) expression levels. The cell proliferation rate was decreased, thereby slowing down the cell growth rate. Furthermore, the results showed that CDK5RAP3 interacts with RPL26 (ribosome protein L26) to regulate the mTOR pathway. CDK5RAP3 and RPL26 deficiency inhibited mTOR/p-mTOR protein and induce autophagy, resulting in an upregulation of the percentage of apoptosis, and the upregulated percentage of apoptosis also slowed cell growth. CONCLUSIONS Our experiments show that CDK5RAP3 interacts with RPL26 and maintains the stability of cell growth. It shows that CDK5RAP3 plays an important role in cell growth and can be used as the target of gene medicine.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiping Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Klebanovych A, Vinopal S, Dráberová E, Sládková V, Sulimenko T, Sulimenko V, Vosecká V, Macůrek L, Legido A, Dráber P. C53 Interacting with UFM1-Protein Ligase 1 Regulates Microtubule Nucleation in Response to ER Stress. Cells 2022; 11:cells11030555. [PMID: 35159364 PMCID: PMC8834445 DOI: 10.3390/cells11030555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here we find that UFL1 and C53 associate with γ-tubulin ring complex proteins. Knockout of UFL1 or C53 in human osteosarcoma cells induces ER stress and boosts centrosomal microtubule nucleation accompanied by γ-tubulin accumulation, microtubule formation, and ER expansion. C53, which is stabilized by UFL1, associates with the centrosome and rescues microtubule nucleation in cells lacking UFL1. Pharmacological induction of ER stress by tunicamycin also leads to increased microtubule nucleation and ER expansion. Furthermore, tunicamycin suppresses the association of C53 with the centrosome. These findings point to a novel mechanism for the relief of ER stress by stimulation of centrosomal microtubule nucleation.
Collapse
Affiliation(s)
- Anastasiya Klebanovych
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Stanislav Vinopal
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Eduarda Dráberová
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Vladimíra Sládková
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Věra Vosecká
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Libor Macůrek
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
| | - Agustin Legido
- Section of Neurology, St. Christopher’s Hospital for Children, Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA 19134, USA;
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, CZ 142 20 Prague, Czech Republic; (A.K.); (S.V.); (E.D.); (V.S.); (T.S.); (V.S.); (V.V.); (L.M.)
- Correspondence: ; Tel.: +420-241-062-632
| |
Collapse
|
8
|
Lin S, Du J, Hao J, Luo X, Wu H, Zhang H, Zhao X, Xu L, Wang B. Identification of Prognostic Biomarkers Among FAM83 Family Genes in Human Ovarian Cancer Through Bioinformatic Analysis and Experimental Verification. Cancer Manag Res 2021; 13:8611-8627. [PMID: 34815715 PMCID: PMC8604648 DOI: 10.2147/cmar.s328851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Family with sequence similarity 83 (FAM83) is a newly discovered oncogene family, and the members of which can affect the prognosis of patients with malignant tumors via various mechanisms. However, the functions and molecular mechanisms of FAM83 genes in ovarian cancer (OC) have not yet been investigated. This study aimed to explore the clinical significance and prognostic value of FAM83 genes in OC. Materials and Methods We used a series of bioinformatics databases (Oncomine, GEPIA, cBioPortal, Kaplan–Meier plotter, DAVID and TIMER) to investigate the expression status, prognostic value, genetic alteration and biological function of all eight FAM83 genes in OC. In addition, a tissue microarray cohort (TMA) comprising 99 ovarian tumor tissues and 19 normal ovarian tissues was used to validate the protein expression and clinicopathological significance of FAM83H. Results Several datasets demonstrated the mRNA levels of FAM83A/D/E/F/H were significantly higher in OC compared with that in normal tissue. Moreover, the upregulation of FAM83D/H has been mutually confirmed in the Oncomine and GEPIA datasets. Kaplan–Meier survival analysis indicated that the FAM83D/H upregulation could predict poor prognosis of OC patients who had shorter overall survival (OS) and progression-free survival (PFS). In addition, cBioportal analysis indicated that the genetic alterations of FAM83 genes might affect the survival outcomes of patients with OC. Furthermore, KEGG analysis suggested that FAM83D/H are involved in the progression of OC through the cell cycle signaling pathway, and they had significant co-expression relationship with cell cycle-related genes. Finally, immunohistochemistry analysis confirmed the high expression of FAM83H protein in OC tissue, suggesting that its expression is positively correlated with the FIGO stage and pathological subtype of OC. Conclusion This study elucidated the expression status and prognostic value of FAM83 genes in OC and identified that FAM83D/H might be potential targets for the prognostic monitoring and targeted therapy of OC.
Collapse
Affiliation(s)
- Shaochong Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Henan International Joint Laboratory of Ovarian Malignant Tumor, Zhengzhou, 450052, People's Republic of China
| | - Junpeng Du
- Department of Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Jun Hao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaohua Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Han Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Huifang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xinxin Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Lida Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - BaoJin Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.,Henan International Joint Laboratory of Ovarian Malignant Tumor, Zhengzhou, 450052, People's Republic of China
| |
Collapse
|
9
|
Sheng L, Li J, Rao S, Yang Z, Huang Y. Cyclin-Dependent Kinase 5 Regulatory Subunit Associated Protein 3: Potential Functions and Implications for Development and Disease. Front Oncol 2021; 11:760429. [PMID: 34722315 PMCID: PMC8551632 DOI: 10.3389/fonc.2021.760429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) regulatory subunit associated protein 3 (CDK5RAP3, also named as C53 or LZAP) was initially identified as a binding protein of CDK5 activator p35. To date, CDK5RAP3 has been reported to interact with a range of proteins involved in cellular events ranging from cell cycle, apoptosis, and invasion to UFMylation modification and endoplasmic reticulum stress. Owing to its crucial roles in cellular processes, CDK5RAP3 is demonstrated to be not only an active participant in embryonic and mammalian tissue development, but also a key regulator in the onset and progress of human cancers such as head and neck squamous cell carcinoma, gastric cancer, hepatocellular cancer, lung cancer, kidney cancer and breast cancer. Notwithstanding, the detailed function of CDK5RAP3 and its mechanism remain poorly defined. Here, we briefly described a history of the discovery of CDK5RAP3, and systematically overviewed its gene structural and distribution features. We also focused on the known functions of this protein and its implications for embryogenesis and tissue development, as well as diseases especially carcinoma. This review may facilitate to understand the molecular and functional basis of CDK5RAP3 and its association with development and disease, and provide a reasonable idea for novel therapeutic opportunities targeting CDK5RAP3.
Collapse
Affiliation(s)
- Linna Sheng
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China.,Graduate College of Nanchang University, Nanchang, China
| | - Jiaxuan Li
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Shengfang Rao
- Department of Nuclear Medicine, Nanchang University Hospital, Nanchang, China
| | - Zhijun Yang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
11
|
Nishimura T, Végvári Á, Nakamura H, Kato H, Saji H. Mutant Proteomics of Lung Adenocarcinomas Harboring Different EGFR Mutations. Front Oncol 2020; 10:1494. [PMID: 32983988 PMCID: PMC7477350 DOI: 10.3389/fonc.2020.01494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor EGFR major driver mutations may affect downstream molecular networks and pathways, which would influence treatment outcomes of non-small cell lung cancer (NSCLC). This study aimed to unveil profiles of mutant proteins expressed in lung adenocarcinomas of 36 patients harboring representative driver EGFR mutations (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Surprisingly, the orthogonal partial least squares discriminant analysis performed for identified mutant proteins demonstrated the profound differences in distance among the different EGFR mutation groups, suggesting that cancer cells harboring L858R or Ex19del emerge from cellular origins different from L858R/Ex19del-negative cells. Weighted gene coexpression network analysis, together with over-representative analysis, identified 18 coexpressed modules and their eigen proteins. Pathways enriched differentially for both the L858R and Ex19del mutations included carboxylic acid metabolic process, cell cycle, developmental biology, cellular responses to stress, mitotic prophase, cell proliferation, growth, epithelial to mesenchymal transition (EMT), and immune system. The IPA causal network analysis identified the highly activated networks of PARPBP, HOXA1, and APH1 under the L858R mutation, whereas those of ASGR1, APEX1, BUB1, and MAPK10 were highly activated under the Ex19del mutation. Interestingly, the downregulated causal network of osimertinib intervention showed the highest significance in overlap p-value among most causal networks predicted under the L858R mutation. We also identified the causal network of MAPK interacting serine/threonine kinase 1/2 (MNK1/2) highly activated differentially under the L858R mutation. Tumor-suppressor AMOT, a component of the Hippo pathways, was highly inhibited commonly under both L858R and Ex19del mutations. Our results could identify disease-related protein molecular networks from the landscape of single amino acid variants. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Division of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Research Institute of Health and Welfare Sciences, Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
Nuclear mechanosensing: mechanism and consequences of a nuclear rupture. Mutat Res 2020; 821:111717. [PMID: 32810711 DOI: 10.1016/j.mrfmmm.2020.111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
The physical connections between the cytoskeletal system and the nucleus provide a route for the nucleus to sense the mechanical stress both inside and outside of the cell. Failure to withstand such stress leads to nuclear rupture, which is observed in human diseases. In this review, we will go through the recent findings and our current understandings of nuclear rupture. Starting with the triggers of nuclear rupture, including the aberrant nuclear lamina composition and the elevated actomyosin contractility. We will also discuss the role of ESCRT-III in nuclear rupture repair and the biological consequences of nuclear rupture, including the negative impacts on cellular compartmentalization, DNA damage, and cellular differentiation. Recent studies on nuclear rupture provide further insights into the direct mechanistic link between nuclear rupture and several pathological conditions. Such knowledge can guide us in developing potential therapeutic solutions for the patients.
Collapse
|
13
|
Lindenboim L, Zohar H, Worman HJ, Stein R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov 2020; 6:29. [PMID: 32351716 PMCID: PMC7184752 DOI: 10.1038/s41420-020-0256-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptosis is characterized by the destruction of essential cell organelles, including the cell nucleus. The nuclear envelope (NE) separates the nuclear interior from the cytosol. During apoptosis, the apoptotic machinery, in particular caspases, increases NE permeability by cleaving its proteins, such as those of the nuclear pore complex (NPC) and the nuclear lamina. This in turns leads to passive diffusion of cytosolic apoptogenic proteins, such as caspases and nucleases, through NPCs into the nucleus and the subsequent breakdown of the NE and destruction of the nucleus. However, NE leakiness at early stages of the apoptotic process can also occur in a caspase-independent manner, where Bax, by a non-canonical action, promotes transient and repetitive localized generation and subsequent rupture of nuclear protein-filled nuclear bubbles. This NE rupture leads to discharge of apoptogenic nuclear proteins from the nucleus to the cytosol, a process that can contribute to the death process. Therefore, the NE may play a role as mediator of cell death at early stages of apoptosis. The NE can also serve as a platform for assembly of complexes that regulate the death process. Thus, the NE should be viewed as both a mediator of the cell death process and a target.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Hila Zohar
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Howard J. Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032 USA
| | - Reuven Stein
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| |
Collapse
|
14
|
Dai YF, Lin N, He DQ, Xu M, Zhong LY, He SQ, Guo DH, Li Y, Huang HL, Zheng XQ, Xu LP. LZAP promotes the proliferation and invasiveness of cervical carcinoma cells by targeting AKT and EMT. J Cancer 2020; 11:1625-1633. [PMID: 32047568 PMCID: PMC6995386 DOI: 10.7150/jca.39359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To explore the relationship and mechanism of LZAP in the occurrence and development of cervical cancer and to provide a new target and intervention method for the treatment of cervical cancer. Methods: Data mining and analysis of LZAP expression levels were performed using several online databases, including The Cancer Genome Atlas (TCGA). A cervical cancer cell line that stably overexpresses LZAP was established, and the effect of LZAP overexpression on cell proliferation, invasion, migration and tumor formation in vivo as well as its mechanism were explored. Results: Our study shows that the expression of LZAP is upregulated in cervical cancer. The overexpression of LZAP can significantly promote the proliferation, colony formation, and invasion and migration abilities of cervical cancer cells. The tumorigenesis test in nude mice showed that overexpression of LZAP could promote the tumorigenicity of cervical cancer cells in vivo. LZAP could also promote the phosphorylation of AKT at position 473 and the epithelial-mesenchymal transition (EMT). Conclusion: The expression of LAZP is increased in cervical cancer, which can enhance the invasion, metastasis, and EMT in cervical cancer cells by promoting AKT phosphorylation.
Collapse
Affiliation(s)
- Yi-Fang Dai
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Na Lin
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - De-Qin He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Mu Xu
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Li-Ying Zhong
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Shu-Qiong He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Dan-Hua Guo
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Ying Li
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Hai-Long Huang
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Xiang-Qing Zheng
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Liang-Pu Xu
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| |
Collapse
|
15
|
Wang S, Jia M, Su M, Hu X, Li J, Xu Y, Qiu W. Ufmylation Is Activated in Renal Cancer and Is Not Associated with von Hippel-Lindau Mutation. DNA Cell Biol 2020; 39:654-660. [PMID: 31999483 DOI: 10.1089/dna.2019.5225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma is the most common in all of the renal cancers; however, it lacks ideal molecular target for treatment. In the present study, we identified that ufmylation, a novel ubiquitin-like modification, was significantly upregulated in renal cancer tissues. Ufmylation is known to be closely associated with endoplasmic reticulum (ER) stress and protein quality control. To explore the relation between ufmylation and protein degradation pathways in renal cancer cells, we pharmacologically altered the ubiquitin-proteasome (UPS) and autophagy pathways. We found that the ufmylation levels were not varied by autophagy activation or inhibition. Consistently, the LC3 conversion, as an important biomarker of autophagy, was comparable between renal caner tissues and para-cancer tissues, indicating that the increase of ufmylation in renal cancer may be not related with autophagy. In contrast, blocking UPS with MG132 activated ufmylation in renal cancer cells, suggesting that the activation of ufmylation in renal cancer may be associated with the UPS activity. However, the ufmylation levels were not associated with mutations of the von Hippel-Lindau (VHL) gene, a specific E3 ligase of the UPS and has high mutation rate in renal cancer. Besides, we found that sunitinib, a multi-targeted tyrosine kinase inhibitor, could significantly inhibit ufmylation, whereas overexpression of active Ufm1 partially inhibited the antitumor effects of sunitinib. These results highlight that ufmylation might be a novel molecular candidate for renal cancer.
Collapse
Affiliation(s)
- Sixu Wang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xinyi Hu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yongde Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Qiu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Ruan F, Wang YF, Chai Y. Diagnostic Values of miR-21, miR-124, and M-CSF in Patients With Early Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820914983. [PMID: 32356483 PMCID: PMC7225794 DOI: 10.1177/1533033820914983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the diagnostic values of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in patients with cervical cancer. METHODS A total of 68 patients with cervical cancer admitted in our hospital (cervical cancer group) and 57 healthy individuals undergoing physical examinations (healthy group, also control group) were enrolled in this study. The expression of serum microRNA-21 and microRNA-124 was detected by quantitative reverse transcription polymerase chain reaction. The expression of serum macrophage colony-stimulating factor was detected by enzyme-linked immunosorbent assay. The diagnostic values of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in cervical cancer were analyzed. The correlations between the expression of microRNA-21 and microRNA-124 with that of macrophage colony-stimulating factor were also analyzed. RESULTS Compared to those in the healthy group, patients in the cervical cancer group had a higher expression of microRNA-21 and macrophage colony-stimulating factor (P < .05) but lower expression of microRNA-124 (P < .05). The expression of microRNA-21, microRNA-124, and macrophage colony-stimulating factor in the patients correlated with the tumor size, tumor node metastasis (TNM) staging, tumor differentiation, and the presence or absence of lymph node metastasis and human papillomavirus infection (P < .05). According to the receiver operating characteristic curves, the area under the curve of microRNA-21 for diagnosing cervical cancer was 0.723, the specificity was 58.82%, and the sensitivity was 91.23%. The area under the curve of microRNA-124 was 0.766, the specificity was 94.12%, and the sensitivity was 57.89%. The area under the curve of macrophage colony-stimulating factor was 0.754, the specificity was 64.71%, and the sensitivity was 87.72%. Pearson correlation analysis showed that the expression of microRNA-21 positively correlated with that of macrophage colony-stimulating factor (r = 0.6825, P < .001), and the expression of microRNA-124 negatively correlated with that of macrophage colony-stimulating factor (r = -0.6476, P < .001). CONCLUSION MicroRNA-21, microRNA-124, and macrophage colony-stimulating factor may be involved in the development and progression of cervical cancer. The detection of serum microRNA-21, microRNA-124, and macrophage colony-stimulating factor has good sensitivity and specificity in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fang Ruan
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Yun-fei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| | - Yun Chai
- Department of Gynecology, Affiliated Hospital of Jining Medical College, Jining, Shandong, China
| |
Collapse
|
17
|
Li J, Yue G, Ma W, Zhang A, Zou J, Cai Y, Tang X, Wang J, Liu J, Li H, Su H. Ufm1-Specific Ligase Ufl1 Regulates Endoplasmic Reticulum Homeostasis and Protects Against Heart Failure. Circ Heart Fail 2019; 11:e004917. [PMID: 30354401 DOI: 10.1161/circheartfailure.118.004917] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Defects in protein homeostasis are sufficient to provoke cardiac remodeling and dysfunction. Although posttranslational modifications by ubiquitin and ubiquitin-like proteins are emerging as an important regulatory mechanism of protein function, the role of Ufm1 (ubiquitin-fold modifier 1)-a novel ubiquitin-like protein-has not been explored in either the normal or stressed heart. METHODS AND RESULTS Western blotting revealed that Ufl1 (Ufm1-specific E3 ligase 1)-an enzyme essential for Ufm1 modification-was increased in hypertrophic mouse hearts but reduced in the failing hearts of patients with dilated cardiomyopathy. To determine the functional role of Ufl1 in the heart, we generated a cardiac-specific knockout mouse and showed that Ufl1-deficient mice developed age-dependent cardiomyopathy and heart failure, as indicated by elevated cardiac fetal gene expression, increased fibrosis, and impaired cardiac contractility. When challenged with pressure overload, Ufl1-deficient hearts exhibited remarkably greater hypertrophy, exacerbated fibrosis, and worsened cardiac contractility compared with control counterparts. Transcriptome analysis identified that genes associated with the endoplasmic reticulum (ER) function were dysregulated in Ufl1-deficient hearts. Biochemical analysis revealed that excessive ER stress preceded and deteriorated along with the development of cardiomyopathy in Ufl1-deficient hearts. Mechanistically, Ufl1 depletion impaired (PKR-like ER-resident kinase) signaling and aggravated cardiomyocyte cell death after ER stress. Administration of the chemical ER chaperone tauroursodeoxycholic acid to Ufl1-deficient mice alleviated ER stress and attenuated pressure overload-induced cardiac dysfunction. CONCLUSIONS Our results advance a novel concept that the Ufm1 system is essential for cardiac homeostasis through regulation of ER function and that upregulation of myocardial Ufl1 could be protective against heart failure.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Guihua Yue
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Guangxi Medical College, Nanning, China (G.Y.)
| | - Wenxia Ma
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Aizhen Zhang
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Affiliated Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning (A.Z.)
| | - Jianqiu Zou
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, China (Y.C.)
| | - Xiaoli Tang
- Department of Biochemistry, School of Medicine, Nanchang University, Jiangxi, China (X.T.)
| | - Jun Wang
- Department of Basic Research Laboratories, Center for Stem Cell Engineering, Texas Heart Institute, Houston (J.W.)
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, China (J.L., H.S.)
| | - Honglin Li
- Department of Biochemistry and Molecular Biology (H.L.), Medical College of Georgia, Augusta University
| | - Huabo Su
- Vascular Biology Center (J.L., G.Y., W.M., A.Z., J.Z., H.S.), Medical College of Georgia, Augusta University.,Department of Pharmacology and Toxicology (H.S.), Medical College of Georgia, Augusta University.,Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, China (J.L., H.S.)
| |
Collapse
|
18
|
Lin JX, Xie XS, Weng XF, Qiu SL, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM, Zheng CH. Overexpression of IC53d promotes the proliferation of gastric cancer cells by activating the AKT/GSK3β/cyclin D1 signaling pathway. Oncol Rep 2019; 41:2739-2752. [PMID: 30864700 PMCID: PMC6448126 DOI: 10.3892/or.2019.7042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Cyclin‑dependent kinase 5 regulatory subunit‑associated protein 3 (CDK5RAP3 or C53) is involved in the development of various types of tumor, and alternative splicing of C53 results in numerous transcription variants that encode different isoforms. The present study aimed to clone human C53 isoform d (IC53d) and explore its role in the proliferation of gastric cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to detect the expression levels of IC53d in 80 primary gastric adenocarcinoma tissues and adjacent normal tissues. In addition, the association between IC53d and clinicopathological parameters was determined. Gastric cancer cell lines stably overexpressing IC53d were established to observe its effects on cell proliferation, invasion and migration, and on in vivo tumorigenicity, and the mechanism of action was explored. The results of the presen study demonstrated that IC53d was upregulated in gastric cancer tissues and was associated with tumor T‑stage. Furthermore, overexpression of IC53d promoted the proliferation, colony formation and G1/S phase transition of gastric cancer cells, leading to enhancement of tumorigenesis in vitro and in vivo. Overexpression of IC53d also promoted phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β), which increased the expression of cyclin D1. In addition, high cyclin D1 expression was associated with a significantly worse prognosis for patients compared with in patients with low cyclin D1 expression. These results indicated that IC53d may promote the phosphorylation of AKT and GSK3β, which in turn may increase cyclin D1 expression, enhancing G1/S phase transition, accelerating cell cycle progression, promoting the proliferation of gastric cancer cells, and inducing a poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Sheng-Liang Qiu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
19
|
CDK5RAP3 Participates in Autophagy Regulation and Is Downregulated in Renal Cancer. DISEASE MARKERS 2019; 2019:6171782. [PMID: 31061682 PMCID: PMC6466961 DOI: 10.1155/2019/6171782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/05/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Renal cancer is one of the most common malignant urological tumors; however, its diagnosis and treatment are not well established. In the present study, we identified that CDK5 regulatory subunit-associated protein 3 (CDK5RAP3), a putative tumor suppressor in many cancers, was downregulated in renal cancer tissues. Through loss- and gain-of-function experiments, we observed that the action of CDK5RAP3 in renal cancer cells was different in Caki-1 and 769-P cell lines. Knockdown of endogenous CDK5RAP3 in Caki-1 slightly increased cell viability, whereas overexpression of CDK5RAP3 in 769-P cells inhibited cell viability. In addition, we observed that CDK5RAP3 participated in the regulation of autophagy in renal cancer. Knockdown of CDK5RAP3 induced significant inhibition of autophagy in Caki-1 cells but not in 769-P cells. In contrast, overexpression of CDK5RAP3 significantly activated autophagy in 769-P cells, as evidenced by increased LC3-II levels. However, the LC3-II could not be altered by CDK5RAP3 overexpression in Caki-1 cells. These findings demonstrated that CDK5RAP3 is downregulated in renal cancer and may be associated with autophagy.
Collapse
|
20
|
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51:e12467. [PMID: 29947118 DOI: 10.1111/cpr.12467] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Inna N Lavrik
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Houthaeve G, Robijns J, Braeckmans K, De Vos WH. Bypassing Border Control: Nuclear Envelope Rupture in Disease. Physiology (Bethesda) 2018; 33:39-49. [DOI: 10.1152/physiol.00029.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022] Open
Abstract
Recent observations in laminopathy patient cells and cancer cells have revealed that the nuclear envelope (NE) can transiently rupture during interphase. NE rupture leads to an uncoordinated exchange of nuclear and cytoplasmic material, thereby deregulating cellular homeostasis. Moreover, concurrently inflicted DNA damage could prime rupture-prone cells for genome instability. Thus, NE rupture may represent a novel pathogenic mechanism that has far-reaching consequences for cell and organism physiology.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Joke Robijns
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Winnok H. De Vos
- Department of Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
- Department of Molecular Biotechnology, Cell Systems and Imaging Research Group (CSI), Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Wang XJ, Wang MH, Fu XT, Hou YJ, Chen W, Tian DC, Bai SY, Fu XY. Selenocysteine antagonizes oxygen glucose deprivation-induced damage to hippocampal neurons. Neural Regen Res 2018; 13:1433-1439. [PMID: 30106056 PMCID: PMC6108205 DOI: 10.4103/1673-5374.235300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Designing and/or searching for novel antioxidants against oxygen glucose deprivation (OGD)-induced oxidative damage represents an effective strategy for the treatment of human ischemic stroke. Selenium is an essential trace element, which is beneficial in the chemoprevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S4O2, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspase-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-mediated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Xian-Jun Wang
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Mei-Hong Wang
- Department of Neurology, People's Hospital of Yishui, Linyi, Shandong Province, China
| | - Xiao-Ting Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Ya-Jun Hou
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Wang Chen
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Da-Chen Tian
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Su-Yun Bai
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
23
|
Guan F, Ding R, Zhang Q, Chen W, Li F, Long L, Li W, Li L, Yang D, Xie L, Yuan S, Wang L. WX-132-18B, a novel microtubule inhibitor, exhibits promising anti-tumor effects. Oncotarget 2017; 8:71782-71796. [PMID: 29069746 PMCID: PMC5641089 DOI: 10.18632/oncotarget.17710] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/24/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer drug researchers have been seeking microtubule-inhibiting agents (MIAs) with higher bioactivity and lower toxicity than currently marketed drugs. WX-132-18B, a novel structural compound synthesized at our institute, specifically bound to the colchicine-binding site on tubulin rather than the vinblastine site, and concentration-dependently reduced microtubule content via depolymerization. It exhibited the same cellular phenotypic profiles as the classic MIAs (colchicine, vincristine, and taxol), including inducing cell cycle arrest at the G2/M phase, triggering tumor cell apoptosis, promoting nuclear membrane permeability, reducing mitochondrial membrane potential, and disrupting the redox system balance. Importantly, WX-132-18B displayed more potent in vitro bioactivity (IC50 0.45–0.99 nM) than did the classic MIAs; it inhibited the proliferation of human umbilical vein endothelial cells and seven types of human tumor cells, especially the taxol-resistant breast cancer cells MX-1/T. WX-132-18B also dose-dependently inhibited mice sarcoma, human lung, and gastric cancer xenograft tumors and the formation of tumor blood vessels in mice. In conclusion, WX-132-18B is a novel microtubule-depolymerizing agent that selectively acts on the colchicine-binding site of tubulin and exerts potent in vitro and in vivo anti-tumor effects. These characteristics, along with its anti-angiogenesis and anti-drug resistance properties, make WX-132-18B a promising anti-tumor drug candidate.
Collapse
Affiliation(s)
- Fang Guan
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Rui Ding
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Qi Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Feifei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Long Long
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Wei Li
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Linna Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dexuan Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lan Xie
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| | - Shoujun Yuan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lili Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, 100850, China
| |
Collapse
|
24
|
Chen LY, Chen Q, Cheng YF, Jin HH, Kong DS, Zhang F, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2016; 79:35-43. [DOI: 10.1016/j.biopha.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
|
25
|
Zhang M, Zhu X, Zhang Y, Cai Y, Chen J, Sivaprakasam S, Gurav A, Pi W, Makala L, Wu J, Pace B, Tuan-Lo D, Ganapathy V, Singh N, Li H. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis. Cell Death Differ 2015; 22:1922-34. [PMID: 25952549 PMCID: PMC4816109 DOI: 10.1038/cdd.2015.51] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
The Ufm1 conjugation system is a novel ubiquitin-like modification system, consisting of Ufm1, Uba5 (E1), Ufc1 (E2) and poorly characterized E3 ligase(s). RCAD/Ufl1 (also known as KIAA0776, NLBP and Maxer) was reported to function as a Ufm1 E3 ligase in ufmylation (Ufm1-mediated conjugation) of DDRGK1 and ASC1 proteins. It has also been implicated in estrogen receptor signaling, unfolded protein response (UPR) and neurodegeneration, yet its physiological function remains completely unknown. In this study, we report that RCAD/Ufl1 is essential for embryonic development, hematopoietic stem cell (HSC) survival and erythroid differentiation. Both germ-line and somatic deletion of RCAD/Ufl1 impaired hematopoietic development, resulting in severe anemia, cytopenia and ultimately animal death. Depletion of RCAD/Ufl1 caused elevated endoplasmic reticulum stress and evoked UPR in bone marrow cells. In addition, loss of RCAD/Ufl1 blocked autophagic degradation, increased mitochondrial mass and reactive oxygen species, and led to DNA damage response, p53 activation and enhanced cell death of HSCs. Collectively, our study provides the first genetic evidence for the indispensable role of RCAD/Ufl1 in murine hematopoiesis and development. The finding of RCAD/Ufl1 as a key regulator of cellular stress response sheds a light into the role of a novel protein network including RCAD/Ufl1 and its associated proteins in regulating cellular homeostasis.
Collapse
Affiliation(s)
- M Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - X Zhu
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Y Zhang
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Y Cai
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
- Department of Biology, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - J Chen
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - S Sivaprakasam
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - A Gurav
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - W Pi
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - L Makala
- Department of Pediatrics, Georgia Regents University, Augusta, GA, USA
| | - J Wu
- Department of Periodontics, College of Dentistry, Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - B Pace
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
- Department of Pediatrics, Georgia Regents University, Augusta, GA, USA
| | - D Tuan-Lo
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - V Ganapathy
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - N Singh
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - H Li
- Department of Biochemistry & Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
26
|
Kwon HK, Lee JH, Shin HJ, Kim JH, Choi S. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death. Sci Rep 2015; 5:15623. [PMID: 26490051 PMCID: PMC4614995 DOI: 10.1038/srep15623] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023] Open
Abstract
The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
27
|
Wang K, Fu XY, Fu XT, Hou YJ, Fang J, Zhang S, Yang MF, Li DW, Mao LL, Sun JY, Yuan H, Yang XY, Fan CD, Zhang ZY, Sun BL. DSePA Antagonizes High Glucose-Induced Neurotoxicity: Evidences for DNA Damage-Mediated p53 Phosphorylation and MAPKs and AKT Pathways. Mol Neurobiol 2015; 53:4363-74. [DOI: 10.1007/s12035-015-9373-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023]
|
28
|
Elmhiri G, Mahmood DFD, Niquet-Leridon C, Jacolot P, Firmin S, Guigand L, Tessier FJ, Larcher T, Abdennebi-Najar L. Formula-derived advanced glycation end products are involved in the development of long-term inflammation and oxidative stress in kidney of IUGR piglets. Mol Nutr Food Res 2015; 59:939-47. [DOI: 10.1002/mnfr.201400722] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/31/2014] [Accepted: 01/27/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Ghada Elmhiri
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Dler F. D. Mahmood
- UMR 8256 UPMC Université Paris 6, CNRS INSERM; Department of Adaptation and Ageing Biology 8256/ERL 1164; Paris France
- Biology Department; School of Science/University of Sulaimani; Sulaimani-KRG Iraq
| | | | - Philippe Jacolot
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Stephane Firmin
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Lydie Guigand
- INRA; UMR 703 APEX; Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris); Nantes France
| | - Frederic J. Tessier
- UP-EGEAL 2012.10.101, Institut Polytechnique LaSalle Beauvais; Beauvais France
| | - Thibaut Larcher
- INRA; UMR 703 APEX; Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes-Atlantique (Oniris); Nantes France
| | | |
Collapse
|