1
|
Gunes S, Mahmutoglu AM, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2025; 27:311-321. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
4
|
Claro-Linares F, Rojas-Ríos P. PIWI proteins and piRNAs: key regulators of stem cell biology. Front Cell Dev Biol 2025; 13:1540313. [PMID: 39981094 PMCID: PMC11839606 DOI: 10.3389/fcell.2025.1540313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
In this mini review, we discussed the functional roles of PIWI proteins and their associated small RNAs, piRNAs, in regulating gene expression within stem cell biology. Guided by piRNAs, these proteins transcriptionally and post-transcriptionally repress transposons using mechanisms such as the ping-pong amplification cycle and phasing to protect germline genomes. Initially identified in Drosophila melanogaster, the piRNA pathway regulate germline stem cell self-renewal and differentiation via cell-autonomous and non-cell-autonomous mechanisms. Precisely, in GSCs, PIWI proteins and piRNAs regulate gene expression by modulating chromatin states and directly influencing mRNA translation. For instance, the PIWI protein Aubergine loaded with piRNAs promotes and represses translation of certain mRNAs to balance self-renewal and differentiation. Thus, the piRNA pathway exhibits dual regulatory roles in mRNA stability and translation, highlighting its context-dependent functions. Moreover, PIWI proteins are essential in somatic stem cells to support the regenerative capacity of highly regenerative species, such as planarians. Similarly, in Drosophila intestinal stem cells, the PIWI protein Piwi regulates metabolic pathways and genome integrity, impacting longevity and gut homeostasis. In this case, piRNAs appear absent in the gut, suggesting piRNA-independent regulatory mechanisms. Together, PIWI proteins and piRNAs demonstrate evolutionary conservation in stem cell regulation, integrating TE silencing and gene expression regulation at chromatin and mRNA levels in somatic and germline lineages. Beyond their canonical roles, emerging evidence reveal their broader significance in maintaining stem cell properties and organismal health under physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Patricia Rojas-Ríos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Godden AM, Rix B, Immler S. FishPi: a bioinformatic prediction tool to link piRNA and transposable elements. Mob DNA 2025; 16:2. [PMID: 39871368 PMCID: PMC11773700 DOI: 10.1186/s13100-025-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Piwi-interacting RNAs (piRNA)s are non-coding small RNAs that post-transcriptionally affect gene expression and regulation. Through complementary seed region binding with transposable elements (TEs), piRNAs protect the genome from transposition. A tool to link piRNAs with complementary TE targets will improve our understanding of the role of piRNAs in genome maintenance and gene regulation. Existing tools such as TEsmall can process sRNA-seq datasets to produce differentially expressed piRNAs, and piRScan developed for nematodes can link piRNAs and TEs but it requires knowledge about the target region of interest and works backwards. RESULTS We developed FishPi to predict the pairings between piRNA and TEs for available genomes from zebrafish, medaka and tilapia, with full user customisation of parameters including orientation of piRNA, mismatches in the piRNA seed binding to TE and scored output lists of piRNA-TE matches. FishPi works with individual piRNAs or a list of piRNA sequences in fasta format. The software focuses on the piRNA-TE seed region and analyses reference TEs for piRNA complementarity. TE type is examined, counted and stored to a dictionary, with genomic loci recorded. Any updates to piRNA-TE binding rules can easily be incorporated by changing the seed-region options in the graphic user-interface. FishPi provides a graphic interface using tkinter for the user to input piRNA sequences to generate comprehensive reports on piRNA-TE interactions. FishPi can easily be adapted to genomes from other species and taxa opening the interpretation of piRNA functionality to a wide community. CONCLUSIONS Users will gain insight into genome mobility and FishPi will help further our understanding of the biological role of piRNAs and their interaction with TEs in a similar way that public databases have improved the access to and the understanding of the role of small RNAs.
Collapse
Affiliation(s)
- Alice M Godden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Benjamin Rix
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
6
|
Bowden-Reid E, Moles E, Kelleher A, Ahlenstiel C. Harnessing antiviral RNAi therapeutics for pandemic viruses: SARS-CoV-2 and HIV. Drug Deliv Transl Res 2025:10.1007/s13346-025-01788-x. [PMID: 39833468 DOI: 10.1007/s13346-025-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery. In this review, we provide a detailed overview of the two RNA interference (RNAi) pathways and how antiviral RNAi therapies can be used to treat acute or chronic diseases caused by the pandemic viruses SARS-CoV-2 and HIV, respectively. We also provide insights into short-interfering RNA (siRNA) delivery systems, with a focus on how lipid nanoparticles can be functionalized to achieve targeted delivery to specific sites of disease. This review will provide the current developments of SARS-CoV-2 and HIV targeted siRNAs, highlighting strategies to advance the progression of antiviral siRNA along the clinical development pathway.
Collapse
Affiliation(s)
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, Faculty of Engineering, UNSW Sydney, Sydney, 2052, Australia.
- School of Clinical Medicine, Medicine and Health, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| | - Anthony Kelleher
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, UNSW Sydney, Sydney, 2052, Australia.
- UNSW RNA Institute, UNSW Sydney, Sydney, 2052, Australia.
| |
Collapse
|
7
|
Patel MZ, Jiang Y, Kakumani PK. Somatic piRNA and PIWI-mediated post-transcriptional gene regulation in stem cells and disease. Front Cell Dev Biol 2024; 12:1495035. [PMID: 39717847 PMCID: PMC11663942 DOI: 10.3389/fcell.2024.1495035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that bind to the PIWI subclass of the Argonaute protein family and are essential for maintaining germline integrity. Initially discovered in Drosophila, PIWI proteins safeguard piRNAs, forming ribonucleoprotein (RNP) complexes, crucial for regulating gene expression and genome stability, by suppressing transposable elements (TEs). Recent insights revealed that piRNAs and PIWI proteins, known for their roles in germline maintenance, significantly influence mRNA stability, translation and retrotransposon silencing in both stem cells and bodily tissues. In the current review, we explore the multifaceted roles of piRNAs and PIWI proteins in numerous biological contexts, emphasizing their involvement in stem cell maintenance, differentiation, and the development of human diseases. Additionally, we discussed the up-and-coming animal models, beyond the classical fruit fly and earthworm systems, for studying piRNA-PIWIs in self-renewal and cell differentiation. Further, our review offers new insights and discusses the emerging roles of piRNA-dependent and independent functions of PIWI proteins in the soma, especially the mRNA regulation at the post-transcriptional level, governing stem cell characteristics, tumor development, and cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
8
|
Werry N, Russell SJ, Sivakumar R, Miller S, Hickey K, Larmer S, Lohuis M, Librach C, LaMarre J. piRNA expression patterns in high vs. low fertility bovine sperm. Syst Biol Reprod Med 2024; 70:183-194. [PMID: 38924761 DOI: 10.1080/19396368.2024.2364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are 24-32 nucleotide RNA sequences primarily expressed in germ cells and developing embryos that suppress transposable element expression to protect genomic integrity during epigenetic reprogramming events. We characterized the expression of piRNA sequences and their encoding clusters in sperm samples from an idiopathic fertility model of Holstein bulls with high and low Sire Conception Rates. The piRNA populations were determined to be mostly similar between fertility conditions when investigated by principal component and differential expression analysis, suggesting that a high degree of conservation in the piRNA system is likely necessary for the production of viable sperm. Both fertility conditions demonstrated evidence of 'ping-pong' activity - a secondary biogenesis pathway associated with active transposable element targeting and suppression. Most sperm-borne piRNAs were between 29-30 nucleotides in length and originated from 226 clusters across the genome, with the exception of chromosome 20. Mapping analysis revealed abundant targeting of several transposable element families, suggesting a suppressive function of sperm piRNAs consistent with their established roles. Expression of genes targeted by sperm-borne piRNAs is significantly reduced throughout early embryogenesis compared to the mRNA population. Limited transposable element expression is known to be essential for spermatogenesis, thus epigenetic regulation of this pathway is likely to influence sperm quality and fertilizing capacity.
Collapse
Affiliation(s)
- Nicholas Werry
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| | | | - Raamkumaar Sivakumar
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | - Clifford Librach
- CReATe Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, The University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Guo C, Wang X, Ren H. Databases and computational methods for the identification of piRNA-related molecules: A survey. Comput Struct Biotechnol J 2024; 23:813-833. [PMID: 38328006 PMCID: PMC10847878 DOI: 10.1016/j.csbj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs (ncRNAs) that plays important roles in many biological processes and major cancer diagnosis and treatment, thus becoming a hot research topic. This study aims to provide an in-depth review of computational piRNA-related research, including databases and computational models. Herein, we perform literature analysis and use comparative evaluation methods to summarize and analyze three aspects of computational piRNA-related research: (i) computational models for piRNA-related molecular identification tasks, (ii) computational models for piRNA-disease association prediction tasks, and (iii) computational resources and evaluation metrics for these tasks. This study shows that computational piRNA-related research has significantly progressed, exhibiting promising performance in recent years, whereas they also suffer from the emerging challenges of inconsistent naming systems and the lack of data. Different from other reviews on piRNA-related identification tasks that focus on the organization of datasets and computational methods, we pay more attention to the analysis of computational models, algorithms, and performances that aim to provide valuable references for computational piRNA-related identification tasks. This study will benefit the theoretical development and practical application of piRNAs by better understanding computational models and resources to investigate the biological functions and clinical implications of piRNA.
Collapse
Affiliation(s)
- Chang Guo
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Ren
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou 510420, China
| |
Collapse
|
10
|
Lv X, Zhang H, Wu L. Advances in PIWI-piRNA function in female reproduction in mammals. Acta Biochim Biophys Sin (Shanghai) 2024; 57:148-156. [PMID: 39544003 PMCID: PMC11802344 DOI: 10.3724/abbs.2024195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), which associate with PIWI clade Argonaute proteins to form piRNA-induced silencing complexes (piRISCs) in germline cells, are responsible for maintaining genomic integrity and reproductive function through transcriptional or post-transcriptional suppression of transposable elements and regulation of protein-coding genes. Recent discoveries of crucial PIWI-piRNA functions in oogenesis and embryogenesis in golden hamsters suggest an indispensable role in female fertility that has been obscured in the predominant mouse model of PIWI-piRNA pathway regulation. In particular, studies of piRNA expression dynamics, functional redundancies, and compositional variations across mammal species have advanced our understanding of piRNA functions in male and, especially, female reproduction. These findings further support the use of hamsters as a more representative model of piRNA biology in mammals. In addition to discussing these new perspectives, the current review also covers emerging directions for piRNA research, its implications for female fertility, and our fundamental understanding of reproductive mechanisms.
Collapse
Affiliation(s)
- Xiaolong Lv
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Hongdao Zhang
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Ligang Wu
- />Key Laboratory of RNA Science and EngineeringShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| |
Collapse
|
11
|
Fu G, Wu Q, Dai J, Lu S, Zhou T, Yang Z, Shi Y. piRNA array analysis provide insight into the mechanism of DEHP-induced testicular toxicology in pubertal male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117282. [PMID: 39504879 DOI: 10.1016/j.ecoenv.2024.117282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, could cause male reproductive toxicity by disrupting spermatogenesis. Piwi-interacting RNAs (piRNAs) are a small non-coding RNAs specifically highly expressed in the germline and interact with PIWI proteins to regulate spermatogenesis. Accumulating studies have confirmed that environmental poisons could induce male reproductive injury via altering piRNA expression. However, it remains unclear whether DEHP causes male reproductive dysfunction by perturbing piRNA expression levels. In this study, we conducted piRNA microarray expression analyses on testes of DEHP-exposed and control male rats and performed some in vitro and in vivo studies to explore the role of piRNA on DEHP-induced male reproductive toxicity. Our results showed that DEHP exposure leaded to changed expression profiles of piRNAs in pubertal male rat testes. And bioinformatics analyses revealed that down-regulated piR-rno-26751 probably targeted Insr mRNA expression regulation. Results from gene and protein expression tests demonstrated that DEHP caused decreased expression level of INSR mainly in spermatogonia. Moreover, MEHP, the main metabolite of DEHP resulted in cell apoptosis and down-regulation of INSR and its downstream p-IRS1, p-PI3K, p-AKT and p-FOXO1 in GC-1spg cells. Conversely, overexpression of INSR restored cell apoptosis and the down-regulation of the above proteins in GC-1spg cells. In conclusion, these findings suggest that DEHP-induced down-regulation of piR-rno-26751 targets the suppression of INSR, leading to apoptosis of spermatogonia in pubertal male rats.
Collapse
Affiliation(s)
- Guoqing Fu
- College of Medicine and Health Sciences, China Three Gorges University,Yichang, Hubei 443002, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qinru Wu
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Juan Dai
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei 430024, China
| | - Siqi Lu
- College of Medicine and Health Sciences, China Three Gorges University,Yichang, Hubei 443002, China
| | - Ting Zhou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China; School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhongcheng Yang
- Yichang Center for Disease Control and Prevention, Yichang, Hubei, 443000, China.
| | - Yuqin Shi
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China; School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
12
|
Cecchini K, Ajaykumar N, Bagci A, Zamore PD, Gainetdinov I. Mouse Pachytene piRNAs Cleave Hundreds of Transcripts, But Alter the Steady-State Abundance of Only a Minority of Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621675. [PMID: 39554027 PMCID: PMC11566022 DOI: 10.1101/2024.11.02.621675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In animals, 18-35-nt piRNAs guide PIWI proteins to regulate complementary RNAs. During male meiosis, mammals produce an exceptionally abundant class of piRNAs called pachytene piRNAs. Pachytene piRNAs are required for spermatogenesis and have been proposed to control gene expression by various mechanisms. Here, we show that pachytene piRNAs regulate targets predominantly, if not exclusively, by endonucleolytic cleavage. Remarkably, pachytene piRNAs slice hundreds of RNAs, yet a change in steady-state level is detectable for a small fraction of transcripts. Our data suggest that cleavage of the few targets whose abundance is reduced significantly by piRNAs is essential for male fertility. Other pachytene piRNA targets are enriched for highly transcribed genes, which may explain why piRNA cleavage is often inconsequential for the steady-state abundance of targets. We propose that the retention of pachytene piRNAs throughout mammalian evolution is driven by the selective advantage conferred by a tiny minority of piRNAs.
Collapse
Affiliation(s)
- Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Ayca Bagci
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
13
|
Xu MM, Li XZ. Enigmatic Pachytene PIWI-Interacting RNAs. Genome Biol Evol 2024; 16:evae162. [PMID: 39056586 PMCID: PMC11464241 DOI: 10.1093/gbe/evae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), a class of small RNAs, are renowned for their roles in sequencing-dependent targeting and suppressing transposable elements (TEs). Nevertheless, a majority of mammalian piRNAs, expressing at pachytene stage of meiosis, known as pachytene piRNAs, are devoid of discernible targets, casting a veil of enigma over their functional significance. Overturning the notion that this unusual class of piRNAs functions beyond TE silencing, we recently demonstrated that pachytene piRNAs play an essential and conserved role in silencing young and actively transposing TEs across amniotes. However, only 1% of pachytene piRNAs target active TEs. The biological significance of the abundant non-TE piRNAs, coproduced from the same precursors as TE piRNAs, remains unclear. Here, we provide a comprehensive summary of the potential roles of non-TE piRNAs, and thus propose that these non-TE piRNAs either bolster the action of TE piRNAs or provide the host genome a preexisting mechanism to suppress the potential invasion of novel TEs in the future.
Collapse
Affiliation(s)
- Ming-Min Xu
- Center for RNA Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000
| | - Xin Zhiguo Li
- Center for RNA Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China, 322000
| |
Collapse
|
14
|
Du L, Chen W, Zhang D, Cui Y, He Z. The functions and mechanisms of piRNAs in mediating mammalian spermatogenesis and their applications in reproductive medicine. Cell Mol Life Sci 2024; 81:379. [PMID: 39222270 PMCID: PMC11369131 DOI: 10.1007/s00018-024-05399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding RNAs with 24-32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been implicated in the regulation of several biological processes, including cell differentiation, development, and male reproduction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities of piRNAs and male infertility and the prospective of piRNAs' applications in reproductive medicine and future studies. This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for diagnosing and treating male infertility.
Collapse
Affiliation(s)
- Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Dong Zhang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Yinghong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, 410013, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Wei C, Yan X, Mann JM, Geng R, Wang Q, Xie H, Demireva EY, Sun L, Ding D, Chen C. PNLDC1 catalysis and postnatal germline function are required for piRNA trimming, LINE1 silencing, and spermatogenesis in mice. PLoS Genet 2024; 20:e1011429. [PMID: 39312580 PMCID: PMC11449332 DOI: 10.1371/journal.pgen.1011429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/03/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) play critical and conserved roles in transposon silencing and gene regulation in the animal germline. Three distinct piRNA populations are present during mouse spermatogenesis: fetal piRNAs in fetal/perinatal testes, pre-pachytene and pachytene piRNAs in postnatal testes. PNLDC1 is required for piRNA 3' end maturation in multiple species. However, whether PNLDC1 is the bona fide piRNA trimmer and the physiological role of 3' trimming of different piRNA populations in spermatogenesis in mammals remain unclear. Here, by inactivating Pnldc1 exonuclease activity in vitro and in mice, we reveal that the PNLDC1 trimmer activity is essential for spermatogenesis and male fertility. PNLDC1 catalytic activity is required for both fetal and postnatal piRNA 3' end trimming. Despite this, postnatal piRNA trimming but not fetal piRNA trimming is critical for LINE1 transposon silencing. Furthermore, conditional inactivation of Pnldc1 in postnatal germ cells causes LINE1 transposon de-repression and spermatogenic arrest in mice, indicating that germline-specific postnatal piRNA trimming is essential for transposon silencing and germ cell development. Our findings highlight the germ cell-intrinsic role of PNLDC1 and piRNA trimming in mammals to safeguard the germline genome and promote fertility.
Collapse
Affiliation(s)
- Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaoyuan Yan
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey M. Mann
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Ruirong Geng
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
| |
Collapse
|
16
|
Ben S, Ding Z, Xin J, Li F, Cheng Y, Chen S, Fan L, Zhang Q, Li S, Du M, Zhang Z, Wei GH, Cheng G, Wang M. piRNA PROPER Suppresses DUSP1 Translation by Targeting N 6-Methyladenosine-Mediated RNA Circularization to Promote Oncogenesis of Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402954. [PMID: 38962952 PMCID: PMC11434016 DOI: 10.1002/advs.202402954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Genetic and epigenetic alterations occur in many physiological and pathological processes. The existing knowledge regarding the association of PIWI-interacting RNAs (piRNAs) and their genetic variants on risk and progression of prostate cancer (PCa) is limited. In this study, three genome-wide association study datasets are combined, including 85,707 PCa cases and 166,247 controls, to uncover genetic variants in piRNAs. Functional investigations involved manipulating piRNA expression in cellular and mouse models to study its oncogenetic role in PCa. A specific genetic variant, rs17201241 is identified, associated with increased expression of PROPER (piRNA overexpressed in prostate cancer) in tumors and are located within the gene, conferring an increased risk and malignant progression of PCa. Mechanistically, PROPER coupled with YTHDF2 to recognize N6-methyladenosine (m6A) and facilitated RNA-binding protein interactions between EIF2S3 at 5'-untranslated region (UTR) and YTHDF2/YBX3 at 3'-UTR to promote DUSP1 circularization. This m6A-dependent mRNA-looping pattern enhanced DUSP1 degradation and inhibited DUSP1 translation, ultimately reducing DUSP1 expression and promoting PCa metastasis via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Inhibition of PROPER expression using antagoPROPER effectively suppressed xenograft growth, suggesting its potential as a therapeutic target. Thus, targeting piRNA PROPER-mediated genetic and epigenetic fine control is a promising strategy for the concurrent prevention and treatment of PCa.
Collapse
Affiliation(s)
- Shuai Ben
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Junyi Xin
- Department of Bioinformatic, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feng Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lulu Fan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, 90220, Finland
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, 90220, Finland
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Gong Cheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University & Jiangsu Province People's Hospital, Nanjing, 210029, China
| | - Meilin Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
17
|
Wehbe Z, Barbotin AL, Boursier A, Cazin C, Hograindleur JP, Bidart M, Fontaine E, Plouvier P, Puch F, Satre V, Arnoult C, Mustapha SFB, Zouari R, Thierry-Mieg N, Ray PF, Kherraf ZE, Coutton C, Martinez G. Phenotypic continuum and poor intracytoplasmic sperm injection intracytoplasmic sperm injection prognosis in patients harboring HENMT1 variants. Andrology 2024. [PMID: 39120570 DOI: 10.1111/andr.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Small RNAs interacting with PIWI (piRNAs) play a crucial role in regulating transposable elements and translation during spermatogenesis and are essential in male germ cell development. Disruptions in the piRNA pathway typically lead to severe spermatogenic defects and thus male infertility. The HENMT1 gene is a key player in piRNAs primary biogenesis and dysfunction of HENMT1 protein in meiotic and haploid germ cells resulted in the loss of piRNA methylation, piRNA instability, and TE de-repression. Henmt1-knockout mice exhibit a severe oligo-astheno-teratozoospermia (OAT) phenotype, whereas patients with HENMT1 variants display more severe azoospermia phenotypes, ranging from meiotic arrest to hypospermatogenesis. Through whole-exome sequencing (WES) of infertile patient cohorts, we identified two new patients with variants in the HENMT1 gene presenting spermatozoa in their ejcaulate, providing us the opportunity to study spermatozoa from these patients. OBJECTIVES Investigate the spermatozoa of two patients harboring an HENMT1 variant to determine whether or not these scarce spermatozoa could be used with assisted reproductive technologies. MATERIALS AND METHODS HENMT1 variants identified by WES were validated through Sanger sequencing. Comprehensive semen analysis was conducted, and sperm cells were subjected to transmission electron microscopy for structural examination, in situ hybridization for aneuploidy assessment, and aniline blue staining for DNA compaction status. Subsequently, we assessed their suitability for in vitro fertilization using intracytoplasmic sperm injection (IVF-ICSI). RESULTS Our investigations revealed a severe OAT phenotype similar to knockout mice, revealing altered sperm concentration, mobility, morphology, aneuploidy and nuclear compaction defects. Multiple IVF-ICSI attempts were also performed, but no live births were achieved. DISCUSSION We confirm the crucial role of HENMT1 in spermatogenesis and highlight a phenotypic continuum associated with HENMT1 variants. Unfortunately, the clinical outcome of these genetic predispositions remains unfavorable, regardless of the patient's phenotype. CONCLUSION The presence of spermatozoa is insufficient to anticipate ICSI pregnancy success in HENMT1 patients.
Collapse
Affiliation(s)
- Zeina Wehbe
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Angèle Boursier
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | | | - Marie Bidart
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Laboratoire de Génétique Moléculaire: Maladies Héréditaires et Oncologie, Grenoble, France
| | - Emeline Fontaine
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | - Pauline Plouvier
- CHU Lille, Service d'Assistance Médicale à la Procréation et Préservation de la Fertilité, Lille, France
| | - Florence Puch
- CHU Grenoble Alpes, Laboratoire de Biochimie et Génétique Moléculaire, Grenoble, France
| | - Véronique Satre
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
| | | | - Raoudha Zouari
- Centre d'Aide Médicale à la Procréation, Polyclinique les Jasmin, Centre Urbain Nord, Tunis, Tunisia
| | | | - Pierre F Ray
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| | - Guillaume Martinez
- Université Grenoble Alpes, Institute for Advanced Biosciences (IAB), La Tronche, France
- CHU Grenoble Alpes, Hôpital Couple-Enfant, UM de Génétique Chromosomique, Grenoble, France
| |
Collapse
|
18
|
Stallmeyer B, Bühlmann C, Stakaitis R, Dicke AK, Ghieh F, Meier L, Zoch A, MacKenzie MacLeod D, Steingröver J, Okutman Ö, Fietz D, Pilatz A, Riera-Escamilla A, Xavier MJ, Ruckert C, Di Persio S, Neuhaus N, Gurbuz AS, Şalvarci A, Le May N, McEleny K, Friedrich C, van der Heijden G, Wyrwoll MJ, Kliesch S, Veltman JA, Krausz C, Viville S, Conrad DF, O'Carroll D, Tüttelmann F. Inherited defects of piRNA biogenesis cause transposon de-repression, impaired spermatogenesis, and human male infertility. Nat Commun 2024; 15:6637. [PMID: 39122675 PMCID: PMC11316121 DOI: 10.1038/s41467-024-50930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm. A reduced number of pachytene piRNAs was detected in the testicular tissue of variant carriers, demonstrating impaired piRNA biogenesis. Furthermore, LINE1 expression in spermatogonia links impaired piRNA biogenesis to transposon de-silencing and serves to classify variants as functionally relevant. These results establish the disrupted piRNA pathway as a major cause of human spermatogenic failure and provide insights into transposon silencing in human male germ cells.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Clara Bühlmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Rytis Stakaitis
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Farah Ghieh
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Luisa Meier
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - David MacKenzie MacLeod
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Johanna Steingröver
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Özlem Okutman
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Hôpital Universitaire de Bruxelles, Hôpital Erasme, Service de Gynécologie-Obstétrique, Clinique de Fertilité, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Adrian Pilatz
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University Gießen, Gießen, Germany
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
| | - Miguel J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Ruckert
- Centre of Medical Genetics, Department of Medical Genetics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Ali Sami Gurbuz
- Department of Gynecology and Obstetrics Novafertil IVF Center, Konya, Turkey
| | - Ahmet Şalvarci
- Department of Andrology Novafertil IVF Center, Konya, Turkey
| | - Nicolas Le May
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
| | - Kevin McEleny
- Newcastle Fertility Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Corinna Friedrich
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Godfried van der Heijden
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margot J Wyrwoll
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster, Germany
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, Catalonia, Spain
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, University Hospital Careggi, Florence, Italy
| | - Stéphane Viville
- Laboratoire de Génétique Médicale LGM, institut de génétique médicale d'Alsace IGMA, INSERM UMR 1112, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, UF3472-génétique de l'infertilité, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Münster, Germany.
| |
Collapse
|
19
|
Li Z, Li Z, Zhang Y, Zhou L, Xu Q, Li L, Zeng L, Xue J, Niu H, Zhong J, Yu Q, Li D, Gui M, Huang Y, Tu S, Zhang Z, Song CQ, Wu J, Shen EZ. Mammalian PIWI-piRNA-target complexes reveal features for broad and efficient target silencing. Nat Struct Mol Biol 2024; 31:1222-1231. [PMID: 38658622 DOI: 10.1038/s41594-024-01287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.
Collapse
Affiliation(s)
- Zhiqing Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhenzhen Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqi Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lunni Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qikui Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huilin Niu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Zhong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qilu Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dengfeng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, Shanghai, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chun-Qing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
20
|
Ho T, Eichner N, Sathapondecha P, Nantapojd T, Meister G, Udomkit A. Ago4-piRNA complex is a key component of genomic immune system against transposon expression in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109693. [PMID: 38878913 DOI: 10.1016/j.fsi.2024.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Argonaute proteins are key constituents of small RNA-guided regulatory pathways. In crustaceans, members of the AGO subfamily of Argonaute proteins that play vital roles in immune defense are well studied, while proteins of the PIWI subfamily are less established. PmAgo4 of the black tiger shrimp, Penaeus monodon, though phylogenetically clustered with the AGO subfamily, has distinctive roles of the PIWI subfamily in safeguarding the genome from transposon invasion and controlling germ cell development. This study explored a molecular mechanism by which PmAgo4 regulates transposon expression in the shrimp germline. PmAgo4-associated small RNAs were co-immunoprecipitated from shrimp testis lysate using a PmAgo4-specific polyclonal antibody. RNA-seq revealed a majority of 26-27 nt long small RNAs in the PmAgo4-IP fraction suggesting that PmAgo4 is predominantly associated with piRNAs. Mapping of these piRNAs on nucleotide sequences of two gypsy and a mariner-like transposons of P. monodon suggested that most piRNAs were originated from the antisense strand of transposons. Suppression of PmAgo4 expression by a specific dsRNA elevated the expression levels of the three transposons while decreasing the levels of transposon-related piRNAs. Taken together, these results imply that PmAgo4 exerts its suppressive function on transposons by controlling the biogenesis of transposon-related piRNAs and thus, provides a defense mechanism against transposon invasion in shrimp germline cells.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Norbert Eichner
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany
| | - Ponsit Sathapondecha
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla, Thailand
| | - Thaneeya Nantapojd
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053, Regensburg, Germany.
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
21
|
Mehta P, Sethi S, Yadav SK, Gupta G, Singh R. Heat stress induced piRNA alterations in pachytene spermatocytes and round spermatids. Reprod Biol Endocrinol 2024; 22:87. [PMID: 39049033 PMCID: PMC11267754 DOI: 10.1186/s12958-024-01249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Spermatogenesis is a temperature-sensitive process, and elevation in temperature hampers this process quickly and significantly. We studied the molecular effects of testicular heating on piRNAs and gene expression in rat testicular germ cells. METHODS We generated a cryptorchid rat model by displacing the testis from the scrotal sac (34 °C) to the abdominal area (37 °C) and sacrificed animals after 1 day, 3 days, and 5 days. Pachytene spermatocytes and round spermatids were purified using elutriation centrifugation and percoll gradient methods. We performed transcriptome sequencing in pachytene spermatocytes and round spermatids to identify differentially expressed piRNAs and their probable targets, i.e., TE transcripts and mRNAs. RESULTS As a result of heat stress, we observed significant upregulation of piRNAs and TE transcripts in testicular germ cells. In addition to this, piRNA biogenesis machinery and heat shock proteins (Hsp70 and Hsp90 family members) were upregulated. mRNAs have also been proposed as targets for piRNAs; therefore, we shortlisted certain piRNA-mRNA pairs with an inverse relationship of expression. We observed that in testicular heat stress, the heat shock proteins go hand-in-hand with the upregulation of piRNA biogenesis machinery. The dysregulation of piRNAs in heat-stressed germ cells, increased ping-pong activity, and disturbed expression of piRNA target transcripts suggest a connection between piRNAs, mRNAs, and TE transcripts. CONCLUSIONS In heat stress, piRNAs, piRNA machinery, and heat shock proteins are activated to deal with low levels of stress, which is followed by a rescue approach in prolonged stressaccompained by high TE activity to allow genetic mutations, perhaps for survival and adaptability.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Yadav
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Gopal Gupta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
22
|
Peng Q, Chen Y, Xie T, Pu D, Ho VWS, Sun J, Liu K, Chan RCK, Ding X, Teoh JYC, Wang X, Chiu PKF, Ng CF. PiRNA-4447944 promotes castration-resistant growth and metastasis of prostate cancer by inhibiting NEFH expression through forming the piRNA-4447944-PIWIL2-NEFH complex. Int J Biol Sci 2024; 20:3638-3655. [PMID: 38993562 PMCID: PMC11234203 DOI: 10.7150/ijbs.96173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the leading cause of prostate cancer (PCa)-related death in males, which occurs after the failure of androgen deprivation therapy (ADT). PIWI-interacting RNAs (piRNAs) are crucial regulators in many human cancers, but their expression patterns and roles in CRPC remain unknown. In this study, we performed small RNA sequencing to explore CRPC-associated piRNAs using 10 benign prostate tissues, and 9 paired hormone-sensitive PCa (HSPCa) and CRPC tissues from the same patients. PiRNA-4447944 (piR-4447944) was discovered to be highly expressed in CRPC group compared with HSPCa and benign groups. Functional analyses revealed that piR-4447944 overexpression endowed PCa cells with castration resistance ability in vitro and in vivo, whereas knockdown of piR-4447944 using anti-sense RNA suppressed the proliferation, migration and invasion of CRPC cells. Additionally, enforced piR-4447944 expression promoted in vitro migration and invasion of PCa cells, and reduced cell apoptosis. Mechanistically, piR-4447944 bound to PIWIL2 to form a piR-4447944/PIWIL2 complex and inhibited tumor suppressor NEFH through direct interaction at the post-transcriptional level. Collectively, our study indicates that piR-4447944 is essential for prostate tumor-propagating cells and mediates androgen-independent growth of PCa, which extends current understanding of piRNAs in cancer biology and provides a potential approach for CRPC treatment.
Collapse
Affiliation(s)
- Qiang Peng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
- HitGen Inc., Building 6, No.8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, Sichuan, China
| | - Tingting Xie
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Dandan Pu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincy Wing-Sze Ho
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingkai Sun
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang Liu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Cheong-Kin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jeremy Yuen-Chun Teoh
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter Ka-Fung Chiu
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Jiang M, Hong X, Gao Y, Kho AT, Tantisira KG, Li J. piRNA associates with immune diseases. Cell Commun Signal 2024; 22:347. [PMID: 38943141 PMCID: PMC11214247 DOI: 10.1186/s12964-024-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024] Open
Abstract
PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yunfei Gao
- Department of Otolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Guangdong, Shenzhen, China.
| |
Collapse
|
24
|
Pan X, Dai W, Wang Z, Li S, Sun T, Miao N. PIWI-Interacting RNAs: A Pivotal Regulator in Neurological Development and Disease. Genes (Basel) 2024; 15:653. [PMID: 38927589 PMCID: PMC11202748 DOI: 10.3390/genes15060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs), a class of small non-coding RNAs (sncRNAs) with 24-32 nucleotides (nt), were initially identified in the reproductive system. Unlike microRNAs (miRNAs) or small interfering RNAs (siRNAs), piRNAs normally guide P-element-induced wimpy testis protein (PIWI) families to slice extensively complementary transposon transcripts without the seed pairing. Numerous studies have shown that piRNAs are abundantly expressed in the brain, and many of them are aberrantly regulated in central neural system (CNS) disorders. However, the role of piRNAs in the related developmental and pathological processes is unclear. The elucidation of piRNAs/PIWI would greatly improve the understanding of CNS development and ultimately lead to novel strategies to treat neural diseases. In this review, we summarized the relevant structure, properties, and databases of piRNAs and their functional roles in neural development and degenerative disorders. We hope that future studies of these piRNAs will facilitate the development of RNA-based therapeutics for CNS disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (X.P.); (W.D.); (Z.W.); (S.L.); (T.S.)
| |
Collapse
|
25
|
Deng X, Liao T, Xie J, Kang D, He Y, Sun Y, Wang Z, Jiang Y, Miao X, Yan Y, Tang H, Zhu L, Zou Y, Liu P. The burgeoning importance of PIWI-interacting RNAs in cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:653-662. [PMID: 38198029 DOI: 10.1007/s11427-023-2491-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNA molecules that specifically bind to piwi protein family members to exert regulatory functions in germ cells. Recent studies have found that piRNAs, as tissue-specific molecules, both play oncogenic and tumor suppressive roles in cancer progression, including cancer cell proliferation, metastasis, chemoresistance and stemness. Additionally, the atypical manifestation of piRNAs and PIWI proteins in various malignancies presents a promising strategy for the identification of novel biomarkers and therapeutic targets in the diagnosis and management of tumors. Nonetheless, the precise functions of piRNAs in cancer progression and their underlying mechanisms have yet to be fully comprehended. This review aims to examine current research on the biogenesis and functions of piRNA and its burgeoning importance in cancer progression, thereby offering novel perspectives on the potential utilization of piRNAs and piwi proteins in the management and treatment of advanced cancer.
Collapse
Affiliation(s)
- Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tianle Liao
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Da Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhangling Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuan Miao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixuan Yan
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510062, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lewei Zhu
- The First People's Hospital of Foshan, Foshan, 528000, China.
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Peng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
26
|
Wei H, Gao J, Lin DH, Geng R, Liao J, Huang TY, Shang G, Jing J, Fan ZW, Pan D, Yin ZQ, Li T, Liu X, Zhao S, Chen C, Li J, Wang X, Ding D, Liu MF. piRNA loading triggers MIWI translocation from the intermitochondrial cement to chromatoid body during mouse spermatogenesis. Nat Commun 2024; 15:2343. [PMID: 38491008 PMCID: PMC10943014 DOI: 10.1038/s41467-024-46664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
The intermitochondrial cement (IMC) and chromatoid body (CB) are posited as central sites for piRNA activity in mice, with MIWI initially assembling in the IMC for piRNA processing before translocating to the CB for functional deployment. The regulatory mechanism underpinning MIWI translocation, however, has remained elusive. We unveil that piRNA loading is the trigger for MIWI translocation from the IMC to CB. Mechanistically, piRNA loading facilitates MIWI release from the IMC by weakening its ties with the mitochondria-anchored TDRKH. This, in turn, enables arginine methylation of MIWI, augmenting its binding affinity for TDRD6 and ensuring its integration within the CB. Notably, loss of piRNA-loading ability causes MIWI entrapment in the IMC and its destabilization in male germ cells, leading to defective spermatogenesis and male infertility in mice. Collectively, our findings establish the critical role of piRNA loading in MIWI translocation during spermatogenesis, offering new insights into piRNA biology in mammals.
Collapse
Affiliation(s)
- Huan Wei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, Hangzhou, China
| | - Jie Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Di-Hang Lin
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruirong Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaoyang Liao
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tian-Yu Huang
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guanyi Shang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiongjie Jing
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zong-Wei Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, Hangzhou, China
| | - Duo Pan
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zi-Qi Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tianming Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xinyu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuang Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, Hangzhou, China
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, Hangzhou, China.
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024; University of Chinese Academy of Sciences, Hangzhou, China.
- New Cornerstone Science Laboratory, State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
| |
Collapse
|
27
|
Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. eLife 2024; 12:RP91666. [PMID: 38470475 DOI: 10.7554/elife.91666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Spermiogenesis is a critical, post-meiotic phase of male gametogenesis, in which the proper gene expression is essential for sperm maturation. However, the underFlying molecular mechanism that controls mRNA expression in the round spermatids remains elusive. Here, we identify that FBXO24, an orphan F-box protein, is highly expressed in the testis of humans and mice and interacts with the splicing factors (SRSF2, SRSF3, and SRSF9) to modulate the gene alternative splicing in the round spermatids. Genetic mutation of FBXO24 in mice causes many abnormal splicing events in round spermatids, thus affecting a large number of critical genes related to sperm formation that were dysregulated. Further molecular and phenotypical analyses revealed that FBXO24 deficiency results in aberrant histone retention, incomplete axonemes, oversized chromatoid body, and abnormal mitochondrial coiling along sperm flagella, ultimately leading to male sterility. In addition, we discovered that FBXO24 interacts with MIWI and SCF subunits and mediates the degradation of MIWI via K48-linked polyubiquitination. Furthermore, we show that FBXO24 depletion could lead to aberrant piRNA production in testes, which suggests FBXO24 is required for normal piRNA counts. Collectively, these data demonstrate that FBXO24 is essential for sperm formation by regulating mRNA alternative splicing and MIWI degradation during spermiogenesis.
Collapse
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Garcia-Borja E, Siegl F, Mateu R, Slaby O, Sedo A, Busek P, Sana J. Critical appraisal of the piRNA-PIWI axis in cancer and cancer stem cells. Biomark Res 2024; 12:15. [PMID: 38303021 PMCID: PMC10836005 DOI: 10.1186/s40364-024-00563-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Small noncoding RNAs play an important role in various disease states, including cancer. PIWI proteins, a subfamily of Argonaute proteins, and PIWI-interacting RNAs (piRNAs) were originally described as germline-specific molecules that inhibit the deleterious activity of transposable elements. However, several studies have suggested a role for the piRNA-PIWI axis in somatic cells, including somatic stem cells. Dysregulated expression of piRNAs and PIWI proteins in human tumors implies that, analogously to their roles in undifferentiated cells under physiological conditions, these molecules may be important for cancer stem cells and thus contribute to cancer progression. We provide an overview of piRNA biogenesis and critically review the evidence for the role of piRNA-PIWI axis in cancer stem cells. In addition, we examine the potential of piRNAs and PIWI proteins to become biomarkers in cancer.
Collapse
Affiliation(s)
- Elena Garcia-Borja
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Frantisek Siegl
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rosana Mateu
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Aleksi Sedo
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic
| | - Petr Busek
- Laboratory of Cancer Cell Biology, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 478/5, Prague 2, 128 53, Czech Republic.
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- Department of Pathology, University Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
29
|
Antonazzo G, Gaudet P, Lovering RC, Attrill H. Representation of non-coding RNA-mediated regulation of gene expression using the Gene Ontology. RNA Biol 2024; 21:36-48. [PMID: 39374113 PMCID: PMC11459742 DOI: 10.1080/15476286.2024.2408523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Regulatory non-coding RNAs (ncRNAs) are increasingly recognized as integral to the control of biological processes. This is often through the targeted regulation of mRNA expression, but this is by no means the only mechanism through which regulatory ncRNAs act. The Gene Ontology (GO) has long been used for the systematic annotation of protein-coding and ncRNA gene function, but rapid progress in the understanding of ncRNAs meant that the ontology needed to be revised to accurately reflect current knowledge. Here, a targeted effort to revise GO terms used for the annotation of regulatory ncRNAs is described, focusing on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). This paper provides guidance to biocurators annotating ncRNA-mediated processes using the GO and serves as background for researchers wishing to make use of the GO in their studies of ncRNAs and the biological processes they regulate.
Collapse
Affiliation(s)
- Giulia Antonazzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Swiss-Prot Group, Geneva, Switzerland
| | - Ruth C. Lovering
- Functional Gene Annotation, Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Kleeman EA, Reisinger SN, Adithya P, Houston B, Stathatos G, Garnham AL, McLaughlin S, O'Bryan MK, Gubert C, Hannan AJ. Paternal immune activation by Poly I:C modulates sperm noncoding RNA profiles and causes transgenerational changes in offspring behavior. Brain Behav Immun 2024; 115:258-279. [PMID: 37820975 DOI: 10.1016/j.bbi.2023.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
Paternal pre-conceptual environmental experiences, such as stress and diet, can affect offspring brain and behavioral phenotypes via epigenetic modifications in sperm. Furthermore, maternal immune activation due to infection during gestation can reprogram offspring behavior and brain functioning in adulthood. However, the effects of paternal pre-conceptual exposure to immune activation on the behavior and physiology of offspring (F1) and grand-offspring (F2) are not currently known. We explored effects of paternal pre-conceptual exposure to viral-like immune activation on F1 and F2 behavioral and physiological phenotypes using a C57BL/6J mouse model. Males were treated with a single injection (intraperitoneal) of the viral mimetic polyinosinic:polycytidylic acid (Poly I:C: 12 mg/kg) then bred with naïve female mice four weeks after the Poly I:C (or 0.9% saline control) injection. The F1 offspring of Poly I:C treated fathers displayed increased depression-like behavior in the Porsolt swim test, an altered stress response in the novelty-suppressed feeding test, and significant transcriptomic changes in their hippocampus. Additionally, the F1 male offspring of Poly I:C treated F0 males showed significantly increased immune responsivity after a Poly I:C immune challenge (12 mg/kg). Furthermore, the F2 male grand-offspring took longer to enter and travelled significantly shorter distances in the light zone of the light/dark box. An analysis of the small noncoding RNA profiles in sperm from Poly I:C treated males and their male offspring revealed significant effects of Poly I:C on the sperm microRNA content at the time of conception and on the sperm PIWI-interacting RNA content of the male offspring. Notably, eight miRNAs with an FDR < 0.05 (miR-141-3p, miR-126b-5p, miR-669o-5p, miR-10b-3p, miR-471-5p, miR-463-5p, miR-148b-3p, and miR-181c-5p) were found to be significantly downregulated in the sperm of Poly I:C treated males. Collectively, we demonstrate that paternal pre-conceptual exposure to a viral immune challenge results in both intergenerational and transgenerational effects on brain and behavior that may be mediated by alterations in the sperm small noncoding RNA content.
Collapse
Affiliation(s)
- Elizabeth A Kleeman
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Sonali N Reisinger
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Pranav Adithya
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brendan Houston
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Gemma Stathatos
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Shae McLaughlin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Moira K O'Bryan
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Wei C, Yan X, Mann JM, Geng R, Xie H, Demireva EY, Sun L, Ding D, Chen C. PNLDC1 catalysis and postnatal germline function are required for piRNA trimming, LINE1 silencing, and spermatogenesis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573375. [PMID: 38234819 PMCID: PMC10793440 DOI: 10.1101/2023.12.26.573375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PIWI-interacting RNAs (piRNAs) play critical and conserved roles in transposon silencing and gene regulation in the animal germline. Two distinct piRNA populations are present during mouse spermatogenesis: pre-pachytene piRNAs in fetal/neonatal testes and pachytene piRNAs in adult testes. PNLDC1 is required for both pre-pachytene piRNA and pachytene piRNA 3' end maturation in multiple species. However, whether PNLDC1 is the bona fide piRNA trimmer and the physiological role of 3' trimming of two distinct piRNA populations in spermatogenesis remain unclear. Here, by inactivating Pnldc1 exonuclease activity in vitro and in mice, we reveal that PNLDC1 trimmer activity is required for both pre-pachytene piRNA and pachytene piRNA 3' end trimming and male fertility. Furthermore, conditional inactivation of Pnldc1 in postnatal germ cells causes LINE1 transposon de-repression and spermatogenic arrest in mice. This indicates that pachytene piRNA trimming, but not pre-pachytene piRNA trimming, is essential for mouse germ cell development and transposon silencing. Our findings highlight the potential of inhibiting germline piRNA trimmer activity as a potential means for male contraception.
Collapse
Affiliation(s)
- Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xiaoyuan Yan
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jeffrey M. Mann
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ruirong Geng
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
32
|
Elzer D, Bremser M, Zischler H. Human sperm heads harbor modified YsRNA as transgenerationally inherited non-coding RNAs. Front Genet 2023; 14:1294389. [PMID: 38162679 PMCID: PMC10756665 DOI: 10.3389/fgene.2023.1294389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Most epigenetic information is reprogrammed during gametogenesis and early development. However, some epigenetic information persists and can be inherited, a phenomenon that is common in plants. On the other hand, there are increasing examples of epigenetic inheritance in metazoans, especially for small non-coding RNAs. The presence of regulatory important RNAs in oocytes is undisputed, whereas the corresponding RNA payload in spermatozoa and its regulatory influence in the zygote and early embryogenesis is largely enigmatic. For humans, we herein describe small YRNA fragments (YsRNA) as a paternal contribution to the zygote. First, we trace the biogenesis of these YsRNAs from the source YRNAs with respect to the 5' and 3' modifications. Both the length and modifications make these YsRNAs reminiscent of canonical piRNAs that are not derived from piRNA clusters. Second, from the early stages of spermatogenesis to maturation in the epididymis, we observe distinct YsRNA profile dynamics in the male germline. We detected YsRNAs exclusively in mature sperm heads, the precursor of the male pronucleus in the zygote, suggesting an important role of the epididymis as a site for transmitting and modification of epigenetic information in the form of YsRNA between soma and germline in humans. Since this YsRNA-based epigenetic mechanism is effective across generations, we wondered whether this phenomenon of epigenetic inheritance has an adaptive value. Full-length YRNAs bind to Ro60, an RNA chaperone that additionally binds to non-coding RNAs. We described the profiles of non-coding RNAs bound to Ro60 in the human sperm head and detected specific binding profiles of RNA to Ro60 but no YRNA bound to Ro60. We hypothesize that the sperm head Ro60 system is functional. An adaptive phenotype mediated by the presence of a large amount of YsRNA in the sperm head, and thus as a paternal contribution in the zygote, might be related to an association of YsRNA with YRNA that prevents the adoption of a YRNA secondary structure capable of binding to Ro60. We hypothesize that preventing YRNAs from acting as Ro60-associated gatekeepers for misfolded RNAs in the zygote and early development may enhance RNA chaperoning and, thus, represent the adaptive molecular phenotype.
Collapse
Affiliation(s)
- Darja Elzer
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Hans Zischler
- Division of Anthropology, Faculty of Biology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
33
|
Sohn EJ, Han ME, Park YM, Kim YH, Oh SO. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One 2023; 18:e0294685. [PMID: 38060527 PMCID: PMC10703285 DOI: 10.1371/journal.pone.0294685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that PIWI-interacting RNAs (piRNAs) play important roles in various physiological processes and contribute to cancer progression. Moreover, piRNAs and PIWI protein levels are associated with the prognosis and chemoresistance of various cancers. The limitations of biomarkers challenge early detection and monitoring of chemoresistance and cancer relapse. METHODS To evaluate the potential of piRNA as a diagnostic biomarker in oncology, we systematically reviewed previous studies on the subject. PubMed, Embase, and Cochrane databases were searched to evaluate the diagnostic relevance of piRNAs in cancer. Eighteen studies (2,352 patients) were included. The quality of each study was evaluated with AMSTAR and QUADAS-2 tool. RESULTS & CONCLUSIONS The area under the curve (AUC) values of 26 piRNAs in patients with cancer ranged from 0.624 to 0.978, with piR-9491 showing the highest value (0.978). The sensitivity of the total of 21 piRNAs in cancer patients was between 42.86 and 100, with piR-9491 showing the highest sensitivity (100). The specificity of these 21 piRNAs ranged from 60.10 to 96.67 (with piR-018569 showing the highest specificity (96.67)). Their odds ratios were between 1.61 and 44.67, and piR-12488 showed the highest odds ratio (44.67). Generally, the piRNAs in this review showed better sensitivity and AUC values than current clinical diagnostic biomarkers, although current biomarkers appear to be more specific. Reviewed piRNAs showed better diagnostic performance than currently used clinical biomarkers. Notably, piR-823 showed a significant diagnostic performance in four types of cancer (colorectal, esophageal, gastric, and renal cell cancer). However, all 18 studies included in this review were a case-control study. So, further prospective studies are required for their validation.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Young Mok Park
- Department of Surgery, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
34
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
35
|
Sun M, Fan X, Long Q, Zang H, Zhang Y, Liu X, Feng P, Song Y, Li K, Wu Y, Jiang H, Chen D, Guo R. First Characterization and Regulatory Function of piRNAs in the Apis mellifera Larval Response to Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:16358. [PMID: 38003547 PMCID: PMC10671575 DOI: 10.3390/ijms242216358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
piRNAs are a class of small non-coding RNAs that play essential roles in modulating gene expression and abundant biological processes. To decode the piRNA-regulated larval response of western honeybees (Apis mellifera) to Ascosphaera apis infection, the expression pattern of piRNAs in Apis mellifera ligustica larval guts after A. apis inoculation was analyzed based on previously obtained high-quality small RNA-seq datasets, followed by structural characterization, target prediction, regulatory network investigation, and functional dissection. Here, 504, 657, and 587 piRNAs were respectively identified in the 4-, 5-, and 6-day-old larval guts after inoculation with A. apis, with 411 ones shared. These piRNAs shared a similar length distribution and first base bias with mammal piRNAs. Additionally, 96, 103, and 143 DEpiRNAs were detected in the 4-, 5-, and 6-day-old comparison groups. Targets of the DEpiRNAs were engaged in diverse pathways such as the phosphatidylinositol signaling system, inositol phosphate metabolism, and Wnt signaling pathway. These targets were involved in three energy metabolism-related pathways, eight development-associated signaling pathways, and seven immune-relevant pathways such as the Jak-STAT signaling pathway. The expression trends of five randomly selected DEpiRNAs were verified using a combination of RT-PCR and RT-qPCR. The effective overexpression and knockdown of piR-ame-945760 in A. apis-infected larval guts were achieved by feeding a specific mimic and inhibitor. Furthermore, piR-ame-945760 negatively regulated the expression of two target immune mRNAs, SOCS5 and ARF1, in the larval gut during the A. apis infection. These findings indicated that the overall expression level of piRNAs was increased and the expression pattern of piRNAs in larval guts was altered due to the A. apis infection, DEpiRNAs were putative regulators in the A. apis-response of A. m. ligustica worker larvae. Our data provide not only a platform for the functional investigation of piRNAs in honeybees, especially in bee larvae, but also a foundation for illuminating the piRNA-involved mechanisms underlying the host response to the A. apis infection.
Collapse
Affiliation(s)
- Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Xiaoyu Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Yuxuan Song
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Kunze Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China; (Y.W.); (H.J.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.); (X.F.); (Q.L.); (H.Z.); (Y.Z.); (X.L.); (P.F.); (Y.S.); (K.L.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
36
|
Liu B, Yan J, Li J, Xia W. The Role of BDNF, YBX1, CENPF, ZSCAN4, TEAD4, GLIS1 and USF1 in the Activation of the Embryonic Genome in Bovine Embryos. Int J Mol Sci 2023; 24:16019. [PMID: 38003209 PMCID: PMC10671747 DOI: 10.3390/ijms242216019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Early embryonic development relies on the maternal RNAs and newly synthesized proteins during oogenesis. Zygotic transcription is an important event occurring at a specific time after fertilization. If no zygotic transcription occurs, the embryo will die because it is unable to meet the needs of the embryo and continue to grow. During the early stages of embryonic development, the correct transcription, translation, and expression of genes play a crucial role in blastocyst formation and differentiation of cell lineage species formation among mammalian species, and any variation may lead to developmental defects, arrest, or even death. Abnormal expression of some genes may lead to failure of the embryonic zygote genome before activation, such as BDNF and YBX1; Decreased expression of CENPF, ZSCAN4, TEAD4, GLIS1, and USF1 genes can lead to embryonic development failure. This article reviews the results of studies on the timing and mechanism of gene expression of these genes in bovine fertilized eggs/embryos.
Collapse
Affiliation(s)
- Bingnan Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Jiaxin Yan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (B.L.); (J.Y.); (J.L.)
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding 071000, China
| |
Collapse
|
37
|
Olotu O, Ahmedani A, Kotaja N. Small Non-Coding RNAs in Male Reproduction. Semin Reprod Med 2023; 41:213-225. [PMID: 38346711 DOI: 10.1055/s-0044-1779726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Male reproductive functions are strictly regulated in order to maintain sperm production and fertility. All processes are controlled by precise regulation of gene expression, which creates specific gene expression programs for different developmental stages and cell types, and forms the functional basis for the reproductive system. Small non-coding RNAs (sncRNAs) are involved in gene regulation by targeting mRNAs for translational repression and degradation through complementary base pairing to recognize their targets. This review article summarizes the current knowledge on the function of different classes of sncRNAs, in particular microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), during male germ cell differentiation, with the focus on sncRNAs expressed in the germline. Although transcriptionally inactive, mature spermatozoa contain a complex population of sncRNAs, and we also discuss the recently identified role of sperm sncRNAs in the intergenerational transmission of epigenetic information on father's environmental and lifestyle exposures to offspring. Finally, we summarize the current information on the utility of sncRNAs as potential biomarkers of infertility that may aid in the diagnosis and prediction of outcomes of medically assisted reproduction.
Collapse
Affiliation(s)
- Opeyemi Olotu
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ammar Ahmedani
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Noora Kotaja
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
38
|
Wei C, Jing J, Yan X, Mann JM, Geng R, Xie H, Demireva EY, Hess RA, Ding D, Chen C. MIWI N-terminal RG motif promotes efficient pachytene piRNA production and spermatogenesis independent of LINE1 transposon silencing. PLoS Genet 2023; 19:e1011031. [PMID: 37956204 PMCID: PMC10681313 DOI: 10.1371/journal.pgen.1011031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
PIWI proteins and their associated piRNAs act to silence transposons and promote gametogenesis. Murine PIWI proteins MIWI, MILI, and MIWI2 have multiple arginine and glycine (RG)-rich motifs at their N-terminal domains. Despite being known as docking sites for the TDRD family proteins, the in vivo regulatory roles for these RG motifs in directing PIWI in piRNA biogenesis and spermatogenesis remain elusive. To investigate the functional significance of RG motifs in mammalian PIWI proteins in vivo, we genetically engineered an arginine to lysine (RK) point mutation of a conserved N-terminal RG motif in MIWI in mice. We show that this tiny MIWI RG motif is indispensable for piRNA biogenesis and male fertility. The RK mutation in the RG motif disrupts MIWI-TDRKH interaction and impairs enrichment of MIWI to the intermitochondrial cement (IMC) for efficient piRNA production. Despite significant overall piRNA level reduction, piRNA trimming and maturation are not affected by the RK mutation. Consequently, MiwiRK mutant mice show chromatoid body malformation, spermatogenic arrest, and male sterility. Surprisingly, LINE1 transposons are effectively silenced in MiwiRK mutant mice, indicating a LINE1-independent cause of germ cell arrest distinctive from Miwi knockout mice. These findings reveal a crucial function of the RG motif in directing PIWI proteins to engage in efficient piRNA production critical for germ cell progression and highlight the functional importance of the PIWI N-terminal motifs in regulating male fertility.
Collapse
Affiliation(s)
- Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Jiongjie Jing
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoyuan Yan
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey M. Mann
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Ruirong Geng
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Rex A. Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois, United States of America
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States of America
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, United States of America
| |
Collapse
|
39
|
Gou LT, Zhu Q, Liu MF. Small RNAs: An expanding world with therapeutic promises. FUNDAMENTAL RESEARCH 2023; 3:676-682. [PMID: 38933305 PMCID: PMC11197668 DOI: 10.1016/j.fmre.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023] Open
Abstract
Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has accelerated the development of small RNA-based therapeutics. In this review, we present the recent advances in the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs.
Collapse
Affiliation(s)
- Lan-Tao Gou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifan Zhu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
40
|
van Wolfswinkel JC. Insights in piRNA targeting rules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1811. [PMID: 37632327 PMCID: PMC10895071 DOI: 10.1002/wrna.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in the defense against transposons in the germline and stem cells of animals. To what extent other transcripts are also regulated by piRNAs is an ongoing topic of debate. The amount of sequence complementarity between piRNA and target that is required for effective downregulation of the targeted transcript is guiding in this discussion. Over the years, various methods have been applied to infer targeting requirements from the collections of piRNAs and potential target transcripts, and recent structural studies of the PIWI proteins have provided an additional perspective. In this review, I summarize the findings from these studies and propose a set of requirements that can be used to predict targets to the best of our current abilities. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA-Based Catalysis > RNA-Mediated Cleavage.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Center for Stem Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Center for RNA Biology and Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
41
|
Liu Z, Chen X, Zhang P, Li F, Zhang L, Li X, Huang T, Zheng Y, Yu T, Zhang T, Zeng W, Lu H, Lv Y. Transcriptome-wide Dynamics of m 6A mRNA Methylation During Porcine Spermatogenesis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:729-741. [PMID: 34543723 PMCID: PMC10787014 DOI: 10.1016/j.gpb.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/31/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Spermatogenesis is a continual process that occurs in the testes, in which diploid spermatogonial stem cells (SSCs) differentiate and generate haploid spermatozoa. This highly efficient and intricate process is orchestrated at multiple levels. N6-methyladenosine (m6A), an epigenetic modification prevalent in mRNAs, is implicated in the transcriptional regulation during spermatogenesis. However, the dynamics of m6A modification in non-rodent mammalian species remains unclear. Here, we systematically investigated the profile and role of m6A during spermatogenesis in pigs. By analyzing the transcriptomic distribution of m6A in spermatogonia, spermatocytes, and round spermatids, we identified a globally conserved m6A pattern between porcine and murine genes with spermatogenic function. We found that m6A was enriched in a group of genes that specifically encode the metabolic enzymes and regulators. In addition, transcriptomes in porcine male germ cells could be subjected to the m6A modification. Our data show that m6A plays the regulatory roles during spermatogenesis in pigs, which is similar to that in mice. Illustrations of this point are three genes (SETDB1, FOXO1, and FOXO3) that are crucial to the determination of the fate of SSCs. To the best of our knowledge, this study for the first time uncovers the expression profile and role of m6A during spermatogenesis in large animals and provides insights into the intricate transcriptional regulation underlying the lifelong male fertility in non-rodent mammalian species.
Collapse
Affiliation(s)
- Zidong Liu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoxu Chen
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Lingkai Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xueliang Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tao Huang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Taiyong Yu
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Yinghua Lv
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
42
|
Timofeeva AV, Fedorov IS, Asaturova AV, Sannikova MV, Tregubova AV, Mayboroda OA, Khabas GN, Frankevich VE, Sukhikh GT. Blood Plasma Small Non-Coding RNAs as Diagnostic Molecules for the Progesterone-Receptor-Negative Phenotype of Serous Ovarian Tumors. Int J Mol Sci 2023; 24:12214. [PMID: 37569592 PMCID: PMC10419267 DOI: 10.3390/ijms241512214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The expression level of the progesterone receptor (PGR) plays a crucial role in determining the biological characteristics of serous ovarian carcinoma. Low PGR expression is associated with chemoresistance and a poorer outcome. In this study, our objective was to explore the relationship between tumor progesterone receptor levels and RNA profiles (miRNAs, piwiRNAs, and mRNAs) to understand their biological characteristics and behavior. To achieve this, we employed next-generation sequencing of small non-coding RNAs, quantitative RT-PCR, and immunohistochemistry to analyze both FFPE and frozen tumor samples, as well as blood plasma from patients with benign cystadenoma (BSC), serous borderline tumor (SBT), low-grade serous ovarian carcinoma (LGSOC), and high-grade serous ovarian carcinoma (HGSOC). Our findings revealed significant upregulation of MMP7 and MUC16, along with downregulation of PGR, in LGSOC and HGSOC compared to BSC. We observed significant correlations of PGR expression levels in tumor tissue with the contents of miR-199a-5p, miR-214-3p, miR-424-3p, miR-424-5p, and miR-125b-5p, which potentially target MUC16, MMP7, and MMP9, as well as with the tissue content of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p, which are associated with the epithelial-mesenchymal transition (EMT) of cells. The levels of EMT-associated miRNAs were significantly correlated with the content of hsa_piR_022437, hsa_piR_009295, hsa_piR_020813, hsa_piR_004307, and hsa_piR_019914 in tumor tissues. We developed two optimal logistic regression models using the quantitation of hsa_piR_020813, miR-16-5p, and hsa_piR_022437 or hsa_piR_004307, hsa_piR_019914, and miR-93-5p in the tumor tissue, which exhibited a significant ability to diagnose the PGR-negative tumor phenotype with 93% sensitivity. Of particular interest, the blood plasma levels of miR-16-5p and hsa_piR_022437 could be used to diagnose the PGR-negative tumor phenotype with 86% sensitivity even before surgery and chemotherapy. This knowledge can help in choosing the most effective treatment strategy for this aggressive type of ovarian cancer, such as neoadjuvant chemotherapy followed by cytoreduction in combination with hyperthermic intraperitoneal chemotherapy and targeted therapy, thus enhancing the treatment's effectiveness and the patient's longevity.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Anna V. Tregubova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands;
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (A.V.A.); (M.V.S.); (A.V.T.); (G.N.K.); (V.E.F.); (G.T.S.)
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|
43
|
Iki T, Kawaguchi S, Kai T. miRNA/siRNA-directed pathway to produce noncoding piRNAs from endogenous protein-coding regions ensures Drosophila spermatogenesis. SCIENCE ADVANCES 2023; 9:eadh0397. [PMID: 37467338 PMCID: PMC10355832 DOI: 10.1126/sciadv.adh0397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
PIWI-interacting RNA (piRNA) pathways control transposable elements (TEs) and endogenous genes, playing important roles in animal gamete formation. However, the underlying piRNA biogenesis mechanisms remain elusive. Here, we show that endogenous protein coding sequences (CDSs), which are normally used for translation, serve as origins of noncoding piRNA biogenesis in Drosophila melanogaster testes. The product, namely, CDS-piRNAs, formed silencing complexes with Aubergine (Aub) in germ cells. Proximity proteome and functional analyses show that CDS-piRNAs and cluster/TE-piRNAs are distinct species occupying Aub, the former loading selectively relies on chaperone Cyclophilin 40. Moreover, Argonaute 2 (Ago2) and Dicer-2 activities were found critical for CDS-piRNA production. We provide evidence that Ago2-bound short interfering RNAs (siRNAs) and microRNAs (miRNAs) specify precursors to be processed into piRNAs. We further demonstrate that Aub is crucial in spermatid differentiation, regulating chromatins through mRNA cleavage. Collectively, our data illustrate a unique strategy used by male germ line, expanding piRNA repertoire for silencing of endogenous genes during spermatogenesis.
Collapse
Affiliation(s)
| | - Shinichi Kawaguchi
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka1-3, Suita, Osaka, Japan
| | | |
Collapse
|
44
|
Mann JM, Wei C, Chen C. How genetic defects in piRNA trimming contribute to male infertility. Andrology 2023; 11:911-917. [PMID: 36263612 PMCID: PMC10115909 DOI: 10.1111/andr.13324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
In germ cells, small non-coding PIWI-interacting RNAs (piRNAs) work to silence harmful transposons to maintain genomic stability and regulate gene expression to ensure fertility. However, these piRNAs must undergo a series of steps during biogenesis to be properly loaded onto PIWI proteins and reach the correct nucleotide length. This review is focused on what we are learning about a crucial step in this process, piRNA trimming, in which pre-piRNAs are shortened to final lengths of 21-35 nucleotides. Recently, the 3'-5' exonuclease trimmer has been identified in various models as PNLDC1/PARN-1. Mutations of the piRNA trimmers in vivo lead to increased transposon expression, elevated levels of untrimmed pre-piRNAs, decreased piRNA stability, and male infertility. Here, we will discuss the role of piRNA trimmers in piRNA biogenesis and function, describe consequences of piRNA trimmer mutations using mammalian models and human patients, and examine future avenues of piRNA trimming-related study for clinical advancements for male infertility.
Collapse
Affiliation(s)
- Jeffrey M. Mann
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Chao Wei
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
45
|
Liu C, Zhang F. PIWI-specific insertion module: a newly identified regulatory element essential for longer piRNAs loading and male fertility. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-023-2402-x. [PMID: 37357236 DOI: 10.1007/s11427-023-2402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Affiliation(s)
- Chunyu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| |
Collapse
|
46
|
Gainetdinov I, Vega-Badillo J, Cecchini K, Bagci A, Colpan C, De D, Bailey S, Arif A, Wu PH, MacRae IJ, Zamore PD. Relaxed targeting rules help PIWI proteins silence transposons. Nature 2023:10.1038/s41586-023-06257-4. [PMID: 37344600 PMCID: PMC10338343 DOI: 10.1038/s41586-023-06257-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
In eukaryotes, small RNA guides, such as small interfering RNAs and microRNAs, direct AGO-clade Argonaute proteins to regulate gene expression and defend the genome against external threats. Only animals make a second clade of Argonaute proteins: PIWI proteins. PIWI proteins use PIWI-interacting RNAs (piRNAs) to repress complementary transposon transcripts1,2. In theory, transposons could evade silencing through target site mutations that reduce piRNA complementarity. Here we report that, unlike AGO proteins, PIWI proteins efficiently cleave transcripts that are only partially paired to their piRNA guides. Examination of target binding and cleavage by mouse and sponge PIWI proteins revealed that PIWI slicing tolerates mismatches to any target nucleotide, including those flanking the scissile phosphate. Even canonical seed pairing is dispensable for PIWI binding or cleavage, unlike plant and animal AGOs, which require uninterrupted target pairing from the seed to the nucleotides past the scissile bond3,4. PIWI proteins are therefore better equipped than AGO proteins to target newly acquired or rapidly diverging endogenous transposons without recourse to new small RNA guides. Conversely, the minimum requirements for PIWI slicing are sufficient to avoid inadvertent silencing of host RNAs. Our results demonstrate the biological advantage of PIWI over AGO proteins in defending the genome against transposons and suggest an explanation for why the piRNA pathway was retained in animal evolution.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ayca Bagci
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Voyager Therapeutics, Cambridge, MA, USA
| | - Dipayan De
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shannon Bailey
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Pei-Hsuan Wu
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- University of Geneva, Geneva, Switzerland
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
47
|
Wang X, Lin DH, Yan Y, Wang AH, Liao J, Meng Q, Yang WQ, Zuo H, Hua MM, Zhang F, Zhu H, Zhou H, Huang TY, He R, Li G, Tan YQ, Shi HJ, Gou LT, Li D, Wu L, Zheng Y, Fu XD, Li J, Liu R, Li GH, Liu MF. The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-023-2390-5. [PMID: 37335463 DOI: 10.1007/s11427-023-2390-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs. Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter piRNAs and causes spermiogenic failure in mice, demonstrating the functional importance of this regulatory module. Mechanistically, we show that longer piRNAs provide additional complementarity to target mRNAs, thereby enhancing the assembly of the MIWI/eIF3f/HuR super-complex for translational activation. Importantly, we identify a c.1108C>T (p.R370W) mutation of HIWI (human PIWIL1) in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer piRNAs. These findings reveal a critical role of PIWI-Ins-ensured longer piRNAs in fine-tuning MIWI/piRNA targeting capacity, proven essential for spermatid development and male fertility.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Di-Hang Lin
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Yan
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - An-Hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaoyang Liao
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Meng
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Heng Zuo
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min-Min Hua
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Fengjuan Zhang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian-Yu Huang
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Guangyong Li
- Department of Urology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, 750004, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, College of Basic of Medicine, Central South University, Changsha, 410000, China
| | - Hui-Juan Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, 200032, China
| | - Lan-Tao Gou
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dangsheng Li
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rujuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Guo-Hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
48
|
Wang C, Chen Y, Yang X, Du Y, Xu Z, Zhou Y, Yang X, Wang X, Zhang C, Li S, Yang Y, Li W, Liu X. The porcine piRNA transcriptome response to Senecavirus a infection. Front Vet Sci 2023; 10:1126277. [PMID: 37323834 PMCID: PMC10265626 DOI: 10.3389/fvets.2023.1126277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Senecavirus A (SVA) belongs to the genus Senecavirus in the family Picornaviridae. PIWI-interacting RNAs (piRNAs) are a class of small Ribonucleic Acids (RNAs) that have been found in mammalian cells in recent years. However, the expression profile of piRNAs in the host during SVA infection and their roles are poorly understood. Methods Here, we found the significant differential expression of 173 piRNAs in SVA-infected porcine kidney (PK-15) cells using RNA-seq and 10 significant differentially expressed (DE) piRNAs were further verified by qRT-PCR. Results GO annotation analysis showed that metabolism, proliferation, and differentiation were significantly activated after SVA infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that significant DE piRNAs were mainly enriched in AMPK pathway, Rap1 pathway, circadian rhythm and VEGF pathway. It was suggested that piRNAs may regulated antiviral immunity, intracellular homeostasis, and tumor activities during SVA infection. In addition, we found that the expression levels of the major piRNA-generating genes BMAL1 and CRY1 were significantly downregulated after SVA infection. Discussion This suggests that SVA may affect circadian rhythm and promote apoptosis by inhibiting the major piRNA-generating genes BMAL1 and CRY1. The piRNA transcriptome in PK-15 cells has never been reported before, and this study will further the understanding of the piRNA regulatory mechanisms underlying SVA infections.
Collapse
Affiliation(s)
- Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yanxi Chen
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yunsha Du
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering CO., LTD., Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xu Yang
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering CO., LTD., Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xuetao Wang
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering CO., LTD., Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Chuanming Zhang
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering CO., LTD., Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Shuwei Li
- Veterinary Biologicals Engineering and Technology Research Center of Sichuan Province, Animtech Bioengineering CO., LTD., Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| |
Collapse
|
49
|
Stalker L, Backx AG, Tscherner AK, Russell SJ, Foster RA, LaMarre J. cDNA Cloning of Feline PIWIL1 and Evaluation of Expression in the Testis of the Domestic Cat. Int J Mol Sci 2023; 24:ijms24119346. [PMID: 37298298 DOI: 10.3390/ijms24119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The PIWI clade of Argonaute proteins is essential for spermatogenesis in all species examined to date. This protein family binds specific classes of small non-coding RNAs known as PIWI-interacting RNAs (piRNAs) which together form piRNA-induced silencing complexes (piRISCs) that are recruited to specific RNA targets through sequence complementarity. These complexes facilitate gene silencing through endonuclease activity and guided recruitment of epigenetic silencing factors. PIWI proteins and piRNAs have been found to play multiple roles in the testis including the maintenance of genomic integrity through transposon silencing and facilitating the turnover of coding RNAs during spermatogenesis. In the present study, we report the first characterization of PIWIL1 in the male domestic cat, a mammalian system predicted to express four PIWI family members. Multiple transcript variants of PIWIL1 were cloned from feline testes cDNA. One isoform shows high homology to PIWIL1 from other mammals, however, the other has characteristics of a "slicer null" isoform, lacking the domain required for endonuclease activity. Expression of PIWIL1 in the male cat appears limited to the testis and correlates with sexual maturity. RNA-immunoprecipitation revealed that feline PIWIL1 binds small RNAs with an average size of 29 nt. Together, these data suggest that the domestic cat has two PIWIL1 isoforms expressed in the mature testis, at least one of which interacts with piRNAs.
Collapse
Affiliation(s)
- Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alanna G Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Allison K Tscherner
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W12, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
50
|
Chen J, Han C. In vivo functions of miRNAs in mammalian spermatogenesis. Front Cell Dev Biol 2023; 11:1154938. [PMID: 37215089 PMCID: PMC10196063 DOI: 10.3389/fcell.2023.1154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to play important roles in mammalian spermatogenesis mainly because spermatogenesis is more or less disrupted when genes encoding key enzymes for miRNA biogenesis are mutated. However, it is challenging to study the functions of individual miRNAs due to their family-wise high sequence similarities and the clustered genomic distributions of their genes, both of which expose difficulties in using genetic methods. Accumulating evidence shows that a number of miRNAs indeed play important roles in mammalian spermatogenesis and the underlying mechanisms start to be understood. In this mini review, we focus on highlighting the roles of miRNAs in mammalian spermatogenesis elucidated mainly by using in vivo genetic methods and on discussing the underlying mechanisms. We propose that studies on the roles of miRNAs in spermatogenesis should and can be conducted in a more fruitful way given the progress in traditional methods and the birth of new technologies.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|