1
|
Huang CM, Shen YL, Ho CL, Chen TE, Hsia HY, Songyang Z, Chen LY. C-Terminal Extended Domain-Independent Telomere Maintenance: Modeling the Function of TIN2 Isoforms in Mus musculus. Int J Mol Sci 2025; 26:2414. [PMID: 40141057 PMCID: PMC11941968 DOI: 10.3390/ijms26062414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
TIN2 (TERF1 interacting nuclear factor 2) is a telomeric shelterin complex component, essential for telomere protection and early embryonic development in mammals. In humans, TIN2 isoforms arise from alternative splicing, but their specific roles in vivo remain unclear. Here, we explore TIN2 isoform functions in the laboratory mouse Mus musculus. Our comparative analysis of TIN2 protein sequences reveals that mouse TIN2 (TINF2) closely resembles the human TIN2L isoform, both of which harbor a C-terminal extended domain (CTED) absent from the human TIN2 small (TIN2S) isoform. To further characterize the functions of TIN2 isoforms, we generated a Tinf2 LD (long-form deficiency) allele in M. musculus encoding a short form of TINF2 lacking the CTED. Mice heterozygous or homozygous for this Tinf2 LD allele were viable, fertile, and showed no tissue abnormalities. Furthermore, protein product of Tinf2 LD allele localized to telomeres and maintained telomere integrity in mouse embryonic fibroblasts, demonstrating that the CTED is dispensable for telomere protection and normal development in mice. These findings indicate functional redundancy among TIN2 isoforms and underscore the utility of the Tinf2 LD model for uncovering isoform-specific mechanisms of telomere regulation.
Collapse
Affiliation(s)
- Chiao-Ming Huang
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Chia-Lo Ho
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Tzeng-Erh Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Hsuan-Yu Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Zhou Songyang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Liuh-Yow Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| |
Collapse
|
2
|
Janovič T, Perez GI, Schmidt JC. TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630076. [PMID: 39763972 PMCID: PMC11703185 DOI: 10.1101/2024.12.23.630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes in vitro. However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined. To quantitatively analyze the shelterin function in living cells we generated a panel of cancer cell lines expressing HaloTagged shelterin proteins from their endogenous loci. We systematically determined the total cellular abundance and telomeric copy number of each shelterin subunit, demonstrating that the shelterin proteins are present at telomeres in equal numbers. In addition, we used single-molecule live-cell imaging to analyze the dynamics of shelterin protein association with telomeres. Our results demonstrate that TRF1-TIN2-TPP1-POT1 and TRF2-RAP1 form distinct subcomplexes that occupy non-overlapping binding sites on telomeric chromatin. TRF1-TIN2-TPP1-POT1 tightly associates with chromatin, while TRF2-RAP1 binding to telomeres is more dynamic, allowing it to recruit a variety of co-factors to chromatin to protect chromosome ends from DNA repair factors. In total, our work provides critical mechanistic insight into how the shelterin proteins carry out multiple essential functions in telomere maintenance and significantly advances our understanding of macromolecular structure of telomeric chromatin.
Collapse
Affiliation(s)
- Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
3
|
Cheng W, Dai W, Chen W, Xue H, Zhao Z, Jiang Z, Li H, Liu J, Huang F, Cai M, Zheng L, Yu Z, Peng D, Zhang J. Nematodes exposed to furfural acetone exhibit a species-specific vacuolar H +-ATPase response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117407. [PMID: 39603226 DOI: 10.1016/j.ecoenv.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Furfural acetone (FAc) is widely used as an additive by the food industry, as well as an intermediate in several fine chemical industries. Its nematicidal activity against the free-living model organism Caenorhabditis elegans and the parasitic nematode Meloidogyne incognita are well known, but its molecular mechanism of action remains unclear. To deep this subject, we performed 48-h lethal tests on eight nematode species, encompassing free-living, plant-parasitic, and animal-parasitic nematodes. Our results revealed that FAc possesses broad-spectrum nematicidal activity, with potent effects against parasitic nematodes such as Strongyloides stercoralis and M. incognita. In contrast, it exhibited weak activity against the free-living nematode C. elegans, suggesting its potential as a selective nematicide. Our investigation unveiled that FAc binds to the vacuolar H+-ATPase subunits VHA-12 and VHA-13, accelerating intestinal cell necrosis and leading to the death of C. elegans. It is the first discovery that VHA-12 and VHA-13 can serve as target proteins for triggering nematode cell necrosis. The interaction results indicated that FAc targets proteins VHA-12 and VHA-13 of different nematodes and confers broad-spectrum nematicidal activity. And the Spearman analysis results illustrated that the differential nematicidal activity of FAc against various nematodes is attributed to variations in the sequence and structure of the receptor proteins VHA-12 and VHA-13 among different nematode species. Our results illuminate the molecular mechanism underlying the differential toxicity of FAc to different nematodes, and provide valuable data for the comprehensive risk assessment of FAc release into the environment.
Collapse
Affiliation(s)
- Wanli Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China; National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Dai
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wen Chen
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hua Xue
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhengzheng Zhao
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 PMCID: PMC7617103 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
5
|
Brankiewicz-Kopcinska W, Kallingal A, Krzemieniecki R, Baginski M. Targeting shelterin proteins for cancer therapy. Drug Discov Today 2024; 29:104056. [PMID: 38844065 DOI: 10.1016/j.drudis.2024.104056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
As a global health challenge, cancer prompts continuous exploration for innovative therapies that are also based on new targets. One promising avenue is targeting the shelterin protein complex, a safeguard for telomeres crucial in preventing DNA damage. The role of shelterin in modulating ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases, key players in the DNA damage response (DDR), establishes its significance in cancer cells. Disrupting these defence mechanisms of shelterins, especially in cancer cells, renders telomeres vulnerable, potentially leading to genomic instability and hindering cancer cell survival. In this review, we outline recent approaches exploring shelterins as potential anticancer targets, highlighting the prospect of developing selective molecules to exploit telomere vulnerabilities toward new innovative cancer treatments.
Collapse
Affiliation(s)
- Wioletta Brankiewicz-Kopcinska
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland; Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Radoslaw Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, G. Narutowicza St 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
6
|
Kallingal A, Krzemieniecki R, Maciejewska N, Brankiewicz-Kopcińska W, Baginski M. TRF1 and TRF2: pioneering targets in telomere-based cancer therapy. J Cancer Res Clin Oncol 2024; 150:353. [PMID: 39012375 PMCID: PMC11252209 DOI: 10.1007/s00432-024-05867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells. The article delves into the diagnostic and prognostic capabilities of TRF1 and TRF2 across various cancer types, highlighting their sensitivity and specificity. Furthermore, it reviews current strides in drug discovery targeting the shelterin complex, detailing specific compounds and their modes of action. The review candidly addresses the challenges in developing therapies aimed at the shelterin complex, including drug resistance, off-target effects, and issues in drug delivery. By synthesizing recent research findings, the article sheds light on the intricate relationship between telomere biology and cancer development. It underscores the urgency for continued research to navigate the existing challenges and fully leverage the therapeutic potential of TRF1, TRF2, and the shelterin complex in the realm of cancer treatment.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Radosław Krzemieniecki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| | | | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
7
|
Tomasova K, Seborova K, Kroupa M, Horak J, Kavec M, Vodickova L, Rob L, Hruda M, Mrhalova M, Bartakova A, Bouda J, Fleischer T, Kristensen VN, Vodicka P, Vaclavikova R. Telomere length as a predictor of therapy response and survival in patients diagnosed with ovarian carcinoma. Heliyon 2024; 10:e33525. [PMID: 39050459 PMCID: PMC11268197 DOI: 10.1016/j.heliyon.2024.e33525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Impaired telomere length (TL) maintenance in ovarian tissue may play a pivotal role in the onset of epithelial ovarian cancer (OvC). TL in either target or surrogate tissue (blood) is currently being investigated for use as a predictor in anti-OvC therapy or as a biomarker of the disease progression, respectively. There is currently an urgent need for an appropriate approach to chemotherapy response prediction. We performed a monochrome multiplex qPCR measurement of TL in peripheral blood leukocytes (PBL) and tumor tissues of 209 OvC patients. The methylation status and gene expression of the shelterin complex and telomerase catalytic subunit (hTERT) were determined within tumor tissues by High-Throughput DNA methylation profiling and RNA sequencing (RNA-Seq) analysis, respectively. The patients sensitive to cancer treatment (n = 46) had shorter telomeres in PBL compared to treatment-resistant patients (n = 93; P = 0.037). In the patients with a different therapy response, transcriptomic analysis showed alterations in the peroxisome proliferator-activated receptor (PPAR) signaling pathway (q = 0.001). Moreover, tumor TL shorter than the median corresponded to better overall survival (OS) (P = 0.006). TPP1 gene expression was positively associated with TL in tumor tissue (P = 0.026). TL measured in PBL could serve as a marker of platinum therapy response in OvC patients. Additionally, TL determined in tumor tissue provides information on OvC patients' OS.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Miriam Kavec
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marcela Mrhalova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
8
|
Cai SW, Takai H, Zaug AJ, Dilgen TC, Cech TR, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024; 187:3638-3651.e18. [PMID: 38838667 PMCID: PMC11246235 DOI: 10.1016/j.cell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Teague C Dilgen
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA.
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Wu Z, Gu X, Zha L, Yang Q, Zhou Y, Zeng Z. Structural and functional insights into yeast Tbf1 as an atypical telomeric repeat-binding factor. Structure 2024; 32:889-898.e3. [PMID: 38677290 DOI: 10.1016/j.str.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Telomeric repeat-binding factor 1 (Tbf1) has a similar architecture as the TRF family of telomeric proteins and plays important roles in both telomere homeostasis and ribosome regulation. However, the molecular basis of why Tbf1 has such different functions compared to other TRFs remains unclear. Here, we present the crystal structures of the TRF homology (TRFH) and Myb-L domains from Schizosaccharomyces pombe Tbf1 (spTbf1). TRFH-mediated homodimerization is essential for spTbf1 stability. Importantly, spTbf1TRFH lacks the conserved docking motif for interactions with telomeric proteins, explaining why spTbf1 does not participate in the assembly of the shelterin complex. Finally, structural and biochemical analyses demonstrate that TRFH and Myb-L domains as well as the loop region of spTbf1 coordinate to recognize S. pombe telomeric double-stranded DNA. Overall, our findings provide structural and functional insights into how fungi Tbf1 acts as an atypical telomeric repeat-binding factor, which helps to understand the evolution of TRFH-containing telomeric proteins.
Collapse
Affiliation(s)
- Zhenfang Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Xin Gu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin Zha
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingqiu Yang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuanze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Zhixiong Zeng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
10
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
11
|
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. Bioessays 2024; 46:e2300184. [PMID: 38047499 DOI: 10.1002/bies.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ava Boston
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Cai SW, Takai H, Walz T, de Lange T. POT1 recruits and regulates CST-Polα/Primase at human telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539880. [PMID: 37215005 PMCID: PMC10197580 DOI: 10.1101/2023.05.08.539880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Telomere maintenance requires extension of the G-rich telomeric repeat strand by telomerase and fill-in synthesis of the C-rich strand by Polα/Primase. Telomeric Polα/Primase is bound to Ctc1-Stn1-Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/Primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Phosphorylation of POT1 is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/Primase in an inactive auto-inhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/Primase into an active state that completes telomere replication through fill-in synthesis.
Collapse
Affiliation(s)
- Sarah W. Cai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Hiroyuki Takai
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University; New York, NY, USA
| | - Titia de Lange
- Laboratory of Cell Biology and Genetics, The Rockefeller University; New York, NY, USA
- Lead contact
| |
Collapse
|
13
|
Brankiewicz W, Kalathiya U, Padariya M, Węgrzyn K, Prusinowski M, Zebrowska J, Zylicz-Stachula A, Skowron P, Drab M, Szajewski M, Ciesielski M, Gawrońska M, Kallingal A, Makowski M, Bagiński M. Modified Peptide Molecules As Potential Modulators of Shelterin Protein Functions; TRF1. Chemistry 2023; 29:e202300970. [PMID: 37332024 DOI: 10.1002/chem.202300970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells. We have shown in vitro within SPR experiments that our modified peptide PEP1 molecule interacts with TRF1, presumably at the site originally occupied by the TIN2 protein. Disturbance of the shelterin complex by studied molecule may not in short term lead to cytotoxic effects, however blocking TRF1-TIN2 resulted in cellular senescence in cellular breast cancer lines used as a cancer model. Thus, our compounds appeared useful as starting model compounds for precise blockage of TRF proteins.
Collapse
Affiliation(s)
- Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822, Gdańsk, Poland
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822, Gdańsk, Poland
| | - Katarzyna Węgrzyn
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Maciej Prusinowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Joanna Zebrowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | | | - Piotr Skowron
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Marek Drab
- Unit of Nanostructural Bio-Interactions, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla-Street, 53-114, Wrocław, Poland
| | - Mariusz Szajewski
- Department of Oncological Surgery, Gdynia Oncology Centre, Gdynia, Poland
- Division of Propaedeutics of Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Ciesielski
- Department of Oncological Surgery, Gdynia Oncology Centre, Gdynia, Poland
- Division of Propaedeutics of Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Gawrońska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
14
|
Tire B, Ozturk S. Potential effects of assisted reproductive technology on telomere length and telomerase activity in human oocytes and early embryos. J Ovarian Res 2023; 16:130. [PMID: 37400833 DOI: 10.1186/s13048-023-01211-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/17/2023] [Indexed: 07/05/2023] Open
Abstract
Telomeres are repetitive DNA sequences at eukaryotic chromosome ends and function in maintaining genome integrity and stability. These unique structures undergo shortening due to various factors including biological aging, consecutive DNA replication, oxidative stress, and genotoxic agents. Shortened telomeres can be lengthened by the enzyme telomerase and alternative lengthening of telomeres in germ cells, early embryos, stem cells, and activated lymphocytes. If telomeres reach to critical length, it may lead to genomic instability, chromosome segregation defects, aneuploidy, and apoptosis. These phenotypes also occur in the oocytes and early embryos, produced using assisted reproductive technologies (ARTs). Thus, a number of studies have examined the potential effects of ART applications such as ovarian stimulation, culture conditions, and cryopreservation procedures on telomeres. Herein, we comprehensively reviewed impacts of these applications on telomere length and telomerase activity in ART-derived oocytes and embryos. Further, we discussed use of these parameters in ART centers as a biomarker in determining oocyte and embryo quality.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
15
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
16
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
17
|
Khakzad M, Shahbazi Z, Naderi M, Karimipoor M. A de novo TINF2, R282C Mutation in a Case of Dyskeratosis Congenital Founded by Next-Generation Sequencing. IRANIAN BIOMEDICAL JOURNAL 2023; 27:146-51. [PMID: 37070599 PMCID: PMC10314759 DOI: 10.61186/ibj.3783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/26/2022] [Indexed: 12/17/2023]
Abstract
Background Dyskeratosis congenita (DC), an inherited and rare disease prevalent in males, is clinically manifested by reticulate hyperpigmentation, nail dystrophy, and leukoplakia. DC is associated with the increased risk of malignancy and other potentially lethal complications such as bone marrow failure, as well as lung and liver diseases. Mutations in 19 genes were found to be correlated with DC. Herein, we report a 12-year-old boy carrying a de novo mutation in TINF2 gene. Methods Whole exome sequencing (WES) was performed on DNA sample of the proband, and the variant was investigated in the family by Sanger sequencing. Population and bioinformatics analysis were performed. Results The NM_ 001099274.3(TINF2): c.844C>T (p.Arg282Cys) mutation was found by WES. Conclusion There was no history of the disease in the family, and the variant was classified as a de novo mutation.
Collapse
Affiliation(s)
- Motahareh Khakzad
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Shahbazi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Naderi
- Ali Ebne Abitaleb Hospital, School of Medicine, University of Medical Sciences, Zahedan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Storchova R, Palek M, Palkova N, Veverka P, Brom T, Hofr C, Macurek L. Phosphorylation of TRF2 promotes its interaction with TIN2 and regulates DNA damage response at telomeres. Nucleic Acids Res 2023; 51:1154-1172. [PMID: 36651296 PMCID: PMC9943673 DOI: 10.1093/nar/gkac1269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates the cell cycle checkpoint by dephosphorylating the tumour suppressor protein p53. By targeting additional substrates at chromatin, PPM1D contributes to the control of DNA damage response and DNA repair. Using proximity biotinylation followed by proteomic analysis, we identified a novel interaction between PPM1D and the shelterin complex that protects telomeric DNA. In addition, confocal microscopy revealed that endogenous PPM1D localises at telomeres. Further, we found that ATR phosphorylated TRF2 at S410 after induction of DNA double strand breaks at telomeres and this modification increased after inhibition or loss of PPM1D. TRF2 phosphorylation stimulated its interaction with TIN2 both in vitro and at telomeres. Conversely, induced expression of PPM1D impaired localisation of TIN2 and TPP1 at telomeres. Finally, recruitment of the DNA repair factor 53BP1 to the telomeric breaks was strongly reduced after inhibition of PPM1D and was rescued by the expression of TRF2-S410A mutant. Our results suggest that TRF2 phosphorylation promotes the association of TIN2 within the shelterin complex and regulates DNA repair at telomeres.
Collapse
Affiliation(s)
- Radka Storchova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| | - Pavel Veverka
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Tomas Brom
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ctirad Hofr
- LifeB, Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
19
|
Cheng W, Xue H, Yang X, Huang D, Cai M, Huang F, Zheng L, Peng D, Thomashow LS, Weller DM, Yu Z, Zhang J. Multiple Receptors Contribute to the Attractive Response of Caenorhabditis elegans to Pathogenic Bacteria. Microbiol Spectr 2023; 11:e0231922. [PMID: 36511721 PMCID: PMC9927473 DOI: 10.1128/spectrum.02319-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Nematodes feed mainly on bacteria and sense volatile signals through their chemosensory system to distinguish food from pathogens. Although nematodes recognizing bacteria by volatile metabolites are ubiquitous, little is known of the associated molecular mechanism. Here, we show that the antinematode bacterium Paenibacillus polymyxa KM2501-1 exhibits an attractive effect on Caenorhabditis elegans via volatile metabolites, of which furfural acetone (FAc) acts as a broad-spectrum nematode attractant. We show that the attractive response toward FAc requires both the G-protein-coupled receptors STR-2 in AWC neurons and SRA-13 in AWA and AWC neurons. In the downstream olfactory signaling cascades, both the transient receptor potential vanilloid channel and the cyclic nucleotide-gated channel are necessary for FAc sensation. These results indicate that multiple receptors and subsequent signaling cascades contribute to the attractive response of C. elegans to FAc, and FAc is the first reported ligand of SRA-13. Our current work discovers that P. polymyxa KM2501-1 exhibits an attractive effect on nematodes by secreting volatile metabolites, especially FAc and 2-heptanone, broadening our understanding of the interactions between bacterial pathogens and nematodes. IMPORTANCE Nematodes feed on nontoxic bacteria as a food resource and avoid toxic bacteria; they distinguish them through their volatile metabolites. However, the mechanism of how nematodes recognize bacteria by volatile metabolites is not fully understood. Here, the antinematode bacterium Paenibacillus polymyxa KM2501-1 is found to exhibit an attractive effect on Caenorhabditis elegans via volatile metabolites, including FAc. We further reveal that the attractive response of C. elegans toward FAc requires multiple G-protein-coupled receptors and downstream olfactory signaling cascades in AWA and AWC neurons. This study highlights the important role of volatile metabolites in the interaction between nematodes and bacteria and confirms that multiple G-protein-coupled receptors on different olfactory neurons of C. elegans can jointly sense bacterial volatile signals.
Collapse
Affiliation(s)
- Wanli Cheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hua Xue
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xue Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dian Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Feng Huang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linda S. Thomashow
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, USA
| | - David M. Weller
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, Washington, USA
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Yi W, Chen F, Zhang H, Tang P, Yuan M, Wen J, Wang S, Cai Z. Role of angiotensin II in aging. Front Aging Neurosci 2022; 14:1002138. [PMID: 36533172 PMCID: PMC9755866 DOI: 10.3389/fnagi.2022.1002138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/08/2022] [Indexed: 10/29/2023] Open
Abstract
Aging is an inevitable progressive decline in physiological organ function that increases the chance of disease and death. The renin-angiotensin system (RAS) is involved in the regulation of vasoconstriction, fluid homeostasis, cell growth, fibrosis, inflammation, and oxidative stress. In recent years, unprecedented advancement has been made in the RAS study, particularly with the observation that angiotensin II (Ang II), the central product of the RAS, plays a significant role in aging and chronic disease burden with aging. Binding to its receptors (Ang II type 1 receptor - AT1R in particular), Ang II acts as a mediator in the aging process by increasing free radical production and, consequently, mitochondrial dysfunction and telomere attrition. In this review, we examine the physiological function of the RAS and reactive oxygen species (ROS) sources in detail, highlighting how Ang II amplifies or drives mitochondrial dysfunction and telomere attrition underlying each hallmark of aging and contributes to the development of aging and age-linked diseases. Accordingly, the Ang II/AT1R pathway opens a new preventive and therapeutic direction for delaying aging and reducing the incidence of age-related diseases in the future.
Collapse
Affiliation(s)
- Wenmin Yi
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Fei Chen
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Huiji Zhang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Peng Tang
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
- Department and Institute of Neurology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shengyuan Wang
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing Medical University, Chongqing, China
- Chongqing Institute Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, China
- Department of Neurology, Chongqing General Hospital, Chongqing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China
| |
Collapse
|
21
|
Yang Z, Sharma K, de Lange T. TRF1 uses a noncanonical function of TFIIH to promote telomere replication. Genes Dev 2022; 36:956-969. [PMID: 36229075 PMCID: PMC9732906 DOI: 10.1101/gad.349975.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023]
Abstract
Telomeric DNA challenges the replisome and requires TRF1 for efficient duplication. TRF1 recruits the BLM helicase, but BLM loss does not explain the extensive telomere fragility, ATR signaling, and sister telomere associations (STAs) induced by TRF1 deletion. Here, we document that Helix2 of the TRFH domain and Helix1 of the Myb domain of TRF1 are required for efficient telomere replication. Mutation of both helices generated a TRF1 separation-of-function mutant (TRF1-E83K/LW-TI) that induced severe telomere replication defects but no ATR signaling or STAs. We identified the transcription and nucleotide excision repair (NER) factor TFIIH as a critical effector of TRF1. Loss of TFIIH subunits, but no other NER factors, caused the same telomere replication phenotypes as the TRF1-E83K/LW-TI mutant independent of the effects on TRF1 expression. TFIIH subunits coimmunoprecipitated with wild-type TRF1 but not with TRF1-E83K/LW-TI. These results establish that the major mechanism by which TRF1 ensures telomere replication involves a noncanonical function of TFIIH.
Collapse
|
22
|
Zhu N, Geng X, Ji X, Gao R, Li D, Yue H, Li G, Sang N. Gestational exposure to NO 2 aggravates placental senescence. ENVIRONMENTAL RESEARCH 2022; 212:113263. [PMID: 35430275 DOI: 10.1016/j.envres.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-β1 (Tgf-β1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
23
|
Soranno A, Incicco JJ, De Bona P, Tomko EJ, Galburt EA, Holehouse AS, Galletto R. Shelterin Components Modulate Nucleic Acids Condensation and Phase Separation in the Context of Telomeric DNA. J Mol Biol 2022; 434:167685. [PMID: 35724929 PMCID: PMC9378516 DOI: 10.1016/j.jmb.2022.167685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Telomeres are nucleoprotein complexes that protect the ends of chromosomes and are essential for chromosome stability in Eukaryotes. In cells, individual telomeres form distinct globules of finite size that appear to be smaller than expected for bare DNA. Moreover, telomeres can cluster together, form telomere-induced-foci or co-localize with promyelocytic leukemia (PML) nuclear bodies. The physical basis for collapse of individual telomeres and coalescence of multiple ones remains unclear, as does the relationship between these two phenomena. By combining single-molecule force spectroscopy measurements, optical microscopy, turbidity assays, and simulations, we show that the telomere scaffolding protein TRF2 can condense individual DNA chains and drives coalescence of multiple DNA molecules, leading to phase separation and the formation of liquid-like droplets. Addition of the TRF2 binding protein hRap1 modulates phase boundaries and tunes the specificity of solution demixing while simultaneously altering the degree of DNA compaction. Our results suggest that the condensation of single telomeres and formation of biomolecular condensates containing multiple telomeres are two different outcomes driven by the same set of molecular interactions. Moreover, binding partners, such as other telomere components, can alter those interactions to promote single-chain DNA compaction over multiple-chain phase separation.
Collapse
Affiliation(s)
- Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
24
|
Abstract
Shelterin is a multiprotein complex that plays central roles in telomere biology. Mutations in shelterin result in premature aging diseases and familial cancer predisposition. Mechanistic understanding of these so-called telomereopathies is hampered by our lack of knowledge regarding the structure and stoichiometry of shelterin. Here, we use multiple methods to probe the stoichiometry and conformational states of shelterin and reveal that it forms a fully dimeric complex with extensive conformational heterogeneity. Our results highlight the dynamic nature of this essential complex and explain why its high-resolution structure determination has yet to be achieved. Human shelterin is a six-subunit complex—composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide–binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Collapse
|
25
|
Sun H, Wu Z, Zhou Y, Lu Y, Lu H, Chen H, Shi S, Zeng Z, Wu J, Lei M. Structural insights into Pot1-ssDNA, Pot1-Tpz1 and Tpz1-Ccq1 Interactions within fission yeast shelterin complex. PLoS Genet 2022; 18:e1010308. [PMID: 35849625 PMCID: PMC9333443 DOI: 10.1371/journal.pgen.1010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The conserved shelterin complex caps chromosome ends to protect telomeres and regulate telomere replication. In fission yeast Schizosaccharomyces pombe, shelterin consists of telomeric single- and double-stranded DNA-binding modules Pot1-Tpz1 and Taz1-Rap1 connected by Poz1, and a specific component Ccq1. While individual structures of the two DNA-binding OB folds of Pot1 (Pot1OB1-GGTTAC and Pot1OB2-GGTTACGGT) are available, structural insight into recognition of telomeric repeats with spacers by the complete DNA-binding domain (Pot1DBD) remains an open question. Moreover, structural information about the Tpz1-Ccq1 interaction requires to be revealed for understanding how the specific component Ccq1 of S. pombe shelterin is recruited to telomeres to function as an interacting hub. Here, we report the crystal structures of Pot1DBD-single-stranded-DNA, Pot1372-555-Tpz1185-212 and Tpz1425-470-Ccq1123-439 complexes and propose an integrated model depicting the assembly mechanism of the shelterin complex at telomeres. The structure of Pot1DBD-DNA unveils how Pot1 recognizes S. pombe degenerate telomeric sequences. Our analyses of Tpz1-Ccq1 reveal structural basis for the essential role of the Tpz1-Ccq1 interaction in telomere recruitment of Ccq1 that is required for telomere maintenance and telomeric heterochromatin formation. Overall, our findings provide valuable structural information regarding interactions within fission yeast shelterin complex at 3’ ss telomeric overhang. Telomeres, composed of repetitive DNA sequences and specialized proteins, are protective structures at the ends of linear chromosomes. The telomere structure is essential for the maintenance of genome integrity and stability, and telomere dysfunction has been linked to human development, aging, cancer and a variety of degenerative diseases. An evolutionarily conserved multiple-protein complex called shelterin plays versatile roles in telomere homeostasis regulation, end protection and heterochromatin establishment. However, the highly flexible nature of shelterin complex has greatly impeded our structural and functional understanding for this important complex. In fission yeast, structures of the shelterin dsDNA-binding protein subcomplex Taz1-Rap1 and the bridge subcomplex Tpz1-Poz1-Rap1 are available. Although individual OB-fold subdomains structures have been characterized, structural information about the complete Pot1DBD bound to telomeric repeats with spacers remains to be revealed. Here, by determining the crystal structures of the telomeric overhang binding Pot1DBD-ssDNA, Pot1372-555-Tpz1185-212 and Tpz1425-470-Ccq1123-439 subcomplexes, we provide structural basis not only for the recognition of S. pombe degenerate telomeric sequences by Pot1, but also for the essential function of the Tpz1-Ccq1 interaction in Ccq1 recruitment to telomeres for telomere maintenance and telomeric heterochromatin formation. These findings provide an integrated model depicting the assembly mechanism of the shelterin complex at telomeres and its multiple roles in telomere biology.
Collapse
Affiliation(s)
- Hong Sun
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhenfang Wu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- * E-mail: (ZW); (ZZ); (JW); (ML)
| | - Yuanze Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanjia Lu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Huaisheng Lu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Hongwen Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shaohua Shi
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Zhixiong Zeng
- Shandong Provincial Key Laboratory of Microbial Engineering, College of Bioengineering, Qilu University of Technology, Shandong, China
- * E-mail: (ZW); (ZZ); (JW); (ML)
| | - Jian Wu
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- * E-mail: (ZW); (ZZ); (JW); (ML)
| | - Ming Lei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (ZW); (ZZ); (JW); (ML)
| |
Collapse
|
26
|
Xu Q, Mojiri A, Boulahouache L, Morales E, Walther BK, Cooke JP. Vascular senescence in progeria: role of endothelial dysfunction. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac047. [PMID: 36117952 PMCID: PMC9472787 DOI: 10.1093/ehjopen/oeac047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/02/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022]
Abstract
Aims Hutchinson-Gilford progeria syndrome (HGPS) is a pre-mature aging disorder caused by the mutation of the LMNA gene leading to an irreversibly farnesylated lamin A protein: progerin. The major causes of death in HGPS are coronary and arterial occlusive disease. In the murine model of HGPS, vascular smooth muscle cell (VSMC) loss is the primary vascular manifestation, which is different from the arterial occlusive disease seen in older patients. Methods and results To identify the mechanisms of HGPS vascular disease in humans, we differentiated isogenic endothelial cells (ECs) and VSMCs from HGPS-induced pluripotent stem cells (iPSCs) and control-iPSCs. Both HGPS-ECs and HGPS-VSMCs manifested cellular hallmarks of aging, including dysmorphic nuclei, impaired proliferation, increased β-galactosidase staining, shortened telomeres, up-regulated secretion of inflammatory cytokines, increased DNA damage, loss of heterochromatin, and altered shelterin protein complex (SPC) expression. However, at similar days after differentiation, even with lower levels of progerin, HGPS-ECs manifested more severe signs of senescence, as indicated in part by a higher percentage of β-galactosidase positive cells, shorter telomere length, and more DNA damage signals. We observed increased γH2A.X binding to RAP1 and reduced TRF2 binding to lamin A in HGPS-ECs but not in HGPS-VSMCs. The expression of γH2A.X was greater in HGPS-ECs than in HGPS-VSMCs and is associated with greater telomere shortening, impaired SPC interactions, and loss of heterochromatin. Conclusion Although progerin expression has a deleterious effect on both ECs and VSMCs, the dysfunction is greater in HGPS-ECs compared with HGPS-VSMCs. This study suggests that an endothelial-targeted therapy may be useful for HGPS patients.
Collapse
Affiliation(s)
- Qiu Xu
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Luay Boulahouache
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Elisa Morales
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - Brandon K Walther
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston 77030, TX, USA
| |
Collapse
|
27
|
Smith EW, Lattmann S, Liu ZB, Ahsan B, Rhodes D. Insights into POT1 structural dynamics revealed by cryo-EM. PLoS One 2022; 17:e0264073. [PMID: 35176105 PMCID: PMC8853558 DOI: 10.1371/journal.pone.0264073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Telomeres are protein-DNA complexes that protect the ends of linear eukaryotic chromosomes. Mammalian telomeric DNA consists of 5′-(TTAGGG)n-3′ double-stranded repeats, followed by up to several hundred bases of a 3′ single-stranded G-rich overhang. The G-rich overhang is bound by the shelterin component POT1 which interacts with TPP1, the component involved in telomerase recruitment. A previously published crystal structure of the POT1 N-terminal half bound to the high affinity telomeric ligand 5′-TTAGGGTTAG-3′ showed that the first six nucleotides, TTAGGG, are bound by the OB1 fold, while the adjacent OB2 binds the last four, TTAG. Here, we report two cryo-EM structures of full-length POT1 bound by the POT1-binding domain of TPP1. The structures differ in the relative orientation of the POT1 OB1 and OB2, suggesting that these two DNA-binding OB folds take up alternative conformations. Supporting DNA binding studies using telomeric ligands in which the OB1 and OB2 binding sites were spaced apart, show that POT1 binds with similar affinities to spaced or contiguous binding sites, suggesting plasticity in DNA binding and a role for the alternative conformations observed. A likely explanation is that the structural flexibility of POT1 enhances binding to the tandemly arranged telomeric repeats and hence increases telomere protection.
Collapse
Affiliation(s)
- Emmanuel W. Smith
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Simon Lattmann
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Zhehui Barry Liu
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Bilal Ahsan
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Daniela Rhodes
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
28
|
Aramburu T, Kelich J, Rice C, Skordalakes E. POT1-TPP1 binding stabilizes POT1, promoting efficient telomere maintenance. Comput Struct Biotechnol J 2022; 20:675-684. [PMID: 35140887 PMCID: PMC8803944 DOI: 10.1016/j.csbj.2022.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
|
29
|
Kaur P, Barnes R, Pan H, Detwiler AC, Liu M, Mahn C, Hall J, Messenger Z, You C, Piehler J, Smart R, Riehn R, Opresko PL, Wang H. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res 2021; 49:13000-13018. [PMID: 34883513 PMCID: PMC8682769 DOI: 10.1093/nar/gkab1142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2-TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein-DNA structures, and monitoring of DNA-DNA and DNA-RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA-dsDNA, dsDNA-ssDNA and dsDNA-ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Zach Messenger
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Robert C Smart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
30
|
Myler LR, Kinzig CG, Sasi NK, Zakusilo G, Cai SW, de Lange T. The evolution of metazoan shelterin. Genes Dev 2021; 35:1625-1641. [PMID: 34764137 PMCID: PMC8653790 DOI: 10.1101/gad.348835.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
In this study, Myler et al. investigated the evolutionary origins of shelterin complex, which is comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1; blocks the DNA damage response at chromosome ends; and interacts with telomerase and the CST complex to regulate telomere length. They describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor, and providing insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins. The mammalian telomeric shelterin complex—comprised of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—blocks the DNA damage response at chromosome ends and interacts with telomerase and the CST complex to regulate telomere length. The evolutionary origins of shelterin are unclear, partly because unicellular organisms have distinct telomeric proteins. Here, we describe the evolution of metazoan shelterin, showing that TRF1 emerged in vertebrates upon duplication of a TRF2-like ancestor. TRF1 and TRF2 diverged rapidly during vertebrate evolution through the acquisition of new domains and interacting factors. Vertebrate shelterin is also distinguished by the presence of an HJRL domain in the split C-terminal OB fold of POT1, whereas invertebrate POT1s carry inserts of variable nature. Importantly, the data reveal that, apart from the primate and rodent POT1 orthologs, all metazoan POT1s are predicted to have a fourth OB fold at their N termini. Therefore, we propose that POT1 arose from a four-OB-fold ancestor, most likely an RPA70-like protein. This analysis provides insights into the biology of shelterin and its evolution from ancestral telomeric DNA-binding proteins.
Collapse
Affiliation(s)
- Logan R Myler
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Charles G Kinzig
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Nanda K Sasi
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - George Zakusilo
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Sarah W Cai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
31
|
Graniel JV, Bisht K, Friedman A, White J, Perkey E, Vanderbeck A, Moroz A, Carrington LJ, Brandstadter JD, Allen F, Shami AN, Thomas P, Crayton A, Manzor M, Mychalowych A, Chase J, Hammoud SS, Keegan CE, Maillard I, Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci Alliance 2021; 5:5/1/e202101208. [PMID: 34645668 PMCID: PMC8548261 DOI: 10.26508/lsa.202101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
A TPP1 mutation known to cause telomere shortening and bone marrow failure in humans recapitulates telomere loss but results in severe germline defects in mice without impacting murine hematopoiesis. Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.
Collapse
Affiliation(s)
- Jacqueline V Graniel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Oncology Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Ann Friedman
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - James White
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Eric Perkey
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alina Moroz
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adrienne Niederriter Shami
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Aniela Crayton
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Mariel Manzor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Jennifer Chase
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA .,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
33
|
Imran SAM, Yazid MD, Cui W, Lokanathan Y. The Intra- and Extra-Telomeric Role of TRF2 in the DNA Damage Response. Int J Mol Sci 2021; 22:ijms22189900. [PMID: 34576063 PMCID: PMC8470803 DOI: 10.3390/ijms22189900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.)
- Correspondence: ; Tel.: +603-9145-7704
| |
Collapse
|
34
|
Pan H, Kaur P, Barnes R, Detwiler AC, Sanford SL, Liu M, Xu P, Mahn C, Tang Q, Hao P, Bhattaram D, You C, Gu X, Lu W, Piehler J, Xu G, Weninger K, Riehn R, Opresko PL, Wang H. Structure, dynamics, and regulation of TRF1-TIN2-mediated trans- and cis-interactions on telomeric DNA. J Biol Chem 2021; 297:101080. [PMID: 34403696 PMCID: PMC8437784 DOI: 10.1016/j.jbc.2021.101080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023] Open
Abstract
TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.
Collapse
Affiliation(s)
- Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samantha Lynn Sanford
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Pengning Xu
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Qingyu Tang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Pengyu Hao
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University of Medicine, Atlanta, Georgia, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany
| | - Xinyun Gu
- College of Art and Sciences, New York University, New York City, New York, USA
| | - Warren Lu
- Department of Pathology at NYU Grossman School of Medicine, New York University, New York City, New York, USA
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück, Germany
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Keith Weninger
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Molecular Biophysics and Structural Biology Graduate Program, Carnegie Mellon University and the University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA; Toxicology Program, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
35
|
Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021; 10:cells10071753. [PMID: 34359923 PMCID: PMC8305809 DOI: 10.3390/cells10071753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Collapse
|
36
|
Khodadadi E, Mir SM, Memar MY, Sadeghi H, Kashiri M, Faeghiniya M, Jamalpoor Z, Sheikh Arabi M. Shelterin complex at telomeres: Roles in cancers. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Grill S, Padmanaban S, Friedman A, Perkey E, Allen F, Tesmer VM, Chase J, Khoriaty R, Keegan CE, Maillard I, Nandakumar J. TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight 2021; 6:138059. [PMID: 33822766 PMCID: PMC8262337 DOI: 10.1172/jci.insight.138059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Ann Friedman
- Life Sciences Institute,,Department of Internal Medicine
| | - Eric Perkey
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jennifer Chase
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and
| | - Rami Khoriaty
- Department of Internal Medicine,,Department of Cell and Developmental Biology
| | - Catherine E. Keegan
- Department of Pediatrics, and,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivan Maillard
- Life Sciences Institute,,Department of Internal Medicine,,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology,,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
38
|
Rocca MS, Dusi L, Di Nisio A, Alviggi E, Iussig B, Bertelle S, De Toni L, Garolla A, Foresta C, Ferlin A. TERRA: A Novel Biomarker of Embryo Quality and Art Outcome. Genes (Basel) 2021; 12:genes12040475. [PMID: 33806168 PMCID: PMC8066328 DOI: 10.3390/genes12040475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Telomeres are considered to be an internal biological clock, and their progressive shortening has been associated with the risk of age-related diseases and reproductive alterations. Over recent years, an increasing number of studies have focused on the association between telomere length and fertility, identifying sperm telomere length (STL) as a novel biomarker of male fertility. Although typically considered to be repeated DNA sequences, telomeres have recently been shown to also include a long non-coding RNA (lncRNA) known as TERRA (telomeric repeat-containing RNAs). Interestingly, males with idiopathic infertility show reduced testicular TERRA expression, suggesting a link between TERRA and male fertility. The aim of this study was to investigate the role of seminal TERRA expression in embryo quality. To this end, STL and TERRA expression were quantified by Real Time qPCR in the semen of 35 men who underwent assisted reproductive technologies (ART) and 30 fertile men. We found that TERRA expression in semen and STL was reduced in patients that underwent ART (both p < 0.001). Interestingly, TERRA and STL expressions were positively correlated (p = 0.010), and TERRA expression was positively associated with embryo quality (p < 0.001). These preliminary findings suggest a role for TERRA in the maintenance of sperm telomere integrity during gametogenesis, and for the first time, TERRA expression was found as a predictive factor for embryo quality in the setting of assisted reproduction.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Ludovica Dusi
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Andrea Di Nisio
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Erminia Alviggi
- Clinica Ruesch, GENERA Center for Reproductive Medicine, 80122 Napoli, Italy;
| | - Benedetta Iussig
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Sara Bertelle
- GENERA Veneto, GENERA Center for Reproductive Medicine, 36063 Marostica, Italy; (L.D.); (B.I.); (S.B.)
| | - Luca De Toni
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Andrea Garolla
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
| | - Carlo Foresta
- Department of Medicine, University Hospital of Padova, 35128 Padova, Italy; (M.S.R.); (A.D.N.).; (L.D.T.); (A.G.)
- Correspondence: ; Tel.: +39-0498218517
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, Unit of Endocrinology and Metabolism, University of Brescia and ASST Spedali Civili Brescia, 25121 Brescia, Italy;
| |
Collapse
|
39
|
Kang S, Cao J, Zhang M, Li X, Guo QL, Zeng H, Wei Z, Gong X, Wang J, Liu B, Shu B, Xu X, Huang ZS, Li D. Transcriptional regulation of telomeric repeat-containing RNA by acridine derivatives. RNA Biol 2021; 18:2261-2277. [PMID: 33749516 DOI: 10.1080/15476286.2021.1899652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.
Collapse
Affiliation(s)
- Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jiaojiao Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Huang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bobo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou and P.R. China
| | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou and P.R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| |
Collapse
|
40
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
41
|
Augereau A, Mariotti M, Pousse M, Filipponi D, Libert F, Beck B, Gorbunova V, Gilson E, Gladyshev VN. Naked mole rat TRF1 safeguards glycolytic capacity and telomere replication under low oxygen. SCIENCE ADVANCES 2021; 7:eabe0174. [PMID: 33608273 PMCID: PMC7895426 DOI: 10.1126/sciadv.abe0174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/06/2021] [Indexed: 05/31/2023]
Abstract
The naked mole rat (NMR), a long-lived and cancer-resistant rodent, is highly resistant to hypoxia. Here, using robust cellular models wherein the mouse telomeric protein TRF1 is substituted by NMR TRF1 or its mutant forms, we show that TRF1 supports maximal glycolytic capacity under low oxygen, shows increased nuclear localization and association with telomeres, and protects telomeres from replicative stress. We pinpoint this evolutionary gain of metabolic function to specific amino acid changes in the homodimerization domain of this protein. We further find that NMR TRF1 accelerates telomere shortening. These findings reveal an evolutionary strategy to adapt telomere biology for metabolic control under an extreme environment.
Collapse
Affiliation(s)
- Adeline Augereau
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Doria Filipponi
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | | | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, FHU Oncoage, 06107 Nice, France
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Sławińska N, Krupa R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int J Mol Sci 2021; 22:ijms22020590. [PMID: 33435578 PMCID: PMC7827783 DOI: 10.3390/ijms22020590] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Cells can become senescent in response to stress. Senescence is a process characterised by a stable proliferative arrest. Sometimes it can be beneficial—for example, it can suppress tumour development or take part in tissue repair. On the other hand, studies show that it is also involved in the ageing process. DNA damage response (DDR) is triggered by DNA damage or telomere shortening during cell division. When left unresolved, it may lead to the activation of senescence. Senescent cells secrete certain proteins in larger quantities. This phenomenon is referred to as senescence-associated secretory phenotype (SASP). SASP can induce senescence in other cells; evidence suggests that overabundance of senescent cells contributes to ageing. SASP proteins include proinflammatory cytokines and metalloproteinases, which degrade the extracellular matrix. Shortening of telomeres is another feature associated with organismal ageing. Older organisms have shorter telomeres. Restoring telomerase activity in mice not only slowed but also partially reversed the symptoms of ageing. Changes in chromatin structure during senescence include heterochromatin formation or decondensation and loss of H1 histones. During organismal ageing, cells can experience heterochromatin loss, DNA demethylation and global histone loss. Cellular and organismal ageing are both complex processes with many aspects that are often related. The purpose of this review is to bring some of these aspects forward and provide details regarding them.
Collapse
|
43
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
44
|
Abstract
In this perspective, we introduce shelterin and the mechanisms of ATM activation and NHEJ at telomeres, before discussing the following questions: How are t-loops proposed to protect chromosome ends and what is the evidence for this model? Can other models explain how TRF2 mediates end protection? Could t-loops be pathological structures? How is end protection achieved in pluripotent cells? What do the insights into telomere end protection in pluripotent cells mean for the t-loop model of end protection? Why might different cell states have evolved different mechanisms of end protection? Finally, we offer support for an updated t-loop model of end protection, suggesting that the data is supportive of a critical role for t-loops in protecting chromosome ends from NHEJ and ATM activation, but that other mechanisms are involved. Finally, we propose that t-loops are likely dynamic, rather than static, structures.
Collapse
Affiliation(s)
- Phil Ruis
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | |
Collapse
|
45
|
Schmutz I, Mensenkamp AR, Takai KK, Haadsma M, Spruijt L, de Voer RM, Choo SS, Lorbeer FK, van Grinsven EJ, Hockemeyer D, Jongmans MCJ, de Lange T. TINF2 is a haploinsufficient tumor suppressor that limits telomere length. eLife 2020; 9:e61235. [PMID: 33258446 PMCID: PMC7707837 DOI: 10.7554/elife.61235] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Telomere shortening is a presumed tumor suppressor pathway that imposes a proliferative barrier (the Hayflick limit) during tumorigenesis. This model predicts that excessively long somatic telomeres predispose to cancer. Here, we describe cancer-prone families with two unique TINF2 mutations that truncate TIN2, a shelterin subunit that controls telomere length. Patient lymphocyte telomeres were unusually long. We show that the truncated TIN2 proteins do not localize to telomeres, suggesting that the mutations create loss-of-function alleles. Heterozygous knock-in of the mutations or deletion of one copy of TINF2 resulted in excessive telomere elongation in clonal lines, indicating that TINF2 is haploinsufficient for telomere length control. In contrast, telomere protection and genome stability were maintained in all heterozygous clones. The data establish that the TINF2 truncations predispose to a tumor syndrome. We conclude that TINF2 acts as a haploinsufficient tumor suppressor that limits telomere length to ensure a timely Hayflick limit.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Laboratory for Cell Biology and Genetics, Rockefeller UniversityNew YorkUnited States
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Kaori K Takai
- Laboratory for Cell Biology and Genetics, Rockefeller UniversityNew YorkUnited States
| | - Maaike Haadsma
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Liesbeth Spruijt
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical CenterNijmegenNetherlands
| | - Seunga Sara Choo
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Franziska K Lorbeer
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Emma J van Grinsven
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
| | - Dirk Hockemeyer
- Department of Molecular and Cellular Biology, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
46
|
Cicconi A, Rai R, Xiong X, Broton C, Al-Hiyasat A, Hu C, Dong S, Sun W, Garbarino J, Bindra RS, Schildkraut C, Chen Y, Chang S. Microcephalin 1/BRIT1-TRF2 interaction promotes telomere replication and repair, linking telomere dysfunction to primary microcephaly. Nat Commun 2020; 11:5861. [PMID: 33203878 PMCID: PMC7672075 DOI: 10.1038/s41467-020-19674-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023] Open
Abstract
Telomeres protect chromosome ends from inappropriately activating the DNA damage and repair responses. Primary microcephaly is a key clinical feature of several human telomere disorder syndromes, but how microcephaly is linked to dysfunctional telomeres is not known. Here, we show that the microcephalin 1/BRCT-repeats inhibitor of hTERT (MCPH1/BRIT1) protein, mutated in primary microcephaly, specifically interacts with the TRFH domain of the telomere binding protein TRF2. The crystal structure of the MCPH1-TRF2 complex reveals that this interaction is mediated by the MCPH1 330YRLSP334 motif. TRF2-dependent recruitment of MCPH1 promotes localization of DNA damage factors and homology directed repair of dysfunctional telomeres lacking POT1-TPP1. Additionally, MCPH1 is involved in the replication stress response, promoting telomere replication fork progression and restart of stalled telomere replication forks. Our work uncovers a previously unrecognized role for MCPH1 in promoting telomere replication, providing evidence that telomere replication defects may contribute to the onset of microcephaly.
Collapse
Affiliation(s)
- Alessandro Cicconi
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Rekha Rai
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Xuexue Xiong
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cayla Broton
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.5386.8000000041936877XTri- Institutional MD/PhD Program, Weill Cornell Medical College, New York, NY 10065 USA
| | - Amer Al-Hiyasat
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Chunyi Hu
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Siying Dong
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wenqi Sun
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Jennifer Garbarino
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Therapeutic Radiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Ranjit S. Bindra
- grid.47100.320000000419368710Department of Therapeutic Radiology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Experimental Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| | - Carl Schildkraut
- grid.251993.50000000121791997Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Yong Chen
- grid.507739.fState Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Sandy Chang
- grid.47100.320000000419368710Department of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA ,grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520 USA
| |
Collapse
|
47
|
Karremann M, Neumaier-Probst E, Schlichtenbrede F, Beier F, Brümmendorf TH, Cremer FW, Bader P, Dürken M. Revesz syndrome revisited. Orphanet J Rare Dis 2020; 15:299. [PMID: 33097095 PMCID: PMC7583287 DOI: 10.1186/s13023-020-01553-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background Revesz syndrome (RS) is an extremely rare variant of dyskeratosis congenita (DKC) with only anecdotal reports in the literature. Methods To further characterize the typical features and natural course of the disease, we screened the English literature and summarized the clinical and epidemiological features of previously published RS cases. In addition, we herein describe the first recorded patient in central Europe. Results The literature review included 18 children. Clinical features are summarized, indicating a low prevalence of the classical DKC triad. All patients experienced early bone marrow failure, in most cases within the second year of life (median age 1.5 years; 95% CI 1.4–1.6). Retinopathy occurred typically between 6 and 18 months of age (median age 1.1 years; 95% CI 0.7–1.5). The incidence of seizures was low and was present in an estimated 20% of patients. The onset of seizures was exclusively during early childhood. The Kaplan–Meier estimate of survival was dismal (median survival 6.5 years; 95% CI 3.6–9.4), and none of the patients survived beyond the age of 12 years. Stem cell transplantation (SCT) was performed in eight children, and after a median of 22 months from SCT four of these patients were alive at the last follow up visit. Conclusion RS is a severe variant of DKC with early bone marrow failure and retinopathy in all patients. Survival is dismal, but stem cell transplantation may be performed successfully and might improve prognosis in the future.
Collapse
Affiliation(s)
- Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Eva Neumaier-Probst
- Department of Neuroradiology, University Medical Center Mannheim, Mannheim, Germany
| | | | - Fabian Beier
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology and Oncology, University Hospital of RWTH Aachen, Aachen, Germany
| | | | - Peter Bader
- Department of Pediatrics, Pediatric Stem Cell Transplantation, University Hospital Frankfurt, Frankfurt, Germany
| | - Matthias Dürken
- Department of Pediatrics, University Medical Center Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
48
|
Aramburu T, Plucinsky S, Skordalakes E. POT1-TPP1 telomere length regulation and disease. Comput Struct Biotechnol J 2020; 18:1939-1946. [PMID: 32774788 PMCID: PMC7385035 DOI: 10.1016/j.csbj.2020.06.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022] Open
Abstract
Telomeres are DNA repeats at the ends of linear chromosomes and are replicated by telomerase, a ribonucleoprotein reverse transcriptase. Telomere length regulation and chromosome end capping are essential for genome stability and are mediated primarily by the shelterin and CST complexes. POT1-TPP1, a subunit of shelterin, binds the telomeric overhang, suppresses ATR-dependent DNA damage response, and recruits telomerase to telomeres for DNA replication. POT1 localization to telomeres and chromosome end protection requires its interaction with TPP1. Therefore, the POT1-TPP1 complex is critical to telomere maintenance and full telomerase processivity. The aim of this mini-review is to summarize recent POT1-TPP1 structural studies and discuss how the complex contributes to telomere length regulation. In addition, we review how disruption of POT1-TPP1 function leads to human disease.
Collapse
Key Words
- ATM, Ataxia Telangiectasia Mutated protein
- ATR, Ataxia Telangiectasia and Rad3-related Protein
- CST, CTC1, Stn1 and Ten1
- CTC1, Conserved Telomere Capping Protein 1
- POT1
- POT1, Protection of telomere 1
- RAP1, Repressor/Activator Protein 1
- RPA, Replication Protein A
- SMCHD1, Structural Maintenance Of Chromosomes Flexible Hinge Domain Containing 1
- Shelterin
- Stn1, Suppressor of Cdc Thirteen
- TERC, Telomerase RNA
- TERT, Telomerase Reverse Transcriptase
- TIN2, TRF1- and TRF2-Interacting Nuclear Protein 2
- TPP1
- TPP1 also known as ACD, Adrenocortical Dysplasia Protein Homolog
- TRF1, Telomere Repeat binding Factor 1
- TRF2, Telomere Repeat binding Factor 2
- TSPYL5, Testis-specific Y-encoded-like protein 5
- Telomerase
- Telomeres
- Ten1, Telomere Length Regulation Protein
- USP7, ubiquitin-specific-processing protease 7
Collapse
|
49
|
Mir SM, Samavarchi Tehrani S, Goodarzi G, Jamalpoor Z, Asadi J, Khelghati N, Qujeq D, Maniati M. Shelterin Complex at Telomeres: Implications in Ageing. Clin Interv Aging 2020; 15:827-839. [PMID: 32581523 PMCID: PMC7276337 DOI: 10.2147/cia.s256425] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Different factors influence the development and control of ageing. It is well known that progressive telomere shorting is one of the molecular mechanisms underlying ageing. The shelterin complex consists of six telomere-specific proteins which are involved in the protection of chromosome ends. More particularly, this vital complex protects the telomeres from degradation, prevents from activation of unwanted repair systems, regulates the activity of telomerase, and has a crucial role in cellular senescent and ageing-related pathologies. This review explores the organization and function of telomeric DNA along with the mechanism of telomeres during ageing, followed by a discussion of the critical role of shelterin components and their changes during ageing.
Collapse
Affiliation(s)
- Seyed Mostafa Mir
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Durdi Qujeq
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
50
|
Brieño-Enríquez MA, Moak SL, Abud-Flores A, Cohen PE. Characterization of telomeric repeat-containing RNA (TERRA) localization and protein interactions in primordial germ cells of the mouse†. Biol Reprod 2020; 100:950-962. [PMID: 30423030 DOI: 10.1093/biolre/ioy243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and telomeric repeat-containing RNA (TERRA). Proposed TERRA functions are wide ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the presence and role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization, we identify TERRA transcripts in female PGCs at 11.5, 12.5, and 13.5 days postcoitum. In male PGCs, the earliest detection TERRA was at 12.5 dpc where we observed cells with either zero or one TERRA focus. Using qRT-PCR, we evaluated chromosome-specific TERRA expression. Female PGCs showed TERRA expression at 11.5 dpc from eight different chromosome subtelomeric regions (chromosomes 1, 2, 7, 9, 11, 13, 17, and 18) while in male PGCs, TERRA expression was confined to the chromosome 17. Most TERRA transcription in 13.5 dpc male PGCs arose from chromosomes 2 and 6. TERRA interacting proteins were evaluated using identification of direct RNA interacting proteins (iDRiP), which identified 48 in female and 26 in male protein interactors from PGCs at 13.5 dpc. We validated two different proteins: the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.
Collapse
Affiliation(s)
- Miguel A Brieño-Enríquez
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Steffanie L Moak
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Anyul Abud-Flores
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| | - Paula E Cohen
- Department of Biomedical Sciences and the Cornell Center for Reproductive Genomics, Cornell University, Ithaca, New York, USA
| |
Collapse
|