1
|
Zhong H, Yao L, An H, Fang L, Liu X, Wang Q, Li Q, Liu D, Fan C, Zhang M, Zhang C, Zhang Y, Hao P. MrgD as a Novel Modeling and Treatment Target for Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:e164-e183. [PMID: 40143817 DOI: 10.1161/atvbaha.124.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The hyperproliferation of smooth muscle cells and deposition of collagen in the pulmonary artery are among the primary characteristics of pulmonary hypertension (PH). These processes contribute to vascular remodeling, ultimately leading to elevated pulmonary artery pressure and right ventricular failure. The MrgD (Mas-related G-protein-coupled receptor member D) exhibits close associations with certain cardiovascular diseases; however, its role in PH remains unclear. METHODS The effects of the absence or activation of MrgD on PH were investigated using PH animal models induced by Sugen5416+hypoxia, monocrotaline, as well as global or smooth muscle-specific knockout of MrgD. Signaling pathways regulated by MrgD were investigated using high-throughput screening of data from single-cell sequencing of mouse lungs and RNA sequencing of human pulmonary artery smooth muscle cells, as well as other molecular biology experiments. RESULTS We observed decreased MrgD levels in animal models and patients with PH. Both global and conditional knockout of MrgD exacerbated hypoxia-induced PH in mice. MrgD activation attenuated the PH phenotypes in several established models, although these protective effects were reversed in MrgD-knockout mice. Transcriptome analysis revealed a significantly differentially expressed gene, PIM1 (proviral integration site for Moloney murine leukemia virus 1), as a potential MrgD target. Silencing MrgD increased pulmonary artery smooth muscle cell proliferation by facilitating the AKT (protein kinase B)-mediated interaction of MAZ (MYC-associated Zinc-finger protein) with PIM1. MrgD activation inhibited this pathway and was ineffective in PH mice with pulmonary artery smooth muscle cells overexpressing PIM1. CONCLUSIONS MrgD deficiency in pulmonary arterioles increases susceptibility to PH, particularly in a hypoxic environment. MrgD is a potential modeling and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Mice, Knockout
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Vascular Remodeling
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Cell Proliferation
- Mice, Inbred C57BL
- Male
- Hypoxia/complications
- Mice
- Cells, Cultured
- Monocrotaline
- Indoles
- Pyrroles
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lina Yao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huailong An
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijun Fang
- Department of Pulmonary and Critical Care Medicine (L.F.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianqian Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (Q.W.)
| | - Qimou Li
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Fan
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mei Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Panpan Hao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Ichimura K, Gross A, Mathew RO, Salman L, Reddy S, Spiekerkoetter E, Sidhu MS. Cardiorenal Syndrome in Right Heart Failure Due to Pulmonary Arterial Hypertension-The Right Ventricle as a Therapeutic Target to Improve Renal Function. Cardiovasc Drugs Ther 2025; 39:373-384. [PMID: 38847906 DOI: 10.1007/s10557-024-07588-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 03/30/2025]
Abstract
Cardiorenal syndrome (CRS) due to right ventricular (RV) failure is a disease entity emerging as a key indicator of morbidity and mortality. The multifactorial aspects of CRS and the left-right ventricular interdependence complicate the link between RV failure and renal function. RV failure has a direct pathophysiological link to renal dysfunction by leading to systemic venous congestion in certain circumstances and low cardiac output in other situations, both leading to impaired renal perfusion. Indeed, renal dysfunction is known to be an independent predictor of mortality in patients with pulmonary arterial hypertension (PAH) and RV failure. Thus, it is important to further understand the interaction between the RV and renal function. RV adaptation is critical to long-term survival in patients with PAH. The RV is also known for its remarkable capacity to recover once the aggravating factor is addressed or mitigated. However, less is known about the renal potential for recovery following the resolution of chronic RV failure. In this review, we provide an overview of the intricate relationship between RV dysfunction and the subsequent development of CRS, with a particular emphasis on PAH. Additionally, we summarize potential RV-targeted therapies and their potential beneficial impact on renal function.
Collapse
Affiliation(s)
- Kenzo Ichimura
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA.
| | - Adam Gross
- Albany Medical College, Albany, NY, 12208, USA
| | - Roy O Mathew
- Department of Medicine, Loma Linda VA Health Care System, Loma Linda, CA, 92357, USA
| | - Loay Salman
- Division of Nephrology, Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Sushma Reddy
- Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, CA, 94305, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Stanford University, 1701 Page Mill Road, Palo Alto, CA, 94304, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mandeep S Sidhu
- Division of Cardiology, Department of Medicine, Department of Medical Education, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
3
|
Cai H, Tian S, Liu A, Xie G, Zhang H, Wu X, Wan J, Li S. Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma. Eur J Med Res 2025; 30:17. [PMID: 39780198 PMCID: PMC11715937 DOI: 10.1186/s40001-024-02192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely. METHODS We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints. We also explored potential associations with drug sensitivity. To assess the impact on glioma cell proliferation and apoptosis, we employed various assays, including the Cell Counting Kit-8, colony formation assay, and flow cytometry. RESULTS CTF1 gene and protein expression were significantly elevated in glioma tissues, and correlated with malignancy and poor prognosis. CTF1 was an independent prognostic factor and negatively associated with DNA methylation. The involvement of CTF1 in m6A modifications contributed to glioma progression. Enrichment analysis revealed immune response pathways linked with CTF1 in glioma, including natural killer cell cytotoxicity, NOD-like receptor signaling, Toll-like receptor signaling, antigen processing, chemokine signaling, and cytokine receptor interactions. CTF1 expression correlated positively with pathways related to apoptosis, inflammation, proliferation, and epithelial-mesenchymal transition, and PI3K-AKT-mTOR signaling. Additionally, CTF1 expression was positively associated with macrophage, eosinophil, and neutrophil contents and immune checkpoint-related genes, but negatively associated with sensitivity to 14 drugs. In vitro experiments confirmed that CTF1 knockdown inhibited glioma cell proliferation and promoted apoptosis. CONCLUSION This study identifies CTF1 as a significant independent prognostic factor that is closely associated with the tumor immune microenvironment in glioma. Additionally, reduced expression of CTF1 suppresses the proliferation and induces apoptosis of glioma cells in vitro. Consequently, CTF1 is a potentially promising novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Hongqing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Tian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angsi Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanchao Xie
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Hongsheng Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Xiaogang Wu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, No 424 Changjiang West Road, Shushan District, Hefei, Anhui, 230000, People's Republic of China.
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| | - Sai Li
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Weldrick JJ, Yi R, Megeney LA, Burgon PG. MicroRNA205: A Key Regulator of Cardiomyocyte Transition from Proliferative to Hypertrophic Growth in the Neonatal Heart. Int J Mol Sci 2024; 25:2206. [PMID: 38396885 PMCID: PMC10889831 DOI: 10.3390/ijms25042206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The mammalian myocardium grows rapidly during early development due to cardiomyocyte proliferation, which later transitions to cell hypertrophy to sustain the heart's postnatal growth. Although this cell transition in the postnatal heart is consistently preserved in mammalian biology, little is known about the regulatory mechanisms that link proliferation suppression with hypertrophy induction. We reasoned that the production of a micro-RNA(s) could serve as a key bridge to permit changes in gene expression that control the changed cell fate of postnatal cardiomyocytes. We used sequential expression analysis to identify miR205 as a micro-RNA that was uniquely expressed at the cessation of cardiomyocyte growth. Cardiomyocyte-specific miR205 deletion animals showed a 35% increase in heart mass by 3 months of age, with commensurate changes in cell cycle and Hippo pathway activity, confirming miR205's potential role in controlling cardiomyocyte proliferation. In contrast, overexpression of miR205 in newborn hearts had little effect on heart size or function, indicating a complex, probably redundant regulatory system. These findings highlight miR205's role in controlling the shift from cardiomyocyte proliferation to hypertrophic development in the postnatal period.
Collapse
Affiliation(s)
- Jonathan J. Weldrick
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (J.J.W.); (L.A.M.)
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lynn A. Megeney
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Moloce MA, Costache II, Nicolae A, Onofrei Aursulesei V. Pharmacological Targets in Chronic Heart Failure with Reduced Ejection Fraction. Life (Basel) 2022; 12:1112. [PMID: 35892914 PMCID: PMC9394280 DOI: 10.3390/life12081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Heart failure management has been repeatedly reviewed over time. This strategy has resulted in improved quality of life, especially in patients with heart failure with reduced ejection fraction (HFrEF). It is for this reason that new mechanisms involved in the development and progression of heart failure, along with specific therapies, have been identified. This review focuses on the most recent guidelines of therapeutic interventions, trials that explore novel therapies, and also new molecules that could improve prognosis of different HFrEF phenotypes.
Collapse
Affiliation(s)
- Maria-Angela Moloce
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
| | - Irina-Iuliana Costache
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Ana Nicolae
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Viviana Onofrei Aursulesei
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| |
Collapse
|
7
|
Thabet NM, Abdel-Rafei MK, Moustafa EM. Boswellic acid protects against Bisphenol-A and gamma radiation induced hepatic steatosis and cardiac remodelling in rats: role of hepatic PPAR-α/P38 and cardiac Calcineurin-A/NFATc1/P38 pathways. Arch Physiol Biochem 2022; 128:767-785. [PMID: 32057248 DOI: 10.1080/13813455.2020.1727526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA) and gamma-radiation are two risky environmental pollutants that human beings are exposed to in everyday life and consequently they threaten human health via inducing oxidative stress, inflammation, and eventually tissue damage. This study aims at appraising the protective effect of Boswellic Acid (BA) (250 mg/kg/day, orally) administration on BPA (150 mg/kg/day, i.p) and γ-irradiation (IR) (3 Gy/week for 4 weeks up to cumulative dose of 12 Gy/experimental course) for 4 weeks-induced damage to liver and heart tissues of rats. The present results indicated a significant improvement against damage induced by BPA and IR revealed in biochemical investigations (hepatic PPAR-α/P38 and cardiac ET-1/Calcineurin-A/NFATc1/P38) and histopathological examination of liver and heart. It could be concluded that BA possesses a protective effect against these two deleterious environmental pollutants which attracted major global concerns due to their serious toxicological impact on human health.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 2022; 221:213213. [PMID: 35551578 PMCID: PMC9106709 DOI: 10.1083/jcb.202201159] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022] Open
Abstract
Caspase-3 is a widely expressed member of a conserved family of proteins, generally recognized for their activated proteolytic roles in the execution of apoptosis in cells responding to specific extrinsic or intrinsic inducers of this mode of cell death. However, accumulating evidence indicates that caspase-3 also plays key roles in regulating the growth and homeostatic maintenance of both normal and malignant cells and tissues in multicellular organisms. Given that yeast possess an ancestral caspase-like gene suggests that the caspase-3 protein may have acquired different functions later during evolution to better meet the needs of more complex multicellular organisms, but without necessarily losing all of the functions of its ancestral yeast precursor. This review provides an update on what has been learned about these interesting dichotomous roles of caspase-3, their evolution, and their potential relevance to malignant as well as normal cell biology.
Collapse
Affiliation(s)
- Ebrahim Eskandari
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Connie J. Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada,Correspondence to Connie J. Eaves:
| |
Collapse
|
9
|
Li H, Trager LE, Liu X, Hastings MH, Xiao C, Guerra J, To S, Li G, Yeri A, Rodosthenous R, Silverman MG, Das S, Ambardekar AV, Bristow MR, Gonzalez-Rosa JM, Rosenzweig A. lncExACT1 and DCHS2 Regulate Physiological and Pathological Cardiac Growth. Circulation 2022; 145:1218-1233. [PMID: 35114812 PMCID: PMC9056949 DOI: 10.1161/circulationaha.121.056850] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood. While long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. METHODS RNA sequencing was applied to hearts from mice after eight weeks voluntary exercise-induced physiological hypertrophy and cardiomyogenesis or transverse aortic constriction (TAC) for two or eight weeks to induce pathological hypertrophy or heart failure. The top lncRNA candidate was overexpressed in hearts with adeno-associated virus (AAV) vectors and inhibited with antisense locked nucleic acid (LNA)-GapmeRs to examine its function. Downstream effectors were identified through promoter analyses and binding assays. The functional roles of a novel downstream effector, dachsous cadherin-related 2 (DCHS2), were examined through transgenic overexpression in zebrafish and cardiac-specific deletion in Cas9-knockin mice. RESULTS We identified exercise-regulated cardiac lncRNAs, termed lncExACTs. lncExACT1 was evolutionarily conserved and decreased in exercised hearts but increased in human and experimental heart failure. Cardiac lncExACT1 overexpression caused pathological hypertrophy and heart failure, while lncExACT1 inhibition induced physiological hypertrophy and cardiomyogenesis, protecting against cardiac fibrosis and dysfunction. lncExACT1 functioned by regulating microRNA-222, calcineurin signaling, and Hippo/Yap1 signaling through DCHS2. Cardiomyocyte DCHS2 overexpression in zebrafish induced pathological hypertrophy and impaired cardiac regeneration, promoting scarring after injury. In contrast, murine DCHS2 deletion induced physiological hypertrophy and promoted cardiomyogenesis. CONCLUSIONS These studies identify lncExACT1-DCHS2 as a novel pathway regulating cardiac hypertrophy and cardiomyogenesis. lncExACT1-DCHS2 acts as a master switch toggling the heart between physiological and pathological growth to determine functional outcomes, providing a potentially tractable therapeutic target for harnessing the beneficial effects of exercise.
Collapse
Affiliation(s)
- Haobo Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Lena E Trager
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xiaojun Liu
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Margaret H Hastings
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chunyang Xiao
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Justin Guerra
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Samantha To
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Guoping Li
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ashish Yeri
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rodosthenis Rodosthenous
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael G Silverman
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Saumya Das
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michael R Bristow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Juan Manuel Gonzalez-Rosa
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anthony Rosenzweig
- Corrigan-Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Ge Z, Yin C, Li Y, Tian D, Xiang Y, Li Q, Tang Y, Zhang Y. Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. J Transl Med 2022; 20:7. [PMID: 34980170 PMCID: PMC8722118 DOI: 10.1186/s12967-021-03211-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiac fibrosis, a well-known major pathological process that ultimately leads to heart failure, has attracted increasing attention and focus in recent years. A large amount of research indicates that long noncoding RNAs (lncRNAs) play an important role in cardiac fibrosis, but little is known about the specific function and mechanism of the lncRNA NEAT1 in the progression of cardiac fibrosis to heart failure. In the present study, we have demonstrated that the lncRNA NEAT1 is upregulated in patients with heart failure. Similarly, the expression of Neat1 was also increased in the left ventricular tissue of transverse aortic constriction (TAC) surgery mice and cardiac fibroblasts treated with TGF-β1. Further, gain-of-function and loss-of-function experiments showed that silencing of Neat1 attenuated cardiac fibrosis, while overexpression of Neat1 with adenovirus significantly aggravated the in vitro progression of fibrosis. With regard to the underlying mechanism, our experiments showed that Neat1 recruited EZH2 to the promoter region of Smad7 through physical binding of EZH2 to the promoter region, as a result of which Smad7 expression was inhibited and the progression of cardiac fibrosis was ultimately exacerbated. We found that the introduction of shNeat1 carried by adeno-associated virus-9 significantly ameliorated cardiac fibrosis and dysfunction caused by TAC surgery in mice. Overall, our study findings demonstrate that the lncRNA Neat1 accelerates the progression of cardiac fibrosis and dysfunction by recruiting EZH2 to suppress Smad7 expression. Thus, NEAT1 may serve as a target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ding Tian
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qianhui Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
12
|
Increased Expression of Cardiotrophin-1 in Cardiomyopathy Patients. Balkan J Med Genet 2021; 24:21-26. [PMID: 34447655 PMCID: PMC8366478 DOI: 10.2478/bjmg-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathy (CM) is a condition of cardiac dysfunction. It is one of the leading causes of mortality in which both genetic and environmental factors are involved. Cardiotrophin-1 (CT-1) level in plasma is associated with CM. It affects the cardiomyocyte differentiation. To evaluate the expression of CT-1 in cardiomyopathy, this study was done on CM subjects attending the Fatima Memorial Hospital, Lahore, Pakistan, between January and June, 2016. A total of 40 subjects were enrolled who were divided into two groups; CM group (n = 20) and a control group (n = 20). A self-designed questionnaire was filled in by each subject to collect data regarding age, body mass index (BMI) and CM history. RNA was isolated from blood after its quantification, cDNA was prepared and reverse-transcriptase-polymerase chain reaction (RT-PCR) was performed for expression of CT-1. The mean age in CM subjects was 40.1±6.03 years, while it was 35.0±3.7 years in the control group. The mean expression of CT-1 in the CM subjects was 5.2±0.66, while it was 1.00±0.001 in the control group. A highly significant difference was observed in CT-1 expression in the CM group, and expression was significantly correlated with age and BMI in CM subjects.
Collapse
|
13
|
Ali MK, Ichimura K, Spiekerkoetter E. Promising therapeutic approaches in pulmonary arterial hypertension. Curr Opin Pharmacol 2021; 59:127-139. [PMID: 34217109 DOI: 10.1016/j.coph.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating multifactorial disease characterized by progressive pulmonary vascular remodeling, elevated pulmonary arterial pressure, and pulmonary vascular resistance, resulting in right ventricular failure and subsequent death. Current available therapies do not reverse the disease, resulting in a persistent high morbidity and mortality. Thus, there is an urgent unmet medical need for novel effective therapies to better treat patients with PAH. Over the past few years, enthusiastic attempts have been made to identify novel effective therapies that address the essential roots of PAH with targeting key signaling pathways in both preclinical models and patients with PAH. This review aims to discuss the most emerging and promising therapeutic interventions in PAH pathogenesis.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford Medical School, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, USA
| | - Kenzo Ichimura
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford Medical School, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, USA
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford Medical School, USA; Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, USA.
| |
Collapse
|
14
|
Zhang Y, Wang J, Ye M, Li G, Zhong M, Guan X. The effect of mechanical stimulation on the expression of apoptosis-related genes in cardiomyocytes. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
16
|
Martens MD, Fernando AS, Gordon JW. A new trick for an old dog? Myocardial-specific roles for prostaglandins as mediators of ischemic injury and repair. Am J Physiol Heart Circ Physiol 2021; 320:H2169-H2184. [PMID: 33861147 DOI: 10.1152/ajpheart.00872.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The small lipid-derived paracrine signaling molecules known as prostaglandins have been recognized for their ability to modulate many facets of cardiovascular physiology since their initial discovery more than 85 years ago. Although the role of prostaglandins in the vasculature has gained significant attention across time, a handful of historical studies have also directly implicated the cardiomyocyte in both prostaglandin synthesis and release. Recently, our understanding of how prostaglandin receptor modulation impacts and contributes to myocardial structure and function has gained attention while leaving most other components of myocardial prostaglandin metabolism and signaling unexplored. This mini-review highlights both the key historical studies that underpin modern prostaglandin research in the heart, while concurrently presenting the latest findings related to how prostaglandin metabolism and signaling impact myocardial injury and repair.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Amy S Fernando
- The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Agrawal V, Lahm T, Hansmann G, Hemnes AR. Molecular mechanisms of right ventricular dysfunction in pulmonary arterial hypertension: focus on the coronary vasculature, sex hormones, and glucose/lipid metabolism. Cardiovasc Diagn Ther 2020; 10:1522-1540. [PMID: 33224772 PMCID: PMC7666935 DOI: 10.21037/cdt-20-404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, life-threatening condition characterized by dysregulated metabolism, pulmonary vascular remodeling, and loss of pulmonary vascular cross-sectional area due to a variety of etiologies. Right ventricular (RV) dysfunction in PAH is a critical mediator of both long-term morbidity and mortality. While combinatory oral pharmacotherapy and/or intravenous prostacyclin aimed at decreasing pulmonary vascular resistance (PVR) have improved clinical outcomes, there are currently no treatments that directly address RV failure in PAH. This is, in part, due to the incomplete understanding of the pathogenesis of RV dysfunction in PAH. The purpose of this review is to discuss the current understanding of key molecular mechanisms that cause, contribute and/or sustain RV dysfunction, with a special focus on pathways that either have led to or have the potential to lead to clinical therapeutic intervention. Specifically, this review discusses the mechanisms by which vessel loss and dysfunctional angiogenesis, sex hormones, and metabolic derangements in PAH directly contribute to RV dysfunction. Finally, this review discusses limitations and future areas of investigation that may lead to novel understanding and therapeutic interventions for RV dysfunction in PAH.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tim Lahm
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Anna R. Hemnes
- Division of Allergy, Pulmonology and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Suen CM, Chaudhary KR, Deng Y, Jiang B, Stewart DJ. Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovasc Res 2020; 115:788-799. [PMID: 30357319 PMCID: PMC6432055 DOI: 10.1093/cvr/cvy258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/07/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Aims The ability of the right ventricle (RV) to adapt to increased afterload is the major determinant of survival in patients with pulmonary hypertension (PH). In this study, we explored the effect of genetic background on RV adaptation and survival in a rat model of severe pulmonary arterial hypertension (PAH). Methods and results PH was induced by a single injection of SU5416 (SU) in age-matched Sprague Dawley (SD) or Fischer rats, followed by a 3-week exposure to chronic hypoxia (SUHx). SD and Fischer rats exhibited similar elevations in RV systolic pressure, number of occlusive pulmonary vascular lesions, and RV hypertrophy (RV/LV+S) in response to SUHx. However, no Fischer rats survived beyond 7 weeks compared with complete survival for SD rats. This high early mortality of Fischer rats was associated with significantly greater RV dilatation and reduced ejection fraction, cardiac output, and exercise capacity at 4 weeks post-SU. Moreover, microarray analysis revealed that over 300 genes were uniquely regulated in the RV in the severe PAH model in the Fischer compared with SD rats, mainly related to angiogenesis and vascular homoeostasis, fatty acid metabolism, and innate immunity. A focused polymerase chain reaction array confirmed down-regulation of angiogenic genes in the Fischer compared with SD RV. Furthermore, Fischer rats demonstrated significantly lower RV capillary density compared with SD rats in response to SUHx. Conclusion Fischer rats are prone to develop RV failure in response to increased afterload. Moreover, the high mortality in the SUHx model of severe PAH was caused by a failure of RV adaptation associated with lack of adequate microvascular angiogenesis, together with metabolic and immunological responses in the hypertrophied RV.
Collapse
Affiliation(s)
- Colin M Suen
- Sinclair Centre for Regenerative Medicine, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | - Ketul R Chaudhary
- Sinclair Centre for Regenerative Medicine, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | - Yupu Deng
- Sinclair Centre for Regenerative Medicine, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada
| | - Baohua Jiang
- Sinclair Centre for Regenerative Medicine, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Sinclair Centre for Regenerative Medicine, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
20
|
Liufu R, Shi G, He X, Lv J, Liu W, Zhu F, Wen C, Zhu Z, Chen H. The therapeutic impact of human neonatal BMSC in a right ventricular pressure overload model in mice. Stem Cell Res Ther 2020; 11:96. [PMID: 32122393 PMCID: PMC7052971 DOI: 10.1186/s13287-020-01593-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the impact of donor age on the therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) in treating adverse remodeling as the result of right ventricle (RV) pressure overload. Methods BMSCs were isolated from neonatal (< 1 month), infant (1 month to 1 year), and young children (1 year to 5 years) and were compared in their migration potential, surface marker expression, VEGF secretion, and matrix metalloprotein (MMP) 9 expression. Four-week-old male C57 mice underwent pulmonary artery banding and randomized to treatment and untreated control groups. During the surgery, BMSCs were administered to the mice by intramyocardial injection into the RV free wall. Four weeks later, RV function and tissue were analyzed by echocardiography, histology, and quantitative real-time polymerase chain reaction. Results Human neonatal BMSCs demonstrated the greatest migration capacity and secretion of vascular endothelial growth factor but no difference in expression of surface markers. Neonate BMSCs administration resulted in increasing expression of VEGF, a significant reduction in RV wall thickness, and internal diameter in mice after PA banding. These beneficial effects were probably associated with paracrine secretion as no cardiomyocyte transdifferentiation was observed. Conclusions Human BMSCs from different age groups have different characteristics, and the youngest BMSCs may favorably impact the application of stem cell-based therapy to alleviate adverse RV remodeling induced by pressure overload.
Collapse
Affiliation(s)
- Rong Liufu
- Cardiovascular Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Jingjing Lv
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Wei Liu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Fang Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Chen Wen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| | - Huiwen Chen
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Dongfang Road No. 1678, Shanghai, China.
| |
Collapse
|
21
|
Rouatbi H, Farhat N, Heying R, Gérard A, Vazquez-Jimenez JF, Seghaye MC. Right Atrial Myocardial Remodeling in Children With Atrial Septal Defect Involves Inflammation, Growth, Fibrosis, and Apoptosis. Front Pediatr 2020; 8:40. [PMID: 32117843 PMCID: PMC7033500 DOI: 10.3389/fped.2020.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Myocardial remodeling due to large atrial septum defect (ASD) is macroscopically characterized by dilation of the right-sided cardiac cavities secondary to volume overload, the cellular mechanisms of which are not yet understood. We postulated that inflammation, fibrosis, and cell death are actors of right atrial remodeling secondary to ASD. Patients and Methods: In 12 children with large ASD (median age: 63 months), expression of genes coding for proteins involved in the response to cell stress and -protection, inflammation, growth and angiogenesis, fibrosis, and apoptosis was assessed by RT-PCR in right atrial myocardial biopsies taken during cardiac surgery. The presence of cytokines in myocardial cells was confirmed by immunohistochemistry and effective apoptosis by TUNEL assay. Results: In all patients investigated, a cellular response to early mechanical stress with the initiation of early protective mechanisms, of inflammation (and its control), -growth, and -angiogenesis, of fibrosis and apoptosis was present. The apoptotic index assessed by TUNEL assay averaged 0.3%. Conclusions: In children with large ASD, macroscopic right atrial remodeling relates to cellular mechanisms involving the expression of numerous genes that either still act to protect cells and tissues but that also harm as they initiate and/or sustain inflammation, fibrosis, and cell death by apoptosis. This may contribute to long term morbidity in patients with ASD.
Collapse
Affiliation(s)
- Hatem Rouatbi
- Department of Pediatrics & Pediatric Cardiology, University Hospital Liège, Liège, Belgium
| | - Nesrine Farhat
- Department of Pediatrics & Pediatric Cardiology, University Hospital Liège, Liège, Belgium
| | - Ruth Heying
- Department of Pediatric Cardiology, University Hospital Leuven, Leuven, Belgium
| | - Arlette Gérard
- Department of Pediatrics, GIGA Neurosciences, University Hospital Liège, Liège, Belgium
| | | | | |
Collapse
|
22
|
Higgins GA, Williams AM, Ade AS, Alam HB, Athey BD. Druggable Transcriptional Networks in the Human Neurogenic Epigenome. Pharmacol Rev 2019; 71:520-538. [PMID: 31530573 PMCID: PMC6750186 DOI: 10.1124/pr.119.017681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromosome conformation capture methods have revealed the dynamics of genome architecture which is spatially organized into topologically associated domains, with gene regulation mediated by enhancer-promoter pairs in chromatin space. New evidence shows that endogenous hormones and several xenobiotics act within circumscribed topological domains of the spatial genome, impacting subsets of the chromatin contacts of enhancer-gene promoter pairs in cis and trans Results from the National Institutes of Health-funded PsychENCODE project and the study of chromatin remodeling complexes have converged to provide a clearer understanding of the organization of the neurogenic epigenome in humans. Neuropsychiatric diseases, including schizophrenia, bipolar spectrum disorder, autism spectrum disorder, attention deficit hyperactivity disorder, and other neuropsychiatric disorders are significantly associated with mutations in neurogenic transcriptional networks. In this review, we have reanalyzed the results from publications of the PsychENCODE Consortium using pharmacoinformatics network analysis to better understand druggable targets that control neurogenic transcriptional networks. We found that valproic acid and other psychotropic drugs directly alter these networks, including chromatin remodeling complexes, transcription factors, and other epigenetic modifiers. We envision a new generation of CNS therapeutics targeted at neurogenic transcriptional control networks, including druggable parts of chromatin remodeling complexes and master transcription factor-controlled pharmacogenomic networks. This may provide a route to the modification of interconnected gene pathways impacted by disease in patients with neuropsychiatric and neurodegenerative disorders. Direct and indirect therapeutic strategies to modify the master regulators of neurogenic transcriptional control networks may ultimately help extend the life span of CNS neurons impacted by disease.
Collapse
Affiliation(s)
- Gerald A Higgins
- Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Aaron M Williams
- Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alex S Ade
- Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Hasan B Alam
- Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian D Athey
- Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
23
|
Zelt JG, Chaudhary KR, Cadete VJ, Mielniczuk LM, Stewart DJ. Medical Therapy for Heart Failure Associated With Pulmonary Hypertension. Circ Res 2019; 124:1551-1567. [DOI: 10.1161/circresaha.118.313650] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason G.E. Zelt
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
| | - Ketul R. Chaudhary
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| | - Virgilio J. Cadete
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| | - Lisa M. Mielniczuk
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
| | - Duncan J. Stewart
- From the Division of Cardiology, University of Ottawa Heart Institute (J.G.E.Z., L.M.M., D.J.S.), University of Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine (J.G.E.Z., K.R.C., V.J.C., L.M.M., D.J.S.), University of Ottawa, Canada
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Canada (K.R.C., V.J.C., D.J.S.)
| |
Collapse
|
24
|
Machaj F, Dembowska E, Rosik J, Szostak B, Mazurek-Mochol M, Pawlik A. New therapies for the treatment of heart failure: a summary of recent accomplishments. Ther Clin Risk Manag 2019; 15:147-155. [PMID: 30774351 PMCID: PMC6348963 DOI: 10.2147/tcrm.s179302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Despite continuous efforts to prevent cardiovascular diseases (CVDs), heart failure prevails as the number one cause of death in developed countries. To properly treat CVDs, scientists had to take a closer look at the factors that contribute to their pathogenesis and either modernize current pharmaceuticals or develop brand new treatments. Enhancement of current drugs, such as tolvaptan and omecamtiv mecarbil, sheds new light on already-known therapies. Tolvaptan, a vasopressin antagonist, could be adopted in heart failure therapy as it reduces pre- and afterload by decreasing systolic blood pressure and blood volume. Omecamtiv mecarbil, which is a myosin binding peptide, could aid cardiac contractility. The next generation vasodilators, serelaxin and ularitide, are based on naturally occurring peptides and they reduce peripheral vascular resistance and increase the cardiac index. In combination with their anti-inflammatory properties, they could turn out to be extremely potent drugs for heart failure treatment. Cardiotrophin has exceeded many researchers’ expectations, as evidence suggests that it could cause sarcomere hypertrophy without excessive proliferation of connective tissue. Rapid progress in gene therapy has caused it to finally be considered as one of the viable options for the treatment of CVDs. This novel therapeutic approach could restore stable heart function either by restoring depleted membrane proteins or by balancing the intracellular calcium concentration. Although it has been set back by problems concerning its long-term effects, it is still highly likely to succeed.
Collapse
Affiliation(s)
- Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland,
| | - Elżbieta Dembowska
- Department of Periodontology, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland,
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland,
| | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland,
| |
Collapse
|
25
|
Essex AL, Pin F, Huot JR, Bonewald LF, Plotkin LI, Bonetto A. Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice. Front Endocrinol (Lausanne) 2019; 10:809. [PMID: 31803146 PMCID: PMC6877551 DOI: 10.3389/fendo.2019.00809] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is frequently accompanied by several side effects, including nausea, diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that chemotherapy can also play a major role in causing not only cachexia, but also bone loss. This complicates prognosis and survival among cancer patients, affects quality of life, and can increase morbidity and mortality rates. Recent findings suggest that soluble factors released from resorbing bone directly contribute to loss of muscle mass and function secondary to metastatic cancer. However, it remains unknown whether similar mechanisms also take place following treatments with anticancer drugs. In this study, we found that young male CD2F1 mice (8-week old) treated with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of muscle and bone mass. Myotubes exposed to bone conditioned medium from cisplatin-treated mice showed severe atrophy (-33%) suggesting a bone to muscle crosstalk. To test this hypothesis, mice were administered cisplatin in combination with an antiresorptive drug to determine if preservation of bone mass has an effect on muscle mass and strength following chemotherapy treatment. Mice received cisplatin alone or combined with zoledronic acid (ZA; 5 μg/kg), a bisphosphonate routinely used for the treatment of osteoporosis. We found that cisplatin resulted in progressive loss of body weight (-25%), in line with reduced fat (-58%) and lean (-17%) mass. As expected, microCT bone histomorphometry analysis revealed significant reduction in bone mass following administration of chemotherapy, in line with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was protected when cisplatin was administered in combination with ZA. Interestingly, while the animals exposed to chemotherapy presented significant muscle wasting (~-20% vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted in preservation of muscle mass (+12%) and strength (+42%). Altogether, these observations support our hypothesis of bone factors targeting muscle and suggest that pharmacological preservation of bone mass can benefit muscle mass and function following chemotherapy.
Collapse
Affiliation(s)
- Alyson L. Essex
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Fabrizio Pin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lynda F. Bonewald
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrea Bonetto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States
- Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
- IUPUI Center for Cachexia Research, Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Otolaryngology – Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Andrea Bonetto
| |
Collapse
|
26
|
Putinski C, Abdul-Ghani M, Brunette S, Burgon PG, Megeney LA. Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy. J Am Heart Assoc 2018; 7:e010404. [PMID: 30486716 PMCID: PMC6405540 DOI: 10.1161/jaha.118.010404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase‐directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late‐stage caspase‐mediated cleavage of gelsolin. The requirement of caspase‐mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy‐related transcription activity. The in vivo impact of caspase‐mediated cleavage was investigated by echo‐guided intramyocardial injection of adenoviral‐expressed gelsolin. Expression of the N‐terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end‐stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
Collapse
Affiliation(s)
- Charis Putinski
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Mohammad Abdul-Ghani
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
| | - Steve Brunette
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
| | - Patrick G Burgon
- 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada.,4 University of Ottawa Heart Institute Ottawa Ontario Canada
| | - Lynn A Megeney
- 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada.,2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada.,3 Department of Medicine University of Ottawa Ontario Canada
| |
Collapse
|
27
|
Potential clinical treatment of colitis with cardiotrophin-1. Clin Sci (Lond) 2018; 132:2169-2174. [PMID: 30341227 DOI: 10.1042/cs20171626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
In a recent issue of Clinical Science, Prieto-Vicente et al. [Clin. Sci. (2018) 132, 985-1001] have smartly demonstrated a potential new use of cardiotrophin-1 (CT-1) to treat and palliate an inflammatory bowel disease such as ulcerative colitis. In that work, authors report that in ulcerative colitic mice, administration of exogenous recombinant CT-1 (rCT-1) promotes lower colon damage and lower disease activity index, reducing systemic levels of tumor necrosis factor α (TNF-α) and also diminishing TNF-α expression in colon together with the reduction in other common inflammation markers. Besides, in vivo rCT-1 administration induces activation of several molecular pathways, including nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-3, and abolishes bacterial translocation from intestine to other organs, including mesenteric ganglia, lungs, and spleen. Additionally, these results were nicely corroborated in CT-1 depleted mice; in which colon damage and ulcerative colitis severity were greater compared with the wild-type counterparts. All together, these results suggested that CT-1 could be a promising new therapeutic approach for treating inflammatory bowel disease, particularly ulcerative colitis. However, further studies are required to determine its major mechanisms of action and the potential efficacy of CT-1 in human inflammatory bowel diseases.
Collapse
|
28
|
Stachowski MJ, Holewinski RJ, Grote E, Venkatraman V, Van Eyk JE, Kirk JA. Phospho-Proteomic Analysis of Cardiac Dyssynchrony and Resynchronization Therapy. Proteomics 2018; 18:e1800079. [PMID: 30129105 DOI: 10.1002/pmic.201800079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Cardiac dyssynchrony arises from conduction abnormalities during heart failure and worsens morbidity and mortality. Cardiac resynchronization therapy (CRT) re-coordinates contraction using bi-ventricular pacing, but the cellular and molecular mechanisms involved remain largely unknown. The aim is to determine how dyssynchronous heart failure (HFdys ) alters the phospho-proteome and how CRT interacts with this unique phospho-proteome by analyzing Ser/Thr and Tyr phosphorylation. Phospho-enriched myocardium from dog models of Control, HFdys , and CRT is analyzed via MS. There were 209 regulated phospho-sites among 1761 identified sites. Compared to Con and CRT, HFdys is hyper-phosphorylated and tyrosine phosphorylation is more likely to be involved in signaling that increased with HFdys and was exacerbated by CRT. For each regulated site, the most-likely targeting-kinase is predicted, and CK2 is highly specific for sites that are "fixed" by CRT, suggesting activation of CK2 signaling occurs in HFdys that is reversed by CRT, which is supported by western blot analysis. These data elucidate signaling networks and kinases that may be involved and deserve further study. Importantly, a possible role for CK2 modulation in CRT has been identified. This may be harnessed in the future therapeutically to compliment CRT, improving its clinical effects.
Collapse
Affiliation(s)
- Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Ronald J Holewinski
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Eric Grote
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
29
|
Weldrick JJ, Abdul-Ghani M, Megeney LA, Burgon PG. A rapid and efficient method for the isolation of postnatal murine cardiac myocyte and fibroblast cells. Can J Physiol Pharmacol 2018. [DOI: 10.1139/cjpp-2017-0742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The capacity to isolate and study single cardiomyocytes has dramatically enhanced our understanding of the fundamental mechanisms of the heart. Currently, 2 primary methods for the isolation of cardiomyocytes are employed: (i) the neonatal isolation protocol and (ii) the Langendorff isolation method. A major limiting feature of both procedures is the inability to isolate cardiomyocytes between 3 days and 3 weeks after birth. Herein, we report the establishment and validation of a new method for the rapid and efficient isolation of mouse cardiomyocytes, regardless of age. This novel procedure utilizes whole heart perfusion of a trypsin–collagenase Krebs-based buffer through the left ventricle at a high flow rate. Cardiomyocytes can be isolated in significantly less time with a simple, syringe-pump-based apparatus. Typically, we can digest 10–15 hearts per hour. Altogether, we have established an efficient and reproducible method for the rapid isolation of fresh cardiomyocytes from postnatal mouse hearts of any age.
Collapse
Affiliation(s)
- Jonathan J. Weldrick
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mohammad Abdul-Ghani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Lynn A. Megeney
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick G. Burgon
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
30
|
Burgon PG, Megeney LA. Caspase signaling, a conserved inductive cue for metazoan cell differentiation. Semin Cell Dev Biol 2017; 82:96-104. [PMID: 29129746 DOI: 10.1016/j.semcdb.2017.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Caspase signaling pathways were originally discovered as conveyors of programmed cell death, yet a compendium of research over the past two decades have demonstrated that these same conduits have a plethora of physiologic functions. Arguably the most extensive non-death activity that has been attributed to this protease clade is the capacity to induce cell differentiation. Caspase control of differentiation is conserved across diverse metazoan organisms from flies to humans, suggesting an ancient origin for this form of cell fate control. Here we discuss the mechanisms by which caspase enzymes manage differentiation, the targeted substrates that may be common across cell lineages, and the countervailing signals that may be essential for these proteases to 'execute' this non-death cell fate.
Collapse
Affiliation(s)
- Patrick G Burgon
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Lynn A Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
31
|
Abstract
In a recent paper published in Cell Research, Abdul-Ghani and colleagues show that the cytokine, cardiotrophin-1 (CT1), drives a protective form of reversible cardiac hypertrophy that acts through a nonapoptotic caspase-dependent mechanism. Since CT1 can be delivered as exogenous protein, these studies provide new biological insights and potential translational opportunities.
Collapse
|