1
|
Wu J, Tan S, Feng Z, Zhao H, Yu C, Yang Y, Zhong B, Zheng W, Yu H, Li H. Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. Biol Sex Differ 2024; 15:68. [PMID: 39223676 PMCID: PMC11367908 DOI: 10.1186/s13293-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited. METHODS Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined. RESULTS XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs. CONCLUSION The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome de novo sequencing to look for variants in the DNA of XX DSD pigs. We then checked these differences in a larger group of pigs. Our results reveal the nucleotide changes in IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment in intron 5 of the WWOX, all linked to XX DSD pigs. The expression levels of these three genes were also different in the gonads of XX DSD pigs compared to normal female pigs. These variants are expected to serve as valuable molecular markers for XX DSD pigs. Because pigs are a lot like humans in their genes, physiology, and body structure, this research could help us learn more about what causes DSD in people.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Wenxiao Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| |
Collapse
|
2
|
Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne) 2024; 15:1385901. [PMID: 38721146 PMCID: PMC11076692 DOI: 10.3389/fendo.2024.1385901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/18/2024] [Indexed: 01/18/2025] Open
Abstract
In mammals, the development of male or female gonads from fetal bipotential gonads depends on intricate genetic networks. Changes in dosage or temporal expression of sex-determining genes can lead to differences of gonadal development. Two rare conditions are associated with disruptions in ovarian determination, including 46,XX testicular differences in sex development (DSD), in which the 46,XX gonads differentiate into testes, and 46,XX ovotesticular DSD, characterized by the coexistence of ovarian and testicular tissue in the same individual. Several mechanisms have been identified that may contribute to the development of testicular tissue in XX gonads. This includes translocation of SRY to the X chromosome or an autosome. In the absence of SRY, other genes associated with testis development may be overexpressed or there may be a reduction in the activity of pro-ovarian/antitesticular factors. However, it is important to note that a significant number of patients with these DSD conditions have not yet recognized a genetic diagnosis. This finding suggests that there are additional genetic pathways or epigenetic mechanisms that have yet to be identified. The text will provide an overview of the current understanding of the genetic factors contributing to 46,XX DSD, specifically focusing on testicular and ovotesticular DSD conditions. It will summarize the existing knowledge regarding the genetic causes of these differences. Furthermore, it will explore the potential involvement of other factors, such as epigenetic mechanisms, in developing these conditions.
Collapse
Affiliation(s)
- Maria Tereza Martins Ferrari
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elinaelma Suelane do Nascimento Silva
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Yumie Nishi
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Disciplina de Endocrinologia e Metabologia, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Reyes AP, León NY, Frost ER, Harley VR. Genetic control of typical and atypical sex development. Nat Rev Urol 2023:10.1038/s41585-023-00754-x. [PMID: 37020056 DOI: 10.1038/s41585-023-00754-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/07/2023]
Abstract
Sex development relies on the sex-specific action of gene networks to differentiate the bipotential gonads of the growing fetus into testis or ovaries, followed by the differentiation of internal and external genitalia depending on the presence or absence of hormones. Differences in sex development (DSD) arise from congenital alterations during any of these processes, and are classified depending on sex chromosomal constitution as sex chromosome DSD, 46,XY DSD or 46,XX DSD. Understanding the genetics and embryology of typical and atypical sex development is essential for diagnosing, treating and managing DSD. Advances have been made in understanding the genetic causes of DSD over the past 10 years, especially for 46,XY DSD. Additional information is required to better understand ovarian and female development and to identify further genetic causes of 46,XX DSD, besides congenital adrenal hyperplasia. Ongoing research is focused on the discovery of further genes related to typical and atypical sex development and, therefore, on improving diagnosis of DSD.
Collapse
Affiliation(s)
- Alejandra P Reyes
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
- Genetics Department, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Nayla Y León
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Emily R Frost
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Vincent R Harley
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Chong SC, Cao Y, Fung ELW, Kleppe S, Gripp KW, Hertecant J, El-Hattab AW, Suleiman J, Clark G, von Allmen G, Rodziyevska O, Lewis RA, Rosenfeld JA, Dong J, Wang X, Miller MJ, Bi W, Liu P, Scaglia F. Expansion of the clinical and molecular spectrum of WWOX-related epileptic encephalopathy. Am J Med Genet A 2023; 191:776-785. [PMID: 36537114 DOI: 10.1002/ajmg.a.63074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 02/14/2023]
Abstract
WWOX biallelic loss-of-function pathogenic single nucleotide variants (SNVs) and copy number variants (CNVs) including exonic deletions and duplications cause WWOX-related epileptic encephalopathy (WOREE) syndrome. This disorder is characterized by refractory epilepsy, axial hypotonia, peripheral hypertonia, progressive microcephaly, and premature death. Here we report five patients with WWOX biallelic predicted null variants identified by exome sequencing (ES), genome sequencing (GS), and/or chromosomal microarray analysis (CMA). SNVs and intragenic deletions of one or more exons were commonly reported in WOREE syndrome patients which made the genetic diagnosis challenging and required a combination of different diagnostic technologies. These patients presented with severe, developmental and epileptic encephalopathy (DEE), and other cardinal features consistent with WOREE syndrome. This report expands the clinical phenotype associated with this condition, including failure to thrive in most patients and epilepsy that responded to a ketogenic diet in three patients. Dysmorphic features and abnormal prenatal findings were not commonly observed. Additionally, recurrent pancreatitis and sensorineural hearing loss each were observed in single patients. In summary, these phenotypic features broaden the clinical spectrum of WOREE syndrome.
Collapse
Affiliation(s)
- Shuk Ching Chong
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China.,Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China
| | - Ye Cao
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China.,Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Eva L W Fung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Soledad Kleppe
- Unidad de Metabolismo, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Karen W Gripp
- Division of Medical Genetics, A. I. du Pont Hospital for Children/Nemours, Wilmington, Delaware, USA
| | - Jozef Hertecant
- Division of Genetic and Metabolic Disorders, Departments of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates.,Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gary Clark
- Neurology and Developmental Neuroscience, Baylor College of Medicine, Neurology Service, Texas Children's Hospital, Houston, Texas, USA
| | - Gretchen von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, Texas, USA
| | - Olga Rodziyevska
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School, Houston, Texas, USA
| | - Richard A Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jie Dong
- Baylor Genetics, Houston, Texas, USA
| | | | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Marcus J Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Fernando Scaglia
- Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China.,Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Guerrero-Fernández J, González-Peramato P, Rodríguez Estévez A, Alcázar Villar MJ, Audí Parera L, Azcona San Julián MC, Carcavilla Urquí A, Castaño González LA, Martos Tello JM, Mora Palma C, Moreno Macián MF, Yeste Fernández D, Nistal M. Guía de consenso sobre la gonadectomía profiláctica en el desarrollo sexual diferente. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Guerrero-Fernández J, González-Peramato P, Rodríguez Estévez A, Alcázar Villar MJ, Audí Parera L, Azcona San Julián MC, Carcavilla Urquí A, Castaño González LA, Martos Tello JM, Mora Palma C, Moreno Macián MF, Yeste Fernández D, Nistal M. Consensus guide on prophylactic gonadectomy in different sex development. ENDOCRINOL DIAB NUTR 2022; 69:629-645. [PMID: 36369235 DOI: 10.1016/j.endien.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/06/2021] [Indexed: 06/16/2023]
Abstract
The risk of suffering from gonadal germ cell tumors (GCT) is increased in some patients with different sexual development (DSD), mainly in those with Y chromosome material. This risk, however, varies considerably depending on a multitude of factors that make the decision for prophylactic gonadectomy extremely difficult. In order to make informed recommendations on the convenience of this procedure in cases where there is potential for malignancy, this consensus guide evaluates the latest clinical evidence, which is generally low, and updates the existing knowledge in this field.
Collapse
Affiliation(s)
- Julio Guerrero-Fernández
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Servicio de Endocrinología Pediátrica, Hospital Infantil La Paz, Madrid, Spain.
| | - Pilar González-Peramato
- Departamento de Anatomía Patológica, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - María José Alcázar Villar
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Unidad de Endocrinología Pediátrica, Hospital de Fuenlabrada, Fuenlabrada, Spain
| | - Laura Audí Parera
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Vall d'Hebron Institut de Recerca (VHIR), CIBER de Enfermedades Raras (CIBERER), Hospital Vall d'Hebron, Barcelona, Spain
| | - María Cristina Azcona San Julián
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Unidad de Endocrinología Pediátrica, Departamento de Pediatría, Clínica Universidad de Navarra, Pamplona, Spain
| | - Atilano Carcavilla Urquí
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Servicio de Endocrinología Pediátrica, Hospital Infantil La Paz, Madrid, Spain
| | - Luis Antonio Castaño González
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Instituto BioCruces - Endocrinología Pediátrica, Hospital Universitario Cruces, Barakaldo, Spain
| | - José María Martos Tello
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Unidad de Endocrinología Pediátrica, Hospital Universitario Virgen de La Arrixaca, Murcia, Spain
| | - Cristina Mora Palma
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Servicio de Endocrinología Pediátrica, Hospital Infantil La Paz, Madrid, Spain
| | - Maria Francisca Moreno Macián
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Servicio de Endocrinología Pediátrica, Hospital La Fe, Valencia, Spain
| | - Diego Yeste Fernández
- Grupo de Trabajo Sobre ADS/DSD de la Sociedad Española de Endocrinología Pediátrica (SEEP), Spain; Servicio de Endocrinología Pediátrica, Hospital Materno Infantil Vall d'Hebron, CIBER de Enfermedades Raras (CIBERER), EndoERN, Barcelona, Spain
| | - Manuel Nistal
- Departamento de Anatomía, Histología y Neurociencias. Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Nowacka-Woszuk J, Stachowiak M, Szczerbal I, Szydlowski M, Szabelska-Beresewicz A, Zyprych-Walczak J, Krzeminska P, Nowak T, Lukomska A, Ligocka Z, Biezynski J, Dzimira S, Nizanski W, Switonski M. Whole genome sequencing identifies a missense polymorphism in PADI6 associated with testicular/ovotesticular XX disorder of sex development in dogs. Genomics 2022; 114:110389. [PMID: 35597501 DOI: 10.1016/j.ygeno.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022]
Abstract
Disorders of sex development (DSDs) are congenital malformations defined as discrepancies between sex chromosomes and phenotypical sex. Testicular or ovotesticular XX DSDs are frequently observed in female dogs, while monogenic XY DSDs are less frequent. Here, we applied whole genome sequencing (WGS) to search for causative mutations in XX DSD females in French Bulldogs (FB) and American Staffordshire Terries (AST) and in XY DSD Yorkshire Terries (YT). The WGS results were validated by Sanger sequencing and ddPCR. It was shown that a missense SNP of the PADI6 gene, is significantly associated with the XX DSD (SRY-negative) phenotype in AST (P = 0.0051) and FB (P = 0.0306). On the contrary, we did not find any associated variant with XY DSD in YTs. Our study suggests that the genetic background of the XX DSD may be more complex and breed-specific.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Alicja Szabelska-Beresewicz
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Paulina Krzeminska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Tomasz Nowak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | - Anna Lukomska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| | - Zuzanna Ligocka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Janusz Biezynski
- Department of Surgery, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
| | - Stanislaw Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland
| | - Wojciech Nizanski
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| | - Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland.
| |
Collapse
|
8
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Singh N, Singh D, Modi D. LIM Homeodomain (LIM-HD) Genes and Their Co-Regulators in Developing Reproductive System and Disorders of Sex Development. Sex Dev 2021; 16:147-161. [PMID: 34518474 DOI: 10.1159/000518323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
LIM homeodomain (LIM-HD) family genes are transcription factors that play crucial roles in a variety of functions during embryonic development. The activities of the LIM-HD proteins are regulated by the co-regulators LIM only (LMO) and LIM domain-binding (LDB). In the mouse genome, there are 13 LIM-HD genes (Lhx1-Lhx9, Isl1-2, Lmx1a-1b), 4 Lmo genes (Lmo1-4), and 2 Ldb genes (Ldb1-2). Amongst these, Lhx1 is required for the development of the müllerian duct epithelium and the timing of the primordial germ cell migration. Lhx8 is necessary for oocyte differentiation and Lhx9 for somatic cell proliferation in the genital ridges and control of testosterone production in the Leydig cells. Lmo4 is involved in Sertoli cell differentiation. Mutations in LHX1 are associated with müllerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. LHX9 gene variants are reported in cases with disorders of sex development (DSD). Mutations in LHX3 and LHX4 are reported in patients with combined pituitary hormone deficiency having absent or delayed puberty. A transcript map of the Lhx, Lmo, and Ldb genes reveal that multiple LIM-HD genes and their co-regulators are expressed in a sexually dimorphic pattern in the developing mouse gonads. Unraveling the roles of LIM-HD genes during development will aid in our understanding of the causes of DSD.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
10
|
Leitao Braga B, Lisboa Gomes N, Nishi MY, Freire BL, Batista RL, D Faria Junior JA, Funari MFA, Figueredo Benedetti AF, de Moraes Narcizo A, Cavalca Cardoso L, Lerario AM, Guerra-Junior G, Frade Costa EM, Domenice S, Jorge AAL, Mendonca BB. Variants in 46,XY DSD-Related Genes in Syndromic and Non-Syndromic Small for Gestational Age Children with Hypospadias. Sex Dev 2021; 16:27-33. [PMID: 34518484 DOI: 10.1159/000518091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/19/2022] Open
Abstract
Hypospadias is a common congenital disorder of male genital formation. Children born small for gestational age (SGA) present a high frequency of hypospadias of undetermined etiology. No previous study investigated the molecular etiology of hypospadias in boys born SGA using massively parallel sequencing. Our objective is to report the genetic findings of a cohort of patients born SGA with medium or proximal hypospadias. We identified 46 individuals with this phenotype from a large cohort of 46,XY DSD patients, including 5 individuals with syndromic features. DNA samples from subjects were studied by either whole exome sequencing or target gene panel approach. Three of the syndromic patients have 5 main clinical features of Silver-Russell syndrome (SRS) and were first studied by MLPA. Among the syndromic patients, loss of DNA methylation at the imprinting control region H19/IGF2 was identified in 2 individuals with SRS clinical diagnosis. Two novel pathogenic variants in compound heterozygous state were identified in the CUL7 gene establishing the diagnosis of 3M syndrome in one patient, and a novel homozygous variant in TRIM37 was identified in another boy with Mulibrey nanism phenotype. Among the non-syndromic subjects, 7 rare heterozygous variants were identified in 6 DSD-related genes. However, none of the variants found can explain the phenotype by themselves. In conclusion, a genetic defect that clarifies the etiology of hypospadias was not found in most of the non-syndromic SGA children, supporting the hypothesis that multifactorial causes, new genes, and/or unidentified epigenetic defects may have an influence in this condition.
Collapse
Affiliation(s)
- Barbara Leitao Braga
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Nathalia Lisboa Gomes
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Bruna L Freire
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Rafael L Batista
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Jose A D Faria Junior
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Anna F Figueredo Benedetti
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda de Moraes Narcizo
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lais Cavalca Cardoso
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Elaine M Frade Costa
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil.,Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento - LIM/42, Hospital das Clinicas, Disciplina de Endocrinologia da FMUSP, Sao Paulo, Brazil
| |
Collapse
|
11
|
Havali C, Ekici A, Dorum S, Görükmez Ö, Topak A. Recently defined epileptic encephalopathy related to WWOX gene mutation: six patients and new mutations. Neurol Res 2021; 43:744-750. [PMID: 34034642 DOI: 10.1080/01616412.2021.1932173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: Pathogenic variants of the WWOX gene have been linked to sexual differentiation disorders, spinocerebellar ataxia, and epileptic encephalopathy (EE). We evaluated the clinical and molecular data from six newly diagnosed patients with WWOX-related EE.Methods: Clinical and molecular findings in six patients with EE were investigated, and biallelic pathogenic variants in the WWOX gene were identified. Clinical exome sequencing and Sanger sequencing were performed.Results: Three variations, as well as two novel mutations, in the WWOX gene were detected.Conclusion: Pathogenic WWOX mutations are associated with early-onset EE. Here, we report the case of six children with WWOX-related EE.
Collapse
Affiliation(s)
- Cengiz Havali
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Arzu Ekici
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Pediatrics, Division of Pediatric Metabolic Disorders, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özlem Görükmez
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Ali Topak
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
12
|
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021; 10:824. [PMID: 33916893 PMCID: PMC8067556 DOI: 10.3390/cells10040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetic Institute, Kaplan Medical Center, Hebrew University-Hadassah Medical School, Rehovot 76100, Israel;
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon 58100, Israel
| | - Baraa Abudiab
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Srinivasa Rao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sarah Alshammery
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead 2145, NSW, Australia;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wendy Gold
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead and The Children’s Medical Research Institute, Westmead 2145, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network and Department of Medicine, Physiology and BME, University of Toronto, Toronto, ON M5T 1M8, Canada;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| |
Collapse
|
13
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
14
|
Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and Disorders of Sex Development. Front Endocrinol (Lausanne) 2020; 11:211. [PMID: 32351452 PMCID: PMC7174651 DOI: 10.3389/fendo.2020.00211] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Disorders of Sex Development (DSD) are congenital anomalies in which there is a discordance between chromosomal, genetic, gonadal, and/or internal/external genital sex. In XY individuals, the process of fetal sex differentiation can be disrupted at the stage of gonadal differentiation, resulting in gonadal dysgenesis, a form of early fetal-onset primary hypogonadism characterized by insufficient androgen and anti-Müllerian hormone (AMH) production, which leads to the development of ambiguous or female genitalia. The process of sex differentiation can also be disrupted at the stage of genital differentiation, due to isolated defects in androgen or AMH secretion, but not both. These are forms of fetal-onset hypogonadism with dissociated gonadal dysfunction. In this review, we present a perspective on impaired testicular endocrine function, i.e., fetal-onset male hypogonadism, resulting in incomplete virilization at birth.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- *Correspondence: Romina P. Grinspon
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Tochigi Y, Takamatsu Y, Nakane J, Nakai R, Katayama K, Suzuki H. Loss of Wwox Causes Defective Development of Cerebral Cortex with Hypomyelination in a Rat Model of Lethal Dwarfism with Epilepsy. Int J Mol Sci 2019; 20:ijms20143596. [PMID: 31340538 PMCID: PMC6678113 DOI: 10.3390/ijms20143596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.
Collapse
Affiliation(s)
- Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Yutaka Takamatsu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Jun Nakane
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Rika Nakai
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan.
| |
Collapse
|
16
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
17
|
The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med 2018; 21:1308-1318. [PMID: 30356099 PMCID: PMC6752669 DOI: 10.1038/s41436-018-0339-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Germline WWOX pathogenic variants
have been associated with disorder of sex differentiation (DSD), spinocerebellar
ataxia (SCA), and WWOX-related epileptic
encephalopathy (WOREE syndrome). We review clinical and molecular data on
WWOX-related disorders, further
describing WOREE syndrome and phenotype/genotype correlations. Methods We report clinical and molecular findings in 20 additional patients
from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants
in the WWOX gene. Different molecular
screening approaches were used (quantitative polymerase chain reaction/multiplex
ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic
hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome
sequencing), genome sequencing. Results Two copy-number variations (CNVs) or two single-nucleotide
variations (SNVs) were found respectively in four and nine families, with
compound heterozygosity for one SNV and one CNV in five families. Eight novel
missense pathogenic variants have been described. By aggregating our patients
with all cases reported in the literature, 37 patients from 27 families with
WOREE syndrome are known. This review suggests WOREE syndrome is a very severe
epileptic encephalopathy characterized by absence of language development and
acquisition of walking, early-onset drug-resistant seizures, ophthalmological
involvement, and a high likelihood of premature death. The most severe clinical
presentation seems to be associated with null genotypes. Conclusion Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic
encephalopathy. We report here the largest cohort of individuals with WOREE
syndrome.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The current review focuses on the neonatal presentation of disorders of sex development, summarize the current approach to the evaluation of newborns and describes recent advances in understanding of underlying genetic aetiology of these conditions. RECENT FINDINGS Several possible candidate genes as well as other adverse environmental factors have been described as contributing to several clinical subgroups of 46,XY DSDs. Moreover, registry-based studies showed that infants with suspected DSD may have extragenital anomalies and in 46,XY cases, being small for gestational age (SGA), cardiac and neurological malformations are the commonest concomitant conditions. SUMMARY Considering that children and adults with DSD may be at risk of several comorbidities a clear aetiological diagnosis will guide further management. To date, a firm diagnosis is not reached in over half of the cases of 46,XY DSD. Whilst it is likely that improved diagnostic resources will bridge this gap in the future, the next challenge to the clinical community will be to show that such advances will result in an improvement in clinical care.
Collapse
|
19
|
Barseghyan H, Délot EC, Vilain E. New technologies to uncover the molecular basis of disorders of sex development. Mol Cell Endocrinol 2018; 468:60-69. [PMID: 29655603 PMCID: PMC7249677 DOI: 10.1016/j.mce.2018.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 02/04/2023]
Abstract
The elegant developmental biology experiments conducted in the 1940s by French physiologist Alfred Jost demonstrated that the sexual phenotype of a mammalian embryo depended whether the embryonic gonad develops into a testis or not. In humans, anomalies in the processes that regulate development of chromosomal, gonadal or anatomic sex result in a spectrum of conditions termed Disorders/Differences of Sex Development (DSD). Each of these conditions is rare, and understanding of their genetic etiology is still incomplete. Historically, DSD diagnoses have been difficult to establish due to the lack of standardization of anatomical and endocrine phenotyping procedures as well as genetic testing. Yet, a definitive diagnosis is critical for optimal management of the medical and psychosocial challenges associated with DSD conditions. The advent in the clinical realm of next-generation sequencing methods, with constantly decreasing price and turnaround time, has revolutionized the diagnostic process. Here we review the successes and limitations of the genetic methods currently available for DSD diagnosis, including Sanger sequencing, karyotyping, exome sequencing and chromosomal microarrays. While exome sequencing provides higher diagnostic rates, many patients still remain undiagnosed. Newer approaches, such as whole-genome sequencing and whole-genome mapping, along with gene expression studies, have the potential to identify novel DSD-causing genes and significantly increase total diagnostic yield, hopefully shortening the patient's journey to an accurate diagnosis and enhancing health-related quality-of-life outcomes for patients and families.
Collapse
Affiliation(s)
- Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| | - Emmanuèle C Délot
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC, 20010, USA.
| |
Collapse
|
20
|
Eid W, Biason-Lauber A. Why boys will be boys and girls will be girls: Human sex development and its defects. ACTA ACUST UNITED AC 2017; 108:365-379. [PMID: 28033664 DOI: 10.1002/bdrc.21143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, "sex determination," which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and "sex differentiation," which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the "prismatic" clinical cases are given. Birth Defects Research (Part C) 108:365-379, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wassim Eid
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
21
|
Kim JH, Kang E, Heo SH, Kim GH, Jang JH, Cho EH, Lee BH, Yoo HW, Choi JH. Diagnostic yield of targeted gene panel sequencing to identify the genetic etiology of disorders of sex development. Mol Cell Endocrinol 2017; 444:19-25. [PMID: 28130116 DOI: 10.1016/j.mce.2017.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Disorders of sex development (DSD) vary phenotypically and are caused by a number of genetic etiologies. This study investigated the genetic etiology of DSD patients using targeted exome sequencing of 67 known DSD-associated genes in humans. This study included 37 patients with 46, XY DSD and seven patients with 46, XX DSD. We identified known pathogenic mutations or deletion in nine (20.5%) patients in the AR, CYP17A1, SRD5A1, and DMRT1/2 genes. Novel variants were identified in nine patients (20.5%) in the AR, ATRX, CYP17A1, CHD7, MAP3K1, NR5A1, and WWOX genes. Among them, four patients harbored pathogenic or likely pathogenic variants, while the remaining five patients (11.4%) had variants of uncertain significance. We were able to make a genetic diagnosis in 29.5% of patients with pathogenic or likely pathogenic mutations. Targeted exome sequencing is an efficient tool to improve the diagnostic yield of DSD, despite its phenotypic and genetic heterogeneity.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Eungu Kang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Hee Heo
- Asan Institute for Life Sciences, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Eun-Hae Cho
- Green Cross Genome, Yongin, Republic of Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Fan Y, Zhang X, Wang L, Wang R, Huang Z, Sun Y, Yao R, Huang X, Ye J, Han L, Qiu W, Zhang H, Liang L, Gu X, Yu Y. Diagnostic Application of Targeted Next-Generation Sequencing of 80 Genes Associated with Disorders of Sexual Development. Sci Rep 2017; 7:44536. [PMID: 28295047 PMCID: PMC5353765 DOI: 10.1038/srep44536] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/10/2017] [Indexed: 11/19/2022] Open
Abstract
Disorders of sexual development (DSD) are estimated to occur in 1 of 4500 births. Since the genetic etiology of DSD is highly heterogeneous, obtaining a definitive molecular diagnosis by single gene test is challenging. Utilizing a high-throughput sequencing upfront is proposed as an efficient approach to aid in the diagnosis. This study aimed to examine the diagnostic yield of next-generation sequencing in DSD. 32 DSD patients that previously received clinical examinations and single gene tests were selected, with or without a diagnosis. Prior single gene tests were masked, and then samples went through targeted next-generation sequencing of 80 genes from which the diagnostic yield was assessed. A likely diagnosis, with pathogenic or likely pathogenic variants identified, was obtained from nine of the 32 patients (i.e., 28.1%, versus 10% by single gene tests). In another five patients (15.6%), variants of uncertain significance were found. Among 18 variants identified (i.e., 17 single nucleotide variants and one small deletion), eight had not been previously reported. This study supports the notion that next-generation sequencing can be an efficient tool in the clinical diagnosis and variant discovery in DSD.
Collapse
Affiliation(s)
- Yanjie Fan
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Xia Zhang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Lili Wang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Ruifang Wang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Zhuo Huang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yu Sun
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Ruen Yao
- Department of Endocrinology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaodong Huang
- Department of Endocrinology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jun Ye
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| | - Yongguo Yu
- Department of Pediatric Endocrinology/Genetics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, 200092, China
| |
Collapse
|
23
|
Hersmus R, van Bever Y, Wolffenbuttel KP, Biermann K, Cools M, Looijenga LHJ. The biology of germ cell tumors in disorders of sex development. Clin Genet 2016; 91:292-301. [PMID: 27716895 DOI: 10.1111/cge.12882] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Development of a malignant germ cell tumor, i.e., germ cell cancer (GCC) in individuals with disorders of sex development (DSD) depends on a number of (epi-)genetic factors related to early gonadal- and germ cell development, possibly related to genetic susceptibility. Fetal development of germ cells is orchestrated by strict processes involving specification, migration and the development of a proper gonadal niche. In this review we will discuss the early (epi-)genetic events in normal and aberrant germ cell and gonadal development. Focus will be on the formation of the precursor lesions of GCC in individuals who have DSD. In our view, expression of the different embryonic markers in, and epigenetic profile of the precursor lesions reflects the developmental stage in which these cells are blocked in their maturation. Therefore, these are not a primary pathogenetic driving force. Progression later in life towards a full blown cancer likely depends on additional factors such as a changed endocrine environment in a susceptible individual. Genetic susceptibility is, as evidenced by the presence of specific risk genetic variants (SNPs) in patients with a testicular GCC, related to genes involved in early germ cell and gonadal development.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katja P Wolffenbuttel
- Department of Pediatric Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine Cools
- Department of Pediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | | |
Collapse
|
24
|
Juniarto AZ, van der Zwan YG, Santosa A, Ariani MD, Eggers S, Hersmus R, Themmen APN, Bruggenwirth HT, Wolffenbuttel KP, Sinclair A, White SJ, Looijenga LHJ, de Jong FH, Faradz SMH, Drop SLS. Hormonal evaluation in relation to phenotype and genotype in 286 patients with a disorder of sex development from Indonesia. Clin Endocrinol (Oxf) 2016; 85:247-57. [PMID: 26935236 DOI: 10.1111/cen.13051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/22/2016] [Accepted: 02/28/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study was to determine the aetiological spectrum of disorders of sex development (DSD) in a large cohort of underprivileged and undiagnosed patients from Indonesia. METHODS A total of 286 patients with atypical external and/or internal genitalia were evaluated using clinical, hormonal, molecular genetic and histological parameters. RESULTS The age (years) at presentation was 0-0·5 in 41 (14·3%), >0·5-12 in 181 (63·3%) and >12 in 64 cases (22·4%). 46,XY DSD was most common (68·2%, n = 195), 46,XX DSD was found in 23·4% (n = 67) and sex chromosomal DSD in 8·4% (n = 24). In 61·2% of 46,XX DSD patients, 17·9% of 46,XY DSD patients and all sex chromosome DSD patients (29·4% in total), a final diagnosis was reached based on genetic or histological gonadal tissue evaluation. 17-hydroxyprogesterone and androstenedione levels were the most distinctive parameters in 46,XX DSD patients. In 46,XY DSD, diagnostic groups were identified based on the external masculinization score: androgen action disorder (AAD), unknown male undermasculinization (UMU), and gonadal dysgenesis (GD). LH, FSH and testosterone levels were most informative especially in the older age group. HCG tests were of no additional value as no patients with androgen synthesis disorders were found. Hormonal profiles of patients with sex chromosome DSD and a Y-chromosome sequence containing karyotype showed high levels of LH and FSH, and low levels of AMH, inhibin B and testosterone compared with the normal male range. Gene mutations were found in all patients with CAH, but in only 24·5% and 1·8% of patients with AAD and UMU. In 32% of 46,XY GD patients, copy number variants of different genes were found. CONCLUSION A stepwise diagnostic approach led to a molecularly or histologically proven final diagnosis in 29·4% of the patients. The most informative parameters were serum levels of 17-hydroxyprogesterone and androstenedione in 46,XX DSD patients, and serum LH, FSH and testosterone levels in 46,XY DSD patients.
Collapse
Affiliation(s)
- A Zulfa Juniarto
- Division of Human Genetics, Center for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Yvonne G van der Zwan
- Department of Paediatrics, Division of Endocrinology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Ardy Santosa
- Department of Urology, Dr Kariadi Hospital, Semarang, Indonesia
| | - Mahayu Dewi Ariani
- Division of Human Genetics, Center for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Stefanie Eggers
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Remko Hersmus
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Section of Endocrinology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Katja P Wolffenbuttel
- Department of Paediatric Urology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Andrew Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Stefan J White
- Centre for Genetic Diseases, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Australia
| | - Leendert H J Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank H de Jong
- Division of Human Genetics, Center for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Sultana M H Faradz
- Division of Human Genetics, Center for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Stenvert L S Drop
- Department of Paediatrics, Division of Endocrinology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Parent-of-origin-specific signatures of de novo mutations. Nat Genet 2016; 48:935-9. [PMID: 27322544 DOI: 10.1038/ng.3597] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
De novo mutations (DNMs) originating in gametogenesis are an important source of genetic variation. We use a data set of 7,216 autosomal DNMs with resolved parent of origin from whole-genome sequencing of 816 parent-offspring trios to investigate differences between maternally and paternally derived DNMs and study the underlying mutational mechanisms. Our results show that the number of DNMs in offspring increases not only with paternal age, but also with maternal age, and that some genome regions show enrichment for maternally derived DNMs. We identify parent-of-origin-specific mutation signatures that become more pronounced with increased parental age, pointing to different mutational mechanisms in spermatogenesis and oogenesis. Moreover, we find DNMs that are spatially clustered to have a unique mutational signature with no significant differences between parental alleles, suggesting a different mutational mechanism. Our findings provide insights into the molecular mechanisms that underlie mutagenesis and are relevant to disease and evolution in humans.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Disorders of sexual development (DSD) are a genetic and phenotypic heterogeneous group of congenital disorders. This review focuses on the genetics of DSD and aims to recognize and contextualize, in a systematic way, based on the classification and the genetic mechanisms, the latest developments in the field of DSD diagnostics. RECENT FINDINGS Due to the current diagnostic armamentarium, during the past decade, the field of DSD diagnostics has changed dramatically from the recognition of few genes and cytogenetic abnormalities, to the identification of multiple genes and a wide arrange of genetic mechanisms involved in the genesis of DSD. In addition, the phenotypes associated with the genetic mechanism have expanded tremendously. SUMMARY Despite the current diagnostic limitations, the landscape for genetics of DSD is encouraging due to discovery of new genes, their interactions, and the recognition of the variety of mechanisms involved.
Collapse
|
27
|
Ben-Salem S, Al-Shamsi AM, John A, Ali BR, Al-Gazali L. A novel whole exon deletion in WWOX gene causes early epilepsy, intellectual disability and optic atrophy. J Mol Neurosci 2015; 56:17-23. [PMID: 25403906 DOI: 10.1007/s12031-014-0463-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 02/05/2023]
Abstract
Recent studies have implicated the WW domain-containing oxidoreductase encoding gene (WWOX) in a severe form of autosomal recessive neurological disorder. This condition showed an overlapping spectrum of clinical features including spinocerebellar ataxia associated with generalized seizures and delayed psychomotor development to growth retardation, spasticity, and microcephaly. We evaluated a child from a consanguineous Emirati family that presented at birth with growth retardation, microcephaly, epileptic seizures, and later developed spasticity and delayed psychomotor development. Screening for deletions and duplications using whole-chromosomal microarray analysis identified a novel homozygous microdeletion encompassing exon 5 of the WWOX gene. Analysis of parental DNA indicated that this deletion was inherited from both parents and lies within a large region of homozygosity. Sanger sequencing of the cDNA showed that the deletion resulted in exon 5 skipping leading to a frame-shift and creating a premature stop codon at amino acid position 212. Quantification of mRNA revealed striking low level of WWOX expression in the child and moderate level of expression in the mother compared to a healthy control. To the best of our knowledge, this is the first homozygous germline structural variation in WWOX gene resulting in truncated transcripts that were presumably subject to NMD pathway. Our findings extend the clinical and genetic spectrum of WWOX mutations and support a crucial role of this gene in neurological development.
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates,
| | | | | | | | | |
Collapse
|
28
|
WWOX and severe autosomal recessive epileptic encephalopathy: first case in the prenatal period. J Hum Genet 2015; 60:267-71. [PMID: 25716914 DOI: 10.1038/jhg.2015.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
WWOX has been recently implicated in autosomal recessive spinocerebellar ataxia type 12 (SCAR12) and severe early-onset epileptic encephalopathy (EOEE). By array comparative genomic hybridization, we identified a 0.6 Mb homozygous deletion in 16q23.1 in a fetus presenting with brain anomalies. His older sister who died at the age of 22 months from an EOEE was also homozygous for the copy number variations in 16q23.1. This deletion includes the first six exons of WWOX and results in a null genotype in homozygous patients. This family gives additional support for the implication of WWOX in severe EOEEs. We report for the first time prenatal ultrasound findings in a fetus with a WWOX-null genotype. Our study expands the range of brain abnormalities in WWOX-related EOEEs. This additional family confirms the genotype-phenotype correlation with WWOX-null alleles associated with the most severe form of WWOX-related epileptic encephalopathy with premature death.
Collapse
|
29
|
Richards RI, Choo A, Lee CS, Dayan S, O'Keefe L. WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp Biol Med (Maywood) 2015; 240:338-44. [PMID: 25595186 DOI: 10.1177/1535370214565990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The WWOX gene spans the common chromosomal fragile site FRA16D that is located within a massive (780 kb) intron. The WWOX gene is very long, at 1.1 Mb, which may contribute to the very low abundance of the full-length 1.4 kb mRNA. Alternative splicing also accounts for a variety of aberrant transcripts, most of which are devoid of C-terminal sequences required for WWOX to act as an oxidoreductase. The mouse WWOX gene also spans a chromosomal fragile site implying some sort of functional relationship that confers a selective advantage. The encoded protein domains of WWOX are conserved through evolution (between humans and Drosophila melanogaster) and include WW domains, an NAD -binding site, short-chain dehydrogenase/reductase enzyme and nuclear compartmentalization signals. This homology has enabled functional analyses in D. melanogaster that demonstrate roles for WWOX in reactive oxygen species regulation and metabolism. Indeed the human WWOX gene is also responsive to altered metabolism. Cancer cells typically exhibit altered metabolism (Warburg effect). Many cancers exhibit FRA16D DNA instability that results in aberrant WWOX expression and is associated with poor prognosis for these cancers. It is therefore thought that aberrant WWOX expression contributes to the altered metabolism in cancer. In addition, others have found that a specific (low-expression) allele of WWOX genotype contributes to cancer predisposition.
Collapse
Affiliation(s)
- Robert I Richards
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Amanda Choo
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Cheng Shoou Lee
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Sonia Dayan
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Louise O'Keefe
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Abstract
Mammalian sex determination is the unique process whereby a single organ, the bipotential gonad, undergoes a developmental switch that promotes its differentiation into either a testis or an ovary. Disruptions of this complex genetic process during human development can manifest as disorders of sex development (DSDs). Sex development can be divided into two distinct processes: sex determination, in which the bipotential gonads form either testes or ovaries, and sex differentiation, in which the fully formed testes or ovaries secrete local and hormonal factors to drive differentiation of internal and external genitals, as well as extragonadal tissues such as the brain. DSDs can arise from a number of genetic lesions, which manifest as a spectrum of gonadal (gonadal dysgenesis to ovotestis) and genital (mild hypospadias or clitoromegaly to ambiguous genitalia) phenotypes. The physical attributes and medical implications associated with DSDs confront families of affected newborns with decisions, such as gender of rearing or genital surgery, and additional concerns, such as uncertainty over the child's psychosexual development and personal wishes later in life. In this Review, we discuss the underlying genetics of human sex determination and focus on emerging data, genetic classification of DSDs and other considerations that surround gender development and identity in individuals with DSDs.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | - David E Sandberg
- Department of Pediatrics, Division of Child Behavioral Health and Child Health Evaluation &Research (CHEAR) Unit, University of Michigan, 300 North Ingalls Street, Ann Arbor, MI 48109-5456, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| |
Collapse
|
31
|
Morel Y, Roucher F, Mallet D, Plotton I. Genetic of gonadal determination. ANNALES D'ENDOCRINOLOGIE 2014; 75:32-9. [DOI: 10.1016/j.ando.2014.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Abstract
CONTEXT Disorders of sex development (DSDs) may arise from genetic defects in testis or ovary determination. Current analytical technologies and improved understanding of major regulatory pathways have cast new insight into the genetic basis for these disorders. EVIDENCE ACQUISITION A PubMed search was performed for the years 2011-13 using the terms "disorder of sex development," "gonadal dysgenesis," "ovarian dysgenesis," "array CGH," and "whole exome sequencing." Only articles from peer-reviewed journals were included. EVIDENCE SYNTHESIS Key themes that emerged included aberrant regulation of SOX9 via the hTES promoter in 46,XY gonadal DSDs, the role of the MAPK pathway in normal and aberrant gonadal development, and the role of new technologies in identification of gonadal DSDs. CONCLUSIONS With the advent of the robust new technologies of array comparative genomic hybridization and genomic sequencing in recent years, many new sex-determining genes have been identified. These genes have been organized into ovarian- and testicular-determining pathways that can block each other's activities. Identification of a mutation in a sex-determining gene in an individual affected with a DSD may warrant more extensive investigation for other phenotypic effects as well as genetic testing of other family members.
Collapse
Affiliation(s)
- Harry Ostrer
- Departments of Pathology, Genetics, and Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
33
|
Mallaret M, Synofzik M, Lee J, Sagum CA, Mahajnah M, Sharkia R, Drouot N, Renaud M, Klein FAC, Anheim M, Tranchant C, Mignot C, Mandel JL, Bedford M, Bauer P, Salih MA, Schüle R, Schöls L, Aldaz CM, Koenig M. The tumour suppressor gene WWOX is mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation. ACTA ACUST UNITED AC 2013; 137:411-9. [PMID: 24369382 DOI: 10.1093/brain/awt338] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We previously localized a new form of recessive ataxia with generalized tonic-clonic epilepsy and mental retardation to a 19 Mb interval in 16q21-q23 by homozygosity mapping of a large consanguineous Saudi Arabian family. We now report the identification by whole exome sequencing of the missense mutation changing proline 47 into threonine in the first WW domain of the WW domain containing oxidoreductase gene, WWOX, located in the linkage interval. Proline 47 is a highly conserved residue that is part of the WW motif consensus sequence and is part of the hydrophobic core that stabilizes the WW fold. We demonstrate that proline 47 is a key amino acid essential for maintaining the WWOX protein fully functional, with its mutation into a threonine resulting in a loss of peptide interaction for the first WW domain. We also identified another highly conserved homozygous WWOX mutation changing glycine 372 to arginine in a second consanguineous family. The phenotype closely resembled the index family, presenting with generalized tonic-clonic epilepsy, mental retardation and ataxia, but also included prominent upper motor neuron disease. Moreover, we observed that the short-lived Wwox knock-out mouse display spontaneous and audiogenic seizures, a phenotype previously observed in the spontaneous Wwox mutant rat presenting with ataxia and epilepsy, indicating that homozygous WWOX mutations in different species causes cerebellar ataxia associated with epilepsy.
Collapse
Affiliation(s)
- Martial Mallaret
- 1 Department of Neurology, Hôpital de Hautepierre, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baxter RM, Vilain E. Translational genetics for diagnosis of human disorders of sex development. Annu Rev Genomics Hum Genet 2013; 14:371-92. [PMID: 23875799 DOI: 10.1146/annurev-genom-091212-153417] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disorders of sex development (DSDs) are congenital conditions with discrepancies between the chromosomal, gonadal, and phenotypic sex of the individual. Such disorders have historically been difficult to diagnose and cause great stress to patients and their families. Genetic analysis of human samples has been instrumental in elucidating the molecules and pathways involved in the development of the bipotential gonad into a functioning testis or ovary. However, many DSD patients still do not receive a genetic diagnosis. New genetic and genomic technologies are expanding our knowledge of the underlying mechanism of DSDs and opening new avenues for clinical diagnosis. We review the genetic technologies that have elucidated the genes that are well established in sex determination in humans, discuss findings from more recent genomic technologies, and propose a new paradigm for clinical diagnosis of DSDs.
Collapse
|
35
|
Dayan S, O'Keefe LV, Choo A, Richards RI. Common chromosomal fragile siteFRA16Dtumor suppressorWWOXgene expression and metabolic reprograming in cells. Genes Chromosomes Cancer 2013; 52:823-31. [DOI: 10.1002/gcc.22078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sonia Dayan
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Louise V. O'Keefe
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Amanda Choo
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Robert I. Richards
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
36
|
Abstract
Formerly known as 'intersex' conditions, disorders of sex development (DSDs) are congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. A complete revision of the nomenclature and classification of DSDs has been undertaken, which emphasizes the genetic aetiology of these disorders and discards pejorative terms. Uptake of the new terminology is widespread. DSDs affecting gonadal development are perhaps the least well understood. Unravelling the molecular mechanisms underlying gonadal development has revealed new causes of DSDs, although a specific molecular diagnosis is made in only ∼20% of patients. Conversely, identification of the molecular causes of DSDs has provided insight into the mechanisms of gonadal development. Studies of N-ethyl-N-nitrosourea mutagenesis in the mouse, and multigene diagnostic screening and genome-wide approaches, such as array-comparative genomic hybridization and next-generation sequencing, in patients with DSDs are accelerating the discovery of genes involved in gonadal development and DSDs. Furthermore, long-range gene regulatory mutations and multiple gene mutations are emerging as new causes of DSDs. Patients with DSDs, their parents and medical staff are confronted with challenging decisions regarding gender assignment, genital surgery and lifelong care. These advances are refining prognostic prediction and systematically improving the diagnosis and long-term management of children with DSDs.
Collapse
Affiliation(s)
- Makoto Ono
- Molecular Genetics and Development Division, Prince Henry's Institute of Medical Research, Monash Medical Centre, Department of Anatomy and Biochemistry, Monash University, Clayton, Melbourne, VIC, Australia
| | | |
Collapse
|
37
|
Bartnik M, Szczepanik E, Derwińska K, Wiśniowiecka-Kowalnik B, Gambin T, Sykulski M, Ziemkiewicz K, Kędzior M, Gos M, Hoffman-Zacharska D, Mazurczak T, Jeziorek A, Antczak-Marach D, Rudzka-Dybała M, Mazurkiewicz H, Goszczańska-Ciuchta A, Zalewska-Miszkurka Z, Terczyńska I, Sobierajewicz M, Shaw CA, Gambin A, Mierzewska H, Mazurczak T, Obersztyn E, Bocian E, Stankiewicz P. Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:760-71. [PMID: 22825934 DOI: 10.1002/ajmg.b.32081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/02/2012] [Indexed: 01/19/2023]
Abstract
Copy-number variants (CNVs) collectively represent an important cause of neurodevelopmental disorders such as developmental delay (DD)/intellectual disability (ID), autism, and epilepsy. In contrast to DD/ID, for which the application of microarray techniques enables detection of pathogenic CNVs in -10-20% of patients, there are only few studies of the role of CNVs in epilepsy and genetic etiology in the vast majority of cases remains unknown. We have applied whole-genome exon-targeted oligonucleotide array comparative genomic hybridization (array CGH) to a cohort of 102 patients with various types of epilepsy with or without additional neurodevelopmental abnormalities. Chromosomal microarray analysis revealed 24 non-polymorphic CNVs in 23 patients, among which 10 CNVs are known to be clinically relevant. Two rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel pathogenic genetic loci and 12 CNVs are of unknown clinical significance. Our results further support the notion that rare CNVs can cause different types of epilepsy, emphasize the efficiency of detecting novel candidate genes by whole-genome array CGH, and suggest that the clinical application of array CGH should be extended to patients with unexplained epilepsies.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|