1
|
Georgeos MKH, Hanna EM. Case Report: A male newborn with occipital horn syndrome. F1000Res 2024; 13:864. [PMID: 39544917 PMCID: PMC11562896 DOI: 10.12688/f1000research.154409.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Occipital horn syndrome (OHS) is a rare genetic disease and copper transport disorder caused by a faulty ATP7A gene with multisystemic presentations, most originally related to musculoskeletal and connective tissue affections. In our case, a male neonate with OHS presented soon after birth with pathognomonic occipital exostosis, cutis laxa at the nape region, and widely opened skull sutures and fontanels. A skeletal survey showed occipital exostosis projecting from the line of insertion of the trapezius muscle and wide fontanels on skull X-ray films with no exostoses or deformities elsewhere. In addition to our case report being the second reported case for the condition detected early in the neonatal period, it also emphasizes the importance of investigating any sign thoroughly, as it may be an early alarming sign of a progressive disease that may affect the patient's quality of life. In addition, it highlights the value of early diagnosis and multidisciplinary management of these patients.
Collapse
Affiliation(s)
- Marian K. H. Georgeos
- NICU Specialist, MRCPCH, MSc, Neonatal Intensive Care Unit, Arab Contractors Medical Center, Nasr City, Cairo Governorate, Egypt
| | - Engy M. Hanna
- Neonatal Intensive Care Unit, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Yano N, Chong PF, Kojima KK, Miyoshi T, Luqman-Fatah A, Kimura Y, Kora K, Kayaki T, Maizuru K, Hayashi T, Yokoyama A, Ajiro M, Hagiwara M, Kondo T, Kira R, Takita J, Yoshida T. Long-read sequencing identifies an SVA_D retrotransposon insertion deep within the intron of ATP7A as a novel cause of occipital horn syndrome. J Med Genet 2024; 61:950-958. [PMID: 38960580 DOI: 10.1136/jmg-2024-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND SINE-VNTR-Alu (SVA) retrotransposons move from one genomic location to another in a 'copy-and-paste' manner. They continue to move actively and cause monogenic diseases through various mechanisms. Currently, disease-causing SVA retrotransposons are classified into human-specific young SVA_E or SVA_F subfamilies. In this study, we identified an evolutionarily old SVA_D retrotransposon as a novel cause of occipital horn syndrome (OHS). OHS is an X-linked, copper metabolism disorder caused by dysfunction of the copper transporter, ATP7A. METHODS We investigated a 16-year-old boy with OHS whose pathogenic variant could not be detected via routine molecular genetic analyses. RESULTS A 2.8 kb insertion was detected deep within the intron of the patient's ATP7A gene. This insertion caused aberrant mRNA splicing activated by a new donor splice site located within it. Long-read circular consensus sequencing enabled us to accurately read the entire insertion sequence, which contained highly repetitive and GC-rich segments. Consequently, the insertion was identified as an SVA_D retrotransposon. Antisense oligonucleotides (AOs) targeting the new splice site restored the expression of normal transcripts and functional ATP7A proteins. AO treatment alleviated excessive accumulation of copper in patient fibroblasts in a dose-dependent manner. Pedigree analysis revealed that the retrotransposon had moved into the OHS-causing position two generations ago. CONCLUSION This is the first report of a human monogenic disease caused by the SVA_D retrotransposon. The fact that the evolutionarily old SVA_D is still actively transposed, leading to increased copy numbers may make a notable impact on rare genetic disease research.
Collapse
Affiliation(s)
- Naoko Yano
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA, USA
| | - Tomoichiro Miyoshi
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gene Mechanisms, Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Ahmad Luqman-Fatah
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kengo Kora
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Taisei Kayaki
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kanako Maizuru
- Department of Pediatrics, Tenri Yorozu Hospital, Tenri, Japan
| | - Takahiro Hayashi
- Department of Pediatrics, Kurashiki Central Hospital, Kurashiki, Japan
| | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Masatoshi Hagiwara
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Harkness JR, Thomas HB, Urquhart JE, Jamieson P, O'Keefe RT, Kingston HM, Deshpande C, Newman WG. Deep intronic variant causes aberrant splicing of ATP7A in a family with a variable occipital horn syndrome phenotype. Eur J Med Genet 2024; 67:104907. [PMID: 38141875 PMCID: PMC10918460 DOI: 10.1016/j.ejmg.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Genetic variants in ATP7A are associated with a spectrum of X-linked disorders. In descending order of severity, these are Menkes disease, occipital horn syndrome, and X-linked distal spinal muscular atrophy. After 30 years of diagnostic investigation, we identified a deep intronic ATP7A variant in four males from a family affected to variable degrees by a predominantly skeletal phenotype, featuring bowing of long bones, elbow joints with restricted mobility which dislocate frequently, coarse curly hair, chronic diarrhoea, and motor coordination difficulties. Analysis of whole genome sequencing data from the Genomics England 100,000 Genomes Project following clinical re-evaluation identified a deep intronic ATP7A variant, which was predicted by SpliceAI to have a modest splicing effect. Using a mini-gene splicing assay, we determined that the intronic variant results in aberrant splicing. Sanger sequencing of patient cDNA revealed ATP7A transcripts with exon 5 skipping, or inclusion of a novel intron 4 pseudoexon. In both instances, frameshift leading to premature termination are predicted. Quantification of ATP7A mRNA transcripts using a qPCR assay indicated that the majority of transcripts (86.1 %) have non-canonical splicing, with 68.0 % featuring exon 5 skipping, and 18.1 % featuring the novel pseudoexon. We suggest that the variability of the phenotypes within the affected males results from the stochastic effects of splicing. This deep intronic variant, resulting in aberrant ATP7A splicing, expands the understanding of intronic variation on the ATP7A-related disease spectrum.
Collapse
Affiliation(s)
- J Robert Harkness
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Peter Jamieson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Helen M Kingston
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Charulata Deshpande
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Naha S, Velmathi S. A fluorescence turn "on-off" imaging probe for sequential detection of Al 3+ and L-Cysteine in HeLa cells. Methods 2024; 221:27-34. [PMID: 38008345 DOI: 10.1016/j.ymeth.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
At this "Aluminum Age", exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified. Alongside metals, L-cysteine, an essential amino acid, plays a pivotal role in the homeostasis of cellular oxidative and reductive stress. However, excess (<7g) could be lethal and can lead to death. Thus, in-situ selective detection of aluminum and L-cysteine is of larger interest. Here we report a fluorogenic probe (R) for the sequential selective detection and quantification of Al3+ and L-cysteine in a semi-aqueous medium (3:7; water: DMSO). The probe (R) was synthesized by a one-step acid-mediated condensation reaction between pyridine-3,4-diamine and 2-hydroxy-1-napthaldehyde. The synthesized probe was characterized using 1H and 13C NMR, and HR-Mass spectroscopic techniques. The probe (R) is non-emissive in nature, but on recognition of Al3+, the probe R showed "turn-on" emission (bright yellow colour) showing two emission maxima (522 nm and 547 nm), and no naked eye observable color change. Other competing cations do not show any noticeable fluorescence outcome. The R + Al3+ ensemble can specifically detect L-cysteine among all the essential amino acids by showing a fluorescence "turn-off" response. The sensing mechanism of Al3+ is obeying the chelation-enhanced fluorescence (CHEF) effect. The binding constant of R + Al3+ is 0.3 × 104 M-1. The limit of detection (LoD) for Al3+ and L-cysteine are 2.02 × 10-7 M and 0.5 × 10-5 M respectively. The probe (R) can show maximum efficiency within the pH range (7.0-10.0). The probe is found non-toxic (>80 % cell viability with 15 µM concentration) and employed for the in-vitro fluorescence imaging in the HeLa cell.
Collapse
Affiliation(s)
- Sanay Naha
- Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India.
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India.
| |
Collapse
|
5
|
Li H, Du X, Li X, Feng P, Chu M, Jin Y, Pan Z. Genetic diversity, tissue-specific expression, and functional analysis of the ATP7A gene in sheep. Front Genet 2023; 14:1239979. [PMID: 37799137 PMCID: PMC10547898 DOI: 10.3389/fgene.2023.1239979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
In humans, variation of the ATP7A gene may cause cranial exostosis, which is similar to "human horn," but the function of the ATP7A gene in sheep is still unknown. Tissue expression patterns and potential functional loci analysis of the ATP7A gene could help understand its function in sheep horn. In this study, we first identified tissue, sex, breed, and species-specific expression of the ATP7A gene in sheep based on the RNA-sequencing (RNA-seq) data. Second, the potential functional sites of the ATP7A gene were analyzed by using the whole genome sequencing (WGS) data of 99 sheep from 10 breeds. Last, the allele-specific expression of the ATP7A gene was explored. Our result showed the ATP7A gene has significantly higher expression in the big horn than in the small horn, and the ATP7A gene has high expression in the horn and skin, suggesting that this gene may be related to the horn. The PCA results show that the region around the ATP7A can distinguish horned and hornless groups to some extent, further indicating that the ATP7A may be related to horns. When compared with other species, we find seven ruminate specific amino acid sites of the ATP7A protein, which can be important to the ruminate horn. By analyzing WGS, we found 6 SNP sites with significant differences in frequency in horned and hornless populations, and most of these variants are present in the intron. But we still find some potential functional sites, including three missenses, three synonymous mutations, and four Indels. Finally, by combining the RNA-seq and WGS functional loci results, we find three mutations that showed allele-specific expression between big and small horns. This study shows that the ATP7A gene in sheep may be related to horn size, and several potential functional sites we identified here can be useful molecular markers for sheep horn breeding.
Collapse
Affiliation(s)
- Hao Li
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, College of Agriculture, Yanbian University, Yanji, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyue Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingjie Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, College of Agriculture, Yanbian University, Yanji, China
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Ekhator C, Devi M, Barker C, Safdar S, Irfan R, Malineni J, Hussain I, Bisharat P, Ramadhan A, Abdelaziz AM, Bellegarde SB, Saddique MN. Arterial Tortuosity Syndrome: Unraveling a Rare Vascular Disorder. Cureus 2023; 15:e44906. [PMID: 37692180 PMCID: PMC10491927 DOI: 10.7759/cureus.44906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Arterial tortuosity syndrome (ATS) is a rare genetic disorder characterized by abnormal twists and turns of arteries, leading to cardiovascular complications. This syndrome, first reported around 55 years ago, is inherited in an autosomal recessive manner and affects both genders. ATS manifests primarily in childhood, with arterial abnormalities disrupting blood circulation, increasing shear stress, and causing complications, such as atherosclerosis and strokes. This article reviews the genetics, etiology, pathophysiology, clinical presentation, diagnosis, associated conditions, management, and challenges of ATS. The syndrome's genetic cause is linked to mutations in the SLC2A10 gene, affecting collagen and elastin synthesis. Arterial tortuosity, a complex phenomenon, arises from factors such as vessel elongation, anatomic fixation, and vessel diameter. ATS is one of many conditions associated with arterial tortuosity, including Marfan syndrome and Loeys-Dietz syndrome. Recent studies highlight arterial tortuosity's potential as a prognostic indicator for adverse cardiovascular events. Management requires a multidisciplinary approach, and surveillance and prevention play key roles. Despite challenges, advancements in understanding ATS offer hope for targeted therapies and improved patient care.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- Neuro-Oncology, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, USA
| | | | - Chad Barker
- Public Health, University of South Florida, Tampa, USA
| | | | | | - Jahnavi Malineni
- Medicine and Surgery, Maharajah's Institute of Medical Sciences, Vizianagaram, IND
| | - Iqbal Hussain
- Medicine and Surgery, Khyber Medical University, Peshawar, PAK
| | | | - Afif Ramadhan
- Medicine, Universal Scientific Education and Research Network (USERN), Yogyakarta, IDN
- Medicine, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, IDN
| | - Ali M Abdelaziz
- Internal Medicine, Alexandria University Faculty of Medicine, Alexandria, EGY
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
7
|
Sajjad H, Sajjad A, Haya RT, Khan MM, Zia M. Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology. Comp Biochem Physiol C Toxicol Pharmacol 2023; 271:109682. [PMID: 37328134 DOI: 10.1016/j.cbpc.2023.109682] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/21/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) have received increasing interest due to their distinctive properties, including small particle size, high surface area, and reactivity. Due to these properties, their applications have been expanded rapidly in various areas such as biomedical properties, industrial catalysts, gas sensors, electronic materials, and environmental remediation. However, because of these widespread uses, there is now an increased risk of human exposure, which could lead to short- and long-term toxicity. This review addresses the underlying toxicity mechanisms of CuO NPs in cells which include reactive oxygen species generation, leaching of Cu ion, coordination effects, non-homeostasis effect, autophagy, and inflammation. In addition, different key factors responsible for toxicity, characterization, surface modification, dissolution, NPs dose, exposure pathways and environment are discussed to understand the toxicological impact of CuO NPs. In vitro and in vivo studies have shown that CuO NPs cause oxidative stress, cytotoxicity, genotoxicity, immunotoxicity, neurotoxicity, and inflammation in bacterial, algal, fish, rodents, and human cell lines. Therefore, to make CuO NPs a more suitable candidate for various applications, it is essential to address their potential toxic effects, and hence, more studies should be done on the long-term and chronic impacts of CuO NPs at different concentrations to assure the safe usage of CuO NPs.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Rida Tul Haya
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
8
|
Roy S, Ghosh S, Ray J, Ray K, Sengupta M. Missing heritability of Wilson disease: a search for the uncharacterized mutations. Mamm Genome 2023; 34:1-11. [PMID: 36462057 DOI: 10.1007/s00335-022-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon-intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.
Collapse
Affiliation(s)
- Shubhrajit Roy
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
- Post-doctoral Fellow, Physiology Department, Johns Hopkins University, Baltimore, USA
| | - Sampurna Ghosh
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Kunal Ray
- Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700 103, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
9
|
De Feyter S, Beyens A, Callewaert B. ATP7A-related copper transport disorders: A systematic review and definition of the clinical subtypes. J Inherit Metab Dis 2023; 46:163-173. [PMID: 36692329 DOI: 10.1002/jimd.12590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
In patients with ATP7A-related disorders, counseling is challenging due to clinical overlap between the entities, the absence of predictive biomarkers and a clear genotype-phenotype correlation. We performed a systematic literature review by querying the MEDLINE and Embase databases identifying 143 relevant papers. We recorded data on the phenotype and genotype in 162 individuals with a molecularly confirmed ATP7A-related disorder in order to identify differentiating clinical criteria, evaluate genotype-phenotype correlations and propose management guidelines. Early seizures are specific for classical Menkes disease (CMD), that is characterized by early-onset neurodegenerative disease with high mortality rates. Ataxia is an independent indicator for atypical Menkes disease, that shows better survival rates than CMD. Bony exostoses, radial head dislocations, herniations and dental abnormalities are specific for occipital horn syndrome (OHS) that may further present with developmental delay and connective tissue manifestations. Intracranial tortuosity and bladder diverticula, both with high risk of complications, are common among all subtypes. Low ceruloplasmin is a more sensitive and discriminating biomarker for ATP7A-related disorders than serum copper. Truncating mutations are frequently associated with CMD, in contrast with splice site and intronic mutations which are more prevalent in OHS.
Collapse
Affiliation(s)
- S De Feyter
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - A Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - B Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Stevenson NL. The factory, the antenna and the scaffold: the three-way interplay between the Golgi, cilium and extracellular matrix underlying tissue function. Biol Open 2023; 12:287059. [PMID: 36802341 PMCID: PMC9986613 DOI: 10.1242/bio.059719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The growth and development of healthy tissues is dependent on the construction of a highly specialised extracellular matrix (ECM) to provide support for cell growth and migration and to determine the biomechanical properties of the tissue. These scaffolds are composed of extensively glycosylated proteins which are secreted and assembled into well-ordered structures that can hydrate, mineralise, and store growth factors as required. The proteolytic processing and glycosylation of ECM components is vital to their function. These modifications are under the control of the Golgi apparatus, an intracellular factory hosting spatially organised, protein-modifying enzymes. Regulation also requires a cellular antenna, the cilium, which integrates extracellular growth signals and mechanical cues to inform ECM production. Consequently, mutations in either Golgi or ciliary genes frequently lead to connective tissue disorders. The individual importance of each of these organelles to ECM function is well-studied. However, emerging evidence points towards a more tightly linked system of interdependence between the Golgi, cilium and ECM. This review examines how the interplay between all three compartments underpins healthy tissue. As an example, it will look at several members of the golgin family of Golgi-resident proteins whose loss is detrimental to connective tissue function. This perspective will be important for many future studies looking to dissect the cause and effect of mutations impacting tissue integrity.
Collapse
Affiliation(s)
- Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Biomedical Sciences University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
11
|
Kaczmarek A, Kasprzyk M, Koch A, Szymanski A. Orthopaedic interventions in occipital horn syndrome: a rare case of mutation in ATP7A gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Occipital horn syndrome is a rare, X-linked recessive, connective tissue disorder caused by abnormal copper transporter proteins coded by the ATP7A gene. 32 cases have been reported worldwide to date. Clinically, patients typically present with inguinal hernia, exostosis, cutis laxa, and bladder diverticula. Orthopaedic problems often include exostosis of the elbows, thoracolumbar scoliosis, thoracic cavity deformities, and joint hypermobility due to joint laxity.
Case presentation
An 18-year-old presented with occipital horn syndrome and was treated for flat-valgus foot and posterior dislocation of the elbow joints. Due to collagen structure abnormalities, vulnerability to joint deformation makes treating patients with occipital horn syndrome challenging as they need complex orthopaedic intervention.
Conclusion
There is no effective causal therapy for this condition. Surgical procedures can help patients improve their physical condition and maintain adequate joint range of motion.
Collapse
|
12
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
14
|
Ding WM, Wu Y, Zhang SZ, Li J, Xu L, Sun YX. A dual-channel 'turn-on' fluorescent chemosensor for high selectivity and sensitivity detection of CN¯ based on a coumarin-Schiff base derivative in an aqueous system. LUMINESCENCE 2021; 36:1306-1316. [PMID: 33880879 DOI: 10.1002/bio.4058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
Novel strategies still need to be proposed that can be used to identify and detect toxic environmental pollutants. In this paper, two channels of colorimetry and fluorescence 'turn-on' fluorescent probe 1 (7-hydroxy-8-[(2-hydroxy-phenylimino)- methyl]-4-methylbenzopyran-2-one) for the simple yet highly selective detection of CN¯ have been successfully designed and synthesized. Crystal features of probe 1 were defined using X-ray single crystal diffractometry. Probe 1 showed a strongly colorimetric and fluorescence response to CN¯ that induced obvious naked-eye colour changes in aqueous solution (DMSO/H2 O, 3:1 v:v). In addition, probe 1 for CN¯ detection displayed low detection limits of 3.91 × 10-8 M, which were significantly lower than the 1.9 × 10-6 M maximum level specified by the World Health Organization (WHO) for potable water. The sensing mechanism for probe 1 was attributed to the deprotonation process as shown by 1 H NMR titration. Moreover, based on the visible colorimetry and fluorescence change for probe 1 to CN¯, measurement was performed for simulated water samples containing CN¯. This study provides a broad prospect for solving other pollution problems and promoting the design of new fluorescent materials.
Collapse
Affiliation(s)
- Wen-Min Ding
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Ya Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Shu-Zhen Zhang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Jing Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Li Xu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yin-Xia Sun
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
15
|
Møller LB, Mogensen M, Weaver DD, Pedersen PA. Occipital Horn Syndrome as a Result of Splice Site Mutations in ATP7A. No Activity of ATP7A Splice Variants Missing Exon 10 or Exon 15. Front Mol Neurosci 2021; 14:532291. [PMID: 33967692 PMCID: PMC8097048 DOI: 10.3389/fnmol.2021.532291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Disease-causing variants in ATP7A lead to two different phenotypes associated with copper deficiency; a lethal form called Menkes disease (MD), leading to early death, and a much milder form called occipital horn syndrome (OHS). Some investigators have proposed that an ATP7A transcript missing exon 10 leads to a partly active protein product resulting in the OHS phenotype. Here, we describe an individual with OHS, a biology professor, who survived until age 62 despite a splice site mutation, leading to skipping of exon 15. ATP7A transcripts missing exon 10, or exon 15 preserve the reading frame, but it is unknown if either of these alternative transcripts encode functional protein variants. We have investigated the molecular consequence of splice site mutations leading to skipping of exon 10 or exon 15 which have been identified in individuals with OHS, or MD. By comparing ATP7A expression in fibroblasts from three individuals with OHS (OHS-fibroblasts) to ATP7A expression in fibroblasts from two individuals with MD (MD-fibroblasts), we demonstrate that transcripts missing either exon 10 or exon 15 were present in similar amounts in OHS-fibroblasts and MD-fibroblasts. No ATP7A protein encoded from these transcripts could be detected in the OHS and MD fibroblast. These results, combined with the observation that constructs encoding ATP7A cDNA sequences missing either exon 10, or exon 15 were unable to complement the high iron requirement of the ccc2Δ yeast strain, provide evidence that neither a transcript missing exon 10 nor a transcript missing exon 15 results in functional ATP7A protein. In contrast, higher amounts of wild-type ATP7A transcript were present in the OHS-fibroblasts compared with the MD-fibroblasts. We found that the MD-fibroblasts contained between 0 and 0.5% of wild-type ATP7A transcript, whereas the OHS-fibroblasts contained between 3 and 5% wild-type transcripts compared with the control fibroblasts. In summary these results indicate that protein variants encoded by ATP7A transcripts missing either exon 10 or exon 15 are not functional and not responsible for the OHS phenotype. In contrast, expression of only 3-5% of wild-type transcript compared with the controls permits the OHS phenotype.
Collapse
Affiliation(s)
- Lisbeth Birk Møller
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark
| | - Mie Mogensen
- Department of Clinical Genetics, Applied Human Molecular Genetics, Kennedy Center, Copenhagen University Hospital, Glostrup, Denmark
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
16
|
Hien N, Bay MV, Bao NC, Vo QV, Cuong ND, Thien TV, Nhung NTA, Van DU, Nam PC, Quang DT. Coumarin-Based Dual Chemosensor for Colorimetric and Fluorescent Detection of Cu 2+ in Water Media. ACS OMEGA 2020; 5:21241-21249. [PMID: 32875260 PMCID: PMC7450636 DOI: 10.1021/acsomega.0c03097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/28/2020] [Indexed: 05/30/2023]
Abstract
A novel coumarin derivative (5) was synthesized and used as a colorimetric and fluorescent probe for selective detection of Cu2+ ions in the presence of other metal ions, with the detection limits of 5.7 and 4.0 ppb, respectively. Cu2+ ion reacts with probe 5 to form a 1:1 stoichiometry complex, resulting in a remarkable redshift of absorption maximum from 460 to 510 nm, as well as almost completely quenching fluorescence intensity of probe 5 at the wavelength of 536 nm. These changes can be distinctly observed by naked eyes. In addition, the working pH range of probe 5 is wide and suitable for physiological conditions, thus probe 5 may be used for detection of Cu2+ ions in living cells. The stable structures of probe 5 and its 1:1 complex with Cu2+ ion were optimized at the PBE0/6-31+G(d) level of theory. The presence and characteristics of bonds in compounds were studied through atoms in a molecule and natural bond orbital analysis. The formation of the complex led to a strong transfer of electron density from probe 5 as a ligand to Cu2+ ion, resulting in breaking the π-electron conjugated system, which is the cause of fluorescence quenching and color change of 5-Cu2+ complex.
Collapse
Affiliation(s)
- Nguyen
Khoa Hien
- Mientrung
Institute for Scientific Research, Vietnam
Academy of Science and Technology, Hue 530000, Vietnam
| | - Mai Van Bay
- University of Education,
Hue University, Hue 530000, Vietnam
- The
University of Danang-University of Science and Education, Danang 550000, Vietnam
| | | | - Quan V. Vo
- Faculty
of Chemical Technology-Environment, The
University of Danang-University of Technology and Education, 48 Cao Thang, Danang 550000, Vietnam
| | | | - Tran Vinh Thien
- Faculty
of Geology & Mineral Resources Engineering, Ho Chi Minh University of Natural Resources and Environment, Ho Chi Minh 700000, Vietnam
| | | | | | - Pham Cam Nam
- The
University of Danang-University of Science and Technology, Danang 550000, Vietnam
| | | |
Collapse
|
17
|
Genetic Disorders Associated with Metal Metabolism. Cells 2019; 8:cells8121598. [PMID: 31835360 PMCID: PMC6952812 DOI: 10.3390/cells8121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic disorders associated with metal metabolism form a large group of disorders and mostly result from defects in the proteins/enzymes involved in nutrient metabolism and energy production. These defects can affect different metabolic pathways and cause mild to severe disorders related to metal metabolism. Some disorders have moderate to severe clinical consequences. In severe cases, these elements accumulate in different tissues and organs, particularly the brain. As they are toxic and interfere with normal biological functions, the severity of the disorder increases. However, the human body requires a very small amount of these elements, and a deficiency of or increase in these elements can cause different genetic disorders to occur. Some of the metals discussed in the present review are copper, iron, manganese, zinc, and selenium. These elements may play a key role in the pathology and physiology of the nervous system.
Collapse
|
18
|
Beyens A, Van Meensel K, Pottie L, De Rycke R, De Bruyne M, Baeke F, Hoebeke P, Plasschaert F, Loeys B, De Schepper S, Symoens S, Callewaert B. Defining the Clinical, Molecular and Ultrastructural Characteristics in Occipital Horn Syndrome: Two New Cases and Review of the Literature. Genes (Basel) 2019; 10:genes10070528. [PMID: 31336972 PMCID: PMC6678539 DOI: 10.3390/genes10070528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Occipital horn syndrome (OHS) is a rare connective tissue disorder caused by pathogenic variants in ATP7A, encoding a copper transporter. The main clinical features, including cutis laxa, bony exostoses, and bladder diverticula are attributed to a decreased activity of lysyl oxidase (LOX), a cupro-enzyme involved in collagen crosslinking. The absence of large case series and natural history studies precludes efficient diagnosis and management of OHS patients. This study describes the clinical and molecular characteristics of two new patients and 32 patients previously reported in the literature. We report on the need for long-term specialized care and follow-up, in which MR angiography, echocardiography and spirometry should be incorporated into standard follow-up guidelines for OHS patients, next to neurodevelopmental, orthopedic and urological follow-up. Furthermore, we report on ultrastructural abnormalities including increased collagen diameter, mild elastic fiber abnormalities and multiple autophagolysosomes reflecting the role of lysyl oxidase and defective ATP7A trafficking as pathomechanisms of OHS.
Collapse
Affiliation(s)
- Aude Beyens
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kyaran Van Meensel
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
| | - Riet De Rycke
- Department for Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
| | - Michiel De Bruyne
- Department for Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
| | - Femke Baeke
- Department for Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, 9000 Ghent, Belgium
| | - Piet Hoebeke
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Frank Plasschaert
- Department of Orthopedic Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. ADVANCES IN GENETICS 2019; 103:39-90. [PMID: 30904096 DOI: 10.1016/bs.adgen.2018.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pre-mRNA splicing, an essential step in eukaryotic gene expression, relies on recognition of short sequences on the primary transcript intron ends and takes place along transcription by RNA polymerase II. Exonic and intronic auxiliary elements may modify the strength of exon definition and intron recognition. Splicing DNA variants (SV) have been associated with human genetic diseases at canonical intron sites, as well as exonic substitutions putatively classified as nonsense, missense or synonymous variants. Their effects on mRNA may be modulated by cryptic splice sites associated to the SV allele, comprehending exon skipping or shortening, and partial or complete intron retention. As splicing mRNA outputs result from combinatorial effects of both intrinsic and extrinsic factors, in vitro functional assays supported by computational analyses are recommended to assist SV pathogenicity assessment for human Mendelian inheritance diseases. The increasing use of next-generating sequencing (NGS) targeting full genomic gene sequence has raised awareness of the relevance of deep intronic SV in genetic diseases and inclusion of pseudo-exons into mRNA. Finally, we take advantage of recent advances in sequencing and computational technologies to analyze alternative splicing in cancer. We explore the Catalog of Somatic Mutations in Cancer (COSMIC) to describe the proportion of splice-site mutations in cis and trans regulatory elements. Genomic data from large cohorts of different cancer types are increasingly available, in addition to repositories of normal and somatic genetic variations. These are likely to bring new insights to understanding the genetic control of alternative splicing by mapping splicing quantitative trait loci in tumors.
Collapse
|
20
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
21
|
Stepensky P, Keller B, Shamriz O, NaserEddin A, Rumman N, Weintraub M, Warnatz K, Elpeleg O, Barak Y. Deep intronic mis-splicing mutation in JAK3 gene underlies T−B+NK− severe combined immunodeficiency phenotype. Clin Immunol 2016; 163:91-5. [DOI: 10.1016/j.clim.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/02/2016] [Accepted: 01/02/2016] [Indexed: 12/22/2022]
|
22
|
Copper and copper proteins in Parkinson's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:147251. [PMID: 24672633 PMCID: PMC3941957 DOI: 10.1155/2014/147251] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/09/2013] [Indexed: 02/07/2023]
Abstract
Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.
Collapse
|