1
|
Mabizela N, Soko ND, Mudawarima LRC, Shamu S, Dandara C. Whole Exome Sequencing Helps Diagnose Familial Anophthalmia in Zimbabwe: A Call from the Field to Fund Clinical Genomics for Planetary Health. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:183-190. [PMID: 40216558 DOI: 10.1089/omi.2024.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Anophthalmia is the most severe ocular malformation inherited in an autosomal, X-linked, recessive, or dominant form. We report here the use of whole exome sequencing (WES) to help the clinical diagnosis of familial anophthalmia in Harare, Zimbabwe. A mother presented her two sons, who are half-brothers, at the Eye, Ear, Nose, and Throat Institute, Ophthalmology Unit in Harare, Zimbabwe. Upon clinical examination, half-brothers were diagnosed with clinical bilateral anophthalmia. The mother requested a genetic diagnosis for her two sons. To segregate the phenotype with genotype, whole blood was collected from two half-brothers, their mother, maternal aunt, and maternal uncle to the half-brothers, and an unrelated healthy control. Genetic characterization was done, first, through a candidate gene approach screening of putative genes SOX2, OTX2, VSX2, PAX6, and RAX. When no causative variants were identified, the next step employed WES. Variants in 80 genes associated with anophthalmia were prioritized and subjected to pathogenicity testing. One pathogenic variant, BCOR c.254C>T (rs121434618, p. Pro85Leu), segregated with the mother and her two sons. The present clinical genomics study of a family and a healthy control sample underscores WES as a valuable tool that can help clinical diagnosis of anophthalmia in the Zimbabwean clinical setting. In this article, we also offer a reasoned discussion and call from the field, to fund clinical genomics and omics research and development in planetary health, especially in the current era of uncertainties in international aid and funding of innovative technologies. The findings reported herein encourage further research on the clinical utility of WES as a diagnostic tool in Africa and around the world as well, given that the candidate gene approach might miss the important genes or variants of relevance to disease pathophysiology.
Collapse
Affiliation(s)
- Nosipho Mabizela
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology & Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South Africa Medical Research Council, Cape Town, South Africa
| | - Nyarai D Soko
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology & Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South Africa Medical Research Council, Cape Town, South Africa
- Harare Eye, Ear, Nose and Throat Institute (HEENT), Harare, Zimbabwe
- Harare Institute of Technology, Belvedere, Harare, Zimbabwe
| | - Louisa R C Mudawarima
- Department of Paediatrics, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Sharai Shamu
- Harare Eye, Ear, Nose and Throat Institute (HEENT), Harare, Zimbabwe
| | - Collet Dandara
- Pharmacogenomics and Drug Metabolism Group, Division of Human Genetics, Department of Pathology & Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South Africa Medical Research Council, Cape Town, South Africa
| |
Collapse
|
2
|
Ruiz Guijosa A, Fernández LM, Martínez de la Casa JM, Escribano J, García Feijoo J. Primary congenital glaucoma in two siblings with different compound heterozygous CYP1B1 genotypes. Ophthalmic Genet 2024; 45:421-424. [PMID: 38450436 DOI: 10.1080/13816810.2024.2324044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To describe the inheritance pattern and clinical variability of primary congenital glaucoma (PCG) in a family with two affected siblings. MATERIALS AND METHODS Two sisters diagnosed at birth with bilateral PCG, whose father had bilateral PCG and mother had bilateral microphthalmus, were subjected to a familial genetic study and ophthalmologic follow-up including intraocular pressure (IOP) measurement, and collection of biometric and cup-to-disc ratio data. RESULTS The inheritance pattern was autosomal recessive in compound heterozygosis. The sisters were found to be carriers of three pathogenic allele variants of the CYP1B1 gene: c.317C>A (p.Ala106Asp) and c.1345delG (p.Asp449MetfsTer8) in one patient (10 years) and c.1345delG (p.Asp449MetfsTer8) and c.202_209delCAGGCGGC (p.Gln68Serfs153Ter) in her older sister (12 years). Surgical histories included: three goniotomies and two Ahmed valves in each eye, and two trabeculectomies and a pupilloplasty in the right eye in the 10-year old; and one goniotomy, trabeculectomy and three Ahmed valves in each eye in the older sister. Currently, both sisters have a controlled intraocular pressure of 18-20 mmHg in both eyes. The father is blind in both eyes and carries two variants c.317C>A (p.Ala106Asp) and c.202_209delCAGGCGGC (p.Gln68Serfs153Ter). The mother with a single variant c.1345delG (p.Asp440MetfsTer8) has a prosthetic right eye and microphthalmus left eye. CONCLUSIONS The sisters were found to show two different allelic CYP1B1 variants (compound heterozygosis) with different repercussions on the clinical severity of PCG. These findings highlight the importance of genetic screening of affected families.
Collapse
Affiliation(s)
- Alexandra Ruiz Guijosa
- Ophthalmology Unit, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria del Hospital Clinico San Carlos (IdISSC), Madrid, Spain
| | - Laura Morales Fernández
- Ophthalmology Unit, Hospital Clinico San Carlos, Instituto de Investigacion Sanitaria del Hospital Clinico San Carlos (IdISSC), Madrid, Spain
- Ophthalmology Unit, Hospital Universitario Quiron, Madrid, Spain
| | - José María Martínez de la Casa
- Ophthalmology Unit, Hospital Clinico San Carlos, Department of Ophthalmology and ORL, Faculty of Medicine, Universidad Complutense de Madrid, Instituto de Investigacion Sanitaria del Hospital Clinico San Carlos (IdISSC), Madrid, Spain
- Instituto de Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Julián García Feijoo
- Ophthalmology Unit, Hospital Clinico San Carlos, Department of Ophthalmology and ORL, Faculty of Medicine, Universidad Complutense de Madrid, Instituto de Investigacion Sanitaria del Hospital Clinico San Carlos (IdISSC), Madrid, Spain
- Instituto de Investigaciones Oftalmologicas Ramon Castroviejo, Universidad Complutense de Madrid, Madrid, Spain
- Cooperative Research Network on Age-Related Ocular Disease, and Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Azuelos C, Marquis MA, Laberge AM. A systematic review of the assessment of the clinical utility of genomic sequencing: Implications of the lack of standard definitions and measures of clinical utility. Eur J Med Genet 2024; 68:104925. [PMID: 38432472 DOI: 10.1016/j.ejmg.2024.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Exome sequencing (ES) and genome sequencing (GS) are diagnostic tests for rare genetic diseases. Studies report clinical utility of ES/GS. The goal of this systematic review is to establish how clinical utility is defined and measured in studies evaluating the impacts of ES/GS results for pediatric patients. METHODS Relevant articles were identified in PubMed, Medline, Embase, and Web of Science. Eligible studies assessed clinical utility of ES/GS for pediatric patients published before 2021. Other relevant articles were added based on articles' references. Articles were coded to assess definitions and measures of clinical utility. RESULTS Of 1346 articles, 83 articles met eligibility criteria. Clinical utility was not clearly defined in 19% of studies and 92% did not use an explicit measure of clinical utility. When present, definitions of clinical utility diverged from recommended definitions and varied greatly, from narrow (diagnostic yield of ES/GS) to broad (including decisions about withdrawal of care/palliative care and/or impacts on other family members). CONCLUSION Clinical utility is used to guide policy and practice decisions about test use. The lack of a standard definition of clinical utility of ES/GS may lead to under- or overestimations of clinical utility, complicating policymaking and raising ethical issues.
Collapse
Affiliation(s)
- Claudia Azuelos
- Medical Genetics, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| | - Marc-Antoine Marquis
- Palliative Care, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Anne-Marie Laberge
- Medical Genetics, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
5
|
Franco E, Gagrani M, Scanga HL, Areaux RG, Chu CT, Nischal KK. Variable Phenotype of Congenital Corneal Opacities in Biallelic CYP1B1 Pathogenic Variants. Cornea 2024; 43:195-200. [PMID: 37788597 PMCID: PMC10840913 DOI: 10.1097/ico.0000000000003395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/19/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE The aim of this study is to describe the variable phenotype of congenital corneal opacities occurring in patients with biallelic CYP1B1 pathogenic variants. METHODS A retrospective chart review was conducted to identify patients with congenital corneal opacities and CYP1B1 pathogenic variants seen at UPMC Children's Hospital of Pittsburgh. Ophthalmic examination, high-frequency ultrasound, anterior segment optical coherence tomography, histopathologic images, and details of genetic testing were reviewed. RESULTS Three children were identified. All presented with raised intraocular pressure. Two patients showed bilateral limbus-to-limbus avascular corneal opacification that did not resolve with intraocular pressure control; 1 showed unilateral avascular corneal opacity with a crescent of clear cornea, iridocorneal adhesions, iridolenticular adhesions, and classical features of congenital glaucoma in the fellow eye (enlarged corneal diameter, Haab striae, and clearing of the corneal clouding with appropriate intraocular pressure control). The first 2 patients were visually rehabilitated with penetrating keratoplasty. Histopathology revealed distinct features: a variably keratinized epithelium; a thick but discontinuous Bowman-like layer with areas of disruption and abnormal cellularity; Descemet membrane, when observed, showed reduced endothelial cells; and no pathological changes of Haab striae were identified. Two patients had compound heterozygous pathogenic variants in CYP1B1 causing premature stop codons, whereas 1 was homozygous for a pathogenic missense variant. CONCLUSIONS Congenital corneal opacities seen in biallelic CYP1B1 pathogenic variants have a variable phenotype. One is that commonly termed as Peters anomaly type 1 (with iridocorneal adhesions, with or without iridolenticular adhesions) and the other is a limbus-to-limbus opacity, termed CYP1B1 cytopathy. Clinicians should be aware of this phenotypic variability.
Collapse
Affiliation(s)
- Elena Franco
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Meghal Gagrani
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah L Scanga
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Raymond G Areaux
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Delas F, Koller S, Feil S, Dacheva I, Gerth-Kahlert C, Berger W. Novel CRYGC Mutation in Conserved Ultraviolet-Protective Tryptophan (p.Trp131Arg) Is Linked to Autosomal Dominant Congenital Cataract. Int J Mol Sci 2023; 24:16594. [PMID: 38068917 PMCID: PMC10706789 DOI: 10.3390/ijms242316594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Congenital cataract (CC), the most prevalent cause of childhood blindness and amblyopia, necessitates prompt and precise genetic diagnosis. The objective of this study is to identify the underlying genetic cause in a Swiss patient with isolated CC. Whole exome sequencing (WES) and copy number variation (CNV) analysis were conducted for variant identification in a patient born with a total binocular CC without a family history of CC. Sanger Sequencing was used to confirm the variant and segregation analysis was used to screen the non-affected parents. The first de novo missense mutation at c.391T>C was identified in exon 3 of CRYGC on chromosome 2 causing the substitution of a highly conserved Tryptophan to an Arginine located at p.Trp131Arg. Previous studies exhibit significant changes in the tertiary structure of the crystallin family in the following variant locus, making CRYGC prone to aggregation aggravated by photodamage resulting in cataract. The variant can be classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria (PP3 + PM1 + PM2 + PS2; scoring 10 points). The identification of this novel variant expands the existing knowledge on the range of variants found in the CRYGC gene and contributes to a better comprehension of cataract heterogeneity.
Collapse
Affiliation(s)
- Flora Delas
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (F.D.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (F.D.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (F.D.); (S.K.); (S.F.)
| | - Ivanka Dacheva
- Department of Ophthalmology, Cantonal Hospital of St. Gallen, 9007 St. Gallen, Switzerland;
| | | | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (F.D.); (S.K.); (S.F.)
- Neuroscience Center Zürich (ZNZ), University of Zurich and ETH Zurich, 8006 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
7
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Jones JL, Burdon KP. Evaluating gap junction variants for a role in pediatric cataract: an overview of the genetic landscape and clinical classification of variants in the GJA3 and GJA8 genes. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2023.2160320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Johanna L Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Peng Y, Zheng Y, Deng Z, Zhang S, Tan Y, Hu Z, Tao L, Luo Y. Case Report: A de novo Variant of CRYGC Gene Associated With Congenital Cataract and Microphthalmia. Front Genet 2022; 13:866246. [PMID: 35719371 PMCID: PMC9198712 DOI: 10.3389/fgene.2022.866246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Congenital cataract is one of the most common causes of blindness in children. A rapid and accurate genetic diagnosis benefit the patients in the pediatric department. The current study aims to identify the genetic defects in a congenital cataract patient without a family history. Case presentation: A congenital cataract patient with microphthalmia and nystagmus was recruited for this study. Trio-based whole-exome sequencing revealed a de novo variant (c.394delG, p.V132Sfs*15) in CRYGC gene. According to the American College of Medical Genetics and Genomics (ACMG) criteria, the variant could be annontated as pathogenic. Conclusion: Our findings provide new knowledge of the variant spectrum of CRYGC gene and are essential for understanding the heterogeneity of cataracts in the Chinese population.
Collapse
Affiliation(s)
- Yu Peng
- Department of Ophthalmology & Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Yu Zheng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Zifeng Deng
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Yilan Tan
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lijuan Tao
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| | - Yulin Luo
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
10
|
Demographics and histopathological characteristics of enucleated microphthalmic globes. Sci Rep 2022; 12:5283. [PMID: 35347187 PMCID: PMC8960817 DOI: 10.1038/s41598-022-09261-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Microphthalmia is a rare ocular anomaly with a poorly understood etiology that is most likely related to heritable and/or environmental factors. Many papers have been published pertaining to the clinical manifestations and management of this condition; however, few reports have reported detailed histopathological findings, which are the focus of this study, in addition to highlighting the basic demographics in these cases. This was a retrospective, observational study of all consecutive enucleated microphthalmic globes (with or without cysts) at 2 tertiary eye hospitals in Riyadh, Saudi Arabia. Globes were classified into 2 groups: severe microphthalmos (axial length or mean diameter less than 10 mm in infancy or 12 mm after age 1 year) and mild microphthalmos based on larger measurements. Clinical and demographic data collected included sex, age at enucleation, eye involvement, nationality/region, consanguinity, family history of eye anomaly, pregnancy, systemic disease, or syndromes. For histopathological data, a descriptive analysis was mostly performed. For correlations of some of our qualitative data, Fisher's exact test was used. Eleven cases (6 mild and 5 severe microphthalmos) were initially identified with a female to male ratio of 4:7. Ten patients were Saudis, 7 of whom were from the central region. Consanguinity was found in 36% (4/11), and 3 of them had other ocular or systemic abnormalities (duodenal atresia, microcephaly, kidney agenesis, cryptophthalmos, and dysmorphic facial features). Histopathological data were available for 10 cases, half of which showed a coloboma and/or anterior segment anomaly. There was no significant correlation among gender, severity of microphthalmos or the presence of coloboma, although severe microphthalmic globes had a higher median of abnormal intraocular structures (9-interquartile range = 2 compared to 6-interquartile range = 1 in the mild group). Aphakia was found in half of the globes with associated anterior segment dysgenesis. We have concluded that microphthalmos is a visually disabling congenital anomaly that can be isolated or associated with other periocular or systemic anomalies, possibly in relation to consanguinity in our cases. Congenital aphakia was found in half of these cases and was mostly associated with absent Descemet's membrane and agenesis of anterior chamber angle structures, supporting previously suggested embryological concepts. These findings necessitate further wider genetic testing and proper premarital counseling in Saudi Arabia.
Collapse
|
11
|
A Novel Mutation in CRYGC Mutation Associated with Autosomal Dominant Congenital Cataracts and Microcornea. OPHTHALMOLOGY SCIENCE 2022; 2:100093. [PMID: 36246175 PMCID: PMC9560566 DOI: 10.1016/j.xops.2021.100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Purpose Crystallin protein mutations are associated with congenital cataract (CC), and several disease-causing mutations in the CRYGC gene have been identified. We present the location of a new mutation in CRYGC in members of a Chinese family who presented with CCs with or without microcornea. Design Observational study. Participants A Chinese family diagnosed with autosomal dominant (AD) CCs with or without microphthalmia. Methods Because this was an observational study, it was not registered as a clinical trial. The proband and her 2 children were diagnosed with AD CCs and microcornea and were recruited for the study. Participants underwent complete ophthalmological examinations, and blood samples were used for genomic extraction. Main Outcome Measures We detected 1 disease-associated variant using Exomiser analysis by matching the proband’s phenotype and the inheritance pattern. The variant was determined to be pathogenic according to American College of Medical Genetics and Genomics (ACMG) guidelines. Results We detected 1 disease-associated variant using Exomiser analysis by matching the proband’s phenotype and the inheritance pattern. The variant was determined to be pathogenic according to the American College of Medical Genetics and Genomics guidelines. Next-generation sequencing was verified using Sanger sequencing, and we confirmed that the proband and her children carried the same mutation. We identified the heterozygous variant c.389_390insGCTG (p.C130fs), which includes a frameshift mutation. The residues in p.C130fs are all highly conserved across species. This disease-causing frameshift mutation in the CRYGC gene is not currently present in the ClinVar database. Conclusions Our findings expand the repertoire of known mutations in the CRYGC gene that cause CCs and provide new insights into the etiology and molecular diagnosis of CCs; however, the molecular mechanism of this mutation warrants further investigation.
Collapse
|
12
|
Gao Y, Ren X, Fu X, Lin Y, Xiao L, Wang X, Yan N, Zhang M. Case Report: A Novel Mutation in the CRYGD Gene Causing Congenital Cataract Associated with Nystagmus in a Chinese Family. Front Genet 2022; 13:824550. [PMID: 35222542 PMCID: PMC8866695 DOI: 10.3389/fgene.2022.824550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Congenital cataract (CC) is a common disease resulting in leukocoria and the leading cause of blindness in children worldwide. Approximately 50% of congenital cataract is inherited. Our aim is to identify mutations in a Chinese family with congenital cataract.Methods: A four-generation Chinese family diagnosed with congenital cataract was recruited in West China Hospital of Sichuan University. Genomic DNA was extracted from the peripheral blood of these participants. All coding exons and flanking regions were amplified and sequenced, and the variants were validated using Sanger sequencing. AlphaFold2 was used to predict possible protein structural changes in this variant.Results: The proband had congenital nuclear cataract with nystagmus. A heterozygous variant c.233C > T was identified in exon 2 of the CRYGD gene in chromosome 2. This mutation resulted in a substitution of serine with phenylalanine at amino acid residue 78 (p.S78F). The variant might result in a less stable structure with a looser loop and broken hydrogen bond predicted by AlphaFold2, and this mutation was co-segregated with the disease phenotype in this family.Conclusion: We described cases of human congenital cataract caused by a novel mutation in the CRYGD gene and provided evidence of further phenotypic heterogeneity associated with this variant. Our study further extends the mutation spectrum of the CRYGD gene in congenital cataract.
Collapse
Affiliation(s)
- Yunxia Gao
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Fu
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Lin
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Wang
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Zhang
- Department of Ophthalmology, Ophthalmic Laboratory, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ming Zhang,
| |
Collapse
|
13
|
Fox SC, Widen SA, Asai-Coakwell M, Havrylov S, Benson M, Prichard LB, Baddam P, Graf D, Lehmann OJ, Waskiewicz AJ. BMP3 is a novel locus involved in the causality of ocular coloboma. Hum Genet 2022; 141:1385-1407. [PMID: 35089417 DOI: 10.1007/s00439-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.
Collapse
Affiliation(s)
- Sabrina C Fox
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Vienna BioCenter, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mika Asai-Coakwell
- Department of Animal and Poultry and Animal Science, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Matthew Benson
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Lisa B Prichard
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada. .,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Burdon KP. The utility of genomic testing in the ophthalmology clinic: A review. Clin Exp Ophthalmol 2021; 49:615-625. [PMID: 34231298 DOI: 10.1111/ceo.13970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Genomic testing assesses many genes in one test. It is often used in the diagnosis of heterogeneous single gene disorders where pathogenic variation in one of many genes are known to cause similar phenotypes, or where a clinical diagnosis is difficult to reach. In the ophthalmic setting, genomic testing can be used to diagnose several groups of diseases, including inherited retinal dystrophies, paediatric cataract, glaucoma and anterior segment dysgenesis and other syndromic developmental disorders with eye involvement. The testing can encompass several modalities ranging from whole genome sequencing to exome sequencing or targeted gene panels. The advantages to the patient of receiving a molecular diagnosis include an end to the diagnostic odyssey, determination of prognosis and clarification of treatment, access to accurate genetic counselling, and confirming eligibility for clinical trials or genetic specific therapies. Genomic testing is a powerful addition to the diagnosis and management of inherited eye disease.
Collapse
Affiliation(s)
- Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Ma A, Grigg JR, Flaherty M, Smith J, Minoche AE, Cowley MJ, Nash BM, Ho G, Gayagay T, Lai T, Farnsworth E, Hackett EL, Slater K, Wong K, Holman KJ, Jenkins G, Cheng A, Martin F, Brown NJ, Leighton SE, Amor DJ, Goel H, Dinger ME, Bennetts B, Jamieson RV. Genome sequencing in congenital cataracts improves diagnostic yield. Hum Mutat 2021; 42:1173-1183. [PMID: 34101287 DOI: 10.1002/humu.24240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023]
Abstract
Congenital cataracts are one of the major causes of childhood-onset blindness around the world. Genetic diagnosis provides benefits through avoidance of unnecessary tests, surveillance of extraocular features, and genetic family information. In this study, we demonstrate the value of genome sequencing in improving diagnostic yield in congenital cataract patients and families. We applied genome sequencing to investigate 20 probands with congenital cataracts. We examined the added value of genome sequencing across a total cohort of 52 probands, including 14 unable to be diagnosed using previous microarray and exome or panel-based approaches. Although exome or genome sequencing would have detected the variants in 35/52 (67%) of the cases, specific advantages of genome sequencing led to additional diagnoses in 10% (5/52) of the overall cohort, and we achieved an overall diagnostic rate of 77% (40/52). Specific benefits of genome sequencing were due to detection of small copy number variants (2), indels in repetitive regions (2) or single-nucleotide variants (SNVs) in GC-rich regions (1), not detectable on the previous microarray, exome sequencing, or panel-based approaches. In other cases, SNVs were identified in cataract disease genes, including those newly identified since our previous study. This study highlights the additional yield of genome sequencing in congenital cataracts.
Collapse
Affiliation(s)
- Alan Ma
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialties of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - John R Grigg
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialty of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia.,Save Sight Institute, Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Maree Flaherty
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialty of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - James Smith
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialty of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Andre E Minoche
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Specialties of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Gladys Ho
- Specialties of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Thet Gayagay
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tiffany Lai
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Elizabeth Farnsworth
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Emma L Hackett
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Katrina Slater
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Karen Wong
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Katherine J Holman
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Gemma Jenkins
- Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Anson Cheng
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Frank Martin
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialty of Ophthalmology, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha J Brown
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - David J Amor
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Himanshu Goel
- Hunter Genetics, Newcastle, New South Wales, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, New South Wales, Australia
| | - Bruce Bennetts
- Specialties of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Specialties of Genomic Medicine & Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
17
|
Zhou J, Yang Z, Sun J, Liu L, Zhou X, Liu F, Xing Y, Cui S, Xiong S, Liu X, Yang Y, Wei X, Zou G, Wang Z, Wei X, Wang Y, Zhang Y, Yan S, Wu F, Zeng F, Wang J, Duan T, Peng Z, Sun L. Whole Genome Sequencing in the Evaluation of Fetal Structural Anomalies: A Parallel Test with Chromosomal Microarray Plus Whole Exome Sequencing. Genes (Basel) 2021; 12:genes12030376. [PMID: 33800913 PMCID: PMC7999180 DOI: 10.3390/genes12030376] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
Whole genome sequencing (WGS) is a powerful tool for postnatal genetic diagnosis, but relevant clinical studies in the field of prenatal diagnosis are limited. The present study aimed to prospectively evaluate the utility of WGS compared with chromosomal microarray (CMA) and whole exome sequencing (WES) in the prenatal diagnosis of fetal structural anomalies. We performed trio WGS (≈40-fold) in parallel with CMA in 111 fetuses with structural or growth anomalies, and sequentially performed WES when CMA was negative (CMA plus WES). In comparison, WGS not only detected all pathogenic genetic variants in 22 diagnosed cases identified by CMA plus WES, yielding a diagnostic rate of 19.8% (22/110), but also provided additional and clinically significant information, including a case of balanced translocations and a case of intrauterine infection, which might not be detectable by CMA or WES. WGS also required less DNA (100 ng) as input and could provide a rapid turnaround time (TAT, 18 ± 6 days) compared with that (31 ± 8 days) of the CMA plus WES. Our results showed that WGS provided more comprehensive and precise genetic information with a rapid TAT and less DNA required than CMA plus WES, which enables it as an alternative prenatal diagnosis test for fetal structural anomalies.
Collapse
Affiliation(s)
- Jia Zhou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Ziying Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Jun Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Lipei Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xinyao Zhou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Fengxia Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Ya Xing
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Shuge Cui
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Shiyi Xiong
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Xiaoyu Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yingjun Yang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Xiuxiu Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Gang Zou
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Zhonghua Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xing Wei
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Yaoshen Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yun Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Saiying Yan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Fengyu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Fanwei Zeng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China;
| | - Tao Duan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; (Z.Y.); (J.S.); (L.L.); (F.L.); (S.C.); (X.L.); (X.W.); (Z.W.); (Y.W.); (S.Y.); (F.Z.)
- Correspondence: (Z.P.); (L.S.)
| | - Luming Sun
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China; (J.Z.); (X.Z.); (Y.X.); (S.X.); (Y.Y.); (G.Z.); (X.W.); (Y.Z.); (F.W.); (T.D.)
- Correspondence: (Z.P.); (L.S.)
| |
Collapse
|
18
|
Edwards SD, Schulze KV, Rosenfeld JA, Westerfield LE, Gerard A, Yuan B, Grigorenko EL, Posey JE, Bi W, Liu P. Clinical characterization of individuals with the distal 1q21.1 microdeletion. Am J Med Genet A 2021; 185:1388-1398. [PMID: 33576134 DOI: 10.1002/ajmg.a.62104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/09/2021] [Indexed: 11/12/2022]
Abstract
Distal 1q21.1 microdeletions have shown highly variable clinical expressivity and incomplete penetrance, with affected individuals manifesting a broad spectrum of nonspecific features. The goals of this study were to better describe the phenotypic spectrum of patients with distal 1q21.1 microdeletions and to compare the clinical features among affected individuals. We performed a retrospective chart review of 47 individuals with distal 1q21.1 microdeletions tested at a large clinical genetic testing laboratory, with most patients being clinically evaluated in the same children's hospital. Health information such as growth charts, results of imaging studies, developmental history, and progress notes were collected. Statistical analysis was performed using Fisher's exact test to compare clinical features among study subjects. Common features in our cohort include microcephaly (51.2%), seizures (29.8%), developmental delay (74.5%), failure to thrive (FTT) (68.1%), dysmorphic features (63.8%), and a variety of congenital anomalies such as cardiac abnormalities (23.4%) and genitourinary abnormalities (19.1%). Compared to prior literature, we found that seizures, brain anomalies, and FTT were more prevalent among our study cohort. Females were more likely than males to have microcephaly (p = 0.0199) and cardiac abnormalities (p = 0.0018). Based on existing genome-wide clinical testing results, at least a quarter of the cohort had additional genetic findings that may impact the phenotype of the individual. Our study represents the largest cohort of distal 1q21.1 microdeletion carriers available in the literature thus far, and it further illustrates the wide spectrum of clinical manifestations among symptomatic individuals. These results may allow for improved genetic counseling and management of affected individuals. Future studies may help to elucidate the underlying molecular mechanisms impacting the phenotypic variability observed with this microdeletion.
Collapse
Affiliation(s)
- Stacey D Edwards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Lauren E Westerfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Elena L Grigorenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,St. Petersburg State University, St Petersburg, Russia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
19
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
20
|
Li Y, Zhang J, Dai Y, Fan Y, Xu J. Novel Mutations in COL6A3 That Associated With Peters' Anomaly Caused Abnormal Intracellular Protein Retention and Decreased Cellular Resistance to Oxidative Stress. Front Cell Dev Biol 2020; 8:531986. [PMID: 33304895 PMCID: PMC7693641 DOI: 10.3389/fcell.2020.531986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Peters' anomaly (PA) is a rare form of anterior segment dysgenesis characterized by central corneal opacity accompanied by iridocorneal or lenticulo-corneal adhesions. Although genetic mutations, particularly those affecting transcription factors that function in eye development, are known to cause PA, the etiology of this disease remains poorly understood. In this study, 23 patients with PA were recruited for panel sequencing. Four out of 23 patients were found to carry variants in known PA causal genes, PITX2 and PITX3. More importantly, two homozygous mutations (NM_057164: p.Val86Ala and p.Arg689Cys) in the COL6A3 gene (collagen type VI alpha-3 chain) that correlated with the phenotype of type I PA were identified, and then validated by following whole-exome sequencing. The expression profile of the COL6A3 gene in the cornea and the impact of the mutations on protein physiological processing and cellular function were further explored. It was shown that COL6A3 presented relatively high expression in the cornea. The mutant COL6A3 protein was relatively retained intracellularly, and its expression reduced cellular resistance to oxidative stress through an enhanced endoplasmic reticulum stress response. Taken together, our findings expanded the known genetic spectrum of PA, and provided evidence for the involvement of COL6A3 or collagen VI in ocular anterior segment development, thereby offering new insight for future investigations targeting PA.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yidan Fan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
21
|
Berry V, Ionides A, Pontikos N, Georgiou M, Yu J, Ocaka LA, Moore AT, Quinlan RA, Michaelides M. The genetic landscape of crystallins in congenital cataract. Orphanet J Rare Dis 2020; 15:333. [PMID: 33243271 PMCID: PMC7691105 DOI: 10.1186/s13023-020-01613-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023] Open
Abstract
Background The crystalline lens is mainly composed of a large family of soluble proteins called the crystallins, which are responsible for its development, growth, transparency and refractive index. Disease-causing sequence variants in the crystallins are responsible for nearly 50% of all non-syndromic inherited congenital cataracts, as well as causing cataract associated with other diseases, including myopathies. To date, more than 300 crystallin sequence variants causing cataract have been identified. Methods Here we aimed to identify the genetic basis of disease in five multi-generation British families and five sporadic cases with autosomal dominant congenital cataract using whole exome sequencing, with identified variants validated using Sanger sequencing. Following bioinformatics analysis, rare or novel variants with a moderate to damaging pathogenicity score, were filtered out and tested for segregation within the families. Results We have identified 10 different heterozygous crystallin variants. Five recurrent variants were found: family-A, with a missense variant (c.145C>T; p.R49C) in CRYAA associated with nuclear cataract; family-B, with a deletion in CRYBA1 (c.272delGAG; p.G91del) associated with nuclear cataract; and family-C, with a truncating variant in CRYGD (c.470G>A; W157*) causing a lamellar phenotype; individuals I and J had variants in CRYGC (c.13A>C; T5P) and in CRYGD (c.418C>T; R140*) causing unspecified congenital cataract and nuclear cataract, respectively. Five novel disease-causing variants were also identified: family D harboured a variant in CRYGC (c.179delG; R60Qfs*) responsible for a nuclear phenotype; family E, harboured a variant in CRYBB1 (c.656G>A; W219*) associated with lamellar cataract; individual F had a variant in CRYGD (c.392G>A; W131*) associated with nuclear cataract; and individuals G and H had variants in CRYAA (c.454delGCC; A152del) and in CRYBB1 (c.618C>A; Y206*) respectively, associated with unspecified congenital cataract. All novel variants were predicted to be pathogenic and to be moderately or highly damaging. Conclusions We report five novel variants and five known variants. Some are rare variants that have been reported previously in small ethnic groups but here we extend this to the wider population and record a broader phenotypic spectrum for these variants.
Collapse
Affiliation(s)
- Vanita Berry
- Department of Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nikolas Pontikos
- Department of Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Michalis Georgiou
- Department of Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Louise A Ocaka
- GOSgene, Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Anthony T Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.,Ophthalmology Department, University of California School of Medicine, San Francisco, CA, 94158, USA
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, DH1 3LE, UK
| | - Michel Michaelides
- Department of Genetics, UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
| |
Collapse
|
22
|
Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet Med 2020; 22:1623-1632. [PMID: 32499604 PMCID: PMC7521990 DOI: 10.1038/s41436-020-0854-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion. Methods We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases. Results We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld–Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6. Conclusions We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously “hidden” heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.
Collapse
|
23
|
Ceylan AC, Sahin I, Erdem HB, Kayhan G, Simsek-Kiper PO, Utine GE, Percin F, Boduroglu K, Alikasifoglu M. An eight-case 1q21 region series: novel aberrations and clinical variability with new features. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:548-557. [PMID: 30773728 DOI: 10.1111/jir.12592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/04/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rearrangement of the 1q21 region of chromosome 1 manifests as multiple phenotypes, including microcephaly, intellectual disability, dysmorphic facial features, eye abnormalities, cardiac defects, genitourinary anomalies, autism spectrum disorder, psychiatric conditions and seizures. Herein, we describe eight patients with 1q21 deletion and duplication syndromes, and novel deletions and findings. METHODS Chromosomal microarray analysis was performed to identify the existence of copy number variation. Quantitative polymerase chain reaction was applied using specific primers for the control and 1q21 region of chromosome 1. Mutational analysis was performed in case 5 using direct genomic sequencing for exons 1-6 in RBM8A. RESULTS Copy number variation analysis identified seven deletions and one duplication of the 1q21 region in the eight patients. In addition, four variations were de novo, and two deletions are reported here for the first time. One of the cases (case 7) presents moderate intellectual disability and dysmorphic facial findings, whereas chromosomal microarray analysis showed that case 7 had an 889-kb deletion in the 1q21 proximal region (GPR89A, PDZK1, CD160, POLR3C and NBPF12). CONCLUSION Although the deletion in case 5 did not include the thrombocytopenia-absent radius syndrome critical region or the RBM8A gene, he had pectoral muscle hypoplasia, radius and humerus hypoplasia and short curved ribs, which are indicative of a potential thrombocytopenia-absent radius region modifier. The findings in case 7 suggest that the proximal part of the 1q21 microdeletion syndrome region might be very important for the onset of clinical manifestations. Some novel findings were observed in the presented cases, such as radius and humerus hypoplasia and brain stem hypoplasia. The presented findings expand the spectrum of 1q21 aberrations and provide evidence of genotype-phenotype correlations for this region.
Collapse
Affiliation(s)
- A C Ceylan
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Department of Medical Genetics, Ankara Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey
| | - I Sahin
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Genetics, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - H B Erdem
- Faculty of Medicine, Department of Medical Genetics, Ataturk University, Erzurum, Turkey
- Department of Medical Genetics, Ankara Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - G Kayhan
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| | - P O Simsek-Kiper
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - G E Utine
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - F Percin
- Faculty of Medicine, Department of Medical Genetics, Gazi University, Ankara, Turkey
| | - K Boduroglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - M Alikasifoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Svidnicki PV, Braghini CA, Costa VP, Schimiti RB, de Vasconcellos JPC, de Melo MB. Occurrence of MYOC and CYP1B1 variants in juvenile open angle glaucoma Brazilian patients. Ophthalmic Genet 2019; 39:717-724. [PMID: 30484747 DOI: 10.1080/13816810.2018.1546405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of this study was to screen juvenile open angle glaucoma (JOAG) patients from Brazil for variants within the MYOC and CYP1B1 genes. MATERIAL AND METHODS In this study, we evaluated the coding regions of MYOC and CYP1B1 genes in 100 non-related patients with JOAG and 200 controls through Sanger sequencing. We also tested the most frequent single nucleotide variants of CYP1B1 for association with JOAG. RESULTS Sixteen different sequence variants in the MYOC gene were observed in JOAG patients: eight variants were described as neutral and eight were identified in 34 out of 100 patients with JOAG and no controls, thus being considered damaging. In the CYP1B1 gene, nine neutral variants and two damaging alterations were found among JOAG patients. No association between CYP1B1 variants and JOAG was detected. CONCLUSION While MYOC damaging alterations were highly prevalent (34%), CYP1B1 damaging variants were less frequent (2%) in this cohort of Brazilian JOAG patients.
Collapse
Affiliation(s)
- Paulo Vinicius Svidnicki
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Carolina Ayumi Braghini
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Vital Paulino Costa
- b Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil
| | - Rui Barroso Schimiti
- b Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil.,c Glaucoma Service , Hoftalon Hospital , Londrina , PR , Brazil
| | | | - Mônica Barbosa de Melo
- a Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , University of Campinas - UNICAMP , Campinas , SP , Brazil
| |
Collapse
|
25
|
Rashid M, Yousaf S, Sheikh SA, Sajid Z, Shabbir AS, Kausar T, Tariq N, Usman M, Shaikh RS, Ali M, Bukhari SA, Waryah AM, Qasim M, Riazuddin S, Ahmed ZM. Identities and frequencies of variants in CYP1B1 causing primary congenital glaucoma in Pakistan. Mol Vis 2019; 25:144-154. [PMID: 30820150 PMCID: PMC6386514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/20/2019] [Indexed: 11/11/2022] Open
Abstract
Purpose Primary congenital glaucoma (PCG) is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic causes of PCG segregating in 36 large consanguineous Pakistani families. Methods Ophthalmic examination including fundoscopy, or slit-lamp microscopy was performed to clinically characterize the PCG phenotype. Genomic nucleotide sequences of the CYP1B1 and LTBP2 genes were analyzed with either Sanger or whole exome sequencing. In silico prediction programs were used to assess the pathogenicity of identified alleles. ClustalW alignments were performed to determine evolutionary conservation, and three-dimensional (3D) modeling was performed using HOPE and Phyre2 software. Results Among the known loci, mutations in CYP1B1 and LTBP2 are the common causes of PCG. Therefore, we analyzed the genomic nucleotide sequences of CYP1B1 and LTBP2, and detected probable pathogenic variants cosegregating with PCG in 14 families. These included the three novel (c.542T>A, c.1436A>G, and c.1325delC) and five known (c.868dupC, c.1168C>T, c.1169G>A, c.1209InsTCATGCCACC, and c.1310C>T) variants in CYP1B1. Two of the novel variants are missense substitutions [p.(Leu181Gln), p.(Gln479Arg)], which replaced evolutionary conserved amino acids, and are predicted to be pathogenic by various in silico programs, while the third variant (c.1325delC) is predicted to cause reading frameshift and premature truncation of the protein. A single mutation, p.(Arg390His), causes PCG in six (~43%) of the 14 CYP1B1 mutations harboring families, and thus, is the most common variant in this cohort. Surprisingly, we did not find any LTBP2 pathogenic variants in the families, which further supports the genetic heterogeneity of PCG in the Pakistani population. Conclusions In conclusion, results of the present study enhance our understanding of the genetic basis of PCG, support the notion of a genetic modifier of CYP1B1, and contribute to the development of genetic testing protocols and genetic counseling for PCG in Pakistani families.
Collapse
Affiliation(s)
- Muhammad Rashid
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD,Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sairah Yousaf
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD
| | - Shakeel A. Sheikh
- Molecular Biology & Genetics Department, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - Zureesha Sajid
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD,Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asra S. Shabbir
- University College of Pharmacy, Punjab University, Lahore, Pakistan
| | - Tasleem Kausar
- Zoology Department, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Nabeela Tariq
- Zoology Department, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Muhammad Usman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rehan S. Shaikh
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Shazia A. Bukhari
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Ali M. Waryah
- Molecular Biology & Genetics Department, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD
| |
Collapse
|
26
|
Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BYL, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW. Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLife 2019; 8:e40093. [PMID: 30777146 PMCID: PMC6380838 DOI: 10.7554/elife.40093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Thomas A Hawkins
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Quenten Schwarz
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Lisa M Lawrence
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Claudia Wierzbicki
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Bowie YL Cheng
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Jingyuan Luo
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | | | - Allison Klosner
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Ian M Sealy
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Jasmine Rowell
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Chintan A Trivedi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Isaac H Bianco
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Miguel L Allende
- Center for Genome RegulationFacultad de Ciencias, Universidad de ChileSantiagoChile
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Gaia Gestri
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
27
|
Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum Genet 2019; 138:799-830. [PMID: 30762128 DOI: 10.1007/s00439-019-01977-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/30/2019] [Indexed: 12/22/2022]
Abstract
Eye formation is the result of coordinated induction and differentiation processes during embryogenesis. Disruption of any one of these events has the potential to cause ocular growth and structural defects, such as anophthalmia and microphthalmia (A/M). A/M can be isolated or occur with systemic anomalies, when they may form part of a recognizable syndrome. Their etiology includes genetic and environmental factors; several hundred genes involved in ocular development have been identified in humans or animal models. In humans, around 30 genes have been repeatedly implicated in A/M families, although many other genes have been described in single cases or families, and some genetic syndromes include eye anomalies occasionally as part of a wider phenotype. As a result of this broad genetic heterogeneity, with one or two notable exceptions, each gene explains only a small percentage of cases. Given the overlapping phenotypes, these genes can be most efficiently tested on panels or by whole exome/genome sequencing for the purposes of molecular diagnosis. However, despite whole exome/genome testing more than half of patients currently remain without a molecular diagnosis. The proportion of undiagnosed cases is even higher in those individuals with unilateral or milder phenotypes. Furthermore, even when a strong gene candidate is available for a patient, issues of incomplete penetrance and germinal mosaicism make diagnosis and genetic counseling challenging. In this review, we present the main genes implicated in non-syndromic human A/M phenotypes and, for practical purposes, classify them according to the most frequent or predominant phenotype each is associated with. Our intention is that this will allow clinicians to rank and prioritize their molecular analyses and interpretations according to the phenotypes of their patients.
Collapse
|
28
|
Astiazarán MC, García-Montaño LA, Sánchez-Moreno F, Matiz-Moreno H, Zenteno JC. Next generation sequencing-based molecular diagnosis in familial congenital cataract expands the mutational spectrum in known congenital cataract genes. Am J Med Genet A 2018; 176:2637-2645. [DOI: 10.1002/ajmg.a.40524] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Mirena C. Astiazarán
- Research Unit, Genetics Department; Institute of Ophthalmology, “Conde de Valenciana”; Mexico City Mexico
- General Ophthalmology Department, Fundación Hospital Nuestra Señora de la Luz, IAP; Mexico City Mexico
| | - Leopoldo A. García-Montaño
- Research Unit, Genetics Department; Institute of Ophthalmology, “Conde de Valenciana”; Mexico City Mexico
| | - Francisco Sánchez-Moreno
- General Ophthalmology Department, Fundación Hospital Nuestra Señora de la Luz, IAP; Mexico City Mexico
| | - Humberto Matiz-Moreno
- Anterior Segment Department; Institute of Ophthalmology, “Conde de Valenciana”; Mexico City Mexico
| | - Juan C. Zenteno
- Research Unit, Genetics Department; Institute of Ophthalmology, “Conde de Valenciana”; Mexico City Mexico
- Department of Biochemistry, Faculty of Medicine; National Autonomous University of Mexico; Mexico City Mexico
| |
Collapse
|
29
|
Pasutto F, Ekici A, Reis A, Kremers J, Huchzermeyer C. Novel truncating mutation in CACNA1F in a young male patient diagnosed with optic atrophy. Ophthalmic Genet 2018; 39:741-748. [PMID: 30260717 DOI: 10.1080/13816810.2018.1520263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Low vision in children can be accompanied by pallor of the optic disc with little or no characteristic morphologic changes of the retina. A variety of diseases can be the underlying cause, including hereditary optic atrophy, Leber's congenital amaurosis (LCA), achromatopsia, and calcium channel, voltage-dependent, L-type, alpha-1F subunit gene (CACNA1F)-associated retinopathy (most widely known as incomplete congenital stationary night blindness: iCSNB). Differentiation at early age is desirable due to large differences in prognosis, but may be difficult because phenotypes overlap and electrophysiological testing is challenging in young patients. We present the case of a 6-year-old boy with unexplained low vision and pallor of the optic disc who originally had been diagnosed with hereditary optic atrophy in the absence of recordable full-field electroretinography (ERG) due to poor patient cooperation. MATERIALS AND METHODS Standard Sanger sequencing excluded mutations in the OPA1 gene (autosomal-dominant optic atrophy). To identify the underlying genetic cause, whole-exome sequencing was performed on patient's DNA. Recording of the full-field ERG was successfully performed 6 months later. RESULTS We identified a novel truncating mutation in CACNA1F gene (NM_001256789: c.3895C > T in exon 33) which led to the correct diagnosis of CACNA1F-associated retinopathy in the young boy. ERG recordings showed a negative scotopic mixed response with preserved oscillatory potentials and a flicker ERG with reduced amplitude and biphasic waveform, compatible with a CACNA1F-asssociated phenotype. CONCLUSIONS We show that genetic testing may help to differentiate between optic atrophy, LCA, and CACNA1F-associated retinopathy at a much earlier age, in absence of electrophysiological examination and by widely overlapping phenotypes.
Collapse
Affiliation(s)
- Francesca Pasutto
- a Institute of Human Genetics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Arif Ekici
- a Institute of Human Genetics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - André Reis
- a Institute of Human Genetics , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Jan Kremers
- b Department of Ophthalmology , Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Cord Huchzermeyer
- b Department of Ophthalmology , Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
30
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
31
|
Zhou Z, Li L, Lu L, Min L. Identification of a missense mutation in MIP gene via mutation analysis of a Guangxi Zhuang ethnic pedigree with congenital nuclear cataracts. Exp Ther Med 2018; 16:3256-3260. [PMID: 30214549 DOI: 10.3892/etm.2018.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 06/29/2018] [Indexed: 01/04/2023] Open
Abstract
At present, congenital cataract is the world's leading cause of blindness among children. The aim of the present study was to determine and analyze the genetic disorder associated with a congenital nuclear cataract in a three-generation family of Guangxi Zhuang ethnicity. A total of 3 affected individuals and 5 unaffected family members underwent appropriate comprehensive medical examinations, mainly of the eyes. The white blood cells of the family members were collected and genomic DNA was extracted from 100 healthy individuals, as the control group. The sequences of candidate genes were determined by polymerase chain reaction amplification followed by direct sequencing. The functional consequences of the mutation were analysed with biology software. A missense mutation (c.97C>T) was found in exon 1 of major intrinsic protein of lens fiber (MIP) gene. Therefore, the arginine of the highly conserved codon 33 was changed to cysteine. This mutation was identified in the affected family members, but not identified in unaffected family members or the 100 normal controls. The mutation in the MIP gene is the genetic cause of the congenital cataract in the ethnic Guangxi Zhuang family.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Li Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Lu Lu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Li Min
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
32
|
Matías-Pérez D, García-Montaño LA, Cruz-Aguilar M, García-Montalvo IA, Nava-Valdéz J, Barragán-Arevalo T, Villanueva-Mendoza C, Villarroel CE, Guadarrama-Vallejo C, la Cruz RVD, Chacón-Camacho O, Zenteno JC. Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing. J Hum Genet 2018; 63:1169-1180. [PMID: 30181649 DOI: 10.1038/s10038-018-0504-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
Severe congenital eye malformations, particularly microphthalmia and anophthalmia, are one of the main causes of visual handicap worldwide. They can arise from multifactorial, chromosomal, or monogenic factors and can be associated with extensive clinical variability. Genetic analysis of individuals with these defects has allowed the recognition of dozens of genes whose mutations lead to disruption of normal ocular embryonic development. Recent application of next generation sequencing (NGS) techniques for genetic screening of patients with congenital eye defects has greatly improved the recognition of monogenic cases. In this study, we applied clinical exome NGS to a group of 14 Mexican patients (including 7 familial and 7 sporadic cases) with microphthalmia and/or anophthalmia. Causal or likely causal pathogenic variants were demonstrated in ~60% (8 out of 14 patients) individuals. Seven out of 8 different identified mutations occurred in well-known microphthalmia/anophthalmia genes (OTX2, VSX2, MFRP, VSX1) or in genes associated with syndromes that include ocular defects (CHD7, COL4A1) (including two instances of CHD7 pathogenic variants). A single pathogenic variant was identified in PIEZO2, a gene that was not previously associated with isolated ocular defects. NGS efficiently identified the genetic etiology of microphthalmia/anophthalmia in ~60% of cases included in this cohort, the first from Mexican origin analyzed to date. The molecular defects identified through clinical exome sequencing in this study expands the phenotypic spectra of CHD7-associated disorders and implicate PIEZO2 as a candidate gene for major eye developmental defects.
Collapse
Affiliation(s)
| | - Leopoldo A García-Montaño
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Marisa Cruz-Aguilar
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Jessica Nava-Valdéz
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Tania Barragán-Arevalo
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Cristina Villanueva-Mendoza
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Camilo E Villarroel
- Department of Human Genetics, National Institute of Pediatrics of Mexico, Mexico City, Mexico
| | - Clavel Guadarrama-Vallejo
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Rocío Villafuerte-de la Cruz
- Ciencias Basicas, Escuela de Medicina, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, NL, Mexico
| | - Oscar Chacón-Camacho
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics-Research Unit, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico. .,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico.
| |
Collapse
|
33
|
Goolam S, Carstens N, Ross M, Bentley D, Lopes M, Peden J, Kingsbury Z, Tsogka E, Barlow R, Carmichael TR, Ramsay M, Williams SE. Familial congenital cataract, coloboma, and nystagmus phenotype with variable expression caused by mutation in PAX6 in a South African family. Mol Vis 2018; 24:407-413. [PMID: 29930474 PMCID: PMC5993530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 06/07/2018] [Indexed: 11/19/2022] Open
Abstract
Purpose To report on a clinical and genetic investigation of a large, multigenerational South African family of mixed ancestry with autosomal dominant congenital cataracts, coloboma, and nystagmus. Methods Ophthalmic examination was performed in 27 individuals from the same admixed South African family. DNA was sampled from either peripheral blood or buccal swabs in all 27 individuals, and whole genome sequencing was performed in six individuals. Sanger sequencing was used to validate the probable mutation in the remaining family members. Results Twenty-seven family members with 19 affected individuals were included in the study. The predominant phenotype, with highly variable expression, was congenital cataract (14 individuals), posterior segment coloboma (17 individuals), and nystagmus (18 individuals). Other features present included high myopia, microcornea, and strabismus. An R208W mutation in PAX6 (dbSNP rs757259413; HGMD CM930572; NM_000280.3:c.622G>A; NP_000271.1:p.Arg208Trp) was identified as being the most probable pathogenic mutation. Cosegregation of the mutation with the phenotype was confirmed in all 27 family members. Conclusions PAX6 is a highly conserved gene crucial for normal oculogenesis, and although mutations within the gene may cause an array of ocular developmental abnormalities, most are associated with aniridia and aniridia-related ocular defects. The observation that PAX6 aniridia phenotypes are largely associated with nonsense mutations and milder non-aniridia phenotypes with missense mutations suggested that there may be specific genotype-phenotype correlations for the gene. The R208W mutation in PAX6 identified in this family challenges this theory as it has previously been reported in three unrelated families and is associated with aniridia and non-aniridia phenotypes across the four families. PAX6 with its wide phenotypic associations and highly variable expression should be considered a candidate gene in the diagnostic screen for any ocular developmental abnormality.
Collapse
Affiliation(s)
- Saadiah Goolam
- Division of Ophthalmology, Department of Neurosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa,Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark Ross
- Illumina Cambridge Ltd., Great Chesterford, United Kingdom
| | - David Bentley
- Illumina Cambridge Ltd., Great Chesterford, United Kingdom
| | | | - John Peden
- Illumina Cambridge Ltd., Great Chesterford, United Kingdom
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Great Chesterford, United Kingdom
| | - Eleni Tsogka
- Illumina Cambridge Ltd., Great Chesterford, United Kingdom
| | - Robyn Barlow
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Trevor R. Carmichael
- Division of Ophthalmology, Department of Neurosciences, University of Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa,Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan E. Williams
- Division of Ophthalmology, Department of Neurosciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Ceroni F, Aguilera-Garcia D, Chassaing N, Bax DA, Blanco-Kelly F, Ramos P, Tarilonte M, Villaverde C, da Silva LRJ, Ballesta-Martínez MJ, Sanchez-Soler MJ, Holt RJ, Cooper-Charles L, Bruty J, Wallis Y, McMullan D, Hoffman J, Bunyan D, Stewart A, Stewart H, Lachlan K, Fryer A, McKay V, Roume J, Dureau P, Saggar A, Griffiths M, Calvas P, Ayuso C, Corton M, Ragge NK. New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies. Hum Genet 2018; 138:1027-1042. [PMID: 29464339 DOI: 10.1007/s00439-018-1875-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting that Gja8 may play a role in both lens development and ocular growth. Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known [p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), and p.(Gly94Arg)] and two novel [p.(Phe70Leu) and p.(Val97Gly)] likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established. Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.
Collapse
Affiliation(s)
- Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Domingo Aguilera-Garcia
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Dorine Arjanne Bax
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Fiona Blanco-Kelly
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Patricia Ramos
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Maria Tarilonte
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Cristina Villaverde
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Luciana Rodrigues Jacy da Silva
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | | | | | - Richard James Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Lisa Cooper-Charles
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Bruty
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Dominic McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jonathan Hoffman
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK
| | - David Bunyan
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| | - Alison Stewart
- Sheffield Clinical Genetics Department, Northern General Hospital, Sheffield, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Human Genetics and Genomic Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alan Fryer
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Victoria McKay
- Cheshire and Merseyside Genetics Service, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Joëlle Roume
- Department of Clinical Genetics, Centre de Référence "AnDDI Rares", Poissy Hospital GHU PIFO, Poissy, France
| | - Pascal Dureau
- Fondation Ophtalmologique Adolphe-de-Rothschild, Paris, France
| | - Anand Saggar
- Clinical Genetics Unit, St Georges University of London, London, UK
| | - Michael Griffiths
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, Toulouse, France
- UMR 1056 Inserm, Université de Toulouse, Toulouse, France
| | - Carmen Ayuso
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Marta Corton
- Genetics Service, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Nicola K Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK.
| |
Collapse
|
35
|
Vidya NG, Rajkumar S, Vasavada AR. Genetic investigation of ocular developmental genes in 52 patients with anophthalmia/microphthalmia. Ophthalmic Genet 2018; 39:344-352. [DOI: 10.1080/13816810.2018.1436184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nair Gopinathan Vidya
- Department of Molecular Genetics & Biochemistry, Iladevi Cataract & IOL Research Centre, Ahmedabad, India
- Research scholar, Manipal University, Karnataka
| | - Sankaranarayanan Rajkumar
- Department of Molecular Genetics & Biochemistry, Iladevi Cataract & IOL Research Centre, Ahmedabad, India
| | - Abhay R. Vasavada
- Department of Cataract and Refractive Surgery, Raghudeep Eye Hospital, Ahmedabad, India
| |
Collapse
|
36
|
Ma AS, Grigg JR, Prokudin I, Flaherty M, Bennetts B, Jamieson RV. New mutations in GJA8 expand the phenotype to include total sclerocornea. Clin Genet 2017; 93:155-159. [PMID: 28455998 DOI: 10.1111/cge.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
This project expands the disease spectrum for mutations in GJA8 to include total sclerocornea, rudimentary lenses and microphthalmia, in addition to this gene's previously known role in isolated congenital cataracts. Ophthalmic findings revealed bilateral total sclerocornea in 3 probands, with small abnormal lenses in 2 of the cases, and cataracts and microphthalmia in 1 case. Next-generation sequencing revealed de novo heterozygous mutations affecting the same codon of GJA8 : (c.281G>A; p.(Gly94Glu) and c.280G>C; p.(Gly94Arg)) in 2 of the probands, in addition to the c.151G>A; p.(Asp51Asn) mutation we had previously identified in the third case. In silico analysis predicted all of the mutations to be pathogenic. These cases show that deleterious, heterozygous mutations in GJA8 can lead to a severe ocular phenotype of total sclerocornea, abnormal lenses, and/or cataracts with or without microphthalmia, broadening the phenotype associated with this gene. GJA8 should be included when investigating patients with the severe anterior segment abnormality of total sclerocornea.
Collapse
Affiliation(s)
- A S Ma
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, Australia.,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Disciplines of Genetic Medicine & Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - J R Grigg
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, Australia.,Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - I Prokudin
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - M Flaherty
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, Australia.,Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, Australia
| | - B Bennetts
- Disciplines of Genetic Medicine & Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Department of Molecular Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia
| | - R V Jamieson
- Eye Genetics Research Unit, The Children's Hospital at Westmead, Save Sight Institute, Children's Medical Research Institute, University of Sydney, Sydney, Australia.,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia.,Disciplines of Genetic Medicine & Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.,Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
Gupta S, Chatterjee S, Mukherjee A, Mutsuddi M. Whole exome sequencing: Uncovering causal genetic variants for ocular diseases. Exp Eye Res 2017; 164:139-150. [PMID: 28844620 DOI: 10.1016/j.exer.2017.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 01/23/2023]
Abstract
Identification of causal genetic defects for human diseases took a significant leap when the first generation DNA sequencing technologies enabled biologists extract sequence-based genetic information from living beings. However, these sequencing methods had unavoidable constraints of throughput, scalability, rapidity, and resolution. In this direction, next-generation sequencing (NGS) since the time of its advent has revolutionized the process of gene discovery for both monogenic and multifactorial genetic diseases. Among several variations of NGS, whole exome sequencing (WES) has emerged as a smart strategy that enables identification of disease causing variants present within the coding region of the human genome. The current review focuses primarily on the application of WES in identification of causal variants for ocular diseases. WES has successfully revealed pathogenic variants in a variety of ocular diseases such as retinal degenerations, refractive errors, lens diseases, corneal dystrophies, and developmental ocular defects. It has demonstrated immense potential for molecular diagnosis of genetic ocular diseases. WES has been extensively used in Mendelian and complex cases, familial and sporadic cases, simplex and multiplex cases, and syndromic and non-syndromic cases of ocular diseases. Although many such ocular diseases have been investigated using WES, reports indicate that it has been employed overwhelmingly for heterogeneous retinal degenerations. WES, within a short period of time, has proved to be a cost-effective and promising approach for understanding the genetic basis of ocular diseases.
Collapse
Affiliation(s)
- Shashank Gupta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Souradip Chatterjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
38
|
Zhu X, Zhang S, Chang R, Lu Y. New cataract markers: Mechanisms of disease. Clin Chim Acta 2017; 472:41-45. [PMID: 28705775 DOI: 10.1016/j.cca.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 11/28/2022]
Abstract
Cataract is caused by nutritional, metabolic, environmental, and genetic factors, and is a significant cause of blindness and visual impairment. In recent years, extensive research into the human genome has revealed that numerous genetic mutations are associated with cataract. These mutations affect a variety of genes, including those encoding crystallin, membrane proteins, cytoskeletal proteins, transcription factors, and metabolism-related proteins. Elucidation of these mutations and the genetic and molecular mechanisms has helped clarify the etiology of cataract and may facilitate its early diagnosis and treatment. This review summarizes recent advances in our knowledge and potential clinical of genetic markers of cataract.
Collapse
Affiliation(s)
- Xiangjia Zhu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People's Republic of China
| | - Shaohua Zhang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People's Republic of China
| | - Ruiqi Chang
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People's Republic of China
| | - Yi Lu
- Department of Ophthalmology, Eye and Ear, Nose, and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Eye Institute, Eye and Ear, Nose, and Throat Hospital of Fudan University, 83 Fenyang Road, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia, Ministry of Health, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, People's Republic of China.
| |
Collapse
|
39
|
Ullah E, Wu D, Madireddy L, Lao R, Ling-Fung Tang P, Wan E, Bardakjian T, Kopinsky S, Kwok PY, Schneider A, Baranzini S, Ansar M, Slavotinek A. Two missense mutations in SALL4 in a patient with microphthalmia, coloboma, and optic nerve hypoplasia. Ophthalmic Genet 2017; 38:371-375. [PMID: 27661448 PMCID: PMC6238016 DOI: 10.1080/13816810.2016.1217550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
To investigate the genetic etiology of anophthalmia and microphthalmia, we used exome sequencing in a Caucasian female with unilateral microphthalmia and coloboma, bilateral optic nerve hypoplasia, ventricular and atrial septal defects, and growth delays. We found two sequence variants in SALL4 - c.[575C>A], predicting p.(Ala192Glu), that was paternally inherited, and c.[2053G>C], predicting p.(Asp685His), that was maternally inherited. Haploinsufficiency for SALL4 due to nonsense or frameshift mutations has been associated with acro-renal ocular syndrome that is characterized by eye defects including Duane anomaly and coloboma, in addition to radial ray malformations and renal abnormalities. Our report is the first description of structural eye defects associated with two missense variants in SALL4 inherited in trans; the absence of reported findings in both parents suggests that both sequence variants are hypomorphic mutations and that both are needed for the ocular phenotype. SALL4 is expressed in the developing lens and regulates BMP4, leading us to speculate that altered BMP4 expression was responsible for the eye defects, but we could not demonstrate altered BMP4 expression in vitro after using small interfering RNAs (siRNAs) to reduce SALL4 expression. We conclude that SALL4 hypomorphic variants may influence eye development.
Collapse
Affiliation(s)
- E Ullah
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
- b Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - D Wu
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
| | - L Madireddy
- c Department of Neurology , University of California, San Francisco , San Francisco , California , USA
| | - R Lao
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - P Ling-Fung Tang
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - E Wan
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - T Bardakjian
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - S Kopinsky
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - P-Y Kwok
- d Cardiovascular Research Institute , University of California, San Francisco , San Francisco , California , USA
| | - A Schneider
- e Division of Medical Genetics , Einstein Healthcare Network , Philadelphia , Pennsylvania , USA
| | - S Baranzini
- c Department of Neurology , University of California, San Francisco , San Francisco , California , USA
| | - M Ansar
- b Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - A Slavotinek
- a Department of Pediatrics , University of California, San Francisco , San Francisco , California , USA
| |
Collapse
|
40
|
Bardakjian T, Krall M, Wu D, Lao R, Tang PLF, Wan E, Kopinsky S, Schneider A, Kwok PY, Slavotinek A. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 ( GDF3) in a female with unilateral anophthalmia and skeletal anomalies. Am J Ophthalmol Case Rep 2017; 7:102-106. [PMID: 29260090 PMCID: PMC5722175 DOI: 10.1016/j.ajoc.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/08/2023] Open
Abstract
Purpose The genetic causes of anophthalmia, microphthalmia and coloboma remain poorly understood. Missense mutations in Growth/Differentiation Factor 3 (GDF3) gene have previously been reported in patients with microphthalmia, iridial and retinal colobomas, Klippel-Feil anomaly with vertebral fusion, scoliosis, rudimentary 12th ribs and an anomalous right temporal bone. We used whole exome sequencing with a trio approach to study a female with unilateral anophthalmia, kyphoscoliosis and additional skeletal anomalies. Observations Exome sequencing revealed that the proposita was heterozygous for c.796C > T, predicting p.Arg266Cys, in GDF3. Sanger sequencing confirmed the mutation and showed that the unaffected mother was heterozygous for the same missense substitution. Conclusions and importance Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.
Collapse
Affiliation(s)
- Tanya Bardakjian
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Max Krall
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Di Wu
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Lao
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Paul Ling-Fung Tang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eunice Wan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Sarina Kopinsky
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Adele Schneider
- Division of Medical Genetics, Einstein Medical Center, Philadelphia, PA, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Dept. of Pediatrics, Division of Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
41
|
Novel mutations in CRYGC are associated with congenital cataracts in Chinese families. Sci Rep 2017; 7:189. [PMID: 28298635 PMCID: PMC5428270 DOI: 10.1038/s41598-017-00318-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/21/2017] [Indexed: 11/08/2022] Open
Abstract
Congenital cataract (CC), responsible for about one-third of blindness in infants, is a major cause of vision loss in children worldwide. 10–25% of CC cases are attributed to genetic causes and CC is a clinically and genetically highly heterogeneous lens disorder in children. Autosomal dominant (AD) inheritance is the most commonly pattern. 195 unrelated non-syndromic ADCC families in this study are recruited from 15 provinces of China. Sanger sequencing approach followed by intra-familial co-segregation, in Silico analyses and interpretation of the variations according to the published guidelines of American College of Medical Genetics (ACMG), were employed to determine the genetic defects. Two mutations (p.Tyr139X and p.Ser166Phe) identified in two unrelated families were associated with their congenital nuclear cataracts and microcornea respectively, which are also reported previously. Six novel CRYGC mutations (p.Asp65ThrfsX38, p.Arg142GlyfsX5, p.Arg142AlafsX22, p.Tyr144X, p.Arg169X, and p.Tyr46Asp) were identified in other six families with congenital nuclear cataracts, respectively. Mutations in the CRYGC were responsible for 4.1% Chinese ADCC families in our cohort. Our results expand the spectrum of CRYGC mutations as well as their associated phenotypes.
Collapse
|
42
|
Haer-Wigman L, van Zelst-Stams WA, Pfundt R, van den Born LI, Klaver CC, Verheij JB, Hoyng CB, Breuning MH, Boon CJ, Kievit AJ, Verhoeven VJ, Pott JW, Sallevelt SC, van Hagen JM, Plomp AS, Kroes HY, Lelieveld SH, Hehir-Kwa JY, Castelein S, Nelen M, Scheffer H, Lugtenberg D, Cremers FP, Hoefsloot L, Yntema HG. Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur J Hum Genet 2017; 25:591-599. [PMID: 28224992 PMCID: PMC5437915 DOI: 10.1038/ejhg.2017.9] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/16/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective.
Collapse
Affiliation(s)
- Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Caroline Cw Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joke Bgm Verheij
- Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn H Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Camiel Jf Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke J Kievit
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Virginie Jm Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Wr Pott
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne Ceh Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Hester Y Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan H Lelieveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jayne Y Hehir-Kwa
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Steven Castelein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marcel Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Hans Scheffer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Dorien Lugtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frans Pm Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lies Hoefsloot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
43
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
44
|
Taylan Şekeroğlu H, Utine GE, Alikaşifoğlu M. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist's Perspective. Turk J Ophthalmol 2016; 46:299-300. [PMID: 28050330 PMCID: PMC5177790 DOI: 10.4274/tjo.59375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/23/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Gülen Eda Utine
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Hacettepe University Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| |
Collapse
|
45
|
Reis LM, Tyler RC, Weh E, Hendee KE, Kariminejad A, Abdul-Rahman O, Ben-Omran T, Manning MA, Yesilyurt A, McCarty CA, Kitchner TE, Costakos D, Semina EV. Analysis of CYP1B1 in pediatric and adult glaucoma and other ocular phenotypes. Mol Vis 2016; 22:1229-1238. [PMID: 27777502 PMCID: PMC5070572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The CYP1B1 gene encodes an enzyme that is a member of the cytochrome P450 superfamily. Mutations in CYP1B1 have been mainly reported in recessive pediatric ocular phenotypes, such as primary congenital glaucoma (PCG) and congenital glaucoma with anterior segment dysgenesis (CG with ASD), with some likely pathogenic variants also identified in families affected with adult-onset primary open angle glaucoma (POAG). METHODS We examined CYP1B1 in 158 pediatric patients affected with PCG (eight), CG with ASD (22), CG with other developmental ocular disorders (11), juvenile glaucoma with or without additional ocular anomalies (26), and ASD or other developmental ocular conditions without glaucoma (91); in addition, a large cohort of adult patients with POAG (193) and POAG-negative controls (288) was examined. RESULTS Recessive pathogenic variants in CYP1B1 were identified in two PCG pedigrees, three cases with CG and ASD, and two families with CG and other ocular defects, such as sclerocornea in one patient and microphthalmia in another individual; neither sclerocornea nor microphthalmia has been previously associated with CYP1B1. Most of the identified causative mutations are new occurrences of previously reported pathogenic alleles with two novel variants identified: a c.1325delC, p.(Pro442Glnfs*15) frameshift allele in a family with PCG and a c.157G>A, p.(Gly53Ser) variant identified in a proband with CG, Peters anomaly, and microphthalmia. Analysis of the family history in the CYP1B1-positive families revealed POAG in confirmed or presumed heterozygous relatives in one family with PCG and two families with ASD/CG; POAG was associated with the c.1064_1076del, p.(Arg355Hisfs*69) allele in two of these pedigrees. Screening of an unrelated POAG cohort identified the same c.1064_1076del heterozygous allele in one individual with sporadic POAG but not in age- and ethnicity-matched POAG-negative individuals. Overall, there was no significant enrichment for mutant alleles in CYP1B1 within the POAG cases compared to the controls. CONCLUSIONS In summary, these data expand the mutational and phenotypic spectra of CYP1B1 to include two novel alleles and additional developmental ocular phenotypes. The contribution of CYP1B1 to POAG is less clear, but loss-of-function variants in CYP1B1, especially c.1064_1076del, p.(Arg355Hisfs*69), may be associated with an increased risk for POAG.
Collapse
Affiliation(s)
- Linda M. Reis
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Rebecca C. Tyler
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Eric Weh
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI
| | - Kathryn E. Hendee
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI
| | | | - Omar Abdul-Rahman
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation and Weill Cornell Medical College, Doha-Qatar
| | - Melanie A. Manning
- Division of Medical Genetics, Department of Pathology and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ahmet Yesilyurt
- Diskapi Yildirim Beyazit Training and Education Hospital, Genetic Diagnosis Center, Ankara, Turkey
| | - Catherine A. McCarty
- Marshfield Clinic Research Foundation, Center for Human Genetics Department, Marshfield WI
| | - Terrie E. Kitchner
- Marshfield Clinic Research Foundation, Center for Human Genetics Department, Marshfield WI
| | - Deborah Costakos
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, WI,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI,Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
46
|
Plaisancie J, Calvas P, Chassaing N. Genetic Advances in Microphthalmia. J Pediatr Genet 2016; 5:184-188. [PMID: 27895970 DOI: 10.1055/s-0036-1592350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
Congenital ocular anomalies such as anophthalmia and microphthalmia (AM) are severe craniofacial malformations in human. The etiologies of these ocular globe anomalies are diverse but the genetic origin appears to be a predominant cause. Until recently, genetic diagnosis capability was rather limited in AM patients and only a few genes were available for routine genetic testing. While some issues remain poorly understood, knowledge regarding the molecular basis of AM dramatically improved over the last years with the development of new molecular screening technologies. Thus, the genetic cause is now identifiable in more than 50% of patients with a severe bilateral eye phenotype and in around 30% of all AM patients taken together. Such advances in the knowledge of these genetic bases are important as they improve the quality of care, in terms of diagnosis, prognosis, and genetic counseling delivered to the patients and their families.
Collapse
Affiliation(s)
- Julie Plaisancie
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France
| | - Patrick Calvas
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France; U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
| | - Nicolas Chassaing
- Department of Medical Genetics, Purpan University Hospital, Toulouse, France; U1056 INSERM-FRE 3742 CNRS-Université Toulouse III, Toulouse, France
| |
Collapse
|
47
|
Mauri L, Uebe S, Sticht H, Vossmerbaeumer U, Weisschuh N, Manfredini E, Maselli E, Patrosso M, Weinreb RN, Penco S, Reis A, Pasutto F. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet J Rare Dis 2016; 11:108. [PMID: 27484908 PMCID: PMC4970237 DOI: 10.1186/s13023-016-0495-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primary congenital glaucoma (PCG) and early onset glaucomas are one of the major causes of children and young adult blindness worldwide. Both autosomal recessive and dominant inheritance have been described with involvement of several genes including CYP1B1, FOXC1, PITX2, MYOC and PAX6. However, mutations in these genes explain only a small fraction of cases suggesting the presence of further candidate genes. METHODS To elucidate further genetic causes of these conditions whole exome sequencing (WES) was performed in an Italian patient, diagnosed with PCG and retinal detachment, and his unaffected parents. Sanger sequencing of the complete coding region of COL1A1 was performed in a total of 26 further patients diagnosed with PCG or early onset glaucoma. Exclusion of pathogenic variations in known glaucoma genes as CYP1B1, MYOC, FOXC1, PITX2 and PAX6 was additionally done per Sanger sequencing and Multiple Ligation-dependent Probe Amplification (MLPA) analysis. RESULTS In the patient diagnosed with PCG and retinal detachment, analysis of WES data identified compound heterozygous variants in COL1A1 (p.Met264Leu; p.Ala1083Thr). Targeted COL1A1 screening of 26 additional patients detected three further heterozygous variants (p.Arg253*, p.Gly767Ser and p.Gly154Val) in three distinct subjects: two of them diagnosed with early onset glaucoma and mild form of osteogenesis imperfecta (OI), one patient with a diagnosis of PCG at age 4 years. All five variants affected evolutionary, highly conserved amino acids indicating important functional restrictions. Molecular modeling predicted that the heterozygous variants are dominant in effect and affect protein stability and thus the amount of available protein, while the compound heterozygous variants act as recessive alleles and impair binding affinity to two main COL1A1 binding proteins: Hsp47 and fibronectin. CONCLUSIONS Dominant inherited mutations in COL1A1 are known causes of connective tissues disorders such as OI. These disorders are also associated with different ocular abnormalities, although recognition of the common pathology for both features is seldom being recognized. Our results expand the role of COL1A1 mutations in different forms of early-onset glaucoma with and without signs of OI. Thus, we suggest including COL1A1 mutation screening in the genetic work-up of glaucoma cases and detailed ophthalmic examinations with fundus analysis in patients with OI.
Collapse
Affiliation(s)
- Lucia Mauri
- Medical Genetics, A.O. Niguarda Ca'Granda Hospital, Milan, Italy
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Urs Vossmerbaeumer
- Augenklinik und Poliklinik, Joahnnes Gutenberg-Universität Mainz, Mainz, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | - Silvana Penco
- Medical Genetics, A.O. Niguarda Ca'Granda Hospital, Milan, Italy
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
48
|
Chun YJ, Kim D. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1. Toxicol Res 2016; 32:89-93. [PMID: 27123158 PMCID: PMC4843978 DOI: 10.5487/tr.2016.32.2.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022] Open
Abstract
Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health.
Collapse
Affiliation(s)
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
49
|
Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, Mowat D, Smith J, Christodoulou J, Flaherty M, Bennetts B, Jamieson RV. Sporadic and Familial Congenital Cataracts: Mutational Spectrum and New Diagnoses Using Next-Generation Sequencing. Hum Mutat 2016; 37:371-84. [PMID: 26694549 PMCID: PMC4787201 DOI: 10.1002/humu.22948] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
Abstract
Congenital cataracts are a significant cause of lifelong visual loss. They may be isolated or associated with microcornea, microphthalmia, anterior segment dysgenesis (ASD) and glaucoma, and there can be syndromic associations. Genetic diagnosis is challenging due to marked genetic heterogeneity. In this study, next-generation sequencing (NGS) of 32 cataract-associated genes was undertaken in 46 apparently nonsyndromic congenital cataract probands, around half sporadic and half familial cases. We identified pathogenic variants in 70% of cases, and over 68% of these were novel. In almost two-thirds (20/33) of these cases, this resulted in new information about the diagnosis and/or inheritance pattern. This included identification of: new syndromic diagnoses due to NHS or BCOR mutations; complex ocular phenotypes due to PAX6 mutations; de novo autosomal-dominant or X-linked mutations in sporadic cases; and mutations in two separate cataract genes in one family. Variants were found in the crystallin and gap junction genes, including the first report of severe microphthalmia and sclerocornea associated with a novel GJA8 mutation. Mutations were also found in rarely reported genes including MAF, VIM, MIP, and BFSP1. Targeted NGS in presumed nonsyndromic congenital cataract patients provided significant diagnostic information in both familial and sporadic cases.
Collapse
Affiliation(s)
- Alan S. Ma
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of Clinical GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - John R. Grigg
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Gladys Ho
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Ivan Prokudin
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Elizabeth Farnsworth
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Katherine Holman
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Anson Cheng
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
| | - Frank A. Billson
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Frank Martin
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Clare Fraser
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - David Mowat
- Department of Medical GeneticsSydney Children's HospitalSydneyNew South WalesAustralia
| | - James Smith
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - John Christodoulou
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Maree Flaherty
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of OphthalmologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of OphthalmologySydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| | - Bruce Bennetts
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
- Department of Molecular GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Robyn V. Jamieson
- Eye Genetics ResearchThe Children's Hospital at WestmeadSave Sight InstituteChildren's Medical Research InstituteUniversity of SydneySydneyNew South WalesAustralia
- Department of Clinical GeneticsThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Paediatrics and Child Healthand Discipline of Genetic MedicineSydney Medical SchoolUniversity of SydneyNew South WalesAustralia
| |
Collapse
|
50
|
Arthur JW, Cheung FSG, Reichardt JKV. Single nucleotide differences (SNDs) continue to contaminate the dbSNP database with consequences for human genomics and health. Hum Mutat 2015; 36:196-9. [PMID: 25421747 DOI: 10.1002/humu.22735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023]
Abstract
It has been established that up to 8.3% of the biallelic coding SNPs present in dbSNP are actually artefactual polymorphism-like errors, previously termed single nucleotide differences, or SNDs. In this study, a previous analysis of SNPs in dbSNP was extended and updated to examine how the incidence of SNDs has changed over an intervening five year period. The incidence of SNDs was found to be lower than in the previous analysis at 2.2% of all biallelic SNPs. There was only a modest reduction in the percentage of SNDs in the original set of biallelic coding SNPs tested. This suggests that the overall reduction in the incidence of SNDs over the intervening 5-year period is related to an improvement in SNP detection methods and more rigorous curation, rather than efforts to ameliorate the presence of SNDs. We note that SNDs contaminating the dbSNP may lead to erroneous conclusions on human conditions.
Collapse
Affiliation(s)
- Jonathan W Arthur
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | | | | |
Collapse
|