1
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024; 38:165-174. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
He B, Wang B, Zhang Q. A Technique of Autologous Costal Cartilage Graft Combined With Auricular Cartilage Folding to Correct Question Mark Ear in a Single Procedure. EAR, NOSE & THROAT JOURNAL 2024:1455613241257332. [PMID: 39049573 DOI: 10.1177/01455613241257332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Background: Question mark ear is a rare congenital deformity, mainly characterized the interruption of the natural continuity between the lower border of the helix and the earlobe. In severe cases, the earlobe may be absent. In addition, there may be protrusion and outward expansion of the upper part of the auricle, with partial or complete disappearance of the antihelix. This article aims to introduce a technique that combines autologous costal cartilage carving with auricular cartilage folding to achieve a stable and aesthetic auricle. Method: This study included 26 patients with sporadic question mark ear deformity who were treated at our clinical center from January 2020 to December 2022. Based on the different appearances of the lower part of the auricle, they were divided into 2 categories:11 cases showed a natural continuity interruption between the helix and the earlobe, while 15 cases showed the absence of the earlobe. All patients underwent corrective surgery using costal cartilage transplantation combined with the upper part of the auricular cartilage folding, performed by senior surgeons. Results: Question mark ear was effectively improved and with no significant rebound. The average follow-up period was 8.4 months (ranging from 6 to 12 months). A satisfaction survey showed that 23 patients (88%) were satisfied, 3 patients (12%) were partially satisfied, and no patients were dissatisfied. Most patients experienced temporary swelling after surgery, which resolved within 3 months to half a year. Conclusion: Autologous costal cartilage transplantation combined with folding of the auricular cartilage is an ideal surgical method to correct question mark ear.
Collapse
Affiliation(s)
- Bei He
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Qingguo Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Shi Y, Rong L, Liu S, Liu Y, Zong C, Lu J, Shang H, Xue Y, Tian L. Novel GNAI3 mutation in a Chinese family with auriculocondylar syndrome and treatment of severe dentofacial deformities: a 5-year follow-up case report. BMC Oral Health 2024; 24:803. [PMID: 39014351 PMCID: PMC11251236 DOI: 10.1186/s12903-024-04575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is an extremely rare autosomal dominant or recessive condition that typically manifests as question mark ears (QMEs), mandibular condyle hypoplasia, and micrognathia. Severe dental and maxillofacial malformations present considerable challenges in patients' lives and clinical treatment. Currently, only a few ARCND cases have been reported worldwide, but most of them are related to genetic mutations, clinical symptoms, and ear correction; there are few reports concerning the treatment of dentofacial deformities. CASE PRESENTATION Here, we report a rare case of ARCND in a Chinese family. A novel insertional mutation in the guanine nucleotide-binding protein alpha-inhibiting activity polypeptide 3 (GNAI3) was identified in the patient and their brother using whole-exome sequencing. After a multidisciplinary consultation and examination, sequential orthodontic treatment and craniofacial surgery, including distraction osteogenesis and orthognathic surgery, were performed using three-dimensional (3D) digital technology to treat the patient's dentofacial deformity. A good prognosis was achieved at the 5-year follow-up, and the patient returned to normal life. CONCLUSIONS ARCND is a monogenic and rare condition that can be diagnosed based on its clinical triad of core features. Molecular diagnosis plays a crucial role in the diagnosis of patients with inconspicuous clinical features. We present a novel insertion variation in GNAI3, which was identified in exon 2 of chromosome 110116384 in a Chinese family. Sequential therapy with preoperative orthodontic treatment combined with distraction osteogenesis and orthognathic surgery guided by 3D digital technology may be a practical and effective method for treating ARCND.
Collapse
Affiliation(s)
- Yulin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Liang Rong
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, 30 Fucheng Road, Beijing, 100089, China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Yiwen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Chunlin Zong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Jinbiao Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Hongtao Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China
| | - Yang Xue
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, 710032, PR China.
| |
Collapse
|
4
|
Guo L, Sun H, Pu J. GNAI3 mediated by Lin28A regulates lipopolysaccharide-induced inflammation and osteogenic differentiation in periodontal stem cells by mediating the NF-κB/NLRP3 inflammasome pathway. Arch Oral Biol 2024; 163:105974. [PMID: 38636252 DOI: 10.1016/j.archoralbio.2024.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the regulatory role of G protein subunit alpha i3 (GNAI3) in periodontitis. DESIGN Following the induction of human periodontal ligament stem cells (hPDLSCs) with lipopolysaccharide (LPS), the mRNA and protein expressions of GNAI3 and Lin28A were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. The transfection efficiency of Oe-GNAI3 and sh-Lin28A was examined by virtue of RT-qPCR and western blot. With the application of ELISA and flow cytometry, the releases of inflammatory cytokines and cell apoptosis were appraised. Alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining were conducted to evaluate osteogenic differentiation. Next, the binding ability of Lin28A with GNAI3 mRNA was estimated by radioimmunoprecipitation (RIP) assay while the stability of GNAI3 mRNA was assessed utilizing RT-qPCR. Western blot was employed for the measurement of inflammation-, apoptosis- and nuclear factor-kappaB (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway-related proteins and osteogenic markers. RESULTS The expression of GNAI3 was down-regulated in LPS-induced hPDLSCs. After the transfection with Oe-GNAI3, the inflammation and apoptosis in LPS-induced hPDLSCs were inhibited while osteogenic differentiation was promoted. Moreover, Lin28A could stabilize GNAI3 mRNA and Lin28A knockdown significantly reduced GNAI3 expression. Further experiments verified that the inhibitory effects of GNAI3 overexpression on LPS-induced cellular inflammation and cell apoptosis as well as the promotive effects on osteogenic differentiation in hPDLSCs were all partially counteracted by Lin28A depletion, which may possibly be mediated via the regulation of the NF-κB/NLRP3 inflammasome pathway. CONCLUSION GNAI3 that mediated by Lin28A regulates the inflammation and osteogenic differentiation in LPS-induced hPDLSCs by mediating the NF-κB/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Ling Guo
- Stomatology Clinic, MeiZhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong 514000, China.
| | - Hua Sun
- Stomatology Clinic, MeiZhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong 514000, China
| | - Jiao Pu
- Stomatology Clinic, MeiZhou People's Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong 514000, China
| |
Collapse
|
5
|
Abu Obaid A, Ivandic I, Korsching SI. Deciphering the function of the fifth class of Gα proteins: regulation of ionic homeostasis as unifying hypothesis. Cell Mol Life Sci 2024; 81:213. [PMID: 38727814 PMCID: PMC11087313 DOI: 10.1007/s00018-024-05228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/13/2024]
Abstract
Trimeric G proteins transduce signals from a superfamily of receptors and each G protein controls a wide range of cellular and systemic functions. Their highly conserved alpha subunits fall in five classes, four of which have been well investigated (Gs, Gi, G12, Gq). In contrast, the function of the fifth class, Gv is completely unknown, despite its broad occurrence and evolutionary ancient origin (older than metazoans). Here we show a dynamic presence of Gv mRNA in several organs during early development of zebrafish, including the hatching gland, the pronephros and several cartilage anlagen, employing in situ hybridisation. Next, we generated a Gv frameshift mutation in zebrafish and observed distinct phenotypes such as reduced oviposition, premature hatching and craniofacial abnormalities in bone and cartilage of larval zebrafish. These phenotypes could suggest a disturbance in ionic homeostasis as a common denominator. Indeed, we find reduced levels of calcium, magnesium and potassium in the larvae and changes in expression levels of the sodium potassium pump atp1a1a.5 and the sodium/calcium exchanger ncx1b in larvae and in the adult kidney, a major osmoregulatory organ. Additionally, expression of sodium chloride cotransporter slc12a3 and the anion exchanger slc26a4 is altered in complementary ways in adult kidney. It appears that Gv may modulate ionic homeostasis in zebrafish during development and in adults. Our results constitute the first insight into the function of the fifth class of G alpha proteins.
Collapse
Affiliation(s)
- Asmaa Abu Obaid
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Department of Optometry, Faculty of Modern Sciences, The Arab American University, Yousef Asfour Street, Ramallah, Palestine
| | - Ivan Ivandic
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Faculty of Mathematics and Natural Sciences of the University at Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
6
|
Zhang Y, Zhao Y, Dai L, Liu Y, Shi Z. Auriculocondylar syndrome 2 caused by a novel PLCB4 variant in a male Chinese neonate: A case report and review of the literature. Mol Genet Genomic Med 2024; 12:e2441. [PMID: 38618928 PMCID: PMC11017300 DOI: 10.1002/mgg3.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is a rare congenital craniofacial developmental malformation syndrome of the first and second pharyngeal arches with external ear malformation at the junction between the lobe and helix, micromaxillary malformation, and mandibular condylar hypoplasia. Four subtypes of ARCND have been described so far, that is, ARCND1 (OMIM # 602483), ARCND2 (ARCND2A, OMIM # 614669; ARCND2B, OMIM # 620458), ARCND3 (OMIM # 615706), and ARCND4 (OMIM # 620457). METHODS This study reports a case of ARCND2 resulting from a novel pathogenic variant in the PLCB4 gene, and summarizes PLCB4 gene mutation sites and phenotypes of ARCND2. RESULTS The proband, a 5-day-old male neonate, was referred to our hospital for respiratory distress. Micrognathia, microstomia, distinctive question mark ears, as well as mandibular condyle hypoplasia were identified. Trio-based whole-exome sequencing identified a novel missense variant of NM_001377142.1:c.1928C>T (NP_001364071.1:p.Ser643Phe) in the PLCB4 gene, which was predicted to impair the local structural stability with a result that the protein function might be affected. From a review of the literature, only 36 patients with PLCB4 gene mutations were retrieved. CONCLUSION As with other studies examining familial cases of ARCND2, incomplete penetrance and variable expressivity were observed within different families' heterozygous mutations in PLCB4 gene. Although, motor and intellectual development are in the normal range in the vast majority of patients with ARCND2, long-term follow-up and assessment are still required.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yuwei Zhao
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Liying Dai
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yu Liu
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Zifeng Shi
- Radiology Department, Center of Imaging DiagnosisAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| |
Collapse
|
7
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
9
|
Bai Y, Sun Y, Liu N, Wang L, Jiao Z, Hou Y, Duan H, Li Q, Zhu X, Meng J, Kong X. Genetic analysis of 55 cases with fetal skeletal dysplasia. Orphanet J Rare Dis 2022; 17:410. [PMID: 36352425 PMCID: PMC9648031 DOI: 10.1186/s13023-022-02559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Fetal skeletal dysplasia (SD) is a common congenital disability comprising a complex group of skeletal disorders with substantial clinical and genetic heterogeneity. Many of these defects are detected prenatally using ultrasound (US). However, the diagnostic accuracy of the US is limited. METHODS We recruited 55 unrelated fetuses with US-detected skeletal anomalies and performed sequential tests using copy number variation sequencing, targeted skeletal gene panel sequencing, or whole exome sequencing. The detected variants were validated using Sanger sequencing or multiplex ligation-dependent probe amplification. We conducted breakpoint analysis and structural modeling of variants possibly involved in fetal SD. RESULTS A definitive diagnosis was achieved in 81.82% of affected fetuses (45/55). We identified chromosomal abnormalities in seven cases and 36 variants, of which 18 were novel pathogenic or likely pathogenic in 11 genes in 38 cases. De novo variants were identified in 27 cases (71.05%, 27/38), and one gonosomal mosaicism variant was found in the mother of one fetus. Our case examples demonstrated the high heterogeneity of fetal SDs and the rare fetal SD-associated challenges. CONCLUSIONS Careful clinical evaluation of fetuses with SD can guide appropriate molecular testing. Our study extends the SD-associated pathogenic variant spectrum and provides useful genetic counselling guidance and an accurate prenatal diagnosis strategy.
Collapse
Affiliation(s)
- Ying Bai
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yue Sun
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Ning Liu
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Li Wang
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Zhihui Jiao
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yaqin Hou
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huikun Duan
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Qianqian Li
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiaofan Zhu
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingjing Meng
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiangdong Kong
- grid.412633.10000 0004 1799 0733Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
10
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Vegas N, Demir Z, Gordon CT, Breton S, Romanelli Tavares V, Moisset H, Zechi-Ceide R, Kokitsu-Nakata NM, Kido Y, Marlin S, Gherbi Halem S, Meerschaut I, Callewaert B, Chung B, Revencu N, Lehalle D, Petit F, Propst EJ, Papsin BC, Phillips JH, Jakobsen L, Le Tanno P, Thévenon J, McGaughran J, Gerkes EH, Leoni C, Kroisel P, Yang Tan T, Henderson A, Terhal P, Basel-Salmon L, Alkindy A, White SM, Passos Bueno MR, Pingault V, De Pontual L, Amiel J. Further delineation of Auriculocondylar syndrome based on 14 novel cases and reassessment of 25 published cases. Hum Mutat 2022; 43:582-594. [PMID: 35170830 DOI: 10.1002/humu.24349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signalling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbour mutation(s) in PLCB4, GNAI3 or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental and genital anomalies, and provides management and monitoring recommendations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Zeynep Demir
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Unité d'hépatologie pédiatrie et transplantation, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Sylvain Breton
- Service d'imagerie pédiatrie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vanessa Romanelli Tavares
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hugo Moisset
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Roseli Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Sandrine Marlin
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Souad Gherbi Halem
- Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Daphné Lehalle
- Centre de génétique- centre de référence des maladies rares, anomalies du développement et syndrome malformatifs, Centre Hospitalo-Universitaire de Dijon, Bourgogne, France.,UF de Génétique Médicale, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Florence Petit
- CHU Lille, clinique de Génétique Guy Fontaine, F-59000, Lille, France
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Blake C Papsin
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - John H Phillips
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Linda Jakobsen
- Department of Plastic Surgery, Copenhagen University Hospital, Herlev, Denmark
| | - Pauline Le Tanno
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julien Thévenon
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston and the University of Queensland, St Lucia, Brisbane, Australia
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, IRCCS, Italy
| | - Peter Kroisel
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics, Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Adila Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Rita Passos Bueno
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Véronique Pingault
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Loïc De Pontual
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Service de pédiatrie, Hôpital Jean Verdier, Bondy, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| |
Collapse
|
12
|
Liu X, Sun W, Wang J, Chu G, He R, Zhang B, Zhao Y. Prenatal diagnosis of auriculocondylar syndrome with a novel missense variant of GNAI3: a case report. BMC Pregnancy Childbirth 2021; 21:780. [PMID: 34789173 PMCID: PMC8597305 DOI: 10.1186/s12884-021-04238-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ACS) is a rare disorder characterized by micrognathia, mandibular condyle hypoplasia, and auricular abnormalities. Only 6 pathogenic variants of GNAI3 have been identified associated with ACS so far. Here, we report a case of prenatal genetic diagnosis of ACS carrying a novel GNAI3 variant. CASE PRESENTATION A woman with 30 weeks of gestation was referred to genetic counseling for polyhydramnios and fetal craniofacial anomaly. Severe micrognathia and mandibular hypoplasia were identified on ultrasonography. The mandibular length was 2.4 cm, which was markedly smaller than the 95th percentile. The ears were low-set with no cleft or notching between the lobe and helix. The face was round with prominent cheeks. Whole-exome sequencing identified a novel de novo missense variant of c.140G > A in the GNAI3 gene. This mutation caused an amino acid substitution of p.Ser47Asn in the highly conserved G1 motif, which was predicted to impair the guanine nucleotide-binding function. All ACS cases with GNAI3 mutations were literature reviewed, revealing female-dominated severe cases and right-side-prone deformities. CONCLUSION Severe micrognathia and mandibular hypoplasia accompanied by polyhydramnios are prenatal indicators of ACS. We expanded the mutation spectrum of GNAI3 and summarized clinical features to promote awareness of ACS.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasonography, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Romanelli Tavares VL, Guimarães-Ramos SL, Zhou Y, Masotti C, Ezquina S, Moreira DDP, Buermans H, Freitas RS, Den Dunnen JT, Twigg SRF, Passos-Bueno MR. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving TWIST1 regulatory elements. J Med Genet 2021; 59:895-905. [PMID: 34750192 PMCID: PMC9411924 DOI: 10.1136/jmedgenet-2021-107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Background Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. Methods We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. Results This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. Conclusion Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Cibele Masotti
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Suzana Ezquina
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Danielle de Paula Moreira
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| | - Henk Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal, Curitiba, Brazil
| | - Johan T Den Dunnen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Rita Passos-Bueno
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| |
Collapse
|
14
|
Yanagi K, Morimoto N, Iso M, Abe Y, Okamura K, Nakamura T, Matsubara Y, Kaname T. A novel missense variant of the GNAI3 gene and recognisable morphological characteristics of the mandibula in ARCND1. J Hum Genet 2021; 66:1029-1034. [PMID: 33723370 PMCID: PMC8472909 DOI: 10.1038/s10038-021-00915-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 02/21/2021] [Indexed: 11/09/2022]
Abstract
Auriculocondylar syndrome (ARCND) is an autosomal monogenic disorder characterised by external ear abnormalities and micrognathia due to hypoplasia of the mandibular rami, condyle and coronoid process. Genetically, three subtypes of ARCND (ARCND1, ARCND2 and ARCND3) have been reported. To date, five pathogenic variants of GNAI3 have been reported in ARCND1 patients. Here, we report a novel variant of GNAI3 (NM_006496:c.807C>A:p.(Asn269Lys)) in a Japanese girl with micrognathia using trio-based whole exome sequencing analysis. The GNAI3 gene encodes a heterotrimeric guanine nucleotide-binding protein. The novel variant locates the guanine nucleotide-binding site, and the substitution was predicted to interfere with guanine nucleotide-binding by in silico structural analysis. Three-dimensional computer tomography scan, or cephalogram, displayed severely hypoplastic mandibular rami and fusion to the medial and lateral pterygoid plates, which have been recognised in other ARCND1 patients, but have not been described in ARCND2 and ARCND3, suggesting that these may be distinguishable features in ARCND1.
Collapse
Affiliation(s)
- Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan.
| | - Noriko Morimoto
- Division of Otolaryngology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Manami Iso
- Department of Pharmacology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yukimi Abe
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Tomoo Nakamura
- Division of General Pediatrics & Interdisciplinary Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Setagaya, Tokyo, Japan.
| |
Collapse
|
15
|
Yousefelahiyeh M, Xu J, Alvarado E, Yu Y, Salven D, Nissen RM. DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B. PLoS One 2018; 13:e0207779. [PMID: 30496304 PMCID: PMC6264848 DOI: 10.1371/journal.pone.0207779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the Dual-specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) gene contributes to the retardation, craniofacial anomalies, cognitive impairment, and learning and memory deficits associated with Down Syndrome (DS). DCAF7/HAN11/WDR68 (hereafter WDR68) binds DYRK1A and is required for craniofacial development. Accumulating evidence suggests DYRK1A-WDR68 complexes enable proper growth and patterning of multiple organ systems and suppress inappropriate cell growth/transformation by regulating the balance between proliferation and differentiation in multiple cellular contexts. Here we report, using engineered mouse C2C12 and human HeLa cell lines, that WDR68 is required for normal levels of DYRK1A. However, Wdr68 does not significantly regulate Dyrk1a mRNA expression levels and proteasome inhibition did not restore DYRK1A in cells lacking Wdr68 (Δwdr68 cells). Overexpression of WDR68 increased DYRK1A levels while overexpression of DYRK1A had no effect on WDR68 levels. We further report that WDR68 is similarly required for normal levels of the closely related DYRK1B kinase and that both DYRK1A and DYRK1B are essential for the transition from proliferation to differentiation in C2C12 cells. These findings reveal an additional role of WDR68 in DYRK1A-WDR68 and DYRK1B-WDR68 complexes.
Collapse
Affiliation(s)
- Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Jingyi Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - David Salven
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
16
|
Zhang Y, Yuan L, Meng L, Fang M, Guo S, Wang D, Ma J, Wang L. Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. Int J Mol Med 2018; 43:382-392. [PMID: 30431055 PMCID: PMC6257834 DOI: 10.3892/ijmm.2018.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short-hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3-deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
17
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
18
|
Romanelli Tavares VL, Zechi-Ceide RM, Bertola DR, Gordon CT, Ferreira SG, Hsia GSP, Yamamoto GL, Ezquina SAM, Kokitsu-Nakata NM, Vendramini-Pittoli S, Freitas RS, Souza J, Raposo-Amaral CA, Zatz M, Amiel J, Guion-Almeida ML, Passos-Bueno MR. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome. Am J Med Genet A 2017; 173:938-945. [PMID: 28328130 DOI: 10.1002/ajmg.a.38101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022]
Abstract
Auriculocondylar syndrome, mainly characterized by micrognathia, small mandibular condyle, and question mark ears, is a rare disease segregating in an autosomal dominant pattern in the majority of the families reported in the literature. So far, pathogenic variants in PLCB4, GNAI3, and EDN1 have been associated with this syndrome. It is caused by a developmental abnormality of the first and second pharyngeal arches and it is associated with great inter- and intra-familial clinical variability, with some patients not presenting the typical phenotype of the syndrome. Moreover, only a few patients of each molecular subtype of Auriculocondylar syndrome have been reported and sequenced. Therefore, the spectrum of clinical and genetic variability is still not defined. In order to address these questions, we searched for alterations in PLCB4, GNAI3, and EDN1 in patients with typical Auriculocondylar syndrome (n = 3), Pierre Robin sequence-plus (n = 3), micrognathia with additional craniofacial malformations (n = 4), or non-specific auricular dysplasia (n = 1), which could represent subtypes of Auriculocondylar syndrome. We found novel pathogenic variants in PLCB4 only in two of three index patients with typical Auriculocondylar syndrome. We also performed a detailed comparative analysis of the patients presented in this study with those previously published, which showed that the pattern of auricular abnormality and full cheeks were associated with molecularly characterized individuals with Auriculocondylar syndrome. Finally, our data contribute to a better definition of a set of parameters for clinical classification that may be used as a guidance for geneticists ordering molecular testing for Auriculocondylar syndrome. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa L Romanelli Tavares
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Debora R Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Simone G Ferreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriella S P Hsia
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Suzana A M Ezquina
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Nancy M Kokitsu-Nakata
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Josiane Souza
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Cesar A Raposo-Amaral
- Hospital de Crânio e Face, Sociedade Brasileira de Pesquisa e Assistência para Reabilitação Craniofacial (SOBRAPAR), Campinas, São Paulo, Brazil
| | - Mayana Zatz
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria L Guion-Almeida
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Role of GATA binding protein 4 (GATA4) in the regulation of tooth development via GNAI3. Sci Rep 2017; 7:1534. [PMID: 28484278 PMCID: PMC5431507 DOI: 10.1038/s41598-017-01689-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Transcription factor GATA4 regulates cardiac and osteoblast differentiation. However, its role in tooth development is not clear. Therefore, we generated Wnt1-Cre;GATA4fl/fl mice, with conditional inactivation of the GATA4 gene in the dental papilla mesenchymal cells. Phenotypic analysis showed short root deformity along with reduced expressions of odonto/osteogenic markers. Proliferation (but not apoptosis) of cells around the apical area of the root was attenuated. In vitro, we knocked down GATA4 expression in stem cells of dental apical papilla (SCAPs). Proliferation, migration and odonto/osteogenic differentiation of SCAPs were affected in the shGATA4 group. Overexpression of GATA4 in SCAPs increased mineralization. Based on our previous iTRAQ results, guanine nucleotide binding proteins 3 (GNAI3) is one of the distinct proteins after GATA4 deletion. G protein signaling is involved in bone development, remodeling, and disease. In this study, both GATA4 deletion in the mouse root and knock-down in human SCAPs decreased the expression of GNAI3. Dual-luciferase and ChIP assay confirmed the direct binding of GATA4 to the GNAI3 promoter, both in vitro and in vivo. GNAI3 knock-down significantly decreased the odonto/osteogenic differentiation ability of SCAPs. We thus establish the role of GATA4 as a novel regulator of root development and elucidate its downstream molecular events.
Collapse
|
20
|
Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, Yu Y, Pham A, Bhandari A, Wang B, Nissen RM. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PLoS One 2016; 11:e0166984. [PMID: 27880803 PMCID: PMC5120840 DOI: 10.1371/journal.pone.0166984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Birth defects are among the leading causes of infant mortality and contribute substantially to illness and long-term disability. Defects in Bone Morphogenetic Protein (BMP) signaling are associated with cleft lip/palate. Many craniofacial syndromes are caused by defects in signaling pathways that pattern the cranial neural crest cells (CNCCs) along the dorsal-ventral axis. For example, auriculocondylar syndrome is caused by impaired Endothelin-1 (Edn1) signaling, and Alagille syndrome is caused by defects in Jagged-Notch signaling. The BMP, Edn1, and Jag1b pathways intersect because BMP signaling is required for ventral edn1 expression that, in turn, restricts jag1b to dorsal CNCC territory. In zebrafish, the scaffolding protein Wdr68 is required for edn1 expression and subsequent formation of the ventral Meckel’s cartilage as well as the dorsal Palatoquadrate. Here we report that wdr68 activity is required between the 17-somites and prim-5 stages, that edn1 functions downstream of wdr68, and that wdr68 activity restricts jag1b, hey1, and grem2 expression from ventral CNCC territory. Expression of dlx1a and dlx2a was also severely reduced in anterior dorsal and ventral 1st arch CNCC territory in wdr68 mutants. We also found that the BMP agonist isoliquiritigenin (ISL) can partially rescue lower jaw formation and edn1 expression in wdr68 mutants. However, we found no significant defects in BMP reporter induction or pSmad1/5 accumulation in wdr68 mutant cells or zebrafish. The Transforming Growth Factor Beta (TGF-β) signaling pathway is also known to be important for craniofacial development and can interfere with BMP signaling. Here we further report that TGF-β interference with BMP signaling was greater in wdr68 mutant cells relative to control cells. To determine whether interference might also act in vivo, we treated wdr68 mutant zebrafish embryos with the TGF-β signaling inhibitor SB431542 and found partial rescue of edn1 expression and craniofacial development. While ISL treatment failed, SB431542 partially rescued dlx2a expression in wdr68 mutants. Together these findings reveal an indirect role for Wdr68 in the BMP-Edn1-Jag1b signaling hierarchy and dorso-anterior expression of dlx1a/2a.
Collapse
Affiliation(s)
- Estibaliz Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Mina Yousefelahiyeh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Greg Alvarado
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robin Shang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Taryn Whitman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Andrew Martinez
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Yang Yu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Annie Pham
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Anish Bhandari
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Bingyan Wang
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
| | - Robert M. Nissen
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Shaffer JR, Orlova E, Lee MK, Leslie EJ, Raffensperger ZD, Heike CL, Cunningham ML, Hecht JT, Kau CH, Nidey NL, Moreno LM, Wehby GL, Murray JC, Laurie CA, Laurie CC, Cole J, Ferrara T, Santorico S, Klein O, Mio W, Feingold E, Hallgrimsson B, Spritz RA, Marazita ML, Weinberg SM. Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genet 2016; 12:e1006149. [PMID: 27560520 PMCID: PMC4999139 DOI: 10.1371/journal.pgen.1006149] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10−8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis. There is a great deal of evidence that genes influence facial appearance. This is perhaps most apparent when we look at our own families, since we are more likely to share facial features in common with our close relatives than with unrelated individuals. Nevertheless, little is known about how variation in specific regions of the genome relates to the kinds of distinguishing facial characteristics that give us our unique identities, e.g., the size and shape of our nose or how far apart our eyes are spaced. In this paper, we investigate this question by examining the association between genetic variants across the whole genome and a set of measurements designed to capture key aspects of facial form. We found evidence of genetic associations involving measures of eye, nose, and facial breadth. In several cases, implicated regions contained genes known to play roles in embryonic face formation or in syndromes in which the face is affected. Our ability to connect specific genetic variants to ubiquitous facial traits can inform our understanding of normal and abnormal craniofacial development, provide potential predictive models of evolutionary changes in human facial features, and improve our ability to create forensic facial reconstructions from DNA.
Collapse
Affiliation(s)
- John R. Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ekaterina Orlova
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth J. Leslie
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zachary D. Raffensperger
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carrie L. Heike
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Department of Pediatrics, Seattle Children’s Craniofacial Center, University of Washington, Seattle, Washington, United States of America
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, Texas, United States of America
| | - Chung How Kau
- Department of Orthodontics, University of Alabama, Birmingham, Alabama, United States of America
| | - Nichole L. Nidey
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Lina M. Moreno
- Department of Orthodontics, University of Iowa, Iowa City, Iowa, United States of America
- Dows Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Cecelia A. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Cathy C. Laurie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Joanne Cole
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Tracey Ferrara
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Stephanie Santorico
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, Denver, Colorado, United States of America
| | - Ophir Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- Program in Craniofacial Biology, University of California, San Francisco, California, United States of America
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard A. Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Marivin A, Leyme A, Parag-Sharma K, DiGiacomo V, Cheung AY, Nguyen LT, Dominguez I, Garcia-Marcos M. Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease. Sci Signal 2016; 9:ra37. [PMID: 27072656 DOI: 10.1126/scisignal.aad2429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Auriculo-condylar syndrome (ACS), a rare condition that impairs craniofacial development, is caused by mutations in a G protein-coupled receptor (GPCR) signaling pathway. In mice, disruption of signaling by the endothelin type A receptor (ET(A)R), which is mediated by the G protein (heterotrimeric guanine nucleotide-binding protein) subunit Gα(q/11) and subsequently phospholipase C (PLC), impairs neural crest cell differentiation that is required for normal craniofacial development. Some ACS patients have mutations inGNAI3, which encodes Gα(i3), but it is unknown whether this G protein has a role within the ET(A)R pathway. We used a Xenopus model of vertebrate development, in vitro biochemistry, and biosensors of G protein activity in mammalian cells to systematically characterize the phenotype and function of all known ACS-associated Gα(i3) mutants. We found that ACS-associated mutations in GNAI3 produce dominant-negative Gα(i3) mutant proteins that couple to ET(A)R but cannot bind and hydrolyze guanosine triphosphate, resulting in the prevention of endothelin-mediated activation of Gα(q/11) and PLC. Thus, ACS is caused by functionally dominant-negative mutations in a heterotrimeric G protein subunit.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Y Cheung
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Leoni C, Gordon CT, Della Marca G, Giorgio V, Onesimo R, Perrino F, Cianfoni A, Cerchiari A, Amiel J, Zampino G. Respiratory and gastrointestinal dysfunctions associated with auriculo-condylar syndrome and a homozygous PLCB4 loss-of-function mutation. Am J Med Genet A 2016; 170:1471-8. [PMID: 27007857 DOI: 10.1002/ajmg.a.37625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/26/2016] [Indexed: 11/08/2022]
Abstract
Auriculo-Condylar Syndrome (ACS) is a craniofacial malformation syndrome characterized by external ear anomalies, hypoplasia of the mandibular condyle, temporomandibular joint abnormalities, micrognathia, and microstomia. Glossoptosis, masticatory abnormalities, orthodontic problems, and malocclusion occur in a majority of affected subjects. The clinical diagnosis is usually suggested by the pathognomonic ear appearance ("question mark ear"), consisting of a variable degree of clefting between the helix and earlobe. The genetic mechanisms underlying ACS have recently been identified. Both autosomal dominant and recessive inheritance of mutations in phospholipase C, beta 4 (PLCB4) and endothelin 1 (EDN1) have been reported along with autosomal dominant mutations in guanine nucleotide-binding protein (G protein) α inhibiting activity polypeptide 3 (GNAI3). We report 6 years of follow-up of a child with a clinical phenotype consistent with ACS due to a homozygous frameshift mutation in PLCB4. The baby presented feeding difficulties associated with failure to thrive and a complex sleep-related respiratory disorder, characterized by central and obstructive apnoeas. Our observations of this case further delineate the phenotype of ACS associated with autosomal recessive PLCB4 loss-of-function mutations, underscoring gastrointestinal dysfunction and severe sleep-related breathing abnormalities as additional features when compared to patients with heterozygous mutations with a presumed dominant negative effect. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Leoni
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Christopher T Gordon
- INSERM UMR 1163 and Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | - Valentina Giorgio
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Roberta Onesimo
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Francesca Perrino
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | | | - Antonella Cerchiari
- Department of Neuroscience and Neurorehabilitation, Speech Language Pathology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Jeanne Amiel
- INSERM UMR 1163 and Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.,APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Giuseppe Zampino
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| |
Collapse
|
24
|
Gordon C, Weaver K, Zechi-Ceide R, Madsen E, Tavares A, Oufadem M, Kurihara Y, Adameyko I, Picard A, Breton S, Pierrot S, Biosse-Duplan M, Voisin N, Masson C, Bole-Feysot C, Nitschké P, Delrue MA, Lacombe D, Guion-Almeida M, Moura P, Garib D, Munnich A, Ernfors P, Hufnagel R, Hopkin R, Kurihara H, Saal H, Weaver D, Katsanis N, Lyonnet S, Golzio C, Clouthier D, Amiel J. Mutations in the endothelin receptor type A cause mandibulofacial dysostosis with alopecia. Am J Hum Genet 2015; 96:519-31. [PMID: 25772936 DOI: 10.1016/j.ajhg.2015.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws.
Collapse
|