1
|
Yu X, Qin F, Liu S, Brown NJ, Lu Q, Cai G, Guler JL, Xiao F. HapCNV: A Comprehensive Framework for CNV Detection in Low-input DNA Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.19.629494. [PMID: 39763944 PMCID: PMC11702719 DOI: 10.1101/2024.12.19.629494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Copy number variants (CNVs) are prevalent in both diploid and haploid genomes, with the latter containing a single copy of each gene. Studying CNVs in genomes from single or few cells is significantly advancing our knowledge in human disorders and disease susceptibility. Low-input including low-cell and single-cell sequencing data for haploid and diploid organisms generally displays shallow and highly non-uniform read counts resulting from the whole genome amplification steps that introduce amplification biases. In addition, haploid organisms typically possess relatively short genomes and require a higher degree of DNA amplification compared to diploid organisms. However, most CNV detection methods are specifically developed for diploid genomes without specific consideration of effects on haploid genomes. Challenges also reside in reference samples or normal controls which are used to provide baseline signals for defining copy number losses or gains. In traditional methods, references are usually pre-specified from cells that are assumed to be normal or disease-free. However, the use of pre-defined reference cells can bias results if common CNVs are present. Here, we present the development of a comprehensive statistical framework for data normalization and CNV detection in haploid single- or low-cell DNA sequencing data called HapCNV. The prominent advancement is the construction of a novel genomic location specific pseudo-reference that selects unbiased references using a preliminary cell clustering method. This approach effectively preserves common CNVs. Using simulations, we demonstrated that HapCNV outperformed existing methods by generating more accurate CNV detection, especially for short CNVs. Superior performance of HapCNV was also validated in detecting known CNVs in a real P. falciparum parasite dataset. In conclusion, HapCNV provides a novel and useful approach for CNV detection in haploid low-input sequencing datasets, with easy applicability to diploids.
Collapse
Affiliation(s)
- Xuanxuan Yu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Fei Qin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Noah J. Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Qing Lu
- Department of Biostatistics, College of Public Health and Health Promotions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Guoshuai Cai
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer L. Guler
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Feifei Xiao
- Department of Biostatistics, College of Public Health and Health Promotions & College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Shlepova OV, Shulepko MA, Shipunova VO, Bychkov ML, Kukushkin ID, Chulina IA, Azev VN, Shramova EI, Kazakov VA, Ismailova AM, Palikova YA, Palikov VA, Kalabina EA, Shaykhutdinova EA, Slashcheva GA, Tukhovskaya EA, Dyachenko IA, Murashev AN, Deyev SM, Kirpichnikov MP, Shenkarev ZO, Lyukmanova EN. Selective targeting of α7 nicotinic acetylcholine receptor by synthetic peptide mimicking loop I of human SLURP-1 provides efficient and prolonged therapy of epidermoid carcinoma in vivo. Front Cell Dev Biol 2023; 11:1256716. [PMID: 37854069 PMCID: PMC10580074 DOI: 10.3389/fcell.2023.1256716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
α7-Type nicotinic acetylcholine receptor (α7-nAChR) promotes the growth and metastasis of solid tumors. Secreted Ly6/uPAR-Related Protein 1 (SLURP-1) is a specific negative modulator of α7-nAChR produced by epithelial cells. Here, we investigated mechanisms of antiproliferative activity of recombinant SLURP-1 in epidermoid carcinoma A431 cells and activity of SLURP-1 and synthetic 21 a.a. peptide mimicking its loop I (Oncotag) in a xenograft mice model of epidermoid carcinoma. SLURP-1 inhibited the mitogenic pathways and transcription factors in A431 cells, and its antiproliferative activity depended on α7-nAChR. Intravenous treatment of mice with SLURP-1 or Oncotag for 10 days suppressed the tumor growth and metastasis and induced sustained changes in gene and microRNA expression in the tumors. Both SLURP-1 and Oncotag demonstrated no acute toxicity. Surprisingly, Oncotag led to a longer suppression of pro-oncogenic signaling and downregulated expression of pro-oncogenic miR-221 and upregulated expression of KLF4 protein responsible for control of cell differentiation. Affinity purification revealed SLURP-1 interactions with both α7-nAChR and EGFR and selective Oncotag interaction with α7-nAChR. Thus, the selective inhibition of α7-nAChRs by drugs based on Oncotag may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- O. V. Shlepova
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - M. A. Shulepko
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - V. O. Shipunova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - M. L. Bychkov
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I. D. Kukushkin
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - I. A. Chulina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - V. N. Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. I. Shramova
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - V. A. Kazakov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A. M. Ismailova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - Y. A. Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - V. A. Palikov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Kalabina
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - G. A. Slashcheva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - E. A. Tukhovskaya
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - I. A. Dyachenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - A. N. Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Russia
| | - S. M. Deyev
- Immunology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - M. P. Kirpichnikov
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| | - Z. O. Shenkarev
- NTI Center, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Structural Biology Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E. N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Bioengineering Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University Molecular Technologies of the Living Systems and Synthetic Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, Russia
| |
Collapse
|
4
|
Pal K, Hussain T, Xie H, Li S, Yang P, Mansfield A, Lou Y, Chowdhury S, Mukhopadhyay D. Expression, correlation, and prognostic significance of different nicotinic acetylcholine receptors, programed death ligand 1, and dopamine receptor D2 in lung adenocarcinoma. Front Oncol 2022; 12:959500. [PMID: 36072788 PMCID: PMC9441878 DOI: 10.3389/fonc.2022.959500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The objective of this study is to evaluate the expression of different nicotinic acetylcholine receptors (nAChRs), programmed death ligand-1 (PD-L1), and dopamine receptor D2 (DRD2) as prognostic factors in lung cancer and any correlation among them. Since all of the above genes are typically upregulated in response to smoking, we hypothesized that a correlation might exist between DRD2, PD-L1, and nAChR expression in NSCLC patients with a smoking history and a prediction model may be developed to assess the clinical outcome. Methods We retrospectively analyzed samples from 46 patients with primary lung adenocarcinoma who underwent surgical resection at Mayo Clinic Rochester from June 2000 to October 2008. The expression of PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 were analyzed by quantitative PCR and correlated amongst themselves and with age, stage and grade, smoking status, overall survival (OS), and relapse-free survival (RFS). Results Only PD-L1 showed a statistically significant increase in expression in patients older than 65. All the above genes showed higher expression in stage IIIB than IIIA, but none reached statistical significance. Interestingly, we did not observe significant differences among never, former, and current smokers, but patients with pack years greater than 30 showed significantly higher expression of CHRNA9. We observed a strong positive correlation between PD-L1/DRD2, PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak positive correlation between DRD2/CHRNA5 and DRD2/CHRNA7. Older age was independently associated with poor OS, whereas lower CHRNA7 expression was independently associated with better OS. Conclusions We observed strong positive correlations among PD-L1, DRD2, and some of the nAChRs. We investigated their prognostic significance in lung cancer patients and found CHRNA7 to be an independent prognostic factor. Overall, the results obtained from this preliminary study warrant a large cohort-based analysis that may ultimately lead to potential patient-specific stratification biomarkers predicting cancer-treatment outcomes.
Collapse
Affiliation(s)
- Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Tabish Hussain
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Shenduo Li
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Ping Yang
- Department of Quantitative Health Sciences, Mayo Clinic Scottsdale, AZ, United States
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Shantanu Chowdhury
- Integrative and Functional Biology Unit, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, CSIR- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
5
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
6
|
Pattanaik B, Hammarlund M, Mjörnstedt F, Ulleryd MA, Zhong W, Uhlén M, Gummesson A, Bergström G, Johansson ME. Polymorphisms in alpha 7 nicotinic acetylcholine receptor gene, CHRNA7, and its partially duplicated gene, CHRFAM7A, associate with increased inflammatory response in human peripheral mononuclear cells. FASEB J 2022; 36:e22271. [PMID: 35344211 DOI: 10.1096/fj.202101898r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
The vagus nerve can, via the alpha 7 nicotinic acetylcholine receptor (α7nAChR), regulate inflammation. The gene coding for the α7nAChR, CHRNA7, can be partially duplicated, that is, CHRFAM7A, which is reported to impair the anti-inflammatory effect mediated via the α7nAChR. Several single nucleotide polymorphisms (SNPs) have been described in both CHRNA7 and CHRFAM7A, however, the functional role of these SNPs for immune responses remains to be investigated. In the current study, we set out to investigate whether genetic variants of CHRNA7 and CHRFAM7A can influence immune responses. By investigating data available from the Swedish SciLifeLab SCAPIS Wellness Profiling (S3WP) study, in combination with droplet digital PCR and freshly isolated PBMCs from the S3WP participants, challenged with lipopolysaccharide (LPS), we show that CHRNA7 and CHRFAM7A are expressed in human PBMCs, with approximately four times higher expression of CHRFAM7A compared with CHRNA7. One SNP in CHRFAM7A, rs34007223, is positively associated with hsCRP in healthy individuals. Furthermore, gene ontology (GO)-terms analysis of plasma proteins associated with gene expression of CHRNA7 and CHRFAM7A demonstrated an involvement for these genes in immune responses. This was further supported by in vitro data showing that several SNPs in both CHRNA7 and CHRFAM7A are significantly associated with cytokine response. In conclusion, genetic variants of CHRNA7 and CHRFAM7A alters cytokine responses. Furthermore, given that CHRFAM7A SNP rs34007223 is associated with inflammatory marker hsCRP in healthy individuals suggests that CHRFAM7A may have a more pronounced role in regulating inflammatory processes in humans than previously been recognized.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filip Mjörnstedt
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus A Ulleryd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Kwok HH, Gao B, Chan KH, Ip MSM, Minna JD, Lam DCL. Nicotinic Acetylcholine Receptor Subunit α7 Mediates Cigarette Smoke-Induced PD-L1 Expression in Human Bronchial Epithelial Cells. Cancers (Basel) 2021; 13:5345. [PMID: 34771509 PMCID: PMC8582493 DOI: 10.3390/cancers13215345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Tobacco smoking is the top risk factor for lung cancer development. Nicotine in cigarettes can induce addiction, and its derivatives become potent carcinogens after metabolic activation and activate oncogenic signaling in lung epithelial cells through their expressed nicotinic acetylcholine receptors (nAChRs). However, the effects of smoking on the tumor immune microenvironment are under investigation. In the current study, we investigated whether nicotine activation of nicotinic acetylcholine receptor subunit α7 (nAChRα7, CHRNA7) would induce PD-L1 expression in lung epithelial cells. The expression levels of nAChRα7 and PD-L1 in eight human bronchial epithelial cell (HBEC) lines were measured after treatment with cigarette smoke extract (CSE) or nicotine derivatives. The results showed that PD-L1 expression levels increased in HBECs after exposure to CSE or nicotine derivatives. This induction of PD-L1 expression could be diminished by treatment with CHRNA7 small-interfering RNA, and the relevant signaling was mediated via STAT3 phosphorylation and NRF2 expression. In summary, this study demonstrated that the well-known nicotine derivative-activated nAChRα7 could induce STAT3/NRF2 pathways and subsequently promote PD-L1 expression in normal lung epithelial cells. This information provides mechanistic insight into cigarette smoke-induced immune evasion in lung epithelial cells.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.G.); (J.D.M.)
| | - Koon-Ho Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - Mary Sau-Man Ip
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| | - John Dorrance Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (B.G.); (J.D.M.)
| | - David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.-H.K.); (K.-H.C.); (M.S.-M.I.)
| |
Collapse
|
8
|
Chen S, Lu L, Xian J, Shi C, Chen J, Rao B, Qiu F, Lu J, Yang L. Prognostic Value of Germline Copy Number Variants and Environmental Exposures in Non-small Cell Lung Cancer. Front Genet 2021; 12:681857. [PMID: 34178039 PMCID: PMC8226327 DOI: 10.3389/fgene.2021.681857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Germline copy number variant (gCNV) has been studied as a genetic determinant for prognosis of several types of cancer, but little is known about how it affects non-small cell lung cancer (NSCLC) prognosis. We aimed to develop a prognostic nomogram for NSCLC based on gCNVs. Promising gCNVs that are associated with overall survival (OS) of NSCLC were sorted by analyzing the TCGA data and were validated in a small Chinese population. Then the successfully verified gCNVs were determined in a training cohort (n = 570) to develop a prognostic nomogram, and in a validation cohort (n = 465) to validate the nomogram. Thirty-five OS-related gCNVs were sorted and were reduced to 15 predictors by the Lasso regression analysis. Of them, only CNVR395.1 and CNVR2239.1 were confirmed to be associated with OS of NSCLC in the Chinese population. High polygenic risk score (PRS), which was calculated by the hazard effects of CNVR395.1 and CNVR2239.1, exerted a significantly higher death rate in the training cohort (HR = 1.41, 95%CI: 1.16-1.74) and validation cohort (HR = 1.42, 95%CI: 1.13-1.77) than low PRS. The nomogram incorporating PRS and surrounding factors, achieved admissible concordance indexes of 0.678 (95%CI: 0.664-0.693) and 0.686 (95%CI: 0.670-0.702) in predicting OS in the training and validation cohorts, respectively, and had well-fitted calibration curves. Moreover, an interaction between PRS and asbestos exposure was observed on affecting OS (P interaction = 0.042). Our analysis developed a nomogram that achieved an admissible prediction of NSCLC survival, which would be beneficial to the personalized intervention of NSCLC.
Collapse
Affiliation(s)
- Shizhen Chen
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Liming Lu
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Xian
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Changhong Shi
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jinbin Chen
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Boqi Rao
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Fuman Qiu
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- The State Key Laboratory of Respiratory Disease, Institute of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Santoro A, Tomino C, Prinzi G, Lamonaca P, Cardaci V, Fini M, Russo P. Tobacco Smoking: Risk to Develop Addiction, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:39-52. [PMID: 30605063 DOI: 10.2174/1574892814666190102122848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. OBJECTIVE To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. METHODS The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: "nicotine", "nicotinic receptor", and "addiction" or "COPD" or "lung cancer" were used. Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. RESULTS Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. CONCLUSION Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.
Collapse
Affiliation(s)
- Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana, 235, I-00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| |
Collapse
|
10
|
Huang X, Mu X, Deng L, Fu A, Pu E, Tang T, Kong X. The etiologic origins for chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1139-1158. [PMID: 31213794 PMCID: PMC6549659 DOI: 10.2147/copd.s203215] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
COPD, characterized by long-term poorly irreversible airway limitation and persistent respiratory symptoms, has resulted in enormous challenges to human health worldwide, with increasing rates of prevalence, death, and disability. Although its origin was thought to be in the interactions of genetic with environmental factors, the effects of environmental factors on the disease during different life stages remain little known. Without clear mechanisms and radical cure for it, early screening and prevention of COPD seem to be important. In this review, we will discuss the etiologic origins for poor lung function and COPD caused by specific adverse effects during corresponding life stages, as well as try to find new insights and potential prevention strategies for this disease.
Collapse
Affiliation(s)
- Xinwei Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xi Mu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Li Deng
- The Pathology Department, First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, People's Republic of China
| | - Aili Fu
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Endong Pu
- Department of Thoracic Surgery, Yunfeng Hospital, Xuanwei City, Yunnan Province, People's Republic of China
| | - Tao Tang
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, People's Republic of China
| |
Collapse
|
11
|
Ma G, Ji D, Qu X, Liu S, Yang X, Wang G, Liu Q, Du J. Mining and validating the expression pattern and prognostic value of acetylcholine receptors in non-small cell lung cancer. Medicine (Baltimore) 2019; 98:e15555. [PMID: 31096457 PMCID: PMC6531223 DOI: 10.1097/md.0000000000015555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acetylcholine receptors (AChRs), including nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), are highly expressed in bronchial epithelial cells.We used The Cancer Genome Atlas (TCGA) data set to evaluate the expression pattern and prognostic value of the AChR gene family in non-small cell lung cancer (NSCLC). The mined data was validated by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC).The survival analysis of TCGA data set showed that only CHRNA7 in the AChR gene family affected prognosis in both lung adenocarcinoma and lung squamous cell carcinoma. Furthermore, qRT-PCR proved that CHRNA7 was significantly upregulated in tumor tissues compared with matched normal tissues at mRNA level (P = .001). The expression level of α7 nAChR (encoded by CHRNA7) in 141 patients was measured by IHC and a high expression of α7 nAChR was associated with unfavorable prognosis (P = .008). Multivariate analysis showed that α7 nAChR was an independent prognostic factor (HR = 2.041; 95% CI 1.188-3.506; P = .007).α7 nAChR was upregulated in NSCLC and was associated with unfavorable prognosis. This gene may be a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Guoyuan Ma
- Department of Thoracic Surgery
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| | - Delin Ji
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
- Anhui Provincial Cancer Hospital, Anhui Province, PR China
| | - Xiao Qu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| | - Shaorui Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| | - Xudong Yang
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| | | | - Qi Liu
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| | - Jiajun Du
- Department of Thoracic Surgery
- Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan
| |
Collapse
|
12
|
Maroli A, Di Lascio S, Drufuca L, Cardani S, Setten E, Locati M, Fornasari D, Benfante R. Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J Neuroimmunol 2019; 332:155-166. [PMID: 31048268 DOI: 10.1016/j.jneuroim.2019.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
Abstract
The α7 nicotinic acetylcholine receptor (CHRNA7) modulates the inflammatory response by activating the cholinergic anti-inflammatory pathway. CHRFAM7A, the human-restricted duplicated form of CHRNA7, has a negative effect on the functioning of α7 receptors, suggesting that CHRFAM7A expression regulation may be a key step in the modulation of inflammation in the human setting. The analysis of the CHRFAM7A gene's regulatory region reveals some of the mechanisms driving its expression and responsiveness to LPS in human immune cell models. Moreover, given the immunomodulatory potential of donepezil we show that it differently modulates CHRFAM7A and CHRNA7 responsiveness to LPS, thus contributing to its therapeutic potential.
Collapse
Affiliation(s)
- Annalisa Maroli
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Simona Di Lascio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Lorenzo Drufuca
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Silvia Cardani
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy
| | - Elisa Setten
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Massimo Locati
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; Humanitas Clinical and Research Centre, Rozzano, Italy
| | - Diego Fornasari
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy
| | - Roberta Benfante
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli, 20129 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
13
|
Clinical significance of germline copy number variation in susceptibility of human diseases. J Genet Genomics 2018; 45:3-12. [PMID: 29396143 DOI: 10.1016/j.jgg.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.
Collapse
|
14
|
Yang L, Wu D, Chen J, Chen J, Qiu F, Li Y, Liu L, Cao Y, Yang B, Zhou Y, Lu J. A functional CNVR_3425.1 damping lincRNA FENDRR increases lifetime risk of lung cancer and COPD in Chinese. Carcinogenesis 2017; 39:347-359. [DOI: 10.1093/carcin/bgx149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lei Yang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Jinbin Chen
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Yinyan Li
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Li Liu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Yi Cao
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, China
- The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Zhao Z, Jiang C, Zhao D, Li Y, Liang C, Liu W, Wei S, Zhou Y, Zhao Z, Ran P. Two CHRN susceptibility variants for COPD are genetic determinants of emphysema and chest computed tomography manifestations in Chinese patients. Int J Chron Obstruct Pulmon Dis 2017; 12:1447-1455. [PMID: 28553097 PMCID: PMC5439970 DOI: 10.2147/copd.s134010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantitative computed tomography (CT) measures of emphysema have been shown to be associated with increased mortality in humans, but genetic variants affecting the quantitative parameters of chest CT that measure degree of emphysema have not yet been examined. In this study, using available chest CT data from a total of 344 emphysema patients, we assessed the correlations between five chronic obstructive pulmonary disease (COPD) susceptibility variants in the cholinergic receptor nicotinic (CHRN) genes and the degree of emphysema and chest CT manifestations. We verified that most of the parameters were significantly correlated with the degree of emphysema. Compared to rs76071148AA and TT genotype carriers, the rs76071148AT genotype carriers exhibited a decreased probability of having severe emphysema (odds ratio [OR] =0.63, 95% confidence interval [CI] =0.40–0.99), whereas the variant rs8040868C allele was negatively correlated with the emphysema index (P=0.002). Interestingly, further stratification analysis grouped by spirometry-diagnosed COPD status revealed that the variant rs8040868C (CT + CC) genotypes exerted a protective effect against severe emphysema with borderline significance (OR =0.41, 95% CI =0.16–1.05) and affected the mean lung density, emphysema index, ratio of airway wall thickness to airway dimensions (AWT/AD), and AWT grade in spirometry-diagnosed non-COPD subjects. The rs76071148 variant was also significantly associated with AWT/AD and AWT grade in those individuals. In summary, we determined that rs8040868 and rs76071148 are promising indicators of the degree of emphysema and chest CT manifestations, especially in spirometry-diagnosed non-COPD subjects.
Collapse
Affiliation(s)
- Zhuxiang Zhao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou.,The Pulmonary Medicine,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Changbin Jiang
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou
| | - Dongxing Zhao
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou
| | - Yujun Li
- The Pulmonary Medicine,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chunxiao Liang
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou
| | - Weifeng Liu
- The Pulmonary Medicine,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shuquan Wei
- The Pulmonary Medicine,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yumin Zhou
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou
| | - Ziwen Zhao
- The Pulmonary Medicine,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- The State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou
| |
Collapse
|
16
|
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 2017; 42:52-59. [DOI: 10.1016/j.semcancer.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
|
17
|
Association of nsv823469 copy number loss with decreased risk of chronic obstructive pulmonary disease and pulmonary function in Chinese. Sci Rep 2017; 7:40060. [PMID: 28079130 PMCID: PMC5227687 DOI: 10.1038/srep40060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 01/17/2023] Open
Abstract
It is highly possible that copy number variations (CNVs) in susceptible regions have effects on chronic obstructive pulmonary disease (COPD) development, while long noncoding RNA (lncRNAs) have been shown to cause COPD. We hypothesized that the common CNV, named nsv823469 located on 6p22.1, and covering lncRNAs (major histocompatibility complex, class I, A (HLA-A) and HLA complex group 4B (HCG4B)) has an effect on COPD risk. This association was assessed through a two-stage case-control study, and was further confirmed with COPD and pulmonary function-based family analyses, respectively. The copy number loss (0-copy/1-copy) of nsv823469 significantly decreased risk of COPD compared with normal (2-copy) (OR = 0.77, 95% CI = 0.69–0.85). The loss allele, inducing copy number loss of nsv823469, has a tendency to transmit to offspring or siblings (P = 0.010) and is associated with forced expiratory volume in 1 second (FEV1) (P = 0.030). Furthermore, the copy number loss of nsv823469 in normal pulmonary tissue decreases the expression levels of HCG4B (r = 0.315, P = 0.031) and HLA-A (r = 0.296, P = 0.044). Our data demonstrates that nsv823469 plays a role in COPD and pulmonary function inheritance by potentially altering expression of HCG4B.
Collapse
|
18
|
Iskandar AR, Miao B, Li X, Hu KQ, Liu C, Wang XD. β-Cryptoxanthin Reduced Lung Tumor Multiplicity and Inhibited Lung Cancer Cell Motility by Downregulating Nicotinic Acetylcholine Receptor α7 Signaling. Cancer Prev Res (Phila) 2016; 9:875-886. [PMID: 27623933 DOI: 10.1158/1940-6207.capr-16-0161] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Despite the consistent association between a higher intake of the provitamin A carotenoid β-cryptoxanthin (BCX) and a lower risk of lung cancer among smokers, potential mechanisms supporting BCX as a chemopreventive agent are needed. We first examined the effects of BCX on 4-[methyl nitrosamino]-1-[3-pyridyl]-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. BCX supplementation was given daily to the mice starting 2 weeks prior to the injection of NNK and continued 16 weeks after NNK injection. BCX supplementation resulted in a dose-dependent increase of BCX concentration in both serum and lungs of the mice without a significant alteration of vitamin A (retinol and retinyl palmitate) concentration. BCX significantly reduced the multiplicity of the NNK-induced lung tumor by 52% to 63% compared with the NNK-treated mice without BCX supplementation. The protective effect of BCX in the lungs was associated with reductions of both mRNA and protein of the homopentameric neuronal nicotinic acetylcholine receptor α7 (α7-nAChR), which has been implicated in lung tumorigenesis. We then conducted an in vitro cell culture study and found that BCX treatment suppressed α7-nAChR expression and inhibited the migration and invasion of α7-nAChR-positive lung cancer cells but not in cells lacking α7-nAChR. The activities of BCX were significantly attenuated by activators of α7-nAChR/PI3K signaling or by overexpression of constitutively active PI3K. Collectively, the results suggest that BCX inhibits lung tumorigenesis and cancer cell motility through the downregulation of α7-nAChR/PI3K signaling, independent of its provitamin A activity. Therefore, BCX can be used as a chemopreventive agent or a chemotherapeutic compound against lung cancer. Cancer Prev Res; 9(11); 875-86. ©2016 AACR.
Collapse
Affiliation(s)
- Anita R Iskandar
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Benchun Miao
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Xinli Li
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts.
| |
Collapse
|
19
|
WWOX CNV-67048 Functions as a Risk Factor for Epithelial Ovarian Cancer in Chinese Women by Negatively Interacting with Oral Contraceptive Use. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6594039. [PMID: 27190995 PMCID: PMC4842385 DOI: 10.1155/2016/6594039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022]
Abstract
Copy number variations (CNVs) have attracted increasing evidences to represent their roles as cancer susceptibility regulators. However, little is known about the role of CNV in epithelia ovarian cancer (EOC). Recently, the CNV-67048 of WW domain-containing oxidoreductase (WWOX) was reported to alter cancer risks. Considering that WWOX also plays a role in EOC, we hypothesized that the CNV-67048 was associated with EOC risk. In a case-control study of 549 EOC patients and 571 age (±5 years) matched cancer-free controls, we found that the low copy number of CNV-67048 (1-copy and 0-copy) conferred a significantly increased risk of EOC (OR = 1.346, 95% CI = 1.037–1.747) and it determined the risk by means of copy number-dependent dosage effect (P = 0.009). Data from TCGA also confirmed the abovementioned association as the frequency of low copies in EOC group was 3.68 times more than that in healthy group (P = 0.023). The CNV also negatively interacted with oral contraceptive use on EOC risk (P = 0.042). Functional analyses further showed a lower mRNA level of WWOX in tissues with the 0-copy or 1-copy than that in those with the 2-copy (P = 0.045). Our data suggested the CNV-67048 to be a risk factor of EOC in Chinese women.
Collapse
|
20
|
Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. GENES, BRAIN, AND BEHAVIOR 2016; 15:89-107. [PMID: 26351737 PMCID: PMC4780670 DOI: 10.1111/gbb.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|