1
|
Kowalski TF, Wang R, Tischfield MA. Genetic advances and translational phenotypes in rodent models for Tourette disorder. Curr Opin Neurobiol 2025; 90:102967. [PMID: 39793296 DOI: 10.1016/j.conb.2024.102967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025]
Abstract
Tourette disorder (TD) is a neurodevelopmental condition affecting approximately 0.3%-1% of children and adolescents. It is defined by motor and vocal tics but encompasses wide ranging phenotypes due to its complex genetic origins, involving hundreds of risk genes across various signaling pathways. Traditional animal models of TD have focused on circuit manipulation or neuron ablation strategies to investigate its underlying causes and associated brain changes. However, the recent identification of high-confidence risk genes has opened new possibilities for creating models that express the exact genetic variants associated with TD. This review discusses early attempts to model TD in rodents and highlights advancements in next-generation models with true construct validity through the expression of orthologous human mutations in high-confidence risk genes. Additionally, we examine the translational potential of integrating cognitive and sensorimotor approaches to evaluate TD-related phenotypes in rodents, including changes to reinforcement learning, habitual behavior, and incentive motivation.
Collapse
Affiliation(s)
- Tess F Kowalski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Riley Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Gomes F, Turano H, Haddad LA, Netto LES. Human mitochondrial peroxiredoxin Prdx3 is dually localized in the intermembrane space and matrix subcompartments. Redox Biol 2024; 78:103436. [PMID: 39591905 PMCID: PMC11626719 DOI: 10.1016/j.redox.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxiredoxin 3 (Prdx3) is the major sink for H2O2 and other hydroperoxides within mitochondria, yet the mechanisms guiding the import of its cytosolic precursor into mitochondrial sub-compartments remain elusive. Prdx3 is synthesized in the cytosol as a precursor with an N-terminal cleavable presequence, which is frequently proposed to target the protein exclusively to the mitochondrial matrix. Here, we present a comprehensive analysis of the human Prdx3 biogenesis, using highly purified mitochondria from HEK293T cells. Subfractionation and probing for specific mitochondrial markers confirmed Prdx3 localization in the matrix, while unexpectedly revealed its presence in the mitochondrial intermembrane space (IMS). Both matrix and IMS isoforms were found to be soluble proteins, as demonstrated by alkaline carbonate extraction. By combining in silico analysis, in organello import assays and heterologous expression in yeast, we found that Prdx3 undergoes sequential proteolytic processing steps by mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP) during its import into the matrix. Additionally, heterologous expression of Prdx3 in yeast revealed that its sorting to the IMS is dependent on the inner membrane peptidase (IMP) complex. Collectively, these findings uncover a complex submitochondrial distribution of Prdx3, supporting its multifaceted role in mitochondrial H2O2 metabolism.
Collapse
Affiliation(s)
- Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| | - Helena Turano
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luciana A Haddad
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
| |
Collapse
|
3
|
Lin WD, Liu TY, Chen YC, Chou IC, Tsai FJ. Genome-wide association study identifies DRAM1 associated with Tourette syndrome in Taiwan. Biomed J 2024; 47:100725. [PMID: 38608873 PMCID: PMC11550159 DOI: 10.1016/j.bj.2024.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Tourette syndrome (TS) is a neurodevelopmental disorder characterized by motor and vocal tics. Several susceptibility loci associated with TS have been identified previously in populations of European descent using genome-wide association studies (GWAS). However, the exact pathogenic mechanism underlying TS is unknown; additionally, the results of previous GWAS for TS were based on Western populations, which may not translate to other populations. Therefore, we conducted a GWAS in Taiwanese patients with TS and chronic tic disorders (CTDs), with an aim to elucidate the genetic basis and potential risk factors for TS in this population. METHODS GWAS was performed on a Taiwanese TS/CTDs cohort with a sample size of 1007 patients with TS and 25,522 ancestry-matched controls. Additionally, polygenic risk score was calculated and assessed. RESULTS Genome-wide significant locus, rs12313062 (p = 1.43 × 10-8) and other 9 single nucleotide polymorphisms, were identified in chromosomes 12q23.2, associated with DRAM1 and was a novel susceptibility locus identified in TS/CTDs group. DRAM1, a lysosomal transmembrane protein regulated by p53, modulates autophagy and apoptosis, with potential implications for neuropsychiatric conditions associated with autophagy disruption. CONCLUSIONS This study conducted the first GWAS for TS in a Taiwanese population, identifying a significant locus on chromosome 12q23.2 associated with DRAM1. These findings provide novel insights into the neurobiology of TS and potential directions for future research in this area.
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Yuan Liu
- Million-person precision medicine initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chia Chen
- Million-person precision medicine initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University Children's Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Division of Genetics and Metabolism, China Medical University Children's Hospital, Taichung, Taiwan; Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
5
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Leung BK, Merlin S, Walker AK, Lawther AJ, Paxinos G, Eapen V, Clarke R, Balleine BW, Furlong TM. Immp2l knockdown in male mice increases stimulus-driven instrumental behaviour but does not alter goal-directed learning or neuron density in cortico-striatal circuits in a model of Tourette syndrome and autism spectrum disorder. Behav Brain Res 2023; 452:114610. [PMID: 37541448 DOI: 10.1016/j.bbr.2023.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cortico-striatal neurocircuits mediate goal-directed and habitual actions which are necessary for adaptive behaviour. It has recently been proposed that some of the core symptoms of autism spectrum disorder (ASD) and Gilles de la Tourette syndrome (GTS), such as tics and other repetitive behaviours, may emerge because of imbalances in these neurocircuits. We have recently developed a model of ASD and GTS by knocking down Immp2l, a mitochondrial gene frequently associated with these disorders. The current study sought to determine whether Immp2l knockdown (KD) in male mice alters flexible, goal- or cue- driven behaviour using procedures specifically designed to examine response-outcome and stimulus-response associations, which underlie goal-directed and habitual behaviour, respectively. Whether Immp2l KD alters neuron density in cortico-striatal neurocircuits known to regulate these behaviours was also examined. Immp2l KD mice and wild type-like mice (WT) were trained on Pavlovian and instrumental learning procedures where auditory cues predicted food delivery and lever-press responses earned a food outcome. It was demonstrated that goal-directed learning was not changed for Immp2l KD mice compared to WT mice, as lever-press responses were sensitive to changes in the value of the food outcome, and to contingency reversal and degradation. There was also no difference in the capacity of KD mice to form habitual behaviours compared to WT mice following extending training of the instrumental action. However, Immp2l KD mice were more responsive to auditory stimuli paired with food as indicated by a non-specific increase in lever response rates during Pavlovian-to-instrumental transfer. Finally, there were no alterations to neuron density in striatum or any prefrontal cortex or limbic brain structures examined. Thus, the current study suggests that Immp2l is not necessary for learned maladaptive goal or stimulus driven behaviours in ASD or GTS, but that it may contribute to increased capacity for external stimuli to drive behaviour. Alterations to stimulus-driven behaviour could potentially influence the expression of tics and repetitive behaviours, suggesting that genetic alterations to Immp2l may contribute to these core symptoms in ASD and GTS. Given that this is the first application of this battery of instrumental learning procedures to a mouse model of ASD or GTS, it is an important initial step in determining the contribution of known risk-genes to goal-directed versus habitual behaviours, which should be more broadly applied to other rodent models of ASD and GTS in the future.
Collapse
Affiliation(s)
- Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Sam Merlin
- School of Science, Western Sydney University, Campbelltown, Sydney, NSW, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia; Mental Health Research Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Raymond Clarke
- Ingham Institute, Discipline of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Ma Y, Liang RM, Ma N, Mi XJ, Cheng ZY, Zhang ZJ, Lu BS, Li PA. Immp2l Mutation Induces Mitochondrial Membrane Depolarization and Complex III Activity Suppression after Middle Cerebral Artery Occlusion in Mice. Curr Med Sci 2023:10.1007/s11596-023-2726-5. [PMID: 37243806 DOI: 10.1007/s11596-023-2726-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 05/29/2023]
Abstract
OBJECTIVE We previously reported that mutations in inner mitochondrial membrane peptidase 2-like (Immp2l) increase infarct volume, enhance superoxide production, and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury. The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice. METHODS Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0, 1, 5, and 24 h of reperfusion. The effects of Immp2l+/- on mitochondrial membrane potential, mitochondrial respiratory complex III activity, caspase-3, and apoptosis-inducing factor (AIF) translocation were examined. RESULTS Immp2l+/- increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice. Immp2l+/- led to mitochondrial damage, mitochondrial membrane potential depolarization, mitochondrial respiratory complex III activity suppression, caspase-3 activation, and AIF nuclear translocation. CONCLUSION The adverse impact of Immp2l+/- on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential, inhibition of the mitochondrial respiratory complex III, and activation of mitochondria-mediated cell death pathways. These results suggest that patients with stroke carrying Immp2l+/- might have worse and more severe infarcts, followed by a worse prognosis than those without Immp2l mutations.
Collapse
Affiliation(s)
- Yi Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Department of Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Rui-Min Liang
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Juan Mi
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zheng-Yi Cheng
- Department of Pathology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Zi-Jing Zhang
- Department of Anesthesiology, Ningxia Chinese Medicine Research Center, Yinchuan, 750004, China
| | - Bai-Song Lu
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, 27110, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, 27707, USA.
| |
Collapse
|
8
|
Ma S, Li P, Liu H, Xi Y, Xu Q, Qi J, Wang J, Li L, Wang J, Hu J, He H, Han C, Bai L. Genome-wide association analysis of the primary feather growth traits of duck: identification of potential Loci for growth regulation. Poult Sci 2022; 102:102243. [PMID: 36334470 PMCID: PMC9636485 DOI: 10.1016/j.psj.2022.102243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,College of Animal Science, Xinjiang Agricultural University, P. R. China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, P. R. China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,Corresponding author:
| | - Yang Xi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Qian Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jingjing Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jianmei Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwen Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwei Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hua He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Lili Bai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| |
Collapse
|
9
|
Yoshikawa A, Kushima I, Miyashita M, Suzuki K, Iino K, Toriumi K, Horiuchi Y, Kawaji H, Ozaki N, Itokawa M, Arai M. Exonic deletions in IMMP2L in schizophrenia with enhanced glycation stress subtype. PLoS One 2022; 17:e0270506. [PMID: 35776734 PMCID: PMC9249242 DOI: 10.1371/journal.pone.0270506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
We previously identified a subtype of schizophrenia (SCZ) characterized by increased plasma pentosidine, a marker of glycation and oxidative stress (PEN-SCZ). However, the genetic factors associated with PEN-SCZ have not been fully clarified. We performed a genome-wide copy number variation (CNV) analysis to identify CNVs associated with PEN-SCZ to provide an insight into the novel therapeutic targets for PEN-SCZ. Plasma pentosidine was measured by high-performance liquid chromatography in 185 patients with SCZ harboring rare CNVs detected by array comparative genomic hybridization. In three patients with PEN-SCZ showing additional autistic features, we detected a novel deletion at 7q31.1 within exons 2 and 3 of IMMP2L, which encodes the inner mitochondrial membrane peptidase subunit 2. The deletion was neither observed in non-PEN-SCZ nor in public database of control subjects. IMMP2L is one of the SCZ risk loci genes identified in a previous SCZ genome-wide association study, and its trans-populational association was recently described. Interestingly, deletions in IMMP2L have been previously linked with autism spectrum disorder. Disrupted IMMP2L function has been shown to cause glycation/oxidative stress in neuronal cells in an age-dependent manner. To our knowledge, this is the first genome-wide CNV study to suggest the involvement of IMMP2L exons 2 and 3 in the etiology of PEN-SCZ. The combination of genomic information with plasma pentosidine levels may contribute to the classification of biological SCZ subtypes that show additional autistic features. Modifying IMMP2L functions may be useful for treating PEN-SCZ if the underlying biological mechanism can be clarified in further studies.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Kunová N, Havalová H, Ondrovičová G, Stojkovičová B, Bauer JA, Bauerová-Hlinková V, Pevala V, Kutejová E. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Int J Mol Sci 2022; 23:1297. [PMID: 35163221 PMCID: PMC8835746 DOI: 10.3390/ijms23031297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eva Kutejová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (H.H.); (G.O.); (B.S.); (J.A.B.); (V.B.-H.); (V.P.)
| |
Collapse
|
11
|
Clarke RA, Eapen V. LRRTM4 Terminal Exon Duplicated in Family with Tourette Syndrome, Autism and ADHD. Genes (Basel) 2021; 13:genes13010066. [PMID: 35052406 PMCID: PMC8774418 DOI: 10.3390/genes13010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterised by motor and vocal tics and strong association with autistic deficits, obsessive–compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD). The genetic overlap between TS and autism spectrum disorder (ASD) includes those genes that encode the neurexin trans-synaptic connexus (NTSC) inclusive of the presynaptic neurexins (NRXNs) and postsynaptic neuroligins (NLGNs), cerebellin precursors (CBLNs in complex with the glutamate ionotropic receptor deltas (GRIDs)) and the leucine-rich repeat transmembrane proteins (LRRTMs). In this study, we report the first evidence of a TS and ASD association with yet another NTSC gene family member, namely LRRTM4. Duplication of the terminal exon of LRRTM4 was found in two females with TS from the same family (mother and daughter) in association with autistic traits and ASD.
Collapse
|
12
|
Popescu R, Grămescu M, Caba L, Pânzaru MC, Butnariu L, Braha E, Popa S, Rusu C, Cardos G, Zeleniuc M, Martiniuc V, Gug C, Păduraru L, Stamatin M, Diaconu CC, Gorduza EV. A Case of Inherited t(4;10)(q26;q26.2) Chromosomal Translocation Elucidated by Multiple Chromosomal and Molecular Analyses. Case Report and Review of the Literature. Genes (Basel) 2021; 12:1957. [PMID: 34946906 PMCID: PMC8701147 DOI: 10.3390/genes12121957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
We present a complex chromosomal anomaly identified using cytogenetic and molecular methods. The child was diagnosed during the neonatal period with a multiple congenital anomalies syndrome characterized by: flattened occipital region; slight turricephaly; tall and broad forehead; hypertelorism; deep-set eyes; down slanting and short palpebral fissures; epicanthic folds; prominent nose with wide root and bulbous tip; microstomia; micro-retrognathia, large, short philtrum with prominent reliefs; low set, prominent ears; and congenital heart disease. The GTG banding karyotype showed a 46,XY,der(10)(10pter→10q26.2::4q26→4qter) chromosomal formula and his mother presented an apparently balanced reciprocal translocation: 46,XX,t(4;10)(q26;q26.2). The chromosomal anomalies of the child were confirmed by MLPA, and supplementary investigation discovered a quadruplication of the 4q35.2 region. The mother has a triplication of the same chromosomal fragment (4q35.2). Using array-CGH, we described the anomalies completely. Thus, the boy has a 71,057 kb triplication of the 4q26-q35.2 region, a 562 kb microdeletion in the 10q26.3 region, and a 795 kb quadruplication of the 4q35.2 region, while the mother presents a 795 kb triplication of the 4q35.2 region. Analyzing these data, we consider that the boy's phenotype is influenced only by the 4q partial trisomy. We compare our case with similar cases, and we review the literature data.
Collapse
Affiliation(s)
- Roxana Popescu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Mihaela Grămescu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Lavinia Caba
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Monica-Cristina Pânzaru
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Lăcrămioara Butnariu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Elena Braha
- “C. I. Parhon” National Institute of Endocrinology, 34-35 Aviatorilor Avenue, 011853 Bucharest, Romania;
| | - Setalia Popa
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Cristina Rusu
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
| | - Georgeta Cardos
- Personal Genetics Laboratory Bucharest, 4 Strada Frumoasa Street, 010987 Bucharest, Romania; (G.C.); (M.Z.)
| | - Monica Zeleniuc
- Personal Genetics Laboratory Bucharest, 4 Strada Frumoasa Street, 010987 Bucharest, Romania; (G.C.); (M.Z.)
- Medical Genetics Department, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Avenue, 050474 Bucharest, Romania
| | - Violeta Martiniuc
- Medical Genetics Department, “Cuza-Vodă” Obstetrics and Gynecology Hospital, 34 Cuza Voda Street, 700038 Iasi, Romania;
| | - Cristina Gug
- Microscopic Morphology Department, “Victor Babes” University of Medicine and Pharmacy, 2 Piata Eftimie Murgu, 300041 Timișoara, Romania
| | - Luminiţa Păduraru
- Neonatology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (L.P.); (M.S.)
| | - Maria Stamatin
- Neonatology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (L.P.); (M.S.)
| | - Carmen C. Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 285 Mihai Bravu, 030304 Bucharest, Romania;
| | - Eusebiu Vlad Gorduza
- Medical Genetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (R.P.); (M.G.); (M.-C.P.); (L.B.); (S.P.); (C.R.); (E.V.G.)
- Medical Genetics Department, “Cuza-Vodă” Obstetrics and Gynecology Hospital, 34 Cuza Voda Street, 700038 Iasi, Romania;
| |
Collapse
|
13
|
EWAS of Monozygotic Twins Implicate a Role of mTOR Pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel) 2021; 12:genes12101510. [PMID: 34680906 PMCID: PMC8535383 DOI: 10.3390/genes12101510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Tic spectrum disorder (TSD) is an umbrella term which includes Gilles de la Tourette syndrome (GTS) and chronic tic disorder (CTD). They are considered highly heritable, yet the genetic components remain largely unknown. In this study we aimed to investigate disease-associated DNA methylation differences to identify genes and pathways which may be implicated in TSD aetiology. For this purpose, we performed an exploratory analysis of the genome-wide DNA methylation patterns in whole blood samples of 16 monozygotic twin pairs, of which eight were discordant and six concordant for TSD, while two pairs were asymptomatic. Although no sites reached genome-wide significance, we identified several sites and regions with a suggestive significance, which were located within or in the vicinity of genes with biological functions associated with neuropsychiatric disorders. The two top genes identified (TSC1 and CRYZ/TYW3) and the enriched pathways and components (phosphoinosides and PTEN pathways, and insulin receptor substrate binding) are related to, or have been associated with, the PI3K/AKT/mTOR pathway. Genes in this pathway have previously been associated with GTS, and mTOR signalling has been implicated in a range of neuropsychiatric disorders. It is thus possible that altered mTOR signalling plays a role in the complex pathogenesis of TSD.
Collapse
|
14
|
Levy AM, Paschou P, Tümer Z. Candidate Genes and Pathways Associated with Gilles de la Tourette Syndrome-Where Are We? Genes (Basel) 2021; 12:1321. [PMID: 34573303 PMCID: PMC8468358 DOI: 10.3390/genes12091321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a childhood-onset neurodevelopmental and -psychiatric tic-disorder of complex etiology which is often comorbid with obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD). Twin and family studies of GTS individuals have shown a high level of heritability suggesting, that genetic risk factors play an important role in disease etiology. However, the identification of major GTS susceptibility genes has been challenging, presumably due to the complex interplay between several genetic factors and environmental influences, low penetrance of each individual factor, genetic diversity in populations, and the presence of comorbid disorders. To understand the genetic components of GTS etiopathology, we conducted an extensive review of the literature, compiling the candidate susceptibility genes identified through various genetic approaches. Even though several strong candidate genes have hitherto been identified, none of these have turned out to be major susceptibility genes yet.
Collapse
Affiliation(s)
- Amanda M. Levy
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
15
|
Feng Y, Nouri K, Schimmer AD. Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets. Cancers (Basel) 2021; 13:2020. [PMID: 33922062 PMCID: PMC8122244 DOI: 10.3390/cancers13092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells must eliminate excess or damaged proteins to maintain protein homeostasis. To ensure protein homeostasis in the cytoplasm, cells rely on the ubiquitin-proteasome system and autophagy. In the mitochondria, protein homeostasis is regulated by mitochondria proteases, including four core ATP-dependent proteases, m-AAA, i-AAA, LonP, and ClpXP, located in the mitochondrial membrane and matrix. This review will discuss the function of mitochondrial proteases, with a focus on ClpXP as a novel therapeutic target for the treatment of malignancy. ClpXP maintains the integrity of the mitochondrial respiratory chain and regulates metabolism by degrading damaged and misfolded mitochondrial proteins. Inhibiting ClpXP genetically or chemically impairs oxidative phosphorylation and is toxic to malignant cells with high ClpXP expression. Likewise, hyperactivating the protease leads to increased degradation of ClpXP substrates and kills cancer cells. Thus, targeting ClpXP through inhibition or hyperactivation may be novel approaches for patients with malignancy.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
16
|
Vasilyev SA, Skryabin NA, Kashevarova AA, Tolmacheva EN, Savchenko RR, Vasilyeva OY, Lopatkina ME, Zarubin AA, Fishman VS, Belyaeva EO, Filippova MO, Shorina AR, Maslennikov AB, Shestovskikh OL, Gayner TA, Čulić V, Vulić R, Nazarenko LP, Lebedev IN. Differential DNA Methylation of the IMMP2L Gene in Families with Maternally Inherited 7q31.1 Microdeletions is Associated with Intellectual Disability and Developmental Delay. Cytogenet Genome Res 2021; 161:105-119. [PMID: 33849037 DOI: 10.1159/000514491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.
Collapse
Affiliation(s)
- Stanislav A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Renata R Savchenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Maria E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Alexei A Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
| | - Elena O Belyaeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Miroslava O Filippova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Asia R Shorina
- Novosibirsk City Clinical Hospital, Novosibirsk, Russian Federation
| | | | | | - Tatyana A Gayner
- Group of Companies "Center of New Medical Technologies,", Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Vida Čulić
- Gynecology and Obstetrics Private Outpatient Clinic, Split, Croatia
| | - Robert Vulić
- Gynecology and Obstetrics Private Outpatient Clinic, Split, Croatia
| | - Lyudmila P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| |
Collapse
|
17
|
Gomez-Fabra Gala M, Vögtle FN. Mitochondrial proteases in human diseases. FEBS Lett 2021; 595:1205-1222. [PMID: 33453058 DOI: 10.1002/1873-3468.14039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria contain more than 1000 different proteins, including several proteolytic enzymes. These mitochondrial proteases form a complex system that performs limited and terminal proteolysis to build the mitochondrial proteome, maintain, and control its functions or degrade mitochondrial proteins and peptides. During protein biogenesis, presequence proteases cleave and degrade mitochondrial targeting signals to obtain mature functional proteins. Processing by proteases also exerts a regulatory role in modulation of mitochondrial functions and quality control enzymes degrade misfolded, aged, or superfluous proteins. Depending on their different functions and substrates, defects in mitochondrial proteases can affect the majority of the mitochondrial proteome or only a single protein. Consequently, mutations in mitochondrial proteases have been linked to several human diseases. This review gives an overview of the components and functions of the mitochondrial proteolytic machinery and highlights the pathological consequences of dysfunctional mitochondrial protein processing and turnover.
Collapse
Affiliation(s)
- Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Friederike-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
18
|
Mirabella F, Gulisano M, Capelli M, Lauretta G, Cirnigliaro M, Palmucci S, Stella M, Barbagallo D, Di Pietro C, Purrello M, Ragusa M, Rizzo R. Enrichment and Correlation Analysis of Serum miRNAs in Comorbidity Between Arnold-Chiari and Tourette Syndrome Contribute to Clarify Their Molecular Bases. Front Mol Neurosci 2021; 13:608355. [PMID: 33469418 PMCID: PMC7813987 DOI: 10.3389/fnmol.2020.608355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
Due to its rarity, coupled to a multifactorial and very heterogeneous nature, the molecular etiology of Arnold-Chiari (AC) syndrome remains almost totally unknown. Its relationship with other neuropsychiatric disorders such as Tourette syndrome (TS) is also undetermined. The rare comorbid status between both disorders (ACTS) complicates the framework of diagnosis and negatively affects the patients' quality of life. In this exploratory study, we aimed to identify serum microRNA expression profiles as molecular fingerprints for AC, TS, and ACTS, by using a high-throughput approach. For this aim, 10 AC patients, 11 ACTS patients, 6 TS patients, and 8 unaffected controls (NC) were recruited. Nine miRNAs resulted significantly differentially expressed (DE): let-7b-5p (upregulated in ACTS vs. TS); miR-21-5p (upregulated in ACTS vs. AC; downregulated in AC vs. TS); miR-23a-3p (upregulated in TS vs. NCs; downregulated in AC vs. TS); miR-25-3p (upregulated in AC vs. TS and NCs; downregulated in ACTS vs. AC); miR-93-5p (upregulated in AC vs. TS); miR-130a-3p (downregulated in ACTS and TS vs. NCs); miR-144-3p (downregulated in ACTS vs. AC; upregulated in AC vs. TS); miR-222-3p (upregulated in ACTS vs. NCs); miR-451a (upregulated in AC vs. TS and NCs; in ACTS vs. NCs). Altered expression of miRNAs was statistically correlated to neuroimaging and neuropsychological anomalies. Furthermore, computational analyses indicated that DE miRNAs are involved in AC and TS pathomechanisms. Finally, we propose the dysregulation of the miRNA set as a potential molecular tool for supporting the current diagnosis of AC, TS, and ACTS by using liquid biopsies, in an unbiased and non-invasive way.
Collapse
Affiliation(s)
- Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mara Capelli
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University Hospital “Policlinico-Vittorio Emanuele”, University of Catania, Catania, Italy
| | - Michele Stella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute–IRCCS, Troina, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Webb M, Sideris DP. Intimate Relations-Mitochondria and Ageing. Int J Mol Sci 2020; 21:ijms21207580. [PMID: 33066461 PMCID: PMC7589147 DOI: 10.3390/ijms21207580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is associated with ageing, but the detailed causal relationship between the two is still unclear. We review the major phenomenological manifestations of mitochondrial age-related dysfunction including biochemical, regulatory and energetic features. We conclude that the complexity of these processes and their inter-relationships are still not fully understood and at this point it seems unlikely that a single linear cause and effect relationship between any specific aspect of mitochondrial biology and ageing can be established in either direction.
Collapse
Affiliation(s)
- Michael Webb
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| | - Dionisia P Sideris
- Mitobridge Inc., an Astellas Company, 1030 Massachusetts Ave, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
21
|
Pagliaroli L, Vereczkei A, Padmanabhuni SS, Tarnok Z, Farkas L, Nagy P, Rizzo R, Wolanczyk T, Szymanska U, Kapisyzi M, Basha E, Koumoula A, Androutsos C, Tsironi V, Karagiannidis I, Paschou P, Barta C. Association of Genetic Variation in the 3'UTR of LHX6, IMMP2L, and AADAC With Tourette Syndrome. Front Neurol 2020; 11:803. [PMID: 32922348 PMCID: PMC7457023 DOI: 10.3389/fneur.2020.00803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Tourette Syndrome (TS) is a neurodevelopmental disorder that presents with motor and vocal tics early in childhood. The aim of this study was to investigate genetic variants in the 3' untranslated region (3'UTR) of TS candidate genes with a putative link to microRNA (miRNA) mediated regulation or gene expression. Methods: We used an in silico approach to identify 32 variants in the 3'UTR of 18 candidate genes putatively changing the binding site for miRNAs. In a sample composed of TS cases and controls (n = 290), as well as TS family trios (n = 148), we performed transmission disequilibrium test (TDT) and meta-analysis. Results: We found positive association of rs3750486 in the LIM homeobox 6 (LHX6) gene (p = 0.021) and rs7795011 in the inner mitochondrial membrane peptidase subunit 2 (IMMP2L) gene (p = 0.029) with TS in our meta-analysis. The TDT showed an over-transmission of the A allele of rs1042201 in the arylacetamide deacetylase (AADAC) gene in TS patients (p = 0.029). Conclusion: This preliminary study provides further support for the involvement of LHX6, IMMP2L, and AADAC genes, as well as epigenetic mechanisms, such as altered miRNA mediated gene expression regulation in the etiology of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Andrea Vereczkei
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Zsanett Tarnok
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Luca Farkas
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Peter Nagy
- Vadaskert Clinic for Child and Adolescent Psychiatry, Budapest, Hungary
| | - Renata Rizzo
- Materno Infantile and Radiological Science Department, University of Catania, Catania, Italy
| | - Tomasz Wolanczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Szymanska
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Mira Kapisyzi
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Entela Basha
- University Hospital Center "Mother Theresa," Tirana, Albania
| | - Anastasia Koumoula
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Christos Androutsos
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Vaia Tsironi
- Department of Child and Adolescent Psychiatry, Sismanoglio General Hospital of Attica, Athens, Greece
| | - Iordanis Karagiannidis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli, Greece
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Abstract
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation-associated cellular defects.
Collapse
Affiliation(s)
- Linhao Ruan
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuhao Wang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xi Zhang
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Alexis Tomaszewski
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Joshua T McNamara
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; , , , , ,
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
23
|
Bjerregaard VA, Schönewolf-Greulich B, Juel Rasmussen L, Desler C, Tümer Z. Mitochondrial Function in Gilles de la Tourette Syndrome Patients With and Without Intragenic IMMP2L Deletions. Front Neurol 2020; 11:163. [PMID: 32265818 PMCID: PMC7105681 DOI: 10.3389/fneur.2020.00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Gilles de la Tourette syndrome (GTS) is a neurodevelopmental condition characterized by motor and vocal tics. The underlying etiology remains largely unknown, and GTS is considered as a complex multifactorial disorder associated with effects of several genes in combination with environmental factors. The inner mitochondrial membrane peptidase, subunit 2 (IMMP2L) has been suggested as one of the susceptibility genes for GTS, and IMMP2L-deficient mouse and human cells show increased levels of mitochondrial oxidative stress and altered cell fate programming. Hence, a potential involvement of IMMP2L-induced mitochondrial dysfunction in GTS pathology is yet to be elucidated. To address this, we investigated mitochondrial function in a group of GTS patients with intragenic IMMP2L deletions and compared with GTS without IMMP2L deletions and healthy controls. Methods: Mitochondrial function in fibroblasts from GTS patients and non-GTS parents (with and without IMMP2L deletions) compared to healthy controls were evaluated by measuring mitochondrial superoxide production, mitochondrial membrane potential, mitochondrial mass, and mitochondrial respiration. In addition, we evaluated apoptosis and senescence. Results: None of the mitochondrial parameters assessed in this study were significantly distinctive when comparing GTS patients with and without IMMP2L deletions against healthy controls or parents with or without IMMP2L deletions, and we did not observe altered cell programming. Conclusion: This study suggests that IMMP2L deletions do not lead to a substantial general mitochondrial dysfunction in GTS fibroblasts. Assessing a large cohort of controls and patients of similar age and gender would possibly reveal small differences in mitochondrial function. However, it is possible that IMMP2L variants affect mitochondrial function during specific instances of stress stimuli or in brain regions suggested to be affected in GTS.
Collapse
Affiliation(s)
- Victoria A Bjerregaard
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bitten Schönewolf-Greulich
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Deshwal S, Fiedler KU, Langer T. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annu Rev Biochem 2020; 89:501-528. [PMID: 32075415 DOI: 10.1146/annurev-biochem-062917-012739] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
Collapse
Affiliation(s)
- Soni Deshwal
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Kai Uwe Fiedler
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
25
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
26
|
Abstract
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Collapse
|
27
|
Kreilaus F, Chesworth R, Eapen V, Clarke R, Karl T. First behavioural assessment of a novel Immp2l knockdown mouse model with relevance for Gilles de la Tourette syndrome and Autism spectrum disorder. Behav Brain Res 2019; 374:112057. [PMID: 31233820 DOI: 10.1016/j.bbr.2019.112057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder, which shares some clinical features with Autism spectrum disorder (ASD). The genetic factors relevant to the development of both disorders are yet to be fully understood, however, some genetic association studies have identified inner mitochondrial membrane peptidase subunit 2 (IMMP2L) as a potential risk gene for both GTS and ASD. The impact of Immp2l deficiency on behavioural domains is currently unknown. A new genetic mouse model for Immp2l was developed. Adult heterozygous (HET) and homozygous (HOMO) Immp2l knockdown (Immp2l KD) mice of both sexes were compared to wild type-like (WT) littermates in the open field (OF), social interaction, novel object recognition, marble burying, and prepulse inhibition (PPI). The effect of acute dexamphetamine (2 mg/kg) on OF behaviour was also determined. OF locomotion was significantly higher in HET compared to HOMO male littermates. Male and female HOMO mice were much more sensitive to the locomotor-stimulating effects of dexamphetamine (DEX), whereas only HOMO males exhibited significant increased DEX-induced OF exploration compared to control groups. HOMO females failed to habituate to an acoustic startle stimulus. Furthermore, compared to HOMO females, HET females showed reduced social interaction, and a similar trend was seen in HET males. The Immp2l KD mouse model possesses moderate face validity for preclinical research into GTS and ASD, in particular as dysfunctional dopaminergic neurotransmission appears to be one mechanism leading to disease presentation. The sex-dependent differences observed in most findings reinforce the strong influence of sex in the pathophysiology of GTS and ASD.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine and Ingham Institute, University of New South Wales, NSW, 2052, Australia
| | - Raymond Clarke
- School of Psychiatry, Faculty of Medicine and Ingham Institute, University of New South Wales, NSW, 2052, Australia.
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW, 2031, Australia; School of Medical Sciences, University of New South Wales, NSW, 2052, Australia.
| |
Collapse
|
28
|
Jang W, Kim Y, Han E, Park J, Chae H, Kwon A, Choi H, Kim J, Son JO, Lee SJ, Hong BY, Jang DH, Han JY, Lee JH, Kim SY, Lee IG, Sung IK, Moon Y, Kim M, Park JH. Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients With Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea. Ann Lab Med 2019; 39:299-310. [PMID: 30623622 PMCID: PMC6340852 DOI: 10.3343/alm.2019.39.3.299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 11/20/2022] Open
Abstract
Background To validate the clinical application of chromosomal microarray analysis (CMA) as a first-tier clinical diagnostic test and to determine the impact of CMA results on patient clinical management, we conducted a multicenter prospective study in Korean patients diagnosed as having developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA). Methods We performed both CMA and G-banding cytogenetics as the first-tier tests in 617 patients. To determine whether the CMA results directly influenced treatment recommendations, the referring clinicians were asked to complete a 39-item questionnaire for each patient separately after receiving the CMA results. Results A total of 122 patients (19.8%) had abnormal CMA results, with either pathogenic variants (N=65) or variants of possible significance (VPS, N=57). Thirty-five well-known diseases were detected: 16p11.2 microdeletion syndrome was the most common, followed by Prader-Willi syndrome, 15q11-q13 duplication, Down syndrome, and Duchenne muscular dystrophy. Variants of unknown significance (VUS) were discovered in 51 patients (8.3%). VUS of genes putatively associated with developmental disorders were found in five patients: IMMP2L deletion, PTCH1 duplication, and ATRNL1 deletion. CMA results influenced clinical management, such as imaging studies, specialist referral, and laboratory testing in 71.4% of patients overall, and in 86.0%, 83.3%, 75.0%, and 67.3% of patients with VPS, pathogenic variants, VUS, and benign variants, respectively. Conclusions Clinical application of CMA as a first-tier test improves diagnostic yields and the quality of clinical management in patients with DD/ID, ASD, and MCA.
Collapse
Affiliation(s)
- Woori Jang
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eunhee Han
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ahlm Kwon
- Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hayoung Choi
- Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyeon Kim
- Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Ok Son
- Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Jee Lee
- Department of Rehabilitation Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Dae Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Lee
- Department of Pediatrics, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - So Young Kim
- Department of Pediatrics, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyung Sung
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeonsook Moon
- Department of Laboratory Medicine, Inha University School of Medicine, Incheon, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Joo Hyun Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Carias KV, Wevrick R. Clinical and genetic analysis of children with a dual diagnosis of Tourette syndrome and autism spectrum disorder. J Psychiatr Res 2019; 111:145-153. [PMID: 30771620 DOI: 10.1016/j.jpsychires.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 01/29/2019] [Indexed: 01/09/2023]
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder that causes children to make repeated, brief involuntary movements or sounds. TS can be co-morbid with other neurodevelopmental disorders, including autism spectrum disorder (ASD). Clusters of biologically related genes have been associated with neurodevelopmental disorders, suggesting shared pathologies. However, the genetic contribution to TS remains poorly defined. We asked whether children with both TS and ASD differed clinically from children with ASD alone, and identified potentially deleterious genetic events in children with TS and ASD. We compared clinical data from 119 children with ASD and TS to 2603 children with ASD, all from the Simons Simplex Collection. We performed gene set enrichment analysis on de novo genetic events in children with both TS and ASD to identify candidate genes and pathways, and compared these genes and pathways with those previously identified in TS. Children with TS and ASD were diagnosed at an older age, had higher IQ scores, and had more restricted and repetitive behavior than children with ASD but not TS. Gene Ontology analysis revealed that proteins important for specific biological pathways, including regulation of calcium ion-dependent exocytosis, basement membrane organization, and visual behavior and learning, and specific cellular pathways, including basal lamina and ciliary transition zone, are enriched among genes with de novo mutations in children with TS and ASD. Clinical and genetic analysis of cohorts of affected children can help to determine the underlying pathophysiology of TS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Abdulkadir M, Mathews CA, Scharf JM, Yu D, Tischfield JA, Heiman GA, Hoekstra PJ, Dietrich A. Polygenic Risk Scores Derived From a Tourette Syndrome Genome-wide Association Study Predict Presence of Tics in the Avon Longitudinal Study of Parents and Children Cohort. Biol Psychiatry 2019; 85:298-304. [PMID: 30424865 PMCID: PMC6342633 DOI: 10.1016/j.biopsych.2018.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Tourette syndrome (TS) has a well-established genetic background, but its genetic architecture remains largely unknown. The authors investigated the role of polygenic risk scores (PRSs) derived from a TS genome-wide association study in relation to the occurrence of tics and associated traits in a general population cohort. METHODS Using the most recent TS genome-wide association study (n = 4819 cases; n = 9488 controls) as the discovery sample, PRSs were calculated in Avon Longitudinal Study of Parents and Children participants (n = 8941). Regression analyses were used to assess whether PRS predicted the presence and chronicity of tics, and symptom severity of obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and autism spectrum disorder in Avon Longitudinal Study of Parents and Children participants. RESULTS Following correction for multiple testing, the PRS significantly predicted the presence (R2 = .48%, p empirical = .01, Q = .04) but not the chronicity (R2 = .16%, p empirical = .07, Q = .14) of tics in the Avon Longitudinal Study of Parents and Children cohort; it did not predict the severity of obsessive-compulsive disorder (R2 = .11%, p empirical = .11, Q = .15), attention-deficit/hyperactivity disorder (R2 = .09%, p empirical = .19, Q = .21), or autism spectrum disorder (R2 = .12%, p empirical = .09, Q = .14). CONCLUSIONS The authors found a significant polygenic component of tics occurring in a general population cohort based on PRS derived from a genome-wide association study of individuals with a TS diagnosis. This finding supports the notion that tics along a spectrum from nonclinical to clinical symptom levels share a similar genetic background.
Collapse
Affiliation(s)
- Mohamed Abdulkadir
- Department of Genetics, Rutgers, the State University of New Jersey, and the Human Genetics Institute of New Jersey, Piscataway, New Jersey; Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Carol A Mathews
- Department of Psychiatry, Center for OCD, Anxiety and Related Disorders, and Genetics Institute, University of Florida College of Medicine, Gainesville, Florida
| | - Jeremiah M Scharf
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dongmei Yu
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jay A Tischfield
- Department of Genetics, Rutgers, the State University of New Jersey, and the Human Genetics Institute of New Jersey, Piscataway, New Jersey
| | - Gary A Heiman
- Department of Genetics, Rutgers, the State University of New Jersey, and the Human Genetics Institute of New Jersey, Piscataway, New Jersey
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Zheglo D, Brueckner LM, Sepman O, Wecht EM, Kuligina E, Suspitsin E, Imyanitov E, Savelyeva L. The FRA14B
common fragile site maps to a region prone to somatic and germline rearrangements within the large GPHN
gene. Genes Chromosomes Cancer 2018; 58:284-294. [DOI: 10.1002/gcc.22706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Diana Zheglo
- FSBI Research Centre for Medical Genetics; Moscow Russia
| | - Lena M. Brueckner
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Olga Sepman
- Klinik fuer Allgemein-, Viszeral-, Thorax- und minimal-invasive Chirurgie; Pforzheim Germany
| | - Elisa M. Wecht
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| | | | - Evgenij Suspitsin
- Petrov Institute of Oncology; St Petersburg Russia
- St. Petersburg Pediatric Medical University; Sankt-Peterburg Russia
| | - Evgenij Imyanitov
- Petrov Institute of Oncology; St Petersburg Russia
- Mechnikov North-Western Medical University; Saint Petersburg Russia
| | - Larissa Savelyeva
- Division of Neuroblastoma Genomics; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
32
|
Yuan L, Zhai L, Qian L, Huang D, Ding Y, Xiang H, Liu X, Thompson JW, Liu J, He YH, Chen XQ, Hu J, Kong QP, Tan M, Wang XF. Switching off IMMP2L signaling drives senescence via simultaneous metabolic alteration and blockage of cell death. Cell Res 2018; 28:625-643. [PMID: 29808012 DOI: 10.1038/s41422-018-0043-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a fundamental cell fate playing a significant role throughout the natural aging process. However, the molecular determinants distinguishing senescence from other cell-cycle arrest states such as quiescence and post-mitotic state, and the specified mechanisms underlying cell-fate decisions towards senescence versus cell death in response to cellular stress stimuli remain less understood. Employing multi-omics approaches, we revealed that switching off the specific mitochondrial processing machinery involving the peptidase IMMP2L serves as the foundation of the senescence program, which was also observed during the mammalian aging process. Mechanistically, we demonstrate that IMMP2L processes and thus activates at least two substrates, mitochondrial metabolic enzyme glycerol-3-phosphate dehydrogenase (GPD2) and cell death regulator apoptosis-inducing factor (AIF). For cells destined to senesce, concerted shutdown of the IMMP2L-GPD2 and IMMP2L-AIF signaling axes collaboratively drives the senescent process by reprogramming mitochondria-associated redox status, phospholipid metabolism and signaling network, and simultaneously blocking cell death under oxidative stress conditions.
Collapse
Affiliation(s)
- Lifeng Yuan
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Linhui Zhai
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lili Qian
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - J Will Thompson
- Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Qiong Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing Hu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Minjia Tan
- Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Fan Wang
- Graduate Program in Molecular Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
33
|
Baldan F, Gnan C, Franzoni A, Ferino L, Allegri L, Passon N, Damante G. Genomic Deletion Involving the IMMP2L Gene in Two Cases of Autism Spectrum Disorder. Cytogenet Genome Res 2018; 154:196-200. [PMID: 29788020 DOI: 10.1159/000489001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations/deletions of the IMMP2L gene have been associated with different cognitive/behavioral disturbances, including autism spectrum disorders (ASD). The penetrance of these defects is not complete since they often are inherited from a healthy parent. Using array-CGH in a cohort of 37 ASD patients, we found 2 subjects harboring a deletion inside the IMMP2L gene. In both cases, the IMMP2L gene deletion was inherited: from a healthy mother in one case and from a dyslectic father in the other. In the latter family, the IMMP2L deletion was also detected in the patient's brother, who showed delayed language development. In a cohort of 100 normal controls, no deletions including the IMMP2L gene were observed. However, a recent meta-analysis found no association between IMMP2L deletions and ASD. Our data would indicate that deletions involving the IMMP2L gene may contribute to the development of a subgroup of cognitive/behavioral disorders.
Collapse
|
34
|
Patron M, Sprenger HG, Langer T. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res 2018; 28:296-306. [PMID: 29451229 PMCID: PMC5835776 DOI: 10.1038/cr.2018.17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hans-Georg Sprenger
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
35
|
Fernandez TV, State MW, Pittenger C. Tourette disorder and other tic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:343-354. [PMID: 29325623 DOI: 10.1016/b978-0-444-63233-3.00023-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tourette disorder is a developmental neuropsychiatric condition characterized by vocal and motor tics that can range in severity from mild to disabling. It represents one end of a spectrum of tic disorders and is estimated to affect 0.5-0.7% of the population. Accumulated evidence supports a substantial genetic contribution to disease risk, but the identification of genetic variants that confer risk has been challenging. Positive findings in candidate gene association studies have not replicated, and genomewide association studies have not generated signals of genomewide significance, in large part because of inadequate sample sizes. Rare mutations in several genes have been identified, but their causality is difficult to establish. As in other complex neuropsychiatric disorders, it is likely that Tourette disorder risk involves a combination of common, low-effect and rare, larger-effect variants in multiple genes acting together with environmental factors. With the ongoing collection of larger patient cohorts and the emergence of affordable high-throughput genomewide sequencing, progress is expected to accelerate in coming years.
Collapse
Affiliation(s)
- Thomas V Fernandez
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Matthew W State
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Christopher Pittenger
- Child Study Center, Yale School of Medicine, New Haven, CT, United States; Department of Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
36
|
Zhang Y, Liu Y, Zarrei M, Tong W, Dong R, Wang Y, Zhang H, Yang X, MacDonald JR, Uddin M, Scherer SW, Gai Z. Association of IMMP2L deletions with autism spectrum disorder: A trio family study and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177:93-100. [PMID: 29152845 DOI: 10.1002/ajmg.b.32608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022]
Abstract
IMMP2L, the gene encoding the inner mitochondrial membrane peptidase subunit 2-like protein, has been reported as a candidate gene for Tourette syndrome, autism spectrum disorder (ASD) and additional neurodevelopmental disorders. Here we genotyped 100 trio families with an index proband with autism spectrum disorder in Han Chinese population and found three cases with rare exonic IMMP2L deletions. We have conducted a comprehensive meta-analysis to quantify the association of IMMP2L deletions with ASD using 5,568 cases and 10,279 controls. While the IMMP2L deletions carried non-recurrent breakpoints, in contrast to previous reports, our meta-analysis found no evidence of association (P > 0.05) between IMMP2L deletions and ASD. We also observed common exonic deletions impacting IMMP2L in a separate control (5,971 samples) cohort where subjects were screened for psychiatric conditions. This is the first systematic review and meta-analysis regarding the effect of IMMP2L deletions on ASD, but further investigations in different populations, especially Chinese population may be still needed to confirm our results.
Collapse
Affiliation(s)
- Yanqing Zhang
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Winnie Tong
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Ying Wang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, UAE
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhongtao Gai
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China.,Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
37
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
38
|
Eriguchi Y, Kuwabara H, Inai A, Kawakubo Y, Nishimura F, Kakiuchi C, Tochigi M, Ohashi J, Aoki N, Kato K, Ishiura H, Mitsui J, Tsuji S, Doi K, Yoshimura J, Morishita S, Shimada T, Furukawa M, Umekage T, Sasaki T, Kasai K, KanoMD PhD Y. Identification of candidate genes involved in the etiology of sporadic Tourette syndrome by exome sequencing. Am J Med Genet B Neuropsychiatr Genet 2017; 174:712-723. [PMID: 28608572 DOI: 10.1002/ajmg.b.32559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and vocal tics. Although there is a large genetic contribution, the genetic architecture of TS remains unclear. Exome sequencing has successfully revealed the contribution of de novo mutations in sporadic cases with neuropsychiatric disorders such as autism and schizophrenia. Here, using exome sequencing, we investigated de novo mutations in individuals with sporadic TS to identify novel risk loci and elucidate the genetic background of TS. Exome analysis was conducted for sporadic TS cases: nine trio families and one quartet family with concordant twins were investigated. Missense mutations were evaluated using functional prediction algorithms, and their population frequencies were calculated based on three public databases. Gene expression patterns in the brain were analyzed using the BrainSpan Developmental Transcriptome. Thirty de novo mutations, including four synonymous and four missense mutations, were identified. Among the missense mutations, one in the rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR)-coding gene (rs140964083: G > A, found in one proband) was predicted to be hazardous. In the three public databases analyzed, variants in the same SNP locus were absent, and variants in the same gene were either absent or present at an extremely low frequency (3/5,008), indicating the rarity of hazardous RICTOR mutations in the general population. The de novo variant of RICTOR may be implicated in the development of sporadic TS, and RICTOR is a novel candidate factor for TS etiology.
Collapse
Affiliation(s)
- Yosuke Eriguchi
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Neuropsychiatry, Sakura Hospital, Aomori, Japan
| | - Hitoshi Kuwabara
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Disability Services Office, The University of Tokyo, Tokyo, Japan
| | - Aya Inai
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Aoki
- Department of Neuropsychiatry, Sakura Hospital, Aomori, Japan
| | - Kayoko Kato
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Medical Genome Center, The University of Tokyo Hospital, The University of Tokyo, Tokyo, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takafumi Shimada
- Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Masaomi Furukawa
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Umekage
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko KanoMD PhD
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations. Sci Rep 2017; 7:11529. [PMID: 28912584 PMCID: PMC5599559 DOI: 10.1038/s41598-017-11064-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/17/2017] [Indexed: 02/01/2023] Open
Abstract
Genome-wide association study is especially challenging in detecting high-order disease-causing models due to model diversity, possible low or even no marginal effect of the model, and extraordinary search and computations. In this paper, we propose a niche harmony search algorithm where joint entropy is utilized as a heuristic factor to guide the search for low or no marginal effect model, and two computationally lightweight scores are selected to evaluate and adapt to diverse of disease models. In order to obtain all possible suspected pathogenic models, niche technique merges with HS, which serves as a taboo region to avoid HS trapping into local search. From the resultant set of candidate SNP-combinations, we use G-test statistic for testing true positives. Experiments were performed on twenty typical simulation datasets in which 12 models are with marginal effect and eight ones are with no marginal effect. Our results indicate that the proposed algorithm has very high detection power for searching suspected disease models in the first stage and it is superior to some typical existing approaches in both detection power and CPU runtime for all these datasets. Application to age-related macular degeneration (AMD) demonstrates our method is promising in detecting high-order disease-causing models.
Collapse
|
40
|
Gomes F, Palma FR, Barros MH, Tsuchida ET, Turano HG, Alegria TGP, Demasi M, Netto LES. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments. J Biol Chem 2017; 292:17011-17024. [PMID: 28821623 DOI: 10.1074/jbc.m117.788588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/17/2017] [Indexed: 01/01/2023] Open
Abstract
Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H2O2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes.
Collapse
Affiliation(s)
- Fernando Gomes
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo,
| | - Flávio Romero Palma
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Mario H Barros
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, and
| | - Eduardo T Tsuchida
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Helena G Turano
- the Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, and
| | - Thiago G P Alegria
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo
| | - Marilene Demasi
- the Laboratório de Bioquímica e Biofísica, Instituto Butantan, 05503-001 São Paulo, Brazil
| | - Luis E S Netto
- From the Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo,
| |
Collapse
|
41
|
Suppression of Inner Mitochondrial Membrane Peptidase 2-Like (IMMP2L) Gene Exacerbates Hypoxia-Induced Neural Death Under High Glucose Condition. Neurochem Res 2017; 42:1504-1514. [PMID: 28316022 DOI: 10.1007/s11064-017-2207-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 10/19/2022]
Abstract
It is known that diabetes hyperglycemia enhances cerebral ischemia and reperfusion induced damage. We have previously shown that mutation of inner mitochondrial membrane peptidase 2-like (IMMP2L) increases brain damage caused by transient cerebral ischemia. In this study, we attempt to examine the impact of IMMP2L deficiency on an in vitro model that mimics the diabetic hypoxic conditions. Normal IMMP2L wild type and IMMP2L gene deleted HT22 cells were cultured. Hypoxia was induced under high glucose and acidic conditions with 4 h of oxygen deprivation. Cell viability was assessed by CCK-8 assay and cell death was determined using Annexin V/7-AAD assay. Superoxide production was measured using dihydroethidium staining and mitochondrial membrane potential was detected using JC-1 probe. Suppression of IMMP2L reduced the cell viability, increased the ROS production and decreased the mitochondrial membrane potential. In conclusion, our study demonstrated that deficiency of IMMP2L in cells, cultured under hypoxia, high glucose and acidic conditions, exacerbated neuronal death under a condition that mimics in vivo cerebral ischemia in diabetic condition.
Collapse
|
42
|
CTNNA3 discordant regulation of nested LRRTM3, implications for autism spectrum disorder and Tourette syndrome. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
Gokoolparsadh A, Fang Z, Braidy N, Lin P, Pardy CJ, Eapen V, Clarke R, Voineagu I. Transcriptional response to mitochondrial protease IMMP2L knockdown in human primary astrocytes. Biochem Biophys Res Commun 2017; 482:1252-1258. [DOI: 10.1016/j.bbrc.2016.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
|
44
|
Padmanabhuni SS, Houssari R, Esserlind AL, Olesen J, Werge TM, Hansen TF, Bertelsen B, Tsetsos F, Paschou P, Tümer Z. Investigation of SNP rs2060546 Immediately Upstream to NTN4 in a Danish Gilles de la Tourette Syndrome Cohort. Front Neurosci 2016; 10:531. [PMID: 27920664 PMCID: PMC5118467 DOI: 10.3389/fnins.2016.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by multiple motor and vocal tics. GTS is a complex disorder, with environmental factors and several genes involved. Although variations within a few genes such as AADAC, NRXN1, SLITRK1, HDC, and IMMP2L have been tentatively associated with GTS (in a small number of patients), the causative genes underlying GTS pathophysiology remain unknown. In a previous genome-wide association study (GWAS) a single nucleotide polymorphism (SNP, rs2060546) near the Netrin-4 (NTN4 - MIM 610401) gene was shown to be associated with GTS [odds ratio (OR) = 1.7; p-value = 5.8 × 10-7] thus warranting further investigations. As NTN4 is one of the axon guidance molecules expressed in the central nervous system and it interacts with the encoded proteins of SLIT and WNT genes guiding the growth cone toward its target, it is an attractive candidate susceptibility gene for GTS. In this study we attempted to replicate the association of rs2060546 with GTS by genotyping a Danish cohort of 240 GTS patients and 1006 healthy controls. Our results did not reveal an association (OR = 1.363; p-value = 0.3329) in the Danish cohort alone, which may be due to the small sample size. However, a meta-analysis including the present cohort and a total of 1316 GTS patients and 5023 controls from the GTS GWAS Replication Initiative (GGRI) and the first GTS-GWAS yielded a significant signal (OR = 3.74; p-value = 0.00018) and same direction of effect in the three cohorts. Thus, our study strengthens the evidence of the possible involvement of NTN4 in GTS etiology, suggesting that further studies in even larger samples and functional studies are warranted to investigate the role of this region in GTS pathogenesis.
Collapse
Affiliation(s)
- Shanmukha S Padmanabhuni
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Rayan Houssari
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ann-Louise Esserlind
- Danish Headache Center and Department of Neurology, Faculty of Health Sciences, University of Copenhagen, Glostrup Hospital Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Faculty of Health Sciences, University of Copenhagen, Glostrup Hospital Glostrup, Denmark
| | - Thomas M Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital Roskilde, Denmark
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital Roskilde, Denmark
| | - Birgitte Bertelsen
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Fotis Tsetsos
- Department of Molecular Biology and Genetics, Democritus University of Thrace Alexandroupoli, Greece
| | - Peristera Paschou
- Department of Molecular Biology and Genetics, Democritus University of ThraceAlexandroupoli, Greece; Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
45
|
Levytskyy RM, Germany EM, Khalimonchuk O. Mitochondrial Quality Control Proteases in Neuronal Welfare. J Neuroimmune Pharmacol 2016; 11:629-644. [PMID: 27137937 PMCID: PMC5093085 DOI: 10.1007/s11481-016-9683-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
Abstract
The functional integrity of mitochondria is a critical determinant of neuronal health and compromised mitochondrial function is a commonly recognized factor that underlies a plethora of neurological and neurodegenerative diseases. Metabolic demands of neural cells require high bioenergetic outputs that are often associated with enhanced production of reactive oxygen species. Unopposed accumulation of these respiratory byproducts over time leads to oxidative damage and imbalanced protein homeostasis within mitochondrial subcompartments, which in turn may result in cellular demise. The post-mitotic nature of neurons and their vulnerability to these stress factors necessitate strict protein homeostatic control to prevent such scenarios. A series of evolutionarily conserved proteases is one of the central elements of mitochondrial quality control. These versatile proteolytic enzymes conduct a multitude of activities to preserve normal mitochondrial function during organelle biogenesis, metabolic remodeling and stress. In this review we discuss neuroprotective aspects of mitochondrial quality control proteases and neuropathological manifestations arising from defective proteolysis within the mitochondrion.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edward M Germany
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
46
|
Abstract
Tourette syndrome (TS) is a childhood onset neurologic disorder with manifestations including multiple motor and phonic tics, and in most cases a variety of behavioral comorbidities such as attention deficit hyperactivity disorder, obsessive compulsive disorder, and other impulse control disorders. Although it is considered a hereditary disorder, likely modified by environmental factors, genetic studies have yet to uncover relevant causative genes and there is no animal model that mimics the broad clinical phenomenology of TS. There has been a marked increase in the number of neurophysiological, neuroimaging, and other studies on TS. The findings from these studies, however, have been difficult to interpret because of small sample sizes, variability of symptoms across patients, and comorbidities. Although anti-dopaminergic drugs are the most widely used medications in the treatment of TS, there has been increasing interest in other drugs, behavioral therapies, and surgical approaches including deep brain stimulation. Herein, we review the current literature and discuss the complexities of TS and the challenges in understanding its pathophysiology and in selecting the most appropriate treatment. We also offer an expert's view of where the field of TS may be headed.
Collapse
|
47
|
Pagliaroli L, Vető B, Arányi T, Barta C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front Neurosci 2016; 10:277. [PMID: 27462201 PMCID: PMC4940402 DOI: 10.3389/fnins.2016.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary; Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| | - Borbála Vető
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences Budapest, Hungary
| | - Tamás Arányi
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary; Centre National de la Recherche Scientifique UMR 6214, Institut National de la Santé et de la Recherche Médicale U1083, University of AngersAngers, France
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Hungary
| |
Collapse
|
48
|
Karagiannidis I, Tsetsos F, Padmanabhuni SS, Alexander J, Georgitsi M, Paschou P. The Genetics of Gilles de la Tourette Syndrome: a Common Aetiological Basis with Comorbid Disorders? Curr Behav Neurosci Rep 2016. [DOI: 10.1007/s40473-016-0088-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Sun N, Tischfield JA, King RA, Heiman GA. Functional Evaluations of Genes Disrupted in Patients with Tourette's Disorder. Front Psychiatry 2016; 7:11. [PMID: 26903887 PMCID: PMC4746269 DOI: 10.3389/fpsyt.2016.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 01/04/2023] Open
Abstract
Tourette's disorder (TD) is a highly heritable neurodevelopmental disorder with complex genetic architecture and unclear neuropathology. Disruptions of particular genes have been identified in subsets of TD patients. However, none of the findings have been replicated, probably due to the complex and heterogeneous genetic architecture of TD that involves both common and rare variants. To understand the etiology of TD, functional analyses are required to characterize the molecular and cellular consequences caused by mutations in candidate genes. Such molecular and cellular alterations may converge into common biological pathways underlying the heterogeneous genetic etiology of TD patients. Herein, we review specific genes implicated in TD etiology, discuss the functions of these genes in the mammalian central nervous system and the corresponding behavioral anomalies exhibited in animal models, and importantly, review functional analyses that can be performed to evaluate the role(s) that the genetic disruptions might play in TD. Specifically, the functional assays include novel cell culture systems, genome editing techniques, bioinformatics approaches, transcriptomic analyses, and genetically modified animal models applied or developed to study genes associated with TD or with other neurodevelopmental and neuropsychiatric disorders. By describing methods used to study diseases with genetic architecture similar to TD, we hope to develop a systematic framework for investigating the etiology of TD and related disorders.
Collapse
Affiliation(s)
- Nawei Sun
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Jay A Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert A King
- Child Study Center, Yale School of Medicine , New Haven, CT , USA
| | - Gary A Heiman
- Department of Genetics, Rutgers University, Piscataway, NJ, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
50
|
Manville CM, Smith K, Sondka Z, Rance H, Cockell S, Cowell IG, Lee KC, Morris NJ, Padget K, Jackson GH, Austin CA. Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells. Biol Open 2015; 4:1436-47. [PMID: 26459242 PMCID: PMC4728365 DOI: 10.1242/bio.014308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report the whole genome ChIP seq for human TOP2B from MCF7 cells. Using three different peak calling methods, regions of binding were identified in the presence or absence of the nuclear hormone estradiol, as TOP2B has been reported to play a role in ligand-induced transcription. TOP2B peaks were found across the whole genome, 50% of the peaks fell either within a gene or within 5 kb of a transcription start site. TOP2B peaks coincident with gene promoters were less frequently associated with epigenetic features marking active promoters in estradiol treated than in untreated cells. Significantly enriched transcription factor motifs within the DNA sequences underlying the peaks were identified. These included SP1, KLF4, TFAP2A, MYF, REST, CTCF, ESR1 and ESR2. Gene ontology analysis of genes associated with TOP2B peaks found neuronal development terms including axonogenesis and axon guidance were significantly enriched. In the absence of functional TOP2B there are errors in axon guidance in the zebrafish eye. Specific heparin sulphate structures are involved in retinal axon targeting. The glycosaminoglycan biosynthesis–heparin sulphate/heparin pathway is significantly enriched in the TOP2B gene ontology analysis, suggesting changes in this pathway in the absence of TOP2B may cause the axon guidance faults. Summary: Gene ontology enrichment analysis of genes associated with human TOP2B peaks, identified by whole genome ChIP seq used to identify regions of binding, highlighted a number of processes in neuronal development including axonogenesis and axon guidance.
Collapse
Affiliation(s)
- Catriona M Manville
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kayleigh Smith
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Zbyslaw Sondka
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Holly Rance
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Simon Cockell
- The Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ka Cheong Lee
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas J Morris
- School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kay Padget
- Department of Applied Biology, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Graham H Jackson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Caroline A Austin
- Institute for Cellular and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|