1
|
Khoury Damaa M, Serizay J, Balagué R, Boudjema AR, Faucourt M, Delgehyr N, Goh KJ, Lu H, Tan EK, James CT, Faucon C, Mitri R, Bracht DC, Bingle CD, Dunn NR, Arnold SJ, Zaragosi LE, Barbry P, Koszul R, Omran H, Gil-Gómez G, Escudier E, Legendre M, Roy S, Spassky N, Meunier A. Cyclin O controls entry into the cell-cycle variant required for multiciliated cell differentiation. Cell Rep 2025; 44:115117. [PMID: 39740663 DOI: 10.1016/j.celrep.2024.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC). Here, we show that Ccno is activated at the crossroads of the onset of MCC differentiation, the entry into the MCC cell-cycle variant, and the activation of the centriole biogenesis program. Its absence blocks the G1/S-like transition of the cell-cycle variant, interrupts the centriologenesis transcription program, and compromises the production of centrioles and cilia in mouse brain and human respiratory MCCs. Altogether, our study identifies CCNO as a core regulator of entry into the MCC cell-cycle variant and the interruption of this variant as one etiology of RGMC.
Collapse
Affiliation(s)
- Michella Khoury Damaa
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Jacques Serizay
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France; Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Rémi Balagué
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Amélie-Rose Boudjema
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Nathalie Delgehyr
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Kim Jee Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Cameron T James
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK; Singapore-MIT Association for Research and Technology, Critical Analytics for Manufacturing Personalised-Medicine (SMART CAMP), 1 CREATE Way, Singapore 138602, Singapore
| | - Catherine Faucon
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Rana Mitri
- Centre Hospitalier Intercommunal de Créteil, Laboratoire de Microscopie Électronique, Service d'Anatomopathologie, 94010 Créteil, France
| | - Diana Carolin Bracht
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Colin D Bingle
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore; Skin Research Institute of Singapore, 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Laure-Emmanuelle Zaragosi
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Sophia Antipolis, France; 3IA Côte d'Azur, 06560 Sophia Antipolis, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, 48149 Muenster, Germany
| | - Gabriel Gil-Gómez
- Hospital del Mar Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Estelle Escudier
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Marie Legendre
- Sorbonne Université, Inserm, Childhood genetic diseases UMR_S933, Hôpital Armand-Trousseau, 75012 Paris, France; AP-HP, Sorbonne Université, Hôpital Armand-Trousseau, 75012 Paris, France
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| | - Nathalie Spassky
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France.
| |
Collapse
|
2
|
Mapala L, Kumar M, Canakis AM, Hailu E, Kopel LS, Shapiro AJ. Recognizing clinical features of primary ciliary dyskinesia in the perinatal period. J Perinatol 2024; 44:1700-1706. [PMID: 39048631 DOI: 10.1038/s41372-024-02068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Primary ciliary dyskinesia (PCD) is a rare, motile ciliopathy inherited through mostly autosomal recessive variants that results in chronic ear, sinus, and respiratory disease. Despite neonatal respiratory distress being a common presenting symptom in term infants with PCD, the diagnosis is often delayed due to non-familiarity of neonatal caregivers with phenotypic and diagnostic features of this disease. Organ laterality defects, prenatal cerebral ventriculomegaly, and a family history of suppurative respiratory disease may occur in PCD and should prompt neonatal testing for this condition. In this review of neonatal PCD diagnoses in a large PCD clinic, prevalence and details of neonatal PCD issues are presented, highlighting the typically delayed onset of neonatal respiratory distress and lobar atelectasis on chest radiography, specific presentations in premature neonates, and responses to perinatal therapies.
Collapse
Affiliation(s)
- Lydia Mapala
- Pediatric Respiratory Medicine, McGill University Health Centre, Montreal, QC, Canada.
| | - Madhan Kumar
- Pediatric Respiratory Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Anne-Marie Canakis
- Pediatric Respiratory Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Elizabeth Hailu
- Neonatology, McGill University Health Centre, Montreal, QC, Canada
| | - Lianne S Kopel
- Pediatric Respiratory Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Adam J Shapiro
- McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
3
|
Tong L, Li L, Wang W, Chen J. Case Report: Primary ciliary dyskinesia due to CCNO mutations: a Chinese pediatric case series and literature review. Front Pediatr 2024; 12:1458660. [PMID: 39380637 PMCID: PMC11458413 DOI: 10.3389/fped.2024.1458660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary disorder characterized by defects in cilia that impair mucociliary clearance. This study focuses on PCD caused by mutations in the Cyclin O (CCNO) gene and reports on three cases involving Chinese children. Case 1 was an 8-year-and-3-month-old boy who presented with respiratory distress after birth and later developed a recurrent productive cough and purulent nasal discharge. He was initially diagnosed with diffuse panbronchiolitis (DPB) due to the presence of diffuse micronodules in lung CT scans. Case 2 was the younger sister of case 1. She also presented with respiratory distress after birth, with a chest radiograph revealing atelectasis. She required oxygen supplementation until the age of 2 months. Case 3 was a 4-year-and-4-month-old girl with a history of neonatal pneumonia, persistent pulmonary atelectasis, and recurrent lower respiratory tract infections. Her chest radiograph also showed diffuse micronodules. In all three cases, the final diagnosis of PCD was confirmed by genetic testing. Cases 1 and 2 exhibited homozygous c.248_252dup TGCCC (p.G85Cfs*11) mutations in the CCNO gene, while case 3 harbored a homozygous c.258_262dup GGCCC (p.Q88Rfs*8) mutation. A literature review indicated that the common clinical features of CCNO-PCD include neonatal respiratory distress (40/49, 81.6%), chronic cough (31/33, 93.9%), rhinosinusitis (30/35, 85.7%), bronchiectasis (26/35, 74.3%), and low nasal nitric oxide (nNO, 40/43, 93.0%). Notably, situs inversus has not been reported. In CCNO-PCD patients, cilia may appear structurally normal but were severely reduced in number or entirely absent. Lung CT scans in these patients may exhibit diffuse micronodules and "tree-in-bud" signs, which can lead to a clinical misdiagnosis of DPB. nNO screening combined with genetic testing is an optimized diagnostic strategy. Treatment options include the use of anti-infective and anti-inflammatory agent, along with daily airway clearance. This study underscores the importance of genetic testing in neonates and children with suspected PCD or those clinically diagnosed with DPB to enable an early diagnosis and prompt intervention, thereby enhancing the prognosis for these patients.
Collapse
Affiliation(s)
| | | | | | - Jiehua Chen
- Department of Respiratory Diseases, Shenzhen Children’s Hospital Affiliated to Shantou University Medical College, Shenzhen, China
| |
Collapse
|
4
|
Arwas N, Gatt D, Aviram M, Abramsky R, Hazan G, Goldbart A, Amirav I, Golan-Tripto I. Neonatal diagnosis of primary ciliary dyskinesia in a high consanguinity population: a single tertiary center experience. Eur J Pediatr 2024; 183:3193-3197. [PMID: 38679661 DOI: 10.1007/s00431-024-05574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Though PCD usually presents after birth in term neonates, diagnosing PCD during the neonatal and infancy stages is uncommon, particularly in children who do not exhibit laterality defects. We report our recent experience with the diagnosis of PCD in the neonatal and early infantile period in a highly consanguine population. This was achieved by implementing a novel genetic-based diagnostic approach based on direct testing for recognized regional genetic variants. We conducted a retrospective analysis of children diagnosed with PCD at Soroka University Medical Center during the neonatal or early infantile period between 2020 and 2023. We included children under 3 months of age who had a genetic confirmation of PCD, as evidenced by the presence of two pathogenic variants in recognized genes. Genetic testing targeted regional genetic variants in previously identified PCD genes. Eight patients were included. The median age at diagnosis was 12.5 days. Three (38%) were born prematurely < 34 weeks gestational age. All patients were presented with respiratory distress and hypoxemia after birth. The median duration of oxygen support was 23 days, and upper lobe atelectasis was present in five patients (63%). Congenital cardiac malformation was present in four patients. Organ laterality defects were present in four patients. Genetic mutations identified were in the DNAAF5, DNAL1, DNAAF3, and DNAH1 genes. Conclusion: Neonatal diagnosis of PCD is uncommon, especially in atypical presentations such as children without laterality defects or preterms. Focusing on a genetic diagnosis of the local tribal pathogenic variants promotes a potential cost-efficient test leading to earlier diagnosis. There is a need for a standardized protocol for earlier diagnosis of PCD in high-consanguinity areas. What is Known: • Primary ciliary dyskinesia (PCD) typically presents after birth in term neonates. • Diagnosing PCD during neonatal and infancy stages is challenging, particularly in children without laterality defects. What is New: • A novel genetic-based diagnostic approach was implemented on the neonatal population in a highly consanguine community, focusing on direct testing for regional genetic variants, leading to early and rapid diagnosis of PCD.
Collapse
Affiliation(s)
- Noga Arwas
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel.
| | - Dvir Gatt
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Micha Aviram
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Ramy Abramsky
- Neonatology Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Guy Hazan
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Aviv Goldbart
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| | - Israel Amirav
- Pediatric Pulmonology Unit, Dana-Dwek Children's Hospital, Tel Aviv, Israel
| | - Inbal Golan-Tripto
- Pediatric Pulmonology Unit, Faculty of Health Sciences, Soroka University Medical Center, Ben Gurion University, PO box 151, Beer-Sheva, Israel
| |
Collapse
|
5
|
Xu Y, Ueda K, Nishikido T, Matsumoto T, Takeuchi K. Two Japanese Pediatric Patients With Primary Ciliary Dyskinesia Caused by Loss-of-Function Variants in the CCNO gene. Cureus 2024; 16:e58854. [PMID: 38784318 PMCID: PMC11115999 DOI: 10.7759/cureus.58854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare congenital disorder caused by pathogenic variants of genes related to cilia. Here, we report two Japanese pediatric patients with PCD caused by pathogenic compound heterozygous variants in the cyclin O (CCNO) gene (Case 1, NM_021147.4:c.[262C>T];[781delC], p.[Gln88Ter];[Leu261fs]; Case 2, c.[262C>T];[c.248_252dupTGCCC], p.[Gln88Ter];[Gly85fs]). The clinical symptoms of the patients were varied. Neither of the patients had situs inversus. Transmission electron microscopy of the respiratory cilia from the nasal mucosa in Case 1 showed a remarkable reduction of cilia and the few residual cilia had central pair defects and microtubular disorganization.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, JPN
| | - Koki Ueda
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, JPN
| | - Tomoki Nishikido
- Department of Pediatric Pulmonology and Allergy, Osaka Women's and Children's Hospital, Izumi, JPN
| | - Tsubasa Matsumoto
- Department of Pediatric Infection and Immunology, Fukuoka Children's Hospital, Fukuoka, JPN
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, JPN
| |
Collapse
|
6
|
Alhalabi O, Abdulwahab A, Thomas M. The First Case of a Homozygous CCNO NM 021147.4 Mutation Associated With Primary Ciliary Dyskinesia in Two Indian Siblings. Cureus 2024; 16:e52237. [PMID: 38222993 PMCID: PMC10787941 DOI: 10.7759/cureus.52237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a heterogeneous autosomal recessive disease marked by organ lateralization in 50% of patients, chronic sinopulmonary disease, infertility in men, and neonatal respiratory distress. Respiratory control cells contain CCNO in their apical cytoplasm, which is necessary for the development of multiciliate cells, basal body amplification, and migration. Reduced generation of multiple motile cilia, a rare form of PCD, has been linked to CCNO gene abnormalities. Individuals with CCNO mutations have been reported to suffer from severe lower respiratory infections that cause progressive impairment of lung function. For the first time, we describe the CCNO NM 021147.4 (c.258 262dup.p, Gln88argfs*8 Homozygous) gene mutation in an Indian consanguineous family that resulted in severe PCD.
Collapse
Affiliation(s)
- Ola Alhalabi
- Pediatric Pulmonology, Sidra Medicine, Doha, QAT
| | | | | |
Collapse
|
7
|
Petrarca L, De Luca A, Nenna R, Hadchouel A, Mazza T, Conti MG, Masuelli L, Midulla F, Guida V. Early genetic analysis by next-generation sequencing improves diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol 2023; 58:2950-2953. [PMID: 37477497 DOI: 10.1002/ppul.26604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Laura Petrarca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandro De Luca
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Raffaella Nenna
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alice Hadchouel
- AP-HP, Service de Pneumologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
- Faculté de Médecine, Université de Paris Cité, Paris, France
- INSERM U1151, Institut Necker Enfants Malades-INEM, Paris, France
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Giulia Conti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Laura Masuelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Guida
- Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
9
|
Wang L, Wang R, Yang D, Lu C, Xu Y, Liu Y, Guo T, Lei C, Luo H. Novel RSPH4A Variants Associated With Primary Ciliary Dyskinesia-Related Infertility in Three Chinese Families. Front Genet 2022; 13:922287. [PMID: 35812741 PMCID: PMC9257073 DOI: 10.3389/fgene.2022.922287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The radial spoke head component 4A (RSPH4A) is involved in the assembly of radial spokes, which is essential for motile cilia function. Asthenoteratozoospermia in primary ciliary dyskinesia (PCD) related to RSPH4A variants has not been reported. Materials and Methods: RSPH4A variants were identified and validated using whole-exome and Sanger sequencing in three unrelated Chinese families. High-speed video microscopy analysis (HSVA) was performed to measure the beating frequency and pattern of nasal cilia of the patients and healthy control. Papanicolaou staining and computer-aided sperm analysis were performed to analyze the morphology and motility of the sperm in patient 1. Immunofluorescence was adopted to confirm the structure deficiency of sperm and nasal cilia. Results: Patient 1 from family 1 is a 22-year-old unmarried male presented with bronchiectasis. Semen analysis and sperm Papanicolaou staining confirmed asthenoteratozoospermia. Novel compound heterozygous RSPH4A variants c.2T>C, p.(Met1Thr) and c.1774_1775del, p.(Leu592Aspfs*5) were detected in this patient. Patients 2 and 3 are from two unrelated consanguineous families; they are both females and exhibited bronchiectasis and infertility. Two homozygous RSPH4A variants c.2T>C, p.(Met1Thr) and c.351dupT, p.(Pro118Serfs*2) were detected, respectively. HSVA showed that most of the cilia in patients 1 and 3 were with abnormal rotational movement. The absence of RSPH4A and RSPH1 in patient 1's sperm and patient 3's respiratory cilia was indicated by immunofluorescence. Patient 2 died of pulmonary infection and respiratory failure at the age of 35 during follow-up. Conclusion: Dysfunctional sperm flagellum and motile cilia in the respiratory tract and the fallopian tube were found in patients with RSPH4A variants. Our study enriches the genetic spectrum and clinical phenotypes of RSPH4A variants in PCD, and c.2T>C, p.(Met1Thr) detected in our patients may be a hotspot RSPH4A variant in Chinese.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Yingjie Xu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, China
| |
Collapse
|
10
|
Abstract
Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left-right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.
Collapse
|
11
|
Colas P. Cyclin-dependent kinases and rare developmental disorders. Orphanet J Rare Dis 2020; 15:203. [PMID: 32762766 PMCID: PMC7410148 DOI: 10.1186/s13023-020-01472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies in the past 30 years have established that cyclin-dependent kinases (CDKs) exert many diverse, important functions in a number of molecular and cellular processes that are at play during development. Not surprisingly, mutations affecting CDKs or their activating cyclin subunits have been involved in a variety of rare human developmental disorders. These recent findings are reviewed herein, giving a particular attention to the discovered mutations and their demonstrated or hypothesized functional consequences, which can account for pathological human phenotypes. The review highlights novel, important CDK or cyclin functions that were unveiled by their association with human disorders, and it discusses the shortcomings of mouse models to reveal some of these functions. It explains how human genetics can be used in combination with proteome-scale interaction databases to loom regulatory networks around CDKs and cyclins. Finally, it advocates the use of these networks to profile pathogenic CDK or cyclin variants, in order to gain knowledge on protein function and on pathogenic mechanisms.
Collapse
Affiliation(s)
- Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université / CNRS, Roscoff, France.
| |
Collapse
|
12
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins: the extended family portrait. Cell Mol Life Sci 2020; 77:231-242. [PMID: 31420702 PMCID: PMC6971155 DOI: 10.1007/s00018-019-03262-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022]
Abstract
Regulation of cell division is orchestrated by cyclins, which bind and activate their catalytic workmates, the cyclin-dependent kinases (CDKs). Cyclins have been traditionally defined by an oscillating (cyclic) pattern of expression and by the presence of a characteristic "cyclin box" that determines binding to the CDKs. Noteworthy, the Human Genome Sequence Project unveiled the existence of several other proteins containing the "cyclin box" domain. These potential "cyclins" have been named new, orphan or atypical, creating a conundrum in cyclins nomenclature. Moreover, although many years have passed after their discovery, the scarcity of information regarding these possible members of the family has hampered the establishment of criteria for systematization. Here, we discuss the criteria that define cyclins and we propose a classification and nomenclature update based on structural features, interactors, and phylogenetic information. The application of these criteria allows to systematically define, for the first time, the subfamily of atypical cyclins and enables the use of a common nomenclature for this extended family.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta, s/n, Sant Cugat del Vallès, 08195, Barcelona, Spain.
| |
Collapse
|
13
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
14
|
Lucas JS, Davis SD, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. THE LANCET RESPIRATORY MEDICINE 2019; 8:202-216. [PMID: 31624012 DOI: 10.1016/s2213-2600(19)30374-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Primary ciliary dyskinesia is a genetically and clinically heterogeneous syndrome. Impaired function of motile cilia causes failure of mucociliary clearance. Patients typically present with neonatal respiratory distress of unknown cause and then continue to have a daily wet cough, recurrent chest infections, perennial rhinosinusitis, otitis media with effusion, and bronchiectasis. Approximately 50% of patients have situs inversus, and infertility is common. While understanding of the underlying genetics and disease mechanisms have substantially advanced in recent years, there remains a paucity of evidence for treatment. Next-generation sequencing has increased gene discovery, and mutations in more than 40 genes have been reported to cause primary ciliary dyskinesia, with many other genes likely to be discovered. Increased knowledge of cilia genes is challenging perceptions of the clinical phenotype, as some genes reported in the last 5 years are associated with mild respiratory disease. Developments in genomics and molecular medicine are rapidly improving diagnosis, and a genetic cause can be identified in approximately 70% of patients known to have primary ciliary dyskinesia. Groups are now investigating novel and personalised treatments, although gene therapies are unlikely to be available in the near future.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK.
| | - Stephanie D Davis
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Amelia Shoemark
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK; Department of Paediatrics, Royal Brompton and Harefield NHS Trust, London, UK
| |
Collapse
|
15
|
Andjelkovic M, Minic P, Vreca M, Stojiljkovic M, Skakic A, Sovtic A, Rodic M, Skodric-Trifunovic V, Maric N, Visekruna J, Spasovski V, Pavlovic S. Genomic profiling supports the diagnosis of primary ciliary dyskinesia and reveals novel candidate genes and genetic variants. PLoS One 2018; 13:e0205422. [PMID: 30300419 PMCID: PMC6177184 DOI: 10.1371/journal.pone.0205422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited autosomal recessive or X-linked disorder that mainly affects lungs. Dysfunction of respiratory cilia causes symptoms such as chronic rhinosinusitis, coughing, rhinitis, conductive hearing loss and recurrent lung infections with bronchiectasis. It is now well known that pathogenic genetic changes lead to ciliary dysfunction. Here we report usage of clinical-exome based NGS approach in order to reveal underlying genetic causes in cohort of 21 patient with diagnosis of PCD. By detecting 18 (12 novel) potentially pathogenic genetic variants, we established the genetic cause of 11 (9 unrelated) patients. Genetic variants were detected in six PCD disease-causing genes, as well as in SPAG16 and SPAG17 genes, that were not detected in PCD patients so far, but were related to some symptoms of PCD. The most frequently mutated gene in our cohort was DNAH5 (27.77%). Identified variants were in homozygous, compound heterozygous and trans-heterozygous state. For detailed characterization of one novel homozygous genetic variant in DNAI1 gene (c. 947_948insG, p. Thr318TyrfsTer11), RT-qPCR and Western Blot analysis were performed. Molecular diagnostic approach applied in this study enables analysis of 29 PCD disease-causing and related genes. It resulted in mutation detection rate of 50% and enabled discovery of twelve novel mutations and pointed two possible novel PCD candidate genes.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Predrag Minic
- Mother and Child Health Care Institute of Serbia „Dr Vukan Cupic“, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Misa Vreca
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Stojiljkovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Anita Skakic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Sovtic
- Mother and Child Health Care Institute of Serbia „Dr Vukan Cupic“, Belgrade, Serbia
| | - Milan Rodic
- Mother and Child Health Care Institute of Serbia „Dr Vukan Cupic“, Belgrade, Serbia
| | - Vesna Skodric-Trifunovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Pulmonology, Clinical Center of Serbia, Belgradе, Serbia
| | - Nina Maric
- Clinic for children diseases, University Clinical Center of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Jelena Visekruna
- Mother and Child Health Care Institute of Serbia „Dr Vukan Cupic“, Belgrade, Serbia
| | - Vesna Spasovski
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
16
|
Lynch SA, Crushell E, Lambert DM, Byrne N, Gorman K, King MD, Green A, O’Sullivan S, Browne F, Hughes J, Knerr I, Monavari AA, Cotter M, McConnell VPM, Kerr B, Jones SA, Keenan C, Murphy N, Cody D, Ennis S, Turner J, Irvine AD, Casey J. Catalogue of inherited disorders found among the Irish Traveller population. J Med Genet 2018; 55:233-239. [DOI: 10.1136/jmedgenet-2017-104974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 01/28/2023]
Abstract
Background Irish Travellers are an endogamous, nomadic, ethnic minority population mostly resident on the island of Ireland with smaller populations in Europe and the USA. High levels of consanguinity result in many rare autosomal recessive disorders. Due to founder effects and endogamy, most recessive disorders are caused by specific homozygous mutations unique to this population. Key clinicians and scientists with experience in managing rare disorders seen in this population have developed a de facto advisory service on differential diagnoses to consider when faced with specific clinical scenarios.Objective(s) To catalogue all known inherited disorders found in the Irish Traveller population.Methods We performed detailed literature and database searches to identify relevant publications and the disease mutations of known genetic disorders found in Irish Travellers.Results We identified 104 genetic disorders: 90 inherited in an autosomal recessive manner; 13 autosomal dominant and one a recurring chromosomal duplication.Conclusion We have collated our experience of inherited disorders found in the Irish Traveller population to make it publically available through this publication to facilitate a targeted genetic approach to diagnostics in this ethnic group.
Collapse
|
17
|
Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 2017; 8:99261-99273. [PMID: 29245899 PMCID: PMC5725090 DOI: 10.18632/oncotarget.21818] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Cyclin O (encoded by CCNO) is a member of the cyclin family with regulatory functions in ciliogenesis and apoptosis. Homozygous CCNO mutations have been identified in human patients with Reduced Generation of Multiple Motile Cilia (RGMC) and conditional inactivation of Ccno in the mouse recapitulates some of the pathologies associated with the human disease. These include defects in the development of motile cilia and hydrocephalus. To further investigate the functions of Ccno in vivo, we have generated a new mouse model characterized by the constitutive loss of Ccno in all tissues and followed a cohort during ageing. Ccno-/- mice were growth impaired and developed hydrocephalus with high penetrance. In addition, some Ccno+/- mice also developed hydrocephalus and affected Ccno-/- and Ccno+/- mice exhibited additional CNS defects including cortical thinning and hippocampal abnormalities. In addition to the CNS defects, both male and female Ccno-/- mice were infertile and female mice exhibited few motile cilia in the oviduct. Our results further establish CCNO as an important gene for normal development and suggest that heterozygous CCNO mutations could underlie hydrocephalus or diminished fertility in some human patients.
Collapse
|
18
|
Shapiro AJ, Leigh MW. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure. Ultrastruct Pathol 2017; 41:373-385. [PMID: 28915070 DOI: 10.1080/01913123.2017.1362088] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.
Collapse
Affiliation(s)
- Adam J Shapiro
- a Division of Pediatric Respiratory Medicine, Montreal Children's Hospital , McGill University Health Centre Research Institute , Montréal , Québec , Canada
| | - Margaret W Leigh
- b Department of Pediatrics and Marsico Lung Institute , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| |
Collapse
|
19
|
Shoemark A, Frost E, Dixon M, Ollosson S, Kilpin K, Patel M, Scully J, Rogers AV, Mitchison HM, Bush A, Hogg C. Accuracy of Immunofluorescence in the Diagnosis of Primary Ciliary Dyskinesia. Am J Respir Crit Care Med 2017; 196:94-101. [PMID: 28199173 DOI: 10.1164/rccm.201607-1351oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE The standard approach to diagnosis of primary ciliary dyskinesia (PCD) in the United Kingdom consists of assessing ciliary function by high-speed microscopy and ultrastructure by election microscopy, but equipment and expertise is not widely available internationally. The identification of biallelic disease-causing mutations is also diagnostic, but many disease-causing genes are unknown, and testing is not widely available outside the United States. Fluorescent antibodies to ciliary proteins are used to validate research genetic studies, but diagnostic utility in this disease has not been systematically evaluated. OBJECTIVES To determine utility of a panel of six fluorescent labeled antibodies as a diagnostic tool for PCD. METHODS The study used immunofluorescent labeling of nasal brushings from a discovery cohort of 35 patients diagnosed with PCD by ciliary ultrastructure, and a diagnostic accuracy cohort of 386 patients referred with symptoms suggestive of disease. The results were compared with diagnostic outcome. MEASUREMENTS AND MAIN RESULTS Immunofluorescence correctly identified mislocalized or absent staining in 100% of the discovery cohort. In the diagnostic cohort immunofluorescence successfully identified 22 of 25 patients with PCD and normal staining in all 252 in whom PCD was considered highly unlikely. In addition, immunofluorescence provided a result in 55% (39) of cases that were previously inconclusive. Immunofluorescence results were available within 14 days, costing $187 per sample compared with electron microscopy (27 days; cost $1,452). CONCLUSIONS Immunofluorescence is a highly specific diagnostic test for PCD, and it improves the speed and availability of diagnostic testing. However, sensitivity is limited and immunofluorescence is not suitable as a stand-alone test.
Collapse
Affiliation(s)
- Amelia Shoemark
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Emily Frost
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Mellisa Dixon
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Sarah Ollosson
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Kate Kilpin
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Mitali Patel
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Juliet Scully
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Andrew V Rogers
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Hannah M Mitchison
- 2 Genetics and Genomic Medicine Programme, Institute of Child Health, University College London, London, United Kingdom; and
| | - Andrew Bush
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom.,3 National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Claire Hogg
- 1 Department of Paediatrics, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| |
Collapse
|
20
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|
21
|
Dehlink E, Hogg C, Carr SB, Bush A. Clinical phenotype and current diagnostic criteria for primary ciliary dyskinesia. Expert Rev Respir Med 2016; 10:1163-1175. [DOI: 10.1080/17476348.2016.1242414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Tammimies K, Bieder A, Lauter G, Sugiaman-Trapman D, Torchet R, Hokkanen ME, Burghoorn J, Castrén E, Kere J, Tapia-Páez I, Swoboda P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs. FASEB J 2016; 30:3578-3587. [PMID: 27451412 PMCID: PMC5024701 DOI: 10.1096/fj.201500124rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/05/2016] [Indexed: 11/11/2022]
Abstract
DYX1C1, DCDC2, and KIAA0319 are
three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs
were implicated in functions at the cilium. Here, we investigate the regulation of
these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family
known for transcriptionally regulating ciliary genes. We identify conserved X-box
motifs in the promoter regions of DYX1C1, DCDC2, and
KIAA0319 and demonstrate their functionality, as well as the
ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift
assays. Furthermore, we uncover a complex regulation pattern between
RFX1, RFX2, and RFX3 and their
significant effect on modifying the endogenous expression of DYX1C1
and DCDC2 in a human retinal pigmented epithelial cell line
immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis
increases the expression of RFX TFs and DCGs. At the protein level, we show that
endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along
the entire axoneme of the cilium, thereby validating earlier localization studies
using overexpression models. Our results corroborate the emerging role of DCGs in
ciliary function and characterize functional noncoding elements, X-box promoter
motifs, in DCG promoter regions, which thus can be targeted for mutation screening in
dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder,
A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J.,
Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia
candidate genes DYX1C1 and DCDC2 are regulated by
Regulatory Factor (RF) X transcription factors through X-box promoter motifs.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Center of Neurodevelopmental Disorders (KIND), Pediatric Neuropsychiatry Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Gilbert Lauter
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Rachel Torchet
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Burghoorn
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland; and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden;
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden;
| |
Collapse
|
23
|
Amirav I, Wallmeier J, Loges NT, Menchen T, Pennekamp P, Mussaffi H, Abitbul R, Avital A, Bentur L, Dougherty GW, Nael E, Lavie M, Olbrich H, Werner C, Kintner C, Omran H. Systematic Analysis of CCNO Variants in a Defined Population: Implications for Clinical Phenotype and Differential Diagnosis. Hum Mutat 2016; 37:396-405. [PMID: 26777464 DOI: 10.1002/humu.22957] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
Abstract
Reduced generation of multiple motile cilia (RGMC) is a novel chronic destructive airway disease within the group of mucociliary clearance disorders with only few cases reported. Mutations in two genes, CCNO and MCIDAS, have been identified as a cause of this disease, both leading to a greatly reduced number of cilia and causing impaired mucociliary clearance. This study was designed to identify the prevalence of CCNO mutations in Israel and further delineate the clinical characteristics of RGMC. We analyzed 170 families with mucociliary clearance disorders originating from Israel for mutations in CCNO and identified two novel mutations (c.165delC, p.Gly56Alafs*38; c.638T>C, p.Leu213Pro) and two known mutations in 15 individuals from 10 families (6% prevalence). Pathogenicity of the missense mutation (c.638T>C, p.Leu213Pro) was demonstrated by functional analyses in Xenopus. Combining these 15 patients with the previously reported CCNO case reports revealed rapid deterioration in lung function, an increased prevalence of hydrocephalus (10%) as well as increased female infertility (22%). Consistent with these findings, we demonstrate that CCNO expression is present in murine ependyma and fallopian tubes. CCNO is mutated more frequently than expected from the rare previous clinical case reports, leads to severe clinical manifestations, and should therefore be considered an important differential diagnosis of mucociliary clearance disorders.
Collapse
Affiliation(s)
- Israel Amirav
- Ziv Medical Center, Faculty of Medicine, Bar IIan University, Safed 13100, Israel
| | - Julia Wallmeier
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Huda Mussaffi
- Pulmonary Institute, Schneider Children's Medical Center of Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Abitbul
- Ziv Medical Center, Faculty of Medicine, Bar IIan University, Safed 13100, Israel
| | - Avraham Avital
- Institute of Pulmonology, Hadassah-Hebrew University Medical Centers, Jerusalem, Israel
| | | | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Elias Nael
- Saint Vincent De-Paul Hospital, Nazareth, Israel
| | - Moran Lavie
- Edmond & Lili Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Heike Olbrich
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, San Diego, California, 92186
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, 48149, Germany
| | | |
Collapse
|
24
|
Casey JP, Crushell E, Thompson K, Twomey E, He L, Ennis S, Philip RK, Taylor RW, King MD, Lynch SA. Periventricular Calcification, Abnormal Pterins and Dry Thickened Skin: Expanding the Clinical Spectrum of RMND1? JIMD Rep 2015; 26:13-9. [PMID: 26238252 PMCID: PMC5580737 DOI: 10.1007/8904_2015_479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We report a consanguineous Sudanese family whose two affected sons presented with a lethal disorder characterised by severe neonatal lactic acidosis, hypertonia, microcephaly and intractable seizures. One child had additional unique features of periventricular calcification, abnormal pterins and dry thickened skin. METHODS Exome enrichment was performed on pooled genomic libraries from the two affected children and sequenced on an Illumina HiSeq2000. After quality control and variant identification, rare homozygous variants were prioritised. Respiratory chain complex activities were measured and normalised to citrate synthase activity in cultured patient fibroblasts. RMND1 protein levels were analysed by standard Western blotting. RESULTS Exome sequencing identified a previously reported homozygous missense variant in RMND1 (c.1250G>A; p.Arg417Gln), the gene associated with combined oxidation phosphorylation deficiency 11 (COXPD11), as the most likely cause of this disorder. This finding suggests the presence of a mutation hotspot at cDNA position 1250. Patient fibroblasts showed a severe decrease in mitochondrial respiratory chain complex I, III and IV activities and protein expression, albeit with normal RMND1 levels, supporting a generalised disorder of mitochondrial translation caused by loss of function. CONCLUSIONS The current study implicates RMND1 in the development of calcification and dermatological abnormalities, likely due to defective ATP-dependent processes in vascular smooth muscle cells and skin. Review of reported patients with RMND1 mutations shows intra-familial variability and evidence of an evolving phenotype, which may account for the clinical variability. We suggest that COXPD11 should be considered in the differential for patients with calcification and evidence of a mitochondrial disorder.
Collapse
Affiliation(s)
- Jillian P Casey
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland
- School of Medicine and Medical Sciences, UCD Academic Centre on Rare Diseases, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ellen Crushell
- School of Medicine and Medical Sciences, UCD Academic Centre on Rare Diseases, University College Dublin, Belfield, Dublin 4, Ireland
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Kyle Thompson
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eilish Twomey
- Radiology Department, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sean Ennis
- School of Medicine and Medical Sciences, UCD Academic Centre on Rare Diseases, University College Dublin, Belfield, Dublin 4, Ireland
| | - Roy K Philip
- Division of Neonatology, Department of Paediatrics, University Maternity Hospital Limerick, Ennis Road, Limerick, Ireland
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Temple Street Children's University Hospital, Dublin 1, Ireland
| | - Sally Ann Lynch
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland.
| |
Collapse
|
25
|
Casey JP, Goggin P, McDaid J, White M, Ennis S, Betts DR, Lucas JS, Elnazir B, Lynch SA. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder. BMC MEDICAL GENETICS 2015; 16:45. [PMID: 26123568 PMCID: PMC4630905 DOI: 10.1186/s12881-015-0192-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/22/2015] [Indexed: 11/10/2022]
Abstract
Background Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterised by abnormal ciliary motion and impaired mucociliary clearance, leading to recurrent respiratory infections, sinusitis, otitis media and male infertility. Some patients also have laterality defects. We recently reported the identification of three disease-causing PCD genes in the Irish Traveller population; RSPH4A, DYX1C1 and CCNO. We have since assessed an additional Irish Traveller family with a complex phenotype involving PCD who did not have any of the previously identified PCD mutations. Case presentation In this study we report on a family with three children with PCD and various laterality defects. In addition, one child (V:1) has mild-to-moderate developmental delay and one child has speech delay (V:2). Developmental delay is not usually associated with PCD and is likely to be caused by an additional genetic abnormality. Transmission electron microscopy showed variable inner and outer dynein arm defects. Exome sequencing identified a homozygous missense variant in CCDC103 (c.461A > C; p.His154Pro) as the most likely cause of the PCD and laterality defects in this family. However, as mutation in CCDC103 would not account for the developmental delay, array comparative genomic hybridisation was undertaken and identified a maternally inherited gain of ~1.6 Mb (chr17:34,611,352-36,248,918). Gains at this locus are associated with 17q12 duplication syndrome which includes speech and language delay. Conclusion We report on a variable and complex phenotype caused by the co-inheritance of a single gene mutation in CCDC103 and a microduplication at 17q12, both on chromosome 17. The co-existence of a single gene and chromosome disorder is unusual but accounts for the spectrum of clinical features in this family. In addition, our study brings the total number of PCD genes in the Irish Traveller population to four and we suspect additional PCD genes are yet to be identified. Although, on a global scale, PCD is associated with extensive genetic heterogeneity, finding such a high number of causative PCD genes within the relatively small Irish Traveller population was unexpected. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jillian P Casey
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland. .,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Jennifer McDaid
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Martin White
- Neonatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Sean Ennis
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland. .,Neonatology, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - David R Betts
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Basil Elnazir
- Pediatric Respiratory Medicine, The Adelaide and Meath Hospital, Tallaght, Dublin 24, Ireland.
| | - Sally Ann Lynch
- Genetics Department, Temple Street Children's University Hospital, Dublin 1, Ireland. .,UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin 4, Ireland. .,National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| |
Collapse
|