1
|
Trujillano L, Valenzuela I, Costa-Roger M, Cuscó I, Fernandez-Alvarez P, Cueto-González A, Lasa-Aranzasti A, Masotto B, Abulí A, Codina-Solà M, Del Campo M, Ruiz Moreno JA, Pardo Domínguez C, Palma Milla C, Pérez de la Fuente R, Quesada-Espinosa JF, Núñez-Enamorado N, Gener B, Ballesta-Martínez MJ, Brea-Fernández AJ, Fernández-Prieto M, Trujillo-Quintero JP, Ruiz A, Santos-Simarro F, Rosello M, Orellana C, Martinez F, Martinez-Monseny AF, Casas-Alba D, Serrano M, Palomares-Bralo M, Rikeros-Orozco E, Gómez-Cano MÁ, Tirado-Requero P, Pié Juste J, Ramos FJ, García-Arumí E, Tizzano EF. Comprehensive Clinical and Genetic Characterization of a Spanish Cohort of 22 Patients With Bainbridge-Ropers Syndrome. Clin Genet 2025; 107:646-662. [PMID: 39833101 DOI: 10.1111/cge.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Bainbridge-Ropers Syndrome (BRPS) is a genetic condition resulting from truncating variants in the ASXL3 gene. The clinical features include neurodevelopmental and language impairments, behavioral issues, hypotonia, feeding difficulties, and distinctive facial features. In this retrospective study, we analyzed 22 Spanish individuals with BRPS, aiming to perform a detailed clinical and molecular description and establish a genotype-phenotype correlation. We identified 19 ASXL3 variants, nine of which are novel. We documented recurrence in nontwin siblings due to parental mosaicism. The predominant prenatal finding was intrauterine growth restriction (35%) followed, after birth, by feeding difficulties (90.5%), hypotonia (85.7%), and gastroesophageal reflux disease (82.4%). Later in life, intellectual disability, language impairment, autism spectrum disorder (75%), and joint laxity (73.7%) were noted. Individuals with variants in the 3' mutational cluster region (MCR) of exon 12 exhibited more perinatal feeding problems, and those with variants in the 5' MCR of exon 11 displayed lower percentiles in height and occipitofrontal circumference, as well as higher frequency of arched eyebrows. This study is the first characterization of a Spanish BRPS cohort, with more than 50 clinical features analyzed, representing the most detailed phenotypic analysis to date.
Collapse
Affiliation(s)
- Laura Trujillano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Irene Valenzuela
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Mar Costa-Roger
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Ivon Cuscó
- Genetics Department, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Anna Cueto-González
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Bárbara Masotto
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Anna Abulí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Marta Codina-Solà
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Miguel Del Campo
- Department of Clinical Pediatrics, University of California, San Diego, California, USA
| | | | | | - Carmen Palma Milla
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rubén Pérez de la Fuente
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan Francisco Quesada-Espinosa
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Noemí Núñez-Enamorado
- Departamento de Neurología pediátrica, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Vizcaya, Spain
| | | | - Alejandro J Brea-Fernández
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Montse Fernández-Prieto
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Juan Pablo Trujillo-Quintero
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Anna Ruiz
- Center for Genomic Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Fernando Santos-Simarro
- Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitario Son Espases, Idisba, Palma de Mallorca, Spain
| | - Mónica Rosello
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Francisco Martinez
- Genetics Unit, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Dídac Casas-Alba
- Department of Genetics and Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Mercedes Serrano
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
| | - María Palomares-Bralo
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros-Orozco
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | - María Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, Madrid, Spain
| | | | - Juan Pié Juste
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Feliciano J Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
- Unit of Clinical Genetics, Service of Paediatrics, University Hospital 'Lozano Blesa', University of Zaragoza Medical School, CIBERER-GCV02 and IIS-Aragon, Zaragoza, Spain
| | - Elena García-Arumí
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Eduardo F Tizzano
- Clinical and Molecular Genetics Area, Vall d'Hebron Hospital, Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's disease: Integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Aşık A, Fırıncıoğulları EC, Avcı Durmuşalioğlu E, Çoğulu D, Atik T, Erdinç AM, Cogulu O. Dentofacial Findings and Management of two Pediatric Patients With Bainbridge-Ropers Syndrome: A Case Report. Am J Med Genet A 2025:e64090. [PMID: 40237215 DOI: 10.1002/ajmg.a.64090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/06/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Bainbridge-Ropers Syndrome(BPRS) is a rare autosomal dominant genetic disorder resulting from heterozygous mutations in the ASXL3(Additional Sex Comb-Like 3) gene located on chromosome 18q12. To date, only 45 cases have been documented in the literature. BPRS is characterized by a range of clinical features, including feeding difficulties, hypotonia, distinctive dysmorphic facial features, high-arched palate, and intellectual disability. This case report aims to present two pediatric patients diagnosed with BPRS, emphasize newly identified oro-dental manifestations, and propose a comprehensive dental management plan. In Case #1, a 10-year-old female patient presented to the clinic with concerns of developmental delay and spinal deformity. Physical examination revealed trigonocephaly, thoracic kyphosis, strabismus, hirsutism, bitemporal narrowing, and bilateral coxa valga. Additionally, the patient exhibited failure to thrive, language difficulties, and mild intellectual disability. Oral examination identified a high-arched palate, fibrotic frenulum, narrow maxilla, and posterior crossbite. In Case #2, a 6-year-old female patient presented with developmental delay, language difficulties, and mouth breathing. Physical findings included trigonocephaly, bitemporal narrowing, strabismus, hirsutism, and arched eyebrows. Oral examination revealed a high-arched palate, narrow maxilla, and open bite. For both cases, preventive dental interventions were implemented, including the application of fissure sealants, fluoride varnishes, dietary regulation, and the use of interceptive orthodontic appliances. Children diagnosed with BPRS require ongoing medical and dental management through a multidisciplinary approach to address the complex and varied manifestations of the disorder effectively.
Collapse
Affiliation(s)
- Aslı Aşık
- Department of Pediatric Dentistry, Faculty of Dentistry, Izmir Tınaztepe University, İzmir, Turkey
- Department of Pediatric Dentistry, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Ezgi Cansu Fırıncıoğulları
- Department of Orthodontics, School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
- Department of Orthodontics, Faculty of Dentistry, Ege University, İzmir, Turkey
| | | | - Dilşah Çoğulu
- Department of Pediatric Dentistry, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Tahir Atik
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, İzmir, Turkey
| | | | - Ozgur Cogulu
- Department of Pediatric Genetics, Faculty of Medicine, Ege University, İzmir, Turkey
| |
Collapse
|
4
|
Geiser M, Good JM, Guinchat V. Pregabalin treatment in a 30-year-old patient with Bainbridge-Ropers syndrome: a case-report. Front Psychiatry 2024; 15:1502773. [PMID: 39698206 PMCID: PMC11652826 DOI: 10.3389/fpsyt.2024.1502773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Mr. X is a Swiss patient with Bainbridge-Ropers syndrome clinically and genetically diagnosed at the age of 28. He is also known to have severe intellectual disability, autism spectrum disorder and epilepsy since the age of 18. At the age of 30, he was admitted for the first time to a psychiatric crisis unit dedicated to mental disabilities for challenging behavior such as self-aggression (forceful vomiting, scratching himself, pulling out his toe and fingernails or banging his head against the wall), agitation, screaming, dropping to the ground, damaging electronic items, or even displaying hetero-aggressive gestures (trying to bite or pull hair, scratching, kicking, or punching) associated with a drop in mood, withdrawal from usual activities, a drop in social interaction and a tendency to doze off during the day. The introduction of Pregabalin leads to rapid stabilization of the clinical state, almost complete improvement in challenging behavior and gradual withdrawal of other treatments (class 2 analgesics, neuroleptics, antidepressants, and benzodiazepines). At the neurological check-up 9 months after discharge from hospital, clinical stability was confirmed by the surrounding team and the medical observation, with almost complete disappearance of auto-aggressive gestures.
Collapse
Affiliation(s)
- Marie Geiser
- Département de Psychiatrie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ecole de médecine, Université de Lausanne, Lausanne, Vaud, Switzerland
| | - Jean-Marc Good
- Département de Psychiatrie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Vincent Guinchat
- Département de Psychiatrie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ecole de médecine, Université de Lausanne, Lausanne, Vaud, Switzerland
| |
Collapse
|
5
|
Ling S, Zhang Y, Li N, Tian S, Hu R, Zhang D, Guo W. Four heterozygous de novo variants in ASXL3 identified with Bainbridge-Ropers syndrome and further dissecting published genotype-phenotype spectrum. Front Neurosci 2024; 18:1456433. [PMID: 39610869 PMCID: PMC11603390 DOI: 10.3389/fnins.2024.1456433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Bainbridge-Ropers syndrome (BRPS) is a recently described neurodevelopmental genetic disorder associated with de novo truncating variants in additional sex combs like 3 (ASXL3) on chromosome 18q12.1. Trio-based exome sequencing was conducted on patients admitted to the Children's Hospital Affiliated to Shandong University and diagnosed with unexplained intellectual disabilities or developmental delay between June 2022 and January 2024. De novo truncation of ASXL3 was identified in four patients, and the pathogenic variants and their de novo status were validated using Sanger sequencing. Comprehensive clinical phenotype-genotype information of all previously reported patients with BRPS was collected and summarized. The common clinical manifestations observed in the four patients included language and intellectual disabilities or psychomotor retardation. Genetic analysis revealed that patient 1 carried a de novo heterozygous variant, c.1667_1668del (p.Thr556Arpfs*3), whereas patient 2 had a novel heterozygous frameshift variant of ASXL3, c.3324del (p.Lys1109Serfs*34). These two variants have not been documented to date. Additionally, patients 3 and 4 exhibited a de novo variant, c.4678C > T (p.Arg1560Ter). Based on the combined assessment of clinical phenotypes and genetic testing results, it was postulated that all four children presented with BRPS syndrome caused by pathogenic variations in ASXL3. The present study complements the range of ASXL3 mutational and phenotypic spectra in the population, highlighting subtle distinctions in clinical manifestations between Chinese patients and other racial groups. The reporting of additional cases will contribute to further elucidating the function of ASXL3 and establishing a solid foundation for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Li
- Jinan Institute of Child Health Care, Children’s Hospital Affiliated to Shandong University, Jinan, China
| | - Shan Tian
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rui Hu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongdong Zhang
- Jinan Institute of Child Health Care, Children’s Hospital Affiliated to Shandong University, Jinan, China
| | - Weitong Guo
- Jinan Institute of Child Health Care, Children’s Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
6
|
Woods E, Holmes N, Albaba S, Evans IR, Balasubramanian M. ASXL3-related disorder: Molecular phenotyping and comprehensive review providing insights into disease mechanism. Clin Genet 2024; 105:470-487. [PMID: 38420660 DOI: 10.1111/cge.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
ASXL3-related disorder, sometimes referred to as Bainbridge-Ropers syndrome, was first identified as a distinct neurodevelopmental disorder by Bainbridge et al. in 2013. Since then, there have been a number of case series and single case reports published worldwide. A comprehensive review of the literature was carried out. Abstracts were screened, relevant literature was analysed, and descriptions of common phenotypic features were quantified. ASXL3 variants were collated and categorised. Common phenotypic features comprised global developmental delay or intellectual disability (97%), feeding problems (76%), hypotonia (88%) and characteristic facial features (93%). The majority of genetic variants were de novo truncating variants in exon 11 or 12 of the ASXL3 gene. Several gaps in our knowledge of this disorder were identified, namely, underlying pathophysiology and disease mechanism, disease contribution of missense variants, relevance of variant location, prevalence and penetrance data. Clinical information is currently limited by patient numbers and lack of longitudinal data, which this review aims to address.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Nicola Holmes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Iwan R Evans
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
8
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Švantnerová J, Minár M, Radová S, Kolníková M, Vlkovič P, Zech M. ASXL3 De Novo Variant-Related Neurodevelopmental Disorder Presenting as Dystonic Cerebral Palsy. Neuropediatrics 2022; 53:361-365. [PMID: 35863334 DOI: 10.1055/s-0042-1750721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ASXL3 loss-of-function variants represent a well-established cause of Bainbridge-Ropers syndrome, a syndromic neurodevelopmental disorder with intellectual and motor disabilities. Although a recent large-scale genomics-based study has suggested an association between ASXL3 variation and cerebral palsy, there have been no detailed case descriptions. We report, here, a female individual with a de novo pathogenic c.1210C > T, p.Gln404* nonsense variant in ASXL3, identified within the frame of an ongoing research project applying trio whole-exome sequencing to the diagnosis of dystonic cerebral palsy. The patient presented with a mixture of infantile-onset limb/trunk dystonic postures and secondarily evolving distal spastic contractures, in addition to more typical features of ASXL3-related diseases such as severe feeding issues, intellectual disability, speech impairment, and facial dysmorphic abnormalities. Our case study confirms a role for ASXL3 pathogenic variants in the etiology of cerebral-palsy phenotypes and indicates that dystonic features can be part of the clinical spectrum in Bainbridge-Ropers syndrome. ASXL3 should be added to target-gene lists used for molecular evaluation of cerebral palsy.
Collapse
Affiliation(s)
- Jana Švantnerová
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Silvia Radová
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava National Institute of Children's Diseases, Bratislava, Slovakia
| | - Miriam Kolníková
- Department of Pediatric Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava National Institute of Children's Diseases, Bratislava, Slovakia
| | - Peter Vlkovič
- Second Department of Neurology, Faculty of Medicine, Comenius University, University Hospital Bratislava, Bratislava, Slovakia
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Wang Q, Zhang J, Jiang N, Xie J, Yang J, Zhao X. De novo nonsense variant in ASXL3 in a Chinese girl causing Bainbridge-Ropers syndrome: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e1924. [PMID: 35276034 PMCID: PMC9034677 DOI: 10.1002/mgg3.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bainbridge-Ropers syndrome (BRPS, OMIM #615485) was first identified in 2013 by Bainbridge et al. and is a neurodevelopment disorder characterized by failure to thrive, facial dysmorphism and severe developmental delay. BRPS is caused by heterozygous loss-of-function (LOF) variants in the additional sex combs-like 3 (ASXL3) gene. Due to the limited specific recognizable features and overlapping symptoms with Bohring-Opitz syndrome (BOS, OMIM #612990), clinical diagnosis of BRPS is challenging. METHODS In this study, a 2-year-8-month-old Chinese girl was referred for genetic evaluation of severe developmental delay. The reduced fetal movement was found during the antenatal period and bilateral varus deformity of feet was observed at birth. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant. RESULTS A novel nonsense variant c.1063G>T (p.E355*) in the ASXL3 gene (NM_030632.3) was identified in the proband and the clinical symptoms were compatible with BRPS. The parents were physical and genetic normal and prenatal diagnosis was requested for her pregnant mother with a negative Sanger sequencing result. CONCLUSION The study revealed a de novo LOF variant in the ASXL3 gene and expanded the mutation spectrum for this clinical condition. By performing a literature review, we summarized genetic results and the clinical phenotypes of all BPRSs reported so far. More cases study may help to elucidate the function of the ASXL3 gene may be critical to understand the genetic aetiology of this syndrome and assist in accurate genetic counselling, informed decision making and prenatal diagnosis.
Collapse
Affiliation(s)
- Qin Wang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jianming Zhang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Nan Jiang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jiansheng Xie
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
- The University of Hong Kong‐Shenzhen Hospital ShenzhenShenzhenChina
| | - Jingxin Yang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Xiaoshan Zhao
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
11
|
Prokop JW, Jdanov V, Savage L, Morris M, Lamb N, VanSickle E, Stenger CL, Rajasekaran S, Bupp CP. Computational and Experimental Analysis of Genetic Variants. Compr Physiol 2022; 12:3303-3336. [PMID: 35578967 DOI: 10.1002/cphy.c210012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomics has grown exponentially over the last decade. Common variants are associated with physiological changes through statistical strategies such as Genome-Wide Association Studies (GWAS) and quantitative trail loci (QTL). Rare variants are associated with diseases through extensive filtering tools, including population genomics and trio-based sequencing (parents and probands). However, the genomic associations require follow-up analyses to narrow causal variants, identify genes that are influenced, and to determine the physiological changes. Large quantities of data exist that can be used to connect variants to gene changes, cell types, protein pathways, clinical phenotypes, and animal models that establish physiological genomics. This data combined with bioinformatics including evolutionary analysis, structural insights, and gene regulation can yield testable hypotheses for mechanisms of genomic variants. Molecular biology, biochemistry, cell culture, CRISPR editing, and animal models can test the hypotheses to give molecular variant mechanisms. Variant characterizations can be a significant component of educating future professionals at the undergraduate, graduate, or medical training programs through teaching the basic concepts and terminology of genetics while learning independent research hypothesis design. This article goes through the computational and experimental analysis strategies of variant characterization and provides examples of these tools applied in publications. © 2022 American Physiological Society. Compr Physiol 12:3303-3336, 2022.
Collapse
Affiliation(s)
- Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Vladislav Jdanov
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lane Savage
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, Alabama, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Pediatric Intensive Care Unit, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA.,Office of Research, Spectrum Health, Grand Rapids, Michigan, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Medical Genetics, Spectrum Health, Grand Rapids, Michigan, USA
| |
Collapse
|
12
|
Khan TR, Dolce A, Goodspeed K. A case of Bainbridge-Ropers syndrome with breath holding spells and intractable epilepsy: challenges in diagnosis and management. BMC Neurol 2022; 22:60. [PMID: 35172777 PMCID: PMC8848676 DOI: 10.1186/s12883-022-02573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Background Bainbridge-Ropers syndrome is caused by monoallelic ASXL3 variants on chromosome 18. Clinical features include dysmorphic facies, developmental delay, intellectual disability, autistic traits, hypotonia, failure to thrive, seizures and hyperventilation. Breath-holding spells with choreathetoid movements have been previously described. Case presentation We describe an 11-year old boy who has daily intractable seizures reported since birth, developmental delay, autistic features and feeding difficulties. He was eventually found to have de novo, heterozygous pathogenic variant (c.1612G > T, p.E538*) in the ASXL3 gene. He has frequent episodes of breath-holding accompanied by dystonic posturing with right leg extension and head turning without ictal EEG correlate. The breath-holding spells have been refractory to several medication trials including iron supplementation, acetazolamide, and desipramine. Conclusions This case represents a more severe phenotype of Bainbridge-Ropers Syndrome than previously described with refractory breath-holding spells with dystonia, intractable epilepsy, and progressive cerebral/cerebellar atrophy. Breath-holding spells cause significant morbidity, are poorly understood, and have very limited treatment options.
Collapse
Affiliation(s)
- Tuba Rashid Khan
- Department of Pediatrics, Division of Child Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pediatrics, Division of Pediatric Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Alison Dolce
- Department of Pediatrics, Division of Child Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, Division of Child Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Wu K, Cong Y. Case report : a novel ASXL3 gene variant in a Sudanese boy. BMC Pediatr 2021; 21:557. [PMID: 34886823 PMCID: PMC8655995 DOI: 10.1186/s12887-021-03038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
Background Bainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, moderate to severe intellectual disability, poor or absent speech, feeding difficulties, growth failure, dysmorphic craniofacial features and minor skeletal features. The aim of this study was to investigate the genetic etiology of a Sudanese boy with severe developmental delay, intellectual disability, and craniofacial phenotype using trio-based whole-exome sequencing. To our knowledge, no patients with ASXL3 gene variant c.3043C>T have been reported detailedly in literature. Case presentation The patient (male, 3 years 6 months) was the first born of a healthy non-consanguineous couple originating from Sudan, treated for “psychomotor retardation” for more than 8 months in Yiwu. The patient exhibited severely delayed milestones in physiological and intellectual developmental stages, language impairment, poor eye-contact, lack of subtle motions of fingers, fear of claustrophobic space, hypotonia, clinodactyly, autistic features. Peripheral blood samples were collected from the patient and his parents. Trio-based whole-exome sequencing(Trio-WES) identified a de novo heterozygous ASXL3 gene variant c.3043C>T;p.Q1015X. Sanger sequencing verified variants of this family. Conclusion Trio-WES analysis identified a de novo nonsense variant (c.3043C>T) of ASXL3 gene in a Sudanese boy. To our knowledge, the patient with this variant has not been reported previously in literature. This study presents a new case for ASXL3 gene variants, which expanded the mutational and phenotypic spectrum.
Collapse
Affiliation(s)
- Ke Wu
- Prenatal Diganosis Center, Yiwu Maternity and Child Health Care Hospital, Xinke Road C100, Yiwu, 322000, Zhejiang Province, People's Republic of China
| | - Yan Cong
- Rehabilitation Department, Yiwu Maternity and Child Health Care Hospital, Xinke Road C100, Yiwu, 322000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
14
|
Kyriakou G. Synophrys: The societal implications of the bad ol' unibrow. Clin Dermatol 2021; 39:738-742. [PMID: 34809785 DOI: 10.1016/j.clindermatol.2020.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The complete or partial meeting of medial eyebrows at midline above the bridge of nose, forming a single band of hair, is known as synophrys or unibrow. With a few rare exceptions, when it may serve as a cutaneous marker lesion of several genetic disorders, with Cornelia De Lange syndrome being the commonest, synophrys is usually a normal variation. Although various cultures have prized synophrys as an attractive physical trait throughout history, in modern Western culture, the unibrow is frequently regarded as an undesirable and unappealing feature with negative connotations. Synophrys, derived from the Ancient Greek σύν (together, with) and ὀφρύς (eyebrow), meaning "with meeting eyebrows," refers to the complete or partial fusion of medial eyebrows at midline. The hair above the nasal bridge is often of the same color and thickness as the eyebrows, thus giving the appearance that they converge to form one uninterrupted line of hair, a single eyebrow.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rio, Greece.
| |
Collapse
|
15
|
Schirwani S, Albaba S, Carere DA, Guillen Sacoto MJ, Milan Zamora F, Si Y, Rabin R, Pappas J, Renaud DL, Hauser N, Reid E, Blanchet P, Foulds N, Dixit A, Fisher R, Armstrong R, Isidor B, Cogne B, Schrier Vergano S, Demirdas S, Dykzeul N, Cohen JS, Grand K, Morel D, Slavotinek A, Albassam HF, Naik S, Dean J, Ragge N, Costa C, Tedesco MG, Harrison RE, Bouman A, Palen E, Challman TD, Willemsen MH, Vogt J, Cunniff C, Bergstrom K, Walia JS, Bruel AL, Kini U, Alkuraya FS, Slegesky V, Meeks N, Girotto P, Johnson D, Newbury-Ecob R, Ockeloen CW, Prontera P, Lynch SA, Li D, Graham JM, Pierson TM, Balasubramanian M. Expanding the phenotype of ASXL3-related syndrome: A comprehensive description of 45 unpublished individuals with inherited and de novo pathogenic variants in ASXL3. Am J Med Genet A 2021; 185:3446-3458. [PMID: 34436830 DOI: 10.1002/ajmg.a.62465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/10/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
The study aimed at widening the clinical and genetic spectrum of ASXL3-related syndrome, a neurodevelopmental disorder, caused by truncating variants in the ASXL3 gene. In this international collaborative study, we have undertaken a detailed clinical and molecular analysis of 45 previously unpublished individuals with ASXL3-related syndrome, as well as a review of all previously published individuals. We have reviewed the rather limited functional characterization of pathogenic variants in ASXL3 and discuss current understanding of the consequences of the different ASXL3 variants. In this comprehensive analysis of ASXL3-related syndrome, we define its natural history and clinical evolution occurring with age. We report familial ASXL3 pathogenic variants, characterize the phenotype in mildly affected individuals and discuss nonpenetrance. We also discuss the role of missense variants in ASXL3. We delineate a variable but consistent phenotype. The most characteristic features are neurodevelopmental delay with consistently limited speech, significant neuro-behavioral issues, hypotonia, and feeding difficulties. Distinctive features include downslanting palpebral fissures, hypertelorism, tubular nose with a prominent nasal bridge, and low-hanging columella. The presented data will inform clinical management of individuals with ASXL3-related syndrome and improve interpretation of new ASXL3 sequence variants.
Collapse
Affiliation(s)
- Schaida Schirwani
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | | | | | - Yue Si
- GeneDx, Inc, Gaithersburg, Maryland, USA
| | - Rachel Rabin
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - John Pappas
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Deborah L Renaud
- Division of Child and Adolescent Neurology, Departments of Neurology and Pediatrics, Mayo Clinic, Rochester, Minnesota, USA
| | - Natalie Hauser
- Department of Pediatrics, Division of Medical Genomics, Inova Health System, Falls Church, Virginia, USA
| | - Evan Reid
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Patricia Blanchet
- Département de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Nichola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Abhijit Dixit
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Richard Fisher
- Teesside Genetics Unit, The James Cook University Hospital, Middlesbrough, UK
| | - Ruth Armstrong
- Departments of Medical Genetics and Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Benjamin Cogne
- Service de génétique médicale, CHU Nantes, Nantes, France
| | - Samantha Schrier Vergano
- Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Natalie Dykzeul
- Lucile Packard Children's Hospital, Stanford Children's Health, Palo Alto, California, USA
| | - Julie S Cohen
- Division of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katheryn Grand
- Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dayna Morel
- University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anne Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Hessa F Albassam
- Department of Pediatrics, Care National Hospital, Riyadh, Saudi Arabia
| | - Swati Naik
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - John Dean
- Clinical Genetics Service, NHS Grampian, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Nicola Ragge
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Maria Giovanna Tedesco
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
- Genetics Unit, "Mauro Baschirotto" Institute for Rare Diseases (B.I.R.D.), Costozza di Longare, Vicenza, Italy
| | - Rachel E Harrison
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Emily Palen
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Christopher Cunniff
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Katherine Bergstrom
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Jagdeep S Walia
- Divsion of Medical Genetics, Departments of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Ange-Line Bruel
- UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD Génétique des Anomalies du Développement, FHU-TRANSLAD, Dijon, France
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Valerie Slegesky
- University of Colorado & Children's Hospital Colorado, Denver, Colorado, USA
| | - Naomi Meeks
- University of Colorado & Children's Hospital Colorado, Denver, Colorado, USA
| | - Paula Girotto
- Division of Child Neurology, Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- EDS National Diagnostic Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Ruth Newbury-Ecob
- Bristol Regional Genetics Service, St Michael's Hospital, Bristol, UK
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paolo Prontera
- Medical Genetics Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Sally Ann Lynch
- Department of Clinical Genetics, Temple Street Children's Hospital, Dublin, Ireland
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John M Graham
- Cedars-Sinai Medical Center, Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tyler Mark Pierson
- Departments of Pediatrics, Neurology, Cedars-Sinai Center for the Undiagnosed Patient, and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles CA, USA
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Aguilera C, Gabau E, Ramirez-Mallafré A, Brun-Gasca C, Dominguez-Carral J, Delgadillo V, Laurie S, Derdak S, Padilla N, de la Cruz X, Capdevila N, Spataro N, Baena N, Guitart M, Ruiz A. New genes involved in Angelman syndrome-like: Expanding the genetic spectrum. PLoS One 2021; 16:e0258766. [PMID: 34653234 PMCID: PMC8519432 DOI: 10.1371/journal.pone.0258766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Angelman syndrome (AS) is a neurogenetic disorder characterized by severe developmental delay with absence of speech, happy disposition, frequent laughter, hyperactivity, stereotypies, ataxia and seizures with specific EEG abnormalities. There is a 10–15% of patients with an AS phenotype whose genetic cause remains unknown (Angelman-like syndrome, AS-like). Whole-exome sequencing (WES) was performed on a cohort of 14 patients with clinical features of AS and no molecular diagnosis. As a result, we identified 10 de novo and 1 X-linked pathogenic/likely pathogenic variants in 10 neurodevelopmental genes (SYNGAP1, VAMP2, TBL1XR1, ASXL3, SATB2, SMARCE1, SPTAN1, KCNQ3, SLC6A1 and LAS1L) and one deleterious de novo variant in a candidate gene (HSF2). Our results highlight the wide genetic heterogeneity in AS-like patients and expands the differential diagnosis.
Collapse
Affiliation(s)
- Cinthia Aguilera
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabeth Gabau
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Ariadna Ramirez-Mallafré
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Carme Brun-Gasca
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- Department of Clinical Psychology and Health Psychology, Universitat Autònoma de Barcelona, Bellatera, Barcelona, Spain
| | - Jana Dominguez-Carral
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Veronica Delgadillo
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steve Laurie
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophia Derdak
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Natàlia Padilla
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Neurosciences Area, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Núria Capdevila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Nino Spataro
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Neus Baena
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Miriam Guitart
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
- * E-mail: (AR); (MG)
| |
Collapse
|
17
|
Taşkıran EZ, Karaosmanoğlu B, Koşukcu C, Ürel-Demir G, Akgün-Doğan Ö, Şimşek-Kiper PÖ, Alikaşifoğlu M, Boduroğlu K, Utine GE. Diagnostic yield of whole-exome sequencing in non-syndromic intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2021; 65:577-588. [PMID: 33739554 DOI: 10.1111/jir.12835] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Aetiological diagnosis in non-syndromic intellectual disability (NSID) still poses a diagnostic challenge to clinicians. METHODS Screening is currently achieved by chromosomal microarrays followed by whole-exome sequencing (WES). In search for the aetiological yield of WES in patients with NSID, 59 unrelated patients were studied. RESULTS Among the 59 patients, 44 (74.6%) were from consanguineous unions. Epilepsy was present in 11 (37.9%), behavioural problems in 12 (41.4%) and autistic features in 14 (48.3%). WES analysis resulted in molecular diagnosis in 29 patients (49.2%). Some of the genes were specific for nervous system functioning, like HERC1, TBC1D7, LINS, HECW2, DEAF1, HNMT, DLG3, NRXN1 and HUWE1. Others were ubiquitously expressed genes involved in fundamental cellular processes, like IARS, UBE3A, COQ4, TAF1, SETBP1, ARV1, ZC4H2, KAT6A, ASXL3, THOC6, HNRNPH2, TUBA8 and KIF1A. Twenty-two (75.8%) were consanguineously married; however, only 12 (41.4%) of the detected genes caused autosomal recessive phenotypes. CONCLUSIONS This cohort suggests that recessive genes probably represent an actually smaller subgroup of NSID, even among families with consanguinity. Although in societies with high consanguinity rates, considering the recessive inheritance first seems to be an advantageous strategy, de novo mutations in autosomal dominantly expressed genes represent the major aetiological group in patients with NSID, even among those patients from consanguineous families.
Collapse
Affiliation(s)
- E Z Taşkıran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - B Karaosmanoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - C Koşukcu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - G Ürel-Demir
- Department of Pediatrics, Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ö Akgün-Doğan
- Department of Pediatrics, Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - P Ö Şimşek-Kiper
- Department of Pediatrics, Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - M Alikaşifoğlu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - K Boduroğlu
- Department of Pediatrics, Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - G E Utine
- Department of Pediatrics, Department of Pediatric Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Cuddapah VA, Dubbs HA, Adang L, Kugler SL, McCormick EM, Zolkipli-Cunningham Z, Ortiz-González XR, McCormack S, Zackai E, Licht DJ, Falk MJ, Marsh ED. Understanding the phenotypic spectrum of ASXL-related disease: Ten cases and a review of the literature. Am J Med Genet A 2021; 185:1700-1711. [PMID: 33751773 DOI: 10.1002/ajmg.a.62156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
Over the past decade, pathogenic variants in all members of the ASXL family of genes, ASXL1, ASXL2, and ASXL3, have been found to lead to clinically distinct but overlapping syndromes. Bohring-Opitz syndrome (BOPS) was first described as a clinical syndrome and later found to be associated with pathogenic variants in ASXL1. This syndrome is characterized by developmental delay, microcephaly, characteristic facies, hypotonia, and feeding difficulties. Subsequently, pathogenic variants in ASXL2 were found to lead to Shashi-Pena syndrome (SHAPNS) and in ASXL3 to lead to Bainbridge-Ropers syndrome (BRPS). While SHAPNS and BRPS share many core features with BOPS, there also seem to be emerging clear differences. Here, we present five cases of BOPS, one case of SHAPNS, and four cases of BRPS. By adding our cohort to the limited number of previously published patients, we review the overlapping features of ASXL-related diseases that bind them together, while focusing on the characteristics that make each neurodevelopmental syndrome unique. This will assist in diagnosis of these overlapping conditions and allow clinicians to more comprehensively counsel affected families.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven L Kugler
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xilma R Ortiz-González
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elaine Zackai
- Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni J Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Emerging multifaceted roles of BAP1 complexes in biological processes. Cell Death Dis 2021; 7:20. [PMID: 33483476 PMCID: PMC7822832 DOI: 10.1038/s41420-021-00406-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023]
Abstract
Histone H2AK119 mono-ubiquitination (H2AK119Ub) is a relatively abundant histone modification, mainly catalyzed by the Polycomb Repressive Complex 1 (PRC1) to regulate Polycomb-mediated transcriptional repression of downstream target genes. Consequently, H2AK119Ub can also be dynamically reversed by the BAP1 complex, an evolutionarily conserved multiprotein complex that functions as a general transcriptional activator. In previous studies, it has been reported that the BAP1 complex consists of important biological roles in development, metabolism, and cancer. However, identifying the BAP1 complex's regulatory mechanisms remains to be elucidated due to its various complex forms and its ability to target non-histone substrates. In this review, we will summarize recent findings that have contributed to the diverse functional role of the BAP1 complex and further discuss the potential in targeting BAP1 for therapeutic use.
Collapse
|
20
|
Li JR, Huang Z, Lu Y, Ji QY, Jiang MY, Yang F. Novel mutation in the ASXL3 gene in a Chinese boy with microcephaly and speech impairment: A case report. World J Clin Cases 2020; 8:6465-6472. [PMID: 33392332 PMCID: PMC7760454 DOI: 10.12998/wjcc.v8.i24.6465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bainbridge-Ropers syndrome (BRPS) is a severe disorder characterized by failure to thrive, facial dysmorphism, and severe developmental delay. BRPS is caused by a heterozygous loss-of-function mutation in the ASXL3 gene. Due to limited knowledge of the disease and lack of specific features, clinical diagnosis of this syndrome is challenging. With the use of trio-based whole exome sequencing, we identified a novel ASXL3 mutation in a Chinese boy with BRPS and performed a literature review. CASE SUMMARY A 3-year-old Chinese boy was referred to our hospital due to progressive postnatal microcephaly and intellectual disability with severe speech impairment for 2 years. His other remarkable clinical features were shown as follows: Facial dysmorphism, feeding difficulties, poor growth, motor delay, and abnormal behavior. For the proband, regular laboratory tests, blood tandem mass spectrometry, urine gas chromatographic mass spectrometry, karyotype, hearing screening, and brain magnetic resonance imaging were performed, with negative results. Therefore, for the proband and his unaffected parents, trio-based whole exome sequencing and subsequent validation by Sanger sequencing were performed. A novel nonsense variant in exon 11 of the ASXL3 gene (c.1795G>T; p.E599*) was detected, present in the patient but absent from his parents. Taking into account the concordant phenotypic features of our patient with reported BRPS patients and the detected truncated variant located in the known mutational cluster region, we confirmed a diagnosis of BRPS for this proband. The rehabilitation treatment seemed to have a mild effect. CONCLUSION In this case, a novel nonsense mutation (c.1795G>T, p.E599*) in ASXL3 gene was identified in a Chinese boy with BRPS. This finding not only contributed to better genetic counseling and prenatal diagnosis for this family but also expanded the pathogenic mutation spectrum of ASXL3 gene and provided key information for clinical diagnosis of BRPS.
Collapse
Affiliation(s)
- Jin-Rong Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan Province, China
| | - Zhuo Huang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - You Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiao-Yun Ji
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ming-Yan Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan Province, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu 610041, Sichuan Province, China
| |
Collapse
|
21
|
Yu KPT, Luk HM, Fung JLF, Chung BHY, Lo IFM. Further expanding the clinical phenotype in Bainbridge-Ropers syndrome and dissecting genotype-phenotype correlation in the ASXL3 mutational cluster regions. Eur J Med Genet 2020; 64:104107. [PMID: 33242595 DOI: 10.1016/j.ejmg.2020.104107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 11/30/2022]
Abstract
Bainbridge-Ropers syndrome (BRPS) [OMIM#615485] is a neurodevelopmental disorder, characterized by delayed psychomotor development with generalized hypotonia, intellectual disability with poor or absent speech, feeding difficulties, growth failure, specific craniofacial and minor skeletal features. It was firstly reported in 2013 by Bainbridge et al., who observed a group of individuals sharing overlapping features with Bohring-Opitz syndrome which were caused by pathogenic variant in ASXL1, who indeed carried truncating mutations in ASXL3. To date, 33 cases were described in the literature. BRPS is caused by loss-of-function mutations in ASXL3 which are mostly located in two mutational cluster regions (MCR). The exact molecular mechanism of these mutations resulting in the disease phenotype is still uncertain due to the observation of LOF mutations in healthy population. Here, we report four individuals with BRPS carrying de novo LOF mutations in ASXL3, comparing and summarizing the clinical phenotype of all BRPS reported so far. Furthermore, we try to dissect the genotype-phenotype correlation among the two well reported MCRs in all BRPS from the literature.
Collapse
Affiliation(s)
- Kris Pui-Tak Yu
- Clinical Genetic Service, Department of Health, University of Hong Kong, HKSAR, Hong Kong.
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, University of Hong Kong, HKSAR, Hong Kong
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, HKSAR, Hong Kong
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, HKSAR, Hong Kong
| | - Ivan Fai-Man Lo
- Clinical Genetic Service, Department of Health, University of Hong Kong, HKSAR, Hong Kong
| |
Collapse
|
22
|
Fu F, Li R, Lei TY, Wang D, Yang X, Han J, Pan M, Zhen L, Li J, Li FT, Jing XY, Li DZ, Liao C. Compound heterozygous mutation of the ASXL3 gene causes autosomal recessive congenital heart disease. Hum Genet 2020; 140:333-348. [PMID: 32696347 DOI: 10.1007/s00439-020-02200-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Abstract
To explore mutations in the additional sex combs-like 3 (ASXL3) gene in two Chinese families with congenital heart disease (CHD). Whole-exome sequencing (WES) was used to reveal a novel compound heterozygous mutation in the ASXL3 gene that was associated with CHD. Sanger sequencing of a further 122 CHD patients was used to determine an additional compound heterozygous mutation in the ASXL3 gene. Cell apoptosis was examined by MTS assay and flow cytometry. The cardiac structure was identified via hematoxylin-eosin (HE), Masson's trichrome, and ultrasound scanning. RNA sequencing was performed to identify a series of differentially expressed mRNAs. The mRNA and protein expressions were identified by quantitative real-time PCR and western blotting, respectively. A compound heterozygous mutation c.2168C > G (p.Pro723Arg) and c.5449C > G (p.Pro1817Ala) in the ASXL3 gene associated with CHD was identified. Overexpression of this compound heterozygous mutation in HL-1 cells resulted in increased apoptosis and reduced cell viability. Moreover, it affected cardiac structure and fibrosis in mice. There were 126 downregulated mRNAs and 117 upregulated mRNAs between the ASXL3 compound heterozygous mutation c.2168C > G (p.Pro723Arg) and c.5449C > G (p.Pro1817Ala) mice and wild-type mice. Ezh2, Slc6a4, and Socs3, which could interact with ASXL3 through proteins, were all upregulated. Another compound heterozygous mutation c.3526C > T (p.Arg1176Trp) and c.4643A > G (p.Asp1548Gly) in the ASXL3 gene was identified by screening a further 122 patients with CHD. The ASXL3 gene is important in cardiac development and may exert this influence by affecting the expression of mRNAs associated with cell apoptosis and cell proliferation.
Collapse
Affiliation(s)
- Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ting-Ying Lei
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dan Wang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jin Han
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Min Pan
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Li Zhen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jian Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Fa-Tao Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xiang-Yi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dong-Zhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
23
|
Yang L, Guo B, Zhu W, Wang L, Han B, Che Y, Guo L. Bainbridge-ropers syndrome caused by loss-of-function variants in ASXL3: Clinical abnormalities, medical imaging features, and gene variation in infancy of case report. BMC Pediatr 2020; 20:287. [PMID: 32517662 PMCID: PMC7282141 DOI: 10.1186/s12887-020-02027-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/11/2020] [Indexed: 01/30/2023] Open
Abstract
Background Bainbridge–Ropers syndrome (BRPS) is a recently described developmental disorder caused by de novo truncating mutations in the Additional sex combs-like 3 (ASXL3) gene. Only four cases have been reported in China and are limited to the analysis of its clinical abnormalities, medical imaging features and gene variation. The aim of this study was to investigate the clinical phenotype, imaging manifestations and genetic characteristics of BPRS syndrome caused by ASXL3 gene mutation. Clinical data, medical imaging data and gene test results of BRPS in infant patients were retrospectively analyzed, and related literature was summarized. Case presentation At the age of 8 months, brain MRI showed that the subarachnoid space of the forehead was widened, part of the sulci was deepened, and the corpus callosum was thin. The development quotient (DQ) was determined using the 0~6-year-old pediatric examination table of neuropsychological development at 6 months and 8 months. The DQ of both tests was less than 69. Whole-exome sequencing revealed a heterozygous frameshift mutation c.3493_3494deTG in exon 12 of the ASXL3 gene, resulting in the amino acid change p. (Cys1165Ter). No variation was present at this site in her parents. Sanger sequencing of family members validated this analysis, suggesting a de novo mutation. The de novo ASXL3 mutations generated stop codons and were predicted, in silico, to generate a truncated ASXL3. Conclusions The main clinical features of the patient included psychomotor development retardation, difficulty in feeding, hypotonia, and special facial features. MRI features showed that brain development lagged behind that of normal children. Genetic testing is helpful in the early diagnosis of BRPS.
Collapse
Affiliation(s)
- Linfeng Yang
- Jinan Maternal and Child Care Hospital, No.2, Jianguo xiao jing-san Road, Jinan, 250001, Shandong Province, China
| | - Bin Guo
- Jinan Maternal and Child Care Hospital, No.2, Jianguo xiao jing-san Road, Jinan, 250001, Shandong Province, China
| | - Weiwei Zhu
- Jinan Central Hospital Affiliated to Shandong University, No. 105, Jiefang Road 250013, Jinan, 250011, Shandong Province, China
| | - Lei Wang
- Jinan Maternal and Child Care Hospital, No.2, Jianguo xiao jing-san Road, Jinan, 250001, Shandong Province, China
| | - Bingjuan Han
- Jinan Maternal and Child Care Hospital, No.2, Jianguo xiao jing-san Road, Jinan, 250001, Shandong Province, China
| | - Yena Che
- Department of MRI, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan, 250021, Shandong Province, People's Republic of China.
| | - Lingfei Guo
- Department of MRI, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jing-wu Road No. 324, Jinan, 250021, Shandong Province, People's Republic of China.
| |
Collapse
|
24
|
Qiao L, Liu Y, Ge J, Li T. Novel Nonsense Mutation in ASXL3 causing Bainbridge-Ropers Syndrome. Indian Pediatr 2020. [PMID: 31638014 DOI: 10.1007/s13312-019-1627-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Bainbridge-Ropers syndrome is a rare autosomal dominant genetic disorder. CASE CHARACTERISTICS A 26-day-old neonate presented with feeding difficulties, excessive sleeping, and hirsutism over forehead and lumbosacral skin. OUTCOME Whole-exome sequencing identified a novel nonsense mutation. MESSAGE We report a novel mutation in a Chinese neonate with Bainbridge-Ropers syndrome.
Collapse
Affiliation(s)
- Lingyan Qiao
- Medical Department, Qingdao University and Department of Pediatric Endocrinology and Genetic Metabolic Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Yusheng Liu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University; Qingdao, China
| | - Juan Ge
- Medical Department, Qingdao University, Qingdao Women and Children's Hospital, Qingdao, China
| | - Tang Li
- Medical Department, Qingdao University and Department of Pediatric Endocrinology and Genetic Metabolic Diseases, Qingdao Women and Children's Hospital, Qingdao, China. Correspondence to: Dr Tang Li, Department of Pediatric Endocrinology and Genetic Metabolic Diseases, Qingdao Women and Children's Hospital, Qingdao, China.
| |
Collapse
|
25
|
Schirwani S, Hauser N, Platt A, Punj S, Prescott K, Canham N, Study DDD, Mansour S, Balasubramanian M. Mosaicism in ASXL3-related syndrome: Description of five patients from three families. Eur J Med Genet 2020; 63:103925. [PMID: 32240826 DOI: 10.1016/j.ejmg.2020.103925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 01/30/2023]
Abstract
De novo pathogenic variants in the additional sex combs-like 3 (ASXL3) gene cause a rare multi-systemic neurodevelopmental disorder. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. There is one previous report of ASXL3-related syndrome caused by de novo pathogenic variants in two siblings suggesting gonadal mosaicism. In this report, we present five patients with ASXL3-related syndrome, describing two families comprising two non-twin siblings harbouring apparent de novo pathogenic variants in ASXL3. Parents were clinically unaffected and there was no evidence of mosaicism from genomic DNA on exome-trio data, suggesting germline mosaicism in one of the parents. We also describe clinical details of a patient with typical features of ASXL3-related syndrome and mosaic de novo pathogenic variant in ASXL3 in 30-35% of both blood and saliva sample on trio-exome sequencing. We expand the known genetic basis of ASXL3-related syndromes and discuss mosaicism as a disease mechanism in five patients from three unrelated families. The findings of this report highlight the importance of taking gonadal mosaicism into consideration when counselling families regarding recurrence risk. We also discuss postzygotic mosaicism as a cause of fully penetrant ASXL3-related syndrome.
Collapse
Affiliation(s)
- Schaida Schirwani
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK.
| | - Natalie Hauser
- Inova Health System, (or Inova Fairfax Hospital) Department of Paediatrics, Division of Medical Genomics, Falls Church, VA, USA
| | - Anna Platt
- Inova Health System, (or Inova Fairfax Hospital) Department of Paediatrics, Division of Medical Genomics, Falls Church, VA, USA
| | | | - Katrina Prescott
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Natalie Canham
- Cheshire & Merseyside Regional Genetics Service, Liverpool Women's Hospital, Liverpool, UK
| | - D D D Study
- DDD Study, Welcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Meena Balasubramanian
- Academic Unit of Child Health, Department of Oncology & Metabolism, University of Sheffield, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, UK
| |
Collapse
|
26
|
Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D. Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. Front Physiol 2020; 11:75. [PMID: 32132929 PMCID: PMC7040374 DOI: 10.3389/fphys.2020.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Additional sex combs-like (ASXL1-3) genes are linked to human neurodevelopmental disorders. The de novo truncating variants in ASXL1-3 proteins serve as the genetic basis for severe neurodevelopmental diseases such as Bohring-Opitz, Shashi-Pena, and Bainbridge-Ropers syndromes, respectively. The phenotypes of these syndromes are similar but not identical, and include dramatic craniofacial defects, microcephaly, developmental delay, and severe intellectual disability, with a loss of speech and language. Bainbridge-Ropers syndrome resulting from ASXL3 gene mutations also includes features of autism spectrum disorder. Human genomic studies also identified missense ASXL3 variants associated with autism spectrum disorder, but lacking more severe Bainbridge-Ropers syndromic features. While these findings strongly implicate ASXL3 in mammalian brain development, its functions are not clearly understood. ASXL3 protein is a component of the polycomb deubiquitinase complex that removes mono-ubiquitin from Histone H2A. Dynamic chromatin modifications play important roles in the specification of cell fates during early neural patterning and development. In this study, we utilize the frog, Xenopus laevis as a simpler and more accessible vertebrate neurodevelopmental model system to understand the embryological cause of Bainbridge-Ropers syndrome. We have found that ASXL3 protein knockdown during early embryo development highly perturbs neural cell fate specification, potentially resembling the Bainbridge-Ropers syndrome phenotype in humans. Thus, the frog embryo is a powerful tool for understanding the etiology of Bainbridge-Ropers syndrome in humans.
Collapse
Affiliation(s)
- Hava Lichtig
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Artyom Artamonov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Christine D Reid
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
27
|
Powis Z, Farwell Hagman KD, Blanco K, Au M, Graham JM, Singh K, Gallant N, Randolph LM, Towne M, Hunter J, Shinde DN, Palmaer E, Schoenfeld B, Tang S. When moments matter: Finding answers with rapid exome sequencing. Mol Genet Genomic Med 2019; 8:e1027. [PMID: 31872981 PMCID: PMC7005623 DOI: 10.1002/mgg3.1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023] Open
Abstract
Background When time is of the essence in critical care cases, a fast molecular diagnosis is often necessary to help health care providers quickly determine best next steps for treatments, prognosis, and counseling of their patients. In this paper, we present the diagnostic rates and improved quality of life for patients undergoing clinical rapid exome sequencing. Methods The clinical histories and results of 41 patients undergoing rapid exome sequencing were retrospectively reviewed. Results Clinical rapid exome sequencing identified a definitive diagnosis in 13/41 (31.7%) and other relevant findings in 17 of the patients (41.5%). The average time to verbal report was 7 days; to written report was 11 days. Conclusions Our observations demonstrate the utility and effectiveness of rapid family‐based diagnostic exome sequencing in improving patients care.
Collapse
Affiliation(s)
- Zöe Powis
- Ambry Genetics, Aliso Viejo, CA, USA
| | | | | | - Margaret Au
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - John M Graham
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Kathryn Singh
- Memorial Care Health System Genetics Clinic, Long Beach, CA, USA
| | - Natalie Gallant
- Memorial Care Health System Genetics Clinic, Long Beach, CA, USA
| | - Linda M Randolph
- Division of Medical Genetics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | - Sha Tang
- Ambry Genetics, Aliso Viejo, CA, USA
| |
Collapse
|
28
|
Wayhelova M, Oppelt J, Smetana J, Hladilkova E, Filkova H, Makaturova E, Nikolova P, Beharka R, Gaillyova R, Kuglik P. Novel de novo frameshift variant in the ASXL3 gene in a child with microcephaly and global developmental delay. Mol Med Rep 2019; 20:505-512. [PMID: 31180560 PMCID: PMC6579994 DOI: 10.3892/mmr.2019.10303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/09/2019] [Indexed: 01/11/2023] Open
Abstract
De novo sequence variants, including truncating and splicing variants, in the additional sex-combs like 3 gene (ASXL3) have been described as the cause of Bainbridge-Ropers syndrome (BRS). This pathology is characterized by delayed psychomotor development, severe intellectual disability, growth delay, hypotonia and facial dimorphism. The present study reports a case of a girl (born in 2013) with severe global developmental delay, central hypotonia, microcephaly and poor speech. The proband was examined using a multi-step molecular diagnostics algorithm, including karyotype and array-comparative genomic hybridization analysis, with negative results. Therefore, the proband and her unaffected parents were enrolled for a pilot study using targeted next-generation sequencing technology (NGS) with gene panel ClearSeq Inherited DiseaseXT and subsequent validation by Sanger sequencing. A novel de novo heterozygous frameshift variant in the ASXL3 gene (c.3006delT, p.R1004Efs*21), predicted to result in a premature termination codon, was identified. In conclusion, the present study demonstrated that targeted NGS using a suitable, gene-rich panel may provide a conclusive molecular genetics diagnosis in children with severe global developmental delays.
Collapse
Affiliation(s)
- Marketa Wayhelova
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Jan Oppelt
- CEITEC‑Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Smetana
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Eva Hladilkova
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Hana Filkova
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Eva Makaturova
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petra Nikolova
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Rastislav Beharka
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Renata Gaillyova
- Department of Medical Genetics, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Petr Kuglik
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| |
Collapse
|
29
|
Fu C, Luo S, Zhang Y, Fan X, D'Gama AM, Zhang X, Zheng H, Su J, Li C, Luo J, Agrawal PB, Li Q, Chen S. Chromosomal microarray and whole exome sequencing identify genetic causes of congenital hypothyroidism with extra-thyroidal congenital malformations. Clin Chim Acta 2018; 489:103-108. [PMID: 30508507 DOI: 10.1016/j.cca.2018.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder. Although most patients present with isolated CH, some patients present with CH and extra-thyroidal congenital malformations (ECMs), for which less is known about the underlying genetics. The aim of this study was to investigate the genetic mechanisms in patients with CH and ECMs using chromosomal microarray (CMA) and whole exome sequencing (WES). METHODS Peripheral venous blood samples were collected from 16 patients with CH and ECMs. Genomic DNA was extracted from peripheral blood leukocytes. CMA and WES were performed to detect copy number and single nucleotide variants. RESULTS CMA identified clinically significant copy number variants in 7 patients consistent with their phenotypes. For 6 of them, the genotype and phenotype suggested a syndromic diagnosis, and the remaining patient carried a pathogenic microdeletion and microduplication including GLIS3. WES analysis identified 9 different variants in 7 additional patients. The variants included 2 known mutations (c.1096C>T (p.Arg366Trp) in KCNQ1 and c.848C>A (p.Pro283Gln) in NKX2-5) and 7 novel variants: one nonsense mutation (c.4330C>T (p.Arg1444*) in ASXL3), one frameshift mutation (c.1253_1259delACTCTGG (p.Asp418fs) in TG), three missense variants (c.1472C>T (p.Thr491Ile) in TG, c.4604A>G (p.Asp1535Gly) in TG, and c.2139G>T (p.Glu713Asp) in DUOX2, and two splice site variants (c.944-1G>C and c.3693 + 1G>T) in DUOX2. CONCLUSIONS We report the first genetic study of CH patients with ECMs using CMA and WES. Overall, our detection rate for pathogenic and possibly pathogenic variants was 87.5% (14/16). We report 7 novel variants, expanding the mutational spectrum of TG, DUOX2, and ASXL3.
Collapse
Affiliation(s)
- Chunyun Fu
- Medical Science Laboratory, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China; Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shiyu Luo
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Yue Zhang
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Xin Fan
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Alissa M D'Gama
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaofei Zhang
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Haiyang Zheng
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jiasun Su
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Chuan Li
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jingsi Luo
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Qifei Li
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Shaoke Chen
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.
| |
Collapse
|
30
|
Abstract
In 2009, we described the first generation of the chromosome 18 gene dosage maps. This tool included the annotation of each gene as well as each phenotype associated region. The goal of these annotated genetic maps is to provide clinicians with a tool to appreciate the potential clinical impact of a chromosome 18 deletion or duplication. These maps are continually updated with the most recent and relevant data regarding chromosome 18. Over the course of the past decade, there have also been advances in our understanding of the molecular mechanisms underpinning genetic disease. Therefore, we have updated the maps to more accurately reflect this knowledge. Our Gene Dosage Map 2.0 has expanded from the gene and phenotype maps to also include a pair of maps specific to hemizygosity and suprazygosity. Moreover, we have revamped our classification from mechanistic definitions (e.g., haplosufficient, haploinsufficient) to clinically oriented classifications (e.g., risk factor, conditional, low penetrance, causal). This creates a map with gradient of classifications that more accurately represents the spectrum between the two poles of pathogenic and benign. While the data included in this manuscript are specific to chromosome 18, they may serve as a clinically relevant model that can be applied to the rest of the genome.
Collapse
|
31
|
Corrigendum to "Childhood-onset generalized epilepsy in Bainbridge-Ropers syndrome" [Epilepsy Res. 140 (2018) 166-170]. Epilepsy Res 2018; 147:121. [PMID: 30104120 DOI: 10.1016/j.eplepsyres.2018.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Koboldt DC, Mihalic Mosher T, Kelly BJ, Sites E, Bartholomew D, Hickey SE, McBride K, Wilson RK, White P. A de novo nonsense mutation in ASXL3 shared by siblings with Bainbridge-Ropers syndrome. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002410. [PMID: 29305346 PMCID: PMC5983172 DOI: 10.1101/mcs.a002410] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
Two sisters (ages 16 yr and 15 yr) have been followed by our clinical genetics team for several years. Both girls have severe intellectual disability, hypotonia, seizures, and distinctive craniofacial features. The parents are healthy and have no other children. Oligo array, fragile X testing, and numerous single-gene tests were negative. All four family members underwent research exome sequencing, which revealed a heterozygous nonsense mutation in ASXL3 (p.R1036X) that segregated with disease. Exome data and independent Sanger sequencing confirmed that the variant is de novo, suggesting possible germline mosaicism in one parent. The p.R1036X variant has never been observed in healthy human populations and has been previously reported as a pathogenic mutation. Truncating de novo mutations in ASXL3 cause Bainbridge–Ropers syndrome (BRPS), a developmental disorder with similarities to Bohring–Opitz syndrome. Fewer than 30 BRPS patients have been described in the literature; to our knowledge, this is the first report of the disorder in two related individuals. Our findings lend further support to intellectual disability, absent speech, autistic traits, hypotonia, and distinctive facial appearance as common emerging features of Bainbridge–Ropers syndrome.
Collapse
Affiliation(s)
- Daniel C Koboldt
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| | - Theresa Mihalic Mosher
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Benjamin J Kelly
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Emily Sites
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Dennis Bartholomew
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Kim McBride
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Richard K Wilson
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| | - Peter White
- Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
33
|
Childhood-onset generalized epilepsy in Bainbridge-Ropers syndrome. Epilepsy Res 2018; 140:166-170. [PMID: 29367179 DOI: 10.1016/j.eplepsyres.2018.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 01/30/2023]
Abstract
Bainbridge-Ropers syndrome is a genetic syndrome caused by heterozygous loss-of-function pathogenic variants in ASXL3, which encodes a protein involved in transcriptional regulation. Affected individuals have multiple abnormalities including developmental impairment, hypotonia and characteristic facial features. Seizures are reported in approximately a third of cases; however, the epileptology has not been thoroughly studied. We identified three patients with pathogenic ASXL3 variants and seizures at Austin Health and in the DECIPHER database. These three patients had novel de novo ASXL3 pathogenic variants, two with truncation variants and one with a splice site variant. All three had childhood-onset generalized epilepsy with generalized tonic-clonic seizures, with one also having atypical absence seizures. We also reviewed available clinical data on five published patients with Bainbridge-Ropers syndrome and seizures. Of the five previously published patients, three also had generalized tonic-clonic seizures, one of whom also had possible absence seizures; a fourth patient had absence seizures and possible focal seizures. EEG typically showed features consistent with generalized epilepsy including generalized spike-wave, photoparoxysmal response, and occipital intermittent rhythmic epileptiform activity. Bainbridge-Ropers syndrome is associated with childhood-onset generalized epilepsy with generalized tonic-clonic seizures and/or atypical absence seizures.
Collapse
|
34
|
Bacrot S, Mechler C, Talhi N, Martin-Coignard D, Roth P, Michot C, Ichkou A, Alibeu O, Nitschke P, Thomas S, Vekemans M, Razavi F, Boutaud L, Attie-Bitach T. Whole exome sequencing diagnoses the first fetal case of Bainbridge-Ropers syndrome presenting as pontocerebellar hypoplasia type 1. Birth Defects Res 2018; 110:538-542. [DOI: 10.1002/bdr2.1191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Séverine Bacrot
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
| | - Charlotte Mechler
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
| | - Naima Talhi
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
| | | | - Philippe Roth
- Service de Gynécologie-Obstétrique, Hôpital Necker-Enfants Malades, APHP; Paris France
| | - Caroline Michot
- Institut Imagine; INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite; Paris France
- Service de Génétique Médicale; Hôpital Necker-Enfants Malades, APHP; Paris France
| | - Amale Ichkou
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
| | | | | | - Sophie Thomas
- Institut Imagine; INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite; Paris France
| | - Michel Vekemans
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
- Institut Imagine; INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite; Paris France
| | - Férechté Razavi
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
| | - Lucile Boutaud
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
- Institut Imagine; INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite; Paris France
| | - Tania Attie-Bitach
- Unité d'Embryofœtopathologie, Service d'Histologie Embryologie Cytogénétique, Hôpital Necker-Enfants Malades; Assistance Publique Hôpitaux de Paris (APHP); Paris France
- Institut Imagine; INSERM U1163, Université Paris Descartes, Sorbonne Paris Cite; Paris France
| |
Collapse
|
35
|
Verhoeven W, Egger J, Räkers E, van Erkelens A, Pfundt R, Willemsen MH. Phenotypic characterization of an older adult male with late-onset epilepsy and a novel mutation in ASXL3 shows overlap with the associated Bainbridge-Ropers syndrome. Neuropsychiatr Dis Treat 2018; 14:867-870. [PMID: 29628764 PMCID: PMC5877499 DOI: 10.2147/ndt.s153511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The additional sex combs like 3 gene is considered to be causative for the rare Bainbridge-Ropers syndrome (BRPS), which is characterized by severe intellectual disability, neonatal hypotonia, nearly absent development of speech and language as well as several facial dysmorphisms. Apart from disruptive autistiform behaviors, sleep disturbances and epileptic phenomena may be present. Here, a 47-year-old severely intellectually disabled male is described in whom exome sequencing disclosed a novel heterozygous frameshift mutation in the ASXL3 gene leading to a premature stopcodon in the last part of the last exon. Mutations in this very end 3' of the gene have not been reported before in BRPS. The phenotypical presentation of the patient including partially therapy-resistant epilepsy starting in later adulthood shows overlap with BRPS, and it was therefore concluded that the phenotype is likely explained by the identified mutation in ASXL3.
Collapse
Affiliation(s)
- Willem Verhoeven
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, the Netherlands.,Department of Psychiatry, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jos Egger
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Emmy Räkers
- ASVZ, Centre for People with Intellectual Disabilities, Sliedrecht, the Netherlands
| | - Arjen van Erkelens
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Chinen Y, Nakamura S, Ganaha A, Hayashi S, Inazawa J, Yanagi K, Nakanishi K, Kaname T, Naritomi K. Mild prominence of the Sylvian fissure in a Bainbridge-Ropers syndrome patient with a novel frameshift variant in ASXL3. Clin Case Rep 2017; 6:330-336. [PMID: 29445472 PMCID: PMC5799615 DOI: 10.1002/ccr3.1361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/28/2022] Open
Abstract
A Japanese boy aged 7 years with Bainbridge‐Ropers syndrome (BRPS) had a prominent domed forehead without metric ridge, mild prominence of the Sylvian fissure with bitemporal hollowing, and a heterozygous de novo novel variant “p.P1010Lfs*14” in ASXL3 gene in addition to typical findings of BRPS.
Collapse
Affiliation(s)
- Yasutsugu Chinen
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Sadao Nakamura
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Akira Ganaha
- Department of Otorhinolaryngology, Head and Neck Surgery Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Shin Hayashi
- Department of Molecular Cytogenetics Medical Research Institute Tokyo Medical and Dental University Tokyo Japan.,Hard Tissue Genome Research Center Tokyo Medical and Dental University Tokyo Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics Medical Research Institute Tokyo Medical and Dental University Tokyo Japan.,Hard Tissue Genome Research Center Tokyo Medical and Dental University Tokyo Japan
| | - Kumiko Yanagi
- Department of Genome Medicine National Center for Child Health and Development Tokyo Japan
| | - Koichi Nakanishi
- Department of Pediatrics Faculty of Medicine University of the Ryukyus Nishihara Japan
| | - Tadashi Kaname
- Department of Genome Medicine National Center for Child Health and Development Tokyo Japan
| | - Kenji Naritomi
- Okinawa Nanbu Habilitation and Medical Center Naha Japan
| |
Collapse
|
37
|
Dad R, Walker S, Scherer SW, Hassan MJ, Kang SY, Minassian BA. Hyperventilation-athetosis in ASXL3 deficiency (Bainbridge-Ropers) syndrome. NEUROLOGY-GENETICS 2017; 3:e189. [PMID: 28955728 PMCID: PMC5610043 DOI: 10.1212/nxg.0000000000000189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Rubina Dad
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| | - Susan Walker
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| | - Stephen W Scherer
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| | - Muhammad Jawad Hassan
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| | - Suk Yun Kang
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| | - Berge A Minassian
- Atta-ur Rahman School of Applied Biosciences (R.D., M.J.H.), National University of Sciences and Technology (NUST), Islamabad, Pakistan; Program in Genetics and Genome Biology (R.D.) and The Centre for Applied Genomics, Genetics and Genome Biology (S.W., S.W.S.), The Hospital for Sick Children, Department of Molecular Genetics (S.W.S.), and McLaughlin Centre (S.W.S.), University of Toronto, Ontario, Canada; Department of Neurolgy (S.Y.K.), Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Gyeonggi-do, Republic of Korea; Program in Genetics and Genome Biology (B.A.M.), Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Ontario, Canada; and Departments of Pediatrics, Neurology, and Neurotherapeutics (B.A.M.), University of Texas Southwestern, Dallas
| |
Collapse
|
38
|
Giri D, Rigden D, Didi M, Peak M, McNamara P, Senniappan S. Novel compound heterozygous ASXL3 mutation causing Bainbridge-ropers like syndrome and primary IGF1 deficiency. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:8. [PMID: 28785287 PMCID: PMC5544984 DOI: 10.1186/s13633-017-0047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 01/30/2023]
Abstract
Background De novo truncating and splicing mutations in the additional sex combs-like 3 (ASXL3) gene have been implicated in the development of Bainbridge-Ropers syndrome (BRPS) characterised by severe developmental delay, feeding problems, short stature and characteristic facial features. Case presentation We describe, for the first time, a patient with severe short stature, learning difficulties, feeding difficulties and dysmorphic features with a novel compound heterozygous mutation in ASXL3.Additionally the patient also has primary insulin like growth factor-1 (IGF1) deficiency. The mutations occur in exon 11 and proximal part of exon 12 and are strongly conserved at the protein level across various species. In-silico analyses using PolyPhen-2 and SIFT predict the amino acid substitutions to be potentially deleterious to the protein function. Detailed bioinformatics analysis show that the molecular defects caused by the two compound heterozygous mutations synergistically impact on two points of the molecular interaction network of ASXL3. Conclusion We hypothesise that ASXL3 potentially has a role in transcriptional activation of IGF1 involved in signalling pathways that regulate cell proliferation and growth, which could be contributing to short stature encountered in these patients.
Collapse
Affiliation(s)
- Dinesh Giri
- Institute in the Park, Alder Hey Children's NHS Foundation Trust, University of Liverpool, Eaton Road, Liverpool, UK.,Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Daniel Rigden
- Institute of Intergrative Biology, University of Liverpool, Liverpool, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Matthew Peak
- Institute in the Park, Alder Hey Children's NHS Foundation Trust, University of Liverpool, Eaton Road, Liverpool, UK.,NIHR Alder Hey Clinical Research Facility for Experimental Medicine, Liverpool, UK
| | - Paul McNamara
- Institute in the Park, Alder Hey Children's NHS Foundation Trust, University of Liverpool, Eaton Road, Liverpool, UK
| | - Senthil Senniappan
- Institute in the Park, Alder Hey Children's NHS Foundation Trust, University of Liverpool, Eaton Road, Liverpool, UK.,Department of Paediatric Endocrinology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|