1
|
Horng JL, Lee KY, Lin LY. Sublethal effects of acidified water on sensorimotor responses and the transcriptome of zebrafish embryos. CHEMOSPHERE 2025; 370:143984. [PMID: 39710284 DOI: 10.1016/j.chemosphere.2024.143984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Acidification of freshwater due to human activities is a widespread environmental problem. Its effects on the sensorimotor responses of fish, particularly during embryonic stages, may affect population fitness. To address this, zebrafish embryos were exposed to water at pH 7, 5 and 4.5 (adjusted with HCl) for 120 h. Acidic water did not increase mortality or cause obvious morphological abnormalities but reduced the size of the inner ear organs (otic vesicle and otolith) and the eye lens. It also suppressed ion uptake (Na+, Ca2+, K+) and induced embryonic acidosis. Behavioral tests at 4 or 5 days post fertilization revealed significant sensorimotor impairments: reduced touch-evoked escape responses (TEER), decreased acoustic startle responses (ASR) and decreased cadaverine avoidance responses (CAR). There were no effects on speed, acceleration and optomotor responses (OMR). Transcriptomic analyses identified 114 differentially expressed genes (DEGs) associated with ion transport, sensorimotor functions and other physiological processes. Overall, the jeopardizing effect of freshwater acidification threatens survival, highlighting the ecological risks and its potential impacts on fish populations.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
2
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Serrano C, Lopes-Marques M, Amorim A, João Prata M, Azevedo L. A partial duplication of an X-linked gene exclusive of a primate lineage (Macaca). Gene 2023; 851:146997. [DOI: 10.1016/j.gene.2022.146997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
|
4
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted panel sequencing and whole exome sequencing for 76 Chinese families with retinitis pigmentosa. Mol Genet Genomic Med 2020; 8:e1131. [PMID: 31960602 PMCID: PMC7057118 DOI: 10.1002/mgg3.1131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to identify the gene variants and molecular etiologies in 76 unrelated Chinese families with retinitis pigmentosa (RP). METHODS In total, 76 families with syndromic or nonsyndromic RP, diagnosed on the basis of clinical manifestations, were recruited for this study. Genomic DNA samples from probands were analyzed by targeted panels or whole exome sequencing. Bioinformatics analysis, Sanger sequencing, and available family member segregation were used to validate sequencing data and confirm the identities of disease-causing genes. RESULTS The participants enrolled in the study included 62 families that exhibited nonsyndromic RP, 13 that exhibited Usher syndrome, and one that exhibited Bardet-Biedl syndrome. We found that 43 families (56.6%) had disease-causing variants in 15 genes, including RHO, PRPF31, USH2A, CLRN1, BBS2, CYP4V2, EYS, RPE65, CNGA1, CNGB1, PDE6B, MERTK, RP1, RP2, and RPGR; moreover, 12 families (15.8%) had only one heterozygous variant in seven autosomal recessive RP genes, including USH2A, EYS, CLRN1, CERKL, RP1, CRB1, and SLC7A14. We did not detect any variants in the remaining 21 families (27.6%). We also identified 67 potential pathogenic gene variants, of which 24 were novel. CONCLUSION The gene variants identified in this study expand the variant frequency and spectrum of RP genes; moreover, the identification of these variants supplies foundational clues for future RP diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xin Huang
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yiqiao Xing
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Yin Shen
- Eye CenterRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
5
|
Siggs OM, Souzeau E, Pasutto F, Dubowsky A, Smith JEH, Taranath D, Pater J, Rait JL, Narita A, Mauri L, Del Longo A, Reis A, Chappell A, Kearns LS, Staffieri SE, Elder JE, Ruddle JB, Hewitt AW, Burdon KP, Mackey DA, Craig JE. Prevalence of FOXC1 Variants in Individuals With a Suspected Diagnosis of Primary Congenital Glaucoma. JAMA Ophthalmol 2020; 137:348-355. [PMID: 30653210 DOI: 10.1001/jamaophthalmol.2018.5646] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Both primary and secondary forms of childhood glaucoma have many distinct causative mechanisms, and in many cases a cause is not immediately clear. The broad phenotypic spectrum of secondary glaucoma, particularly in individuals with variants in FOXC1 or PITX2 genes associated with Axenfeld-Rieger syndrome, makes it more difficult to diagnose patients with milder phenotypes. These cases are occasionally classified and managed as primary congenital glaucoma. Objective To investigate the prevalence of FOXC1 variants in participants with a suspected diagnosis of primary congenital glaucoma. Design, Setting, and Participants Australian and Italian cohorts were recruited from January 1, 2007, through March 1, 2016. Australian individuals were recruited through the Australian and New Zealand Registry of Advanced Glaucoma and Italian individuals through the Genetic and Ophthalmology Unit of l'Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda in Milan, Italy. We performed exome sequencing, in combination with Sanger sequencing and multiplex ligation-dependent probe amplification, to detect variants of FOXC1 in individuals with a suspected diagnosis of primary congenital glaucoma established by their treating specialist. Data analysis was completed from June 2015 to November 2017. Main Outcome and Measures Identification of single-nucleotide and copy number variants in FOXC1, along with phenotypic characterization of the individuals who carried them. Results A total of 131 individuals with a suspected diagnosis of primary congenital glaucoma were included. The mean (SD) age at recruitment in the Australian cohort was 24.3 (18.1) years; 37 of 84 Australian participants (44.0%) were female, and 71 of 84 (84.5%) were of European ancestry. The mean (SD) age at recruitment was 22.5 (18.4) years in the Italian cohort; 21 of 47 Italian participants (44.7%) were female, and 45 of 47 (95.7%) were of European ancestry. We observed rare, predicted deleterious FOXC1 variants in 8 of 131 participants (6.1%), or 8 of 166 participants (4.8%) when including those explained by variants in CYP1B1. On reexamination or reinvestigation, all of these individuals had at least 1 detectable ocular and/or systemic feature associated with Axenfeld-Rieger syndrome. Conclusions and Relevance These data highlight the genetic and phenotypic heterogeneity of childhood glaucoma and support the use of gene panels incorporating FOXC1 as a diagnostic aid, especially because clinical features of Axenfeld-Rieger syndrome can be subtle. Further replication of these results will be needed to support the future use of such panels.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - James E H Smith
- Department of Ophthalmology, Children's Hospital at Westmead, Sydney, Australia.,Discipline of Ophthalmology, University of Sydney, Sydney, Australia.,Department of Ophthalmology, Macquarie University, Sydney, Australia
| | - Deepa Taranath
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - John Pater
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Julian L Rait
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | - Lucia Mauri
- Medical Genetics Unit, Department of Laboratory Medicine, l'Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandra Del Longo
- Pediatric Ophthalmology Unit, l'Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Angela Chappell
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | - James E Elder
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jonathan B Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Ophthalmology and Visual Science and Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, Australia
| |
Collapse
|
6
|
Siggs OM, Souzeau E, Taranath DA, Dubowsky A, Chappell A, Zhou T, Javadiyan S, Nicholl J, Kearns LS, Staffieri SE, Narita A, Smith JEH, Pater J, Hewitt AW, Ruddle JB, Elder JE, Mackey DA, Burdon KP, Craig JE. Biallelic CPAMD8 Variants Are a Frequent Cause of Childhood and Juvenile Open-Angle Glaucoma. Ophthalmology 2020; 127:758-766. [PMID: 32085876 DOI: 10.1016/j.ophtha.2019.12.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Developmental abnormalities of the ocular anterior segment in some cases can lead to ocular hypertension and glaucoma. CPAMD8 is a gene of unknown function recently associated with ocular anterior segment dysgenesis, myopia, and ectopia lentis. We sought to assess the contribution of biallelic CPAMD8 variants to childhood and juvenile open-angle glaucoma. DESIGN Retrospective, multicenter case series. PARTICIPANTS A total of 268 probands and their relatives with a diagnosis of childhood or juvenile open-angle glaucoma. PURPOSE Developmental abnormalities of the ocular anterior segment in some cases can lead to ocular hypertension and glaucoma. CPAMD8 is a gene of unknown function recently associated with ocular anterior segment dysgenesis, myopia, and ectopia lentis. We sought to assess the contribution of biallelic CPAMD8 variants to childhood and juvenile open-angle glaucoma. METHODS Patients underwent a comprehensive ophthalmic assessment, with DNA from patients and their relatives subjected to genome, exome, or capillary sequencing. CPAMD8 RNA expression analysis was performed on tissues dissected from cadaveric human eyes. MAIN OUTCOME MEASURES Diagnostic yield within a cohort of childhood and juvenile open-angle glaucoma, prevalence and risk of ophthalmic phenotypes, and relative expression of CPAMD8 in the human eye. RESULTS We identified rare (allele frequency < 4×10-5) biallelic CPAMD8 variants in 5.7% (5/88) of probands with childhood glaucoma and 2.1% (2/96) of probands with juvenile open-angle glaucoma. When including family members, we identified 11 individuals with biallelic variants in CPAMD8 from 7 unrelated families. Nine of these individuals were diagnosed with glaucoma (9/11, 81.8%), with a mean age at diagnosis of 9.22±14.89 years, and all individuals with glaucoma required 1 or more incisional procedures to control high intraocular pressure. Iris abnormalities were observed in 9 of 11 individuals, cataract was observed in 8 of 11 individuals (72.7%), and retinal detachment was observed in 3 of 11 individuals (27.3%). CPAMD8 expression was highest in neural crest-derived tissues of the adult anterior segment, suggesting that CPAMD8 variation may cause malformation or obstruction of key drainage structures. CONCLUSIONS Biallelic CPAMD8 variation was associated with a highly heterogeneous phenotype and in our cohorts was the second most common inherited cause of childhood glaucoma after CYP1B1 and juvenile open-angle glaucoma after MYOC. CPAMD8 sequencing should be considered in the investigation of both childhood and juvenile open-angle glaucoma, particularly when associated with iris abnormalities, cataract, or retinal detachment.
Collapse
Affiliation(s)
- Owen M Siggs
- Department of Ophthalmology, Flinders University, Adelaide, Australia.
| | | | - Deepa A Taranath
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | | | - Angela Chappell
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Shari Javadiyan
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | | | - Lisa S Kearns
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Ophthalmology, University of Melbourne, Melbourne, Australia; Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | | | - James E H Smith
- Department of Ophthalmology, Children's Hospital at Westmead, Sydney, Australia; Discipline of Ophthalmology, University of Sydney, Sydney, Australia; Department of Ophthalmology, Macquarie University, Sydney, Australia
| | - John Pater
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Ophthalmology, University of Melbourne, Melbourne, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jonathan B Ruddle
- Department of Ophthalmology, University of Melbourne, Melbourne, Australia; Department of Ophthalmology, Royal Children's Hospital, Melbourne, Australia
| | - James E Elder
- Department of Ophthalmology, University of Melbourne, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia; Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, Flinders University, Adelaide, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, Australia
| |
Collapse
|
7
|
Dan H, Huang X, Xing Y, Shen Y. Application of targeted exome and whole-exome sequencing for Chinese families with Stargardt disease. Ann Hum Genet 2019; 84:177-184. [PMID: 31674661 DOI: 10.1111/ahg.12361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate pathogenic variants and molecular etiologies of Stargardt disease (STGD) in a cohort of Chinese families. MATERIALS AND METHODS A cohort of 12 unrelated STGD families diagnosed on the basis of clinical manifestations underwent analysis by targeted exome or whole-exome sequencing. Bioinformatics analysis, Sanger sequencing, and cosegregation analysis of available family members were used to validate sequencing data and confirm the presence of disease-causing genes. RESULTS Using targeted exome and whole-exome sequencing, we found that eight families had disease-causing variants in the ABCA4 gene, one family had only one heterozygous variant in the ABCA4 gene, and the remaining three families have not been identified with any disease-causing variants for STGD. We identified 15 variants in the ABCA4 gene; of these, five variants have not been previously described for STGD. CONCLUSION The findings in this study expand the data regarding the frequency and spectrum of variants in the ABCA4 gene, thus potentially enriching our understanding of the molecular basis of STGD. Moreover, they constitute clues for future STGD diagnosis and therapy.
Collapse
Affiliation(s)
- Handong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Jin A, Zhang Y, Xiao D, Xiang M, Jin K, Zeng M. A Novel Mutation p.S93R in CRYBB1 Associated with Dominant Congenital Cataract and Microphthalmia. Curr Eye Res 2019; 45:483-489. [PMID: 31566446 DOI: 10.1080/02713683.2019.1675176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To identify the pathogenetic mutations in a four-generation Chinese family with dominant congenital cataracts and microphthalmia.Methods: A four-generation Chinese family with dominant congenital cataracts were recruited. Genomic DNAs were collected from their peripheral blood leukocytes and subjected to whole exome sequencing. The genetic mutations were identified by bioinformatic analyses and verified by Sanger sequencing.Results: Whole exome sequencing revealed a c.279C>G point mutation in the CRYBB1 gene which was further verified by Sanger sequencing. The nucleotide replacement results in a novel mutation p.S93R in a conserved residue of βB1 crystallin which is predicted to disrupt normal βB1 structure and function.Conclusions: We identified a novel missense mutation p.S93R in CRYBB1 in a Chinese family with autosomal dominant congenital cataracts and microphthalmia. This serine residue is extremely conserved evolutionarily in more than 50 βγ-crystallins of many species. These data will be very helpful to further understand the structural and functional features of crystallins.
Collapse
Affiliation(s)
- Aixia Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingbing Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Hainan Eye Hospital, Hainan Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, China
| |
Collapse
|
9
|
Siggs OM, Russell A, Singh-Grewal D, Wong M, Chan P, Craig ME, O'Loughlin T, Stormon M, Goodnow CC. Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Front Immunol 2019; 10:1544. [PMID: 31396201 PMCID: PMC6664875 DOI: 10.3389/fimmu.2019.01544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/20/2019] [Indexed: 01/05/2023] Open
Abstract
One of the primary targets of immune checkpoint inhibition is the negative immune regulatory molecule CTLA-4. Immune-related adverse events are commonly observed following CTLA-4 inhibition in melanoma treatment, and a spectrum of these conditions are also observed in individuals with germline haploinsufficiency of CTLA4. Here we describe a heterozygous de novo missense variant of CTLA4 in a young girl with childhood-onset autoimmune hepatitis and polyarthritis, the latter responding to treatment with CTLA-4-Ig fusion protein. This variant lay within the highly conserved MYPPPY motif of CTLA-4: a critical structural determinant of ligand binding, which is also bound by the anti-CTLA-4 monoclonal antibody ipilimumab. Within the spectrum of CTLA4 variants reported, missense variants in the MYPPPY motif were overrepresented when compared to variants within a control population, highlighting the physiological importance of this motif in both the genetic and pharmacological regulation of autoimmunity and anti-tumor immunity.
Collapse
Affiliation(s)
- Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Davinder Singh-Grewal
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Pearl Chan
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Maria E Craig
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Ted O'Loughlin
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Stormon
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Siggs OM, Russell A, Singh-Grewal D, Wong M, Chan P, Craig ME, O'Loughlin T, Stormon M, Goodnow CC. Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Front Immunol 2019. [PMID: 31396201 DOI: 10.3389/fimmu.2019.01544/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
One of the primary targets of immune checkpoint inhibition is the negative immune regulatory molecule CTLA-4. Immune-related adverse events are commonly observed following CTLA-4 inhibition in melanoma treatment, and a spectrum of these conditions are also observed in individuals with germline haploinsufficiency of CTLA4. Here we describe a heterozygous de novo missense variant of CTLA4 in a young girl with childhood-onset autoimmune hepatitis and polyarthritis, the latter responding to treatment with CTLA-4-Ig fusion protein. This variant lay within the highly conserved MYPPPY motif of CTLA-4: a critical structural determinant of ligand binding, which is also bound by the anti-CTLA-4 monoclonal antibody ipilimumab. Within the spectrum of CTLA4 variants reported, missense variants in the MYPPPY motif were overrepresented when compared to variants within a control population, highlighting the physiological importance of this motif in both the genetic and pharmacological regulation of autoimmunity and anti-tumor immunity.
Collapse
Affiliation(s)
- Owen M Siggs
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Amanda Russell
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Davinder Singh-Grewal
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Pearl Chan
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Maria E Craig
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Ted O'Loughlin
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Stormon
- The Children's Hospitals Network, The University of New South Wales, Sydney, NSW, Australia
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Zhao Y, Zheng D, Cvekl A. A comprehensive spatial-temporal transcriptomic analysis of differentiating nascent mouse lens epithelial and fiber cells. Exp Eye Res 2018; 175:56-72. [PMID: 29883638 PMCID: PMC6167154 DOI: 10.1016/j.exer.2018.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Elucidation of both the molecular composition and organization of the ocular lens is a prerequisite to understand its development, function, pathology, regenerative capacity, as well as to model lens development and disease using in vitro differentiation of pluripotent stem cells. Lens is comprised of the anterior lens epithelium and posterior lens fibers, which form the bulk of the lens. Lens fibers differentiate from lens epithelial cells through cell cycle exit-coupled differentiation that includes cellular elongation, accumulation of crystallins, cytoskeleton and membrane remodeling, and degradation of organelles within the central region of the lens. Here, we profiled spatiotemporal expression dynamics of both mRNAs and non-coding RNAs from microdissected mouse nascent lens epithelium and lens fibers at four developmental time points (embryonic [E] day 14.5, E16.5, E18.5, and P0.5) by RNA-seq. During this critical time window, multiple complex biosynthetic and catabolic processes generate the molecular and structural foundation for lens transparency. Throughout this developmental window, 3544 and 3518 genes show consistently and significantly greater expression in the nascent lens epithelium and fibers, respectively. Comprehensive data analysis confirmed major roles of FGF-MAPK, Wnt/β-catenin, PI3K/AKT, TGF-β, and BMP signaling pathways and revealed significant novel contributions of mTOR, EIF2, EIF4, and p70S6K signaling in lens formation. Unbiased motif analysis within promoter regions of these genes with consistent expression changes between epithelium and fiber cells revealed an enrichment for both established (e.g. E2Fs, Etv5, Hsf4, c-Maf, MafG, MafK, N-Myc, and Pax6) transcription factors and a number of novel regulators of lens formation, such as Arntl2, Dmrta2, Stat5a, Stat5b, and Tulp3. In conclusion, the present RNA-seq data serves as a comprehensive reference resource for deciphering molecular principles of normal mammalian lens differentiation, mapping a full spectrum of signaling pathways and DNA-binding transcription factors operating in both lens compartments, and predicting novel pathways required to establish lens transparency.
Collapse
Affiliation(s)
- Yilin Zhao
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Ales Cvekl
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Javadiyan S, Lucas SEM, Wangmo D, Ngy M, Edussuriya K, Craig JE, Rudkin A, Casson R, Selva D, Sharma S, Lower KM, Meucke J, Burdon KP. Identification of novel mutations causing pediatric cataract in Bhutan, Cambodia, and Sri Lanka. Mol Genet Genomic Med 2018; 6:555-564. [PMID: 29770612 PMCID: PMC6081222 DOI: 10.1002/mgg3.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pediatric cataract is an important cause of blindness and visual impairment in children. A large proportion of pediatric cataracts are inherited, and many genes have been described for this heterogeneous Mendelian disease. Surveys of schools for the blind in Bhutan, Cambodia, and Sri Lanka have identified many children with this condition and we aimed to identify the genetic causes of inherited cataract in these populations. METHODS We screened, in parallel, 51 causative genes for inherited cataracts in 33 probands by Ampliseq enrichment and sequencing on an Ion Torrent PGM. Rare novel protein coding variants were assessed for segregation in family members, where possible, by Sanger sequencing. RESULTS We identified 24 rare (frequency <1% in public databases) or novel protein coding variants in 12 probands and confirmed segregation of variants with disease in the extended family where possible. Of these, six are predicted to be the cause of disease in the patient, with four other variants also highly likely to be pathogenic. CONCLUSION This study found that 20%-30% of patients in these countries have a mutation in a known cataract causing gene, which is considerably lower than the 60%-70% reported in Caucasian cohorts. This suggests that additional cataract genes remain to be discovered in this cohort of Asian pediatric cataract patients.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
| | - Sionne E. M. Lucas
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTas.Australia
| | - Dechen Wangmo
- Department of OphthalmologyJDWNR HospitalMinistry of HealthThimphuBhutan
| | - Meng Ngy
- National Program for Eye HealthPhnom PenhCambodia
| | | | - Jamie E. Craig
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
| | - Adam Rudkin
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
- South Australian Institute for OphthalmologyUniversity of AdelaideAdelaideSAAustralia
- Sight For AllAdelaideSAAustralia
| | - Robert Casson
- South Australian Institute for OphthalmologyUniversity of AdelaideAdelaideSAAustralia
- Sight For AllAdelaideSAAustralia
| | - Dinesh Selva
- South Australian Institute for OphthalmologyUniversity of AdelaideAdelaideSAAustralia
- Sight For AllAdelaideSAAustralia
| | - Shiwani Sharma
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
| | - Karen M. Lower
- Department of Haematology and Genetic PathologySchool of MedicineFlinders UniversityAdelaideSAAustralia
| | - James Meucke
- South Australian Institute for OphthalmologyUniversity of AdelaideAdelaideSAAustralia
- Sight For AllAdelaideSAAustralia
| | - Kathryn P. Burdon
- Department of OphthalmologySchool of MedicineFlinders UniversityAdelaideSAAustralia
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTas.Australia
| |
Collapse
|
13
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Mackey DA, Staffieri SE, Elder JE, Taranath D, Straga T, Black J, Pater J, Casey T, Hewitt AW, Burdon KP. High-Throughput Genetic Screening of 51 Pediatric Cataract Genes Identifies Causative Mutations in Inherited Pediatric Cataract in South Eastern Australia. G3 (BETHESDA, MD.) 2017; 7:3257-3268. [PMID: 28839118 PMCID: PMC5633377 DOI: 10.1534/g3.117.300109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/15/2017] [Indexed: 01/09/2023]
Abstract
Pediatric cataract is a leading cause of childhood blindness. This study aimed to determine the genetic cause of pediatric cataract in Australian families by screening known disease-associated genes using massively parallel sequencing technology. We sequenced 51 previously reported pediatric cataract genes in 33 affected individuals with a family history (cases with previously known or published mutations were excluded) using the Ion Torrent Personal Genome Machine. Variants were prioritized for validation if they were predicted to alter the protein sequence and were absent or rare with minor allele frequency <1% in public databases. Confirmed mutations were assessed for segregation with the phenotype in all available family members. All identified novel or previously reported cataract-causing mutations were screened in 326 unrelated Australian controls. We detected 11 novel mutations in GJA3, GJA8, CRYAA, CRYBB2, CRYGS, CRYGA, GCNT2, CRYGA, and MIP; and three previously reported cataract-causing mutations in GJA8, CRYAA, and CRYBB2 The most commonly mutated genes were those coding for gap junctions and crystallin proteins. Including previous reports of pediatric cataract-associated mutations in our Australian cohort, known genes account for >60% of familial pediatric cataract in Australia, indicating that still more causative genes remain to be identified.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia 6009, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
| | - Sandra E Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - James E Elder
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Department of Ophthalmology, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Deepa Taranath
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
| | - Tania Straga
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Joanna Black
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | - Alex W Hewitt
- Department of Surgery, University of Melbourne, Victoria 3010, Australia
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
- Department of Paediatrics, University of Melbourne, Victoria 3010, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders University, Adelaide, South Australia 5042, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|