1
|
Carroll SH, Schafer S, Richman AS, Tsay L, Wang P, Ahsan MU, Wang K, Liao EC. Genetic requirement for Esrp1/2 in vertebrate pituitary morphogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.02.25325077. [PMID: 40236426 PMCID: PMC11998823 DOI: 10.1101/2025.04.02.25325077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The pituitary gland produces several hormones that regulate growth, metabolism, stress response, reproduction, and homeostasis. Congenital hypopituitarism is a deficiency in one or more pituitary hormones and encompasses a spectrum of clinical conditions. The pituitary has a complex embryonic origin with the oral ectoderm contributing the anterior lobe, and the neural ectoderm generating the posterior lobe. Pituitary abnormalities and growth deficiencies are associated with cleft palate however the developmental genetic connection between pituitary and orofacial cleft malformations remains to be determined. The epithelial RNA splicing regulators Esrp1 and Esrp2 are required for orofacial development in zebrafish, mice, and humans, and loss of function of these genes results in a cleft palate. Here we present a detailed developmental analysis of the genetic requirement for Esrp1/2 in pituitary morphogenesis in mouse and zebrafish. Further, we describe a patient with cleft palate and hypopituitarism that harbors a nucleotide variant in the RNA binding domain of ESRP2. The discovery of this key function for Esrp1/2 in pituitary formation has significant fundamental and clinical implications for understanding congenital hypopituitarism and craniofacial anomalies.
Collapse
Affiliation(s)
- Shannon H. Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ariella S. Richman
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Tsay
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Wang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mian Umair Ahsan
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric C. Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| |
Collapse
|
2
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis promotes the postnatal onset of liver polyploidization and maturation. Genes Dev 2025; 39:325-347. [PMID: 39794125 PMCID: PMC11874994 DOI: 10.1101/gad.352129.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intracellular and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of epithelial splicing regulatory protein 2 (ESRP2) stimulates processing of liver-specific microRNA (miR-122) to facilitate polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq data sets, we delineated an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mouse models with miR-122 rescue experiments, we demonstrated that timed activation of ESRP2 augments the miR-122-driven program of cytokinesis failure, ensuring the proper onset and extent of hepatocyte polyploidization.
Collapse
Affiliation(s)
- Sushant Bangru
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jackie Chen
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nicholas Baker
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jessica M Derham
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| | - Sandip Chorghade
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Frances Alencastro
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Andrew W Duncan
- Department of Pathology, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA;
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
- Chan Zuckerberg Biohub, Chicago, Illinois 60642, USA
| |
Collapse
|
3
|
Wang J, Zhang Y, Gao J, Feng G, Liu C, Li X, Li P, Liu Z, Lu F, Wang L, Li W, Zhou Q, Liu Y. Alternative splicing of CARM1 regulated by LincGET-guided paraspeckles biases the first cell fate in mammalian early embryos. Nat Struct Mol Biol 2024; 31:1341-1354. [PMID: 38658621 PMCID: PMC11402786 DOI: 10.1038/s41594-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The heterogeneity of CARM1 controls first cell fate bias during early mouse development. However, how this heterogeneity is established is unknown. Here, we show that Carm1 mRNA is of a variety of specific exon-skipping splicing (ESS) isoforms in mouse two-cell to four-cell embryos that contribute to CARM1 heterogeneity. Disruption of paraspeckles promotes the ESS of Carm1 precursor mRNAs (pre-mRNAs). LincGET, but not Neat1, is required for paraspeckle assembly and inhibits the ESS of Carm1 pre-mRNAs in mouse two-cell to four-cell embryos. We further find that LincGET recruits paraspeckles to the Carm1 gene locus through HNRNPU. Interestingly, PCBP1 binds the Carm1 pre-mRNAs and promotes its ESS in the absence of LincGET. Finally, we find that the ESS seen in mouse two-cell to four-cell embryos decreases CARM1 protein levels and leads to trophectoderm fate bias. Our findings demonstrate that alternative splicing of CARM1 has an important role in first cell fate determination.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaze Gao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xueke Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Li
- College of Life Science, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, China.
| |
Collapse
|
4
|
Bangru S, Chen J, Baker N, Das D, Chembazhi UV, Derham JM, Chorghade S, Arif W, Alencastro F, Duncan AW, Carstens RP, Kalsotra A. ESRP2-microRNA-122 axis directs the postnatal onset of liver polyploidization and maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602336. [PMID: 39026848 PMCID: PMC11257421 DOI: 10.1101/2024.07.06.602336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hepatocyte polyploidy and maturity are critical to acquiring specialized liver functions. Multiple intra- and extracellular factors influence ploidy, but how they cooperate temporally to steer liver polyploidization and maturation or how post-transcriptional mechanisms integrate into these paradigms is unknown. Here, we identified an important regulatory hierarchy in which postnatal activation of Epithelial-Splicing-Regulatory-Protein-2 (ESRP2) stimulates biogenesis of liver-specific microRNA (miR-122), thereby facilitating polyploidization, maturation, and functional competence of hepatocytes. By determining transcriptome-wide protein-RNA interactions in vivo and integrating them with single-cell and bulk hepatocyte RNA-seq datasets, we delineate an ESRP2-driven RNA processing program that drives sequential replacement of fetal-to-adult transcript isoforms. Specifically, ESRP2 binds the primary miR-122 host gene transcript to promote its processing/biogenesis. Combining constitutive and inducible ESRP2 gain- and loss-of-function mice models with miR-122 rescue experiments, we demonstrate that timed activation of ESRP2 augments miR-122-driven program of cytokinesis failure, ensuring proper onset and extent of hepatocyte polyploidization.
Collapse
|
5
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
6
|
Friedl P, Zegers M. A collective strategy to promote the dissemination of single cancer cells. J Cell Biol 2024; 223:e202405014. [PMID: 38717454 PMCID: PMC11080643 DOI: 10.1083/jcb.202405014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
The transition from collective to single-cell invasion in metastatic tumors has been regarded as the consequence of oncogenic drivers in concert with extracellular triggers received from the tumor microenvironment. In this issue, Yoon and colleagues (https://doi.org/10.1083/jcb.202308080) have identified an epigenetic program by which collective niches release laminin-332 and thereby cause the detachment and invasion of fully individualized tumor cells.
Collapse
Affiliation(s)
- Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Mirjam Zegers
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
7
|
Rosemann J, Pyko J, Jacob R, Macho J, Kappler M, Eckert AW, Haemmerle M, Gutschner T. NANOS1 restricts oral cancer cell motility and TGF-ß signaling. Eur J Cell Biol 2024; 103:151400. [PMID: 38401491 DOI: 10.1016/j.ejcb.2024.151400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent type of cancer of the head and neck area accounting for approx. 377,000 new cancer cases every year. The epithelial-to-mesenchymal transition (EMT) program plays an important role in OSCC progression and metastasis therefore contributing to a poor prognosis in patients with advanced disease. Transforming growth factor beta (TGF-ß) is a powerful inducer of EMT thereby increasing cancer cell aggressiveness. Here, we aimed at identifying RNA-binding proteins (RBPs) that affect TGF-ß-induced EMT. To this end we treated oral cancer cells with TGF-ß and identified a total of 643 significantly deregulated protein-coding genes in response to TGF-ß. Of note, 19 genes encoded RBPs with NANOS1 being the most downregulated RBP. Subsequent cellular studies demonstrated a strong inhibitory effect of NANOS1 on migration and invasion of SAS oral cancer cells. Further mechanistic studies revealed an interaction of NANOS1 with the TGF-ß receptor 1 (TGFBR1) mRNA, leading to increased decay of this transcript and a reduced TGFBR1 protein expression, thereby preventing downstream TGF-ß/SMAD signaling. In summary, we identified NANOS1 as negative regulator of TGF-ß signaling in oral cancer cells.
Collapse
Affiliation(s)
- Julia Rosemann
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Jonas Pyko
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Roland Jacob
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Jana Macho
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Alexander W Eckert
- Department of Cranio Maxillofacial Surgery, Paracelsus Medical University, Nuremberg 90471, Germany
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for RNA biology and pathogenesis, Martin Luther University Halle-Wittenberg, Halle 06120, Germany.
| |
Collapse
|
8
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Adesanya O, Das D, Kalsotra A. Emerging roles of RNA-binding proteins in fatty liver disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1840. [PMID: 38613185 PMCID: PMC11018357 DOI: 10.1002/wrna.1840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
A rampant and urgent global health issue of the 21st century is the emergence and progression of fatty liver disease (FLD), including alcoholic fatty liver disease and the more heterogenous metabolism-associated (or non-alcoholic) fatty liver disease (MAFLD/NAFLD) phenotypes. These conditions manifest as disease spectra, progressing from benign hepatic steatosis to symptomatic steatohepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma. With numerous intricately regulated molecular pathways implicated in its pathophysiology, recent data have emphasized the critical roles of RNA-binding proteins (RBPs) in the onset and development of FLD. They regulate gene transcription and post-transcriptional processes, including pre-mRNA splicing, capping, and polyadenylation, as well as mature mRNA transport, stability, and translation. RBP dysfunction at every point along the mRNA life cycle has been associated with altered lipid metabolism and cellular stress response, resulting in hepatic inflammation and fibrosis. Here, we discuss the current understanding of the role of RBPs in the post-transcriptional processes associated with FLD and highlight the possible and emerging therapeutic strategies leveraging RBP function for FLD treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
| | - Diptatanu Das
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Liu D, Dredge BK, Bert AG, Pillman KA, Toubia J, Guo W, Dyakov BA, Migault MM, Conn VM, Conn S, Gregory PA, Gingras AC, Patel D, Wu B, Goodall G. ESRP1 controls biogenesis and function of a large abundant multiexon circRNA. Nucleic Acids Res 2024; 52:1387-1403. [PMID: 38015468 PMCID: PMC10853802 DOI: 10.1093/nar/gkad1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
While the majority of circRNAs are formed from infrequent back-splicing of exons from protein coding genes, some can be produced at quite high level and in a regulated manner. We describe the regulation, biogenesis and function of circDOCK1(2-27), a large, abundant circular RNA that is highly regulated during epithelial-mesenchymal transition (EMT) and whose formation depends on the epithelial splicing regulator ESRP1. CircDOCK1(2-27) synthesis in epithelial cells represses cell motility both by diverting transcripts from DOCK1 mRNA production to circRNA formation and by direct inhibition of migration by the circRNA. HITS-CLIP analysis and CRISPR-mediated deletions indicate ESRP1 controls circDOCK1(2-27) biosynthesis by binding a GGU-containing repeat region in intron 1 and detaining its splicing until Pol II completes its 157 kb journey to exon 27. Proximity-dependent biotinylation (BioID) assay suggests ESRP1 may modify the RNP landscape of intron 1 in a way that disfavours communication of exon 1 with exon 2, rather than physically bridging exon 2 to exon 27. The X-ray crystal structure of RNA-bound ESRP1 qRRM2 domain reveals it binds to GGU motifs, with the guanines embedded in clamp-like aromatic pockets in the protein.
Collapse
Affiliation(s)
- Dawei Liu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melodie M Migault
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Simon J Conn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dinshaw Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, RNA Biomedical Institute, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
den Hollander P, Maddela JJ, Mani SA. Spatial and Temporal Relationship between Epithelial-Mesenchymal Transition (EMT) and Stem Cells in Cancer. Clin Chem 2024; 70:190-205. [PMID: 38175600 PMCID: PMC11246550 DOI: 10.1093/clinchem/hvad197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.
Collapse
Affiliation(s)
- Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
12
|
Kwon MJ. Role of epithelial splicing regulatory protein 1 in cancer progression. Cancer Cell Int 2023; 23:331. [PMID: 38110955 PMCID: PMC10729575 DOI: 10.1186/s12935-023-03180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
As aberrant alternative splicing by either dysregulation or mutations of splicing factors contributes to cancer initiation and progression, splicing factors are emerging as potential therapeutic targets for cancer therapy. Therefore, pharmacological modulators targeting splicing factors have been under development. Epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-specific splicing factor, whose downregulation is associated with epithelial-mesenchymal transition (EMT) by regulating alternative splicing of multiple genes, such as CD44, CTNND1, ENAH, and FGFR2. Consistent with the downregulation of ESRP1 during EMT, it has been initially revealed that high ESRP1 expression is associated with favorable prognosis and ESRP1 plays a tumor-suppressive role in cancer progression. However, ESRP1 has been found to promote cancer progression in some cancers, such as breast and ovarian cancers, indicating that it plays a dual role in cancer progression depending on the type of cancer. Furthermore, recent studies have reported that ESRP1 affects tumor growth by regulating the metabolism of tumor cells or immune cell infiltration in the tumor microenvironment, suggesting the novel roles of ESRP1 in addition to EMT. ESRP1 expression was also associated with response to anticancer drugs. This review describes current understanding of the roles and mechanisms of ESRP1 in cancer progression, and further discusses the emerging novel roles of ESRP1 in cancer and recent attempts to target splicing factors for cancer therapy.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
13
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
14
|
Wu XF, Liu Y, Zhan JS, Huang QL, Li WY. A novel splice variant of goat CPT1a gene and their diverse mRNA expression profiles. Anim Biotechnol 2023; 34:2571-2581. [PMID: 36047452 DOI: 10.1080/10495398.2022.2106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The Alternative splicing (AS) of Carnitine palmitoyltransferase 1a (CPT1a) and their expression profiles had never been illuminated in goats until now. Herein, a novel splice transcript in the CPT1a gene that is predicted to result in the skipping of exons 6-19 (CPT1a-sv1) has been isolated in addition to the full-length transcript in goats. The result of RT-PCR showed that CPT1a-sv1 is 606 bp in length and consists of 6 exons. A novel exon 6 was consisted of partial exon 5 and partial exon 19, compared to that in CPT1a. RT-qPCR analysis showed that the expression patterns of CPT1a and CPT1a-sv1 are spatially different. In both kid and adult goats, the CPT1a transcript is strongly expressed in the liver, spleen, lung, kidney, and brain tissues. However, CPT1a-sv1 has a strong tissue-specific expression pattern, with moderate RNA levels in the liver and brain of kids, while highly expressed in the liver and minimally expressed in the brain of adults. We observed two transcripts to be involved in brain development. These findings improve our understanding of the function of the CPT1a gene in goats and provide information on the molecular mechanism of AS events.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yuan Liu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jin-Shun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Qin-Lou Huang
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wen-Yang Li
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Li L, Zheng J, Oltean S. Regulation of Epithelial-Mesenchymal Transitions by Alternative Splicing: Potential New Area for Cancer Therapeutics. Genes (Basel) 2023; 14:2001. [PMID: 38002944 PMCID: PMC10671305 DOI: 10.3390/genes14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complicated biological process in which cells with epithelial phenotype are transformed into mesenchymal cells with loss of cell polarity and cell-cell adhesion and gain of the ability to migrate. EMT and the reverse mesenchymal-epithelial transitions (METs) are present during cancer progression and metastasis. Using the dynamic switch between EMT and MET, tumour cells can migrate to neighbouring organs or metastasize in the distance and develop resistance to traditional chemotherapy and targeted drug treatments. Growing evidence shows that reversing or inhibiting EMT may be an advantageous approach for suppressing the migration of tumour cells or distant metastasis. Among different levels of modulation of EMT, alternative splicing (AS) plays an important role. An in-depth understanding of the role of AS and EMT in cancer is not only helpful to better understand the occurrence and regulation of EMT in cancer progression, but also may provide new therapeutic strategies. This review will present and discuss various splice variants and splicing factors that have been shown to play a crucial role in EMT.
Collapse
Affiliation(s)
| | | | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter EX1 2LU, UK; (L.L.)
| |
Collapse
|
17
|
Trono P, Tocci A, Palermo B, Di Carlo A, D'Ambrosio L, D'Andrea D, Di Modugno F, De Nicola F, Goeman F, Corleone G, Warren S, Paolini F, Panetta M, Sperduti I, Baldari S, Visca P, Carpano S, Cappuzzo F, Russo V, Tripodo C, Zucali P, Gregorc V, Marchesi F, Nistico P. hMENA isoforms regulate cancer intrinsic type I IFN signaling and extrinsic mechanisms of resistance to immune checkpoint blockade in NSCLC. J Immunother Cancer 2023; 11:e006913. [PMID: 37612043 PMCID: PMC10450042 DOI: 10.1136/jitc-2023-006913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation. METHODS Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort. RESULTS Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNβ via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy. CONCLUSIONS Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC.
Collapse
Affiliation(s)
- Paola Trono
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Annalisa Tocci
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Belinda Palermo
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Carlo
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo D'Ambrosio
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniel D'Andrea
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Francesca Di Modugno
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Frauke Goeman
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sarah Warren
- NanoString Technologies Inc, Seattle, Washington, USA
| | - Francesca Paolini
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariangela Panetta
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Biostatistics Unit, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Baldari
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Visca
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Carpano
- Second Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federico Cappuzzo
- Second Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Russo
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Claudio Tripodo
- Department of Health Sciences, Human Pathology Section, Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Paolo Zucali
- Department of Oncology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Vanesa Gregorc
- Department of Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Nistico
- Tumor of Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
18
|
Derham JM, Kalsotra A. The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochem Soc Trans 2023; 51:1097-1109. [PMID: 37314029 PMCID: PMC11298080 DOI: 10.1042/bst20221124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.
Collapse
Affiliation(s)
- Jessica M. Derham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
20
|
Wang W, Taufalele PV, Millet M, Homsy K, Smart K, Berestesky ED, Schunk CT, Rowe MM, Bordeleau F, Reinhart-King CA. Matrix stiffness regulates tumor cell intravasation through expression and ESRP1-mediated alternative splicing of MENA. Cell Rep 2023; 42:112338. [PMID: 37027295 PMCID: PMC10551051 DOI: 10.1016/j.celrep.2023.112338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Martial Millet
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kevin Homsy
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada
| | - Kyra Smart
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Curtis T Schunk
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Matthew M Rowe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC G1R 3S3, Canada; Département de biologie moléculaire, de biochimie médicale et de pathologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | | |
Collapse
|
21
|
Sun L, Qiu Y, Ching WK, Zhao P, Zou Q. PCB: A pseudotemporal causality-based Bayesian approach to identify EMT-associated regulatory relationships of AS events and RBPs during breast cancer progression. PLoS Comput Biol 2023; 19:e1010939. [PMID: 36930678 PMCID: PMC10057809 DOI: 10.1371/journal.pcbi.1010939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
During breast cancer metastasis, the developmental process epithelial-mesenchymal (EM) transition is abnormally activated. Transcriptional regulatory networks controlling EM transition are well-studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Alternative splicing was proved to control the EM transition process, and RNA-binding proteins were determined to regulate alternative splicing. A comprehensive understanding of alternative splicing and the RNA-binding proteins that regulate it during EM transition and their dynamic impact on breast cancer remains largely unknown. To accurately study the dynamic regulatory relationships, time-series data of the EM transition process are essential. However, only cross-sectional data of epithelial and mesenchymal specimens are available. Therefore, we developed a pseudotemporal causality-based Bayesian (PCB) approach to infer the dynamic regulatory relationships between alternative splicing events and RNA-binding proteins. Our study sheds light on facilitating the regulatory network-based approach to identify key RNA-binding proteins or target alternative splicing events for the diagnosis or treatment of cancers. The data and code for PCB are available at: http://hkumath.hku.hk/~wkc/PCB(data+code).zip.
Collapse
Affiliation(s)
- Liangjie Sun
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Yushan Qiu
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, China
- * E-mail:
| | - Wai-Ki Ching
- Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
22
|
Gökmen-Polar Y, Gu Y, Polar A, Gu X, Badve SS. The Role of ESRP1 in the Regulation of PHGDH in Estrogen Receptor-Positive Breast Cancer. J Transl Med 2023; 103:100002. [PMID: 36925195 DOI: 10.1016/j.labinv.2022.100002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Resistance to hormone therapy leads to a recurrence of estrogen receptor-positive breast cancer. We have demonstrated that the epithelial splicing regulatory protein 1 (ESRP1) significantly affects cell/tumor growth and metabolism and is associated with a poor prognosis in this breast cancer subtype. In this study, we aimed to investigate the ESRP1 protein-messenger RNA (mRNA) interaction in hormone therapy-resistant breast cancer. RNA-binding protein immunoprecipitation (RIP) followed by Clariom D (Applied Biosystems/Thermo Fisher Scientific) transcriptomics microarray (RIP-Chip) was performed to identify mRNA-binding partners of ESRP1. The integration of RIP-Chip and immunoprecipitation-mass spectrometry analyses identified phosphoglycerate dehydrogenase (PHGDH), a key metabolic enzyme, as a binding partner of ESRP1 in hormone-resistant breast cancer. Bioinformatic analysis showed ESRP1 binding to the 5' untranslated region of PHGDH. RNA electrophoresis mobility shift assay and RIP-quantitative reverse transcription-polymerase chain reaction further validated the ESRP1-PHGDH binding. In addition, knockdown of ESRP1 decreased PHGDH mRNA stability significantly, suggesting the posttranscriptional regulation of PHGDH by ESRP1. The presence or absence of ESRP1 levels significantly affected the stability in tamoxifen-resistant LCC2 and fulvestrant-resistant LCC9 cells. PHGDH knockdown in tamoxifen-resistant cells further reduced the oxygen consumption rate (ranging from P = .005 and P = .02), mimicking the effects of ESRP1 knockdown. Glycolytic parameters were also altered (ranging P = .001 and P = .005). ESRP1 levels did not affect the stability of PHGDH in T-47D cells, although knockdown of PHGDH affected the growth of these cells. In conclusion, to our knowledge, this study, for the first time, reports that ESRP1 binds to the 5' untranslated region of PHGDH, increasing its mRNA stability in hormone therapy-resistant estrogen receptor-positive breast cancer. These findings provide evidence for a novel mechanism of action of RNA-binding proteins such as ESRP1. These new insights could assist in developing novel strategies for the treatment of hormone therapy-resistant breast cancer.
Collapse
Affiliation(s)
- Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory University Winship Cancer Institute, Atlanta, Georgia.
| | - Yuan Gu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alper Polar
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Xiaoping Gu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Emory University Winship Cancer Institute, Atlanta, Georgia
| |
Collapse
|
23
|
Abstract
Dysregulated RNA splicing is a molecular feature that characterizes almost all tumour types. Cancer-associated splicing alterations arise from both recurrent mutations and altered expression of trans-acting factors governing splicing catalysis and regulation. Cancer-associated splicing dysregulation can promote tumorigenesis via diverse mechanisms, contributing to increased cell proliferation, decreased apoptosis, enhanced migration and metastatic potential, resistance to chemotherapy and evasion of immune surveillance. Recent studies have identified specific cancer-associated isoforms that play critical roles in cancer cell transformation and growth and demonstrated the therapeutic benefits of correcting or otherwise antagonizing such cancer-associated mRNA isoforms. Clinical-grade small molecules that modulate or inhibit RNA splicing have similarly been developed as promising anticancer therapeutics. Here, we review splicing alterations characteristic of cancer cell transcriptomes, dysregulated splicing's contributions to tumour initiation and progression, and existing and emerging approaches for targeting splicing for cancer therapy. Finally, we discuss the outstanding questions and challenges that must be addressed to translate these findings into the clinic.
Collapse
Affiliation(s)
- Robert K Bradley
- Computational Biology Program, Public Health Sciences Division and Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
24
|
Tian B, Bian Y, Bian DJ, Gao Y, Zhang X, Zhou SW, Zhang YH, Pang YN, Li ZS, Wang LW. Knowledge mapping of alternative splicing of cancer from 2012 to 2021: A bibliometric analysis. Front Oncol 2022; 12:1068805. [PMID: 36591484 PMCID: PMC9795218 DOI: 10.3389/fonc.2022.1068805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background As a processing method of RNA precursors, alternative splicing (AS) is critical to normal cellular activities. Aberrant AS events are associated with cancer development and can be promising targets to treat cancer. However, no detailed and unbiased study describes the current state of AS of cancer research. We aim to measure and recognize the current state and trends of AS cancer research in this study. Methods The Web of Science Core Collection was used to acquire the articles. Utilizing three bibliometric tools (CiteSpace, VOSviewer, R-bibliometrix), we were able to measure and recognize the influence and collaboration data of individual articles, journals, and co-citations. Analysis of co-occurrence and burst information helped us identify the trending research areas related to AS of cancer. Results From 2012 to 2021, the total number of papers on AS of cancer published in 766 academic journals was 3,507, authored by 20,406 researchers in 405 institutions from 80 countries/regions. Research involving AS of cancer genes was primarily conducted in the United States and China; simultaneously, the Chinese Academy of Sciences, Fudan University, and National Cancer Institute were the institutions with strong research capabilities. Scorilas Andreas is the scholar with the most publications, while the most co-citations were generated by Wang, Eric T. Plos One published the most papers on AS of cancer, while J Biol Chem was the most co-cited academic journal in this field. The results of keyword co-occurrence analysis can be divided into three types: molecular (P53, CD44, androgen receptor, srsf3, esrp1), pathological process (apoptosis, EMT, metastasis, angiogenesis, proliferation), and disease (breast cancer, colorectal cancer, prostate cancer, hepatocellular carcinoma, gastric cancer). Conclusion Research on AS of cancer has been increasing in intensity over the past decade. Current AS of cancer studies focused on the hallmarks of AS in cancer and AS signatures including diagnostic and therapeutic targets. Among them, the current trends are splicing factors regulating epithelial-mesenchymal transition and other hallmarks, aberrant splicing events in tumors, and further mechanisms. These might give researchers interested in this field a forward-looking perspective and inform further research.
Collapse
Affiliation(s)
- Bo Tian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Bian
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - De-Jian Bian
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Gao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xun Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Si-Wei Zhou
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan-Hui Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ya-Nan Pang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,Shanghai Institute of Pancreatic Diseases, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| | - Luo-Wei Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China,*Correspondence: Ya-Nan Pang, ; Zhao-Shen Li, ; Luo-Wei Wang,
| |
Collapse
|
25
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Qin J, Xu J. Arginine methylation in the epithelial-to-mesenchymal transition. FEBS J 2022; 289:7292-7303. [PMID: 34358413 PMCID: PMC10181118 DOI: 10.1111/febs.16152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023]
Abstract
Epithelial cells acquire mesenchymal characteristics during embryonic development, wound healing, fibrosis, and in cancer in a processed termed epithelial-to-mesenchymal transition (EMT). Regulatory networks of EMT are controlled by post-transcriptional, translational, and post-translational mechanisms, in which arginine methylation is critically involved. Here, we review arginine methylation-dependent mechanisms that regulate EMT in the aspects of signaling, transcriptional, and splicing regulation.
Collapse
Affiliation(s)
- Jian Qin
- Central laboratory, Renmin Hospital of Wuhan University, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Han X, Tian R, Wang C, Li Y, Song X. CircRNAs: Roles in regulating head and neck squamous cell carcinoma. Front Oncol 2022; 12:1026073. [PMID: 36483049 PMCID: PMC9723173 DOI: 10.3389/fonc.2022.1026073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 09/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most common head and neck malignant tumor, with only monotherapy, is characterized by poor prognosis, and low 5-year survival rate. Due to the lack of therapeutic targets, the targeted drugs for HNSCC are rare. Therefore, exploring the regulation mechanism of HNSCC and identifying effective therapeutic targets will be beneficial to its treatment of. Circular RNA (CircRNA) is a class of RNA molecules with a circular structure, which is widely expressed in human body. CircRNAs regulate gene expression by exerting the function as a miRNA sponge, thereby mediating the occurrence and development of HNSCC cell proliferation, apoptosis, migration, invasion, and other processes. In addition, circRNAs are also involved in the regulation of tumor sensitivity to chemical drugs and other biological functions. In this review, we systematically listed the functions of circRNAs and explored the regulatory mechanisms of circRNAs in HNSCC from the aspects of tumor growth, cell death, angiogenesis, tumor invasion and metastasis, tumor stem cell regulation, tumor drug resistance, immune escape, and tumor microenvironment. It will assist us in discovering new diagnostic markers and therapeutic targets, while encourage new ideas for the diagnosis and treatment of HNSCC.
Collapse
Affiliation(s)
- Xiao Han
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cai Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| |
Collapse
|
28
|
Characterization of alternative mRNA splicing in cultured cell populations representing progressive stages of human fetal kidney development. Sci Rep 2022; 12:19548. [PMID: 36380228 PMCID: PMC9666651 DOI: 10.1038/s41598-022-24147-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrons are the functional units of the kidney. During kidney development, cells from the cap mesenchyme-a transient kidney-specific progenitor state-undergo a mesenchymal to epithelial transition (MET) and subsequently differentiate into the various epithelial cell types that create the tubular structures of the nephron. Faults in this transition can lead to a pediatric malignancy of the kidney called Wilms' tumor that mimics normal kidney development. While human kidney development has been characterized at the gene expression level, a comprehensive characterization of alternative splicing is lacking. Therefore, in this study, we performed RNA sequencing on cell populations representing early, intermediate, and late developmental stages of the human fetal kidney, as well as three blastemal-predominant Wilms' tumor patient-derived xenografts. Using this newly generated RNAseq data, we identified a set of transcripts that are alternatively spliced between the different developmental stages. Moreover, we found that cells from the earliest developmental stage have a mesenchymal splice-isoform profile that is similar to that of blastemal-predominant Wilms' tumor xenografts. RNA binding motif enrichment analysis suggests that the mRNA binding proteins ESRP1, ESRP2, RBFOX2, and QKI regulate alternative mRNA splicing during human kidney development. These findings illuminate new molecular mechanisms involved in human kidney development and pediatric kidney cancer.
Collapse
|
29
|
Lee J, Pang K, Kim J, Hong E, Lee J, Cho HJ, Park J, Son M, Park S, Lee M, Ooshima A, Park KS, Yang HK, Yang KM, Kim SJ. ESRP1-regulated isoform switching of LRRFIP2 determines metastasis of gastric cancer. Nat Commun 2022; 13:6274. [PMID: 36307405 PMCID: PMC9616898 DOI: 10.1038/s41467-022-33786-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Although accumulating evidence indicates that alternative splicing is aberrantly altered in many cancers, the functional mechanism remains to be elucidated. Here, we show that epithelial and mesenchymal isoform switches of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) regulated by epithelial splicing regulatory protein 1 (ESRP1) correlate with metastatic potential of gastric cancer cells. We found that expression of the splicing variants of LRRFIP2 was closely correlated with that of ESRP1. Surprisingly, ectopic expression of the mesenchymal isoform of LRRFIP2 (variant 3) dramatically increased liver metastasis of gastric cancer cells, whereas deletion of exon 7 of LRRFIP2 by the CRISPR/Cas9 system caused an isoform switch, leading to marked suppression of liver metastasis. Mechanistically, the epithelial LRRFIP2 isoform (variant 2) inhibited the oncogenic function of coactivator-associated arginine methyltransferase 1 (CARM1) through interaction. Taken together, our data reveals a mechanism of LRRFIP2 isoform switches in gastric cancer with important implication for cancer metastasis.
Collapse
Affiliation(s)
- Jihee Lee
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | | | - Junil Kim
- grid.263765.30000 0004 0533 3568School of Systems Biomedical Science, Soongsil University, Seoul, 06978 Korea
| | - Eunji Hong
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Jeeyun Lee
- grid.264381.a0000 0001 2181 989XDivision of Hematology-Oncology, Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, 06351 Korea
| | - Hee Jin Cho
- grid.258803.40000 0001 0661 1556Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566 Korea ,grid.414964.a0000 0001 0640 5613Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, 06531 Republic of Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | - Minjung Son
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Science, College of Life Science, Sungkyunkwan University, Suwon, Gyeonggi-do 16419 Korea
| | - Sihyun Park
- GILO Institute, GILO Foundation, Seoul, 06668 Korea
| | | | | | - Kyung-Soon Park
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi-do 13488 Korea
| | - Han-Kwang Yang
- grid.412484.f0000 0001 0302 820XDepartment of Surgery, Seoul National University Hospital, Seoul, 03080 Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, 03080 Korea
| | | | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668 Korea ,Medpacto Inc., Seoul, 06668 Korea
| |
Collapse
|
30
|
Peart NJ, Hwang JY, Quesnel-Vallières M, Sears MJ, Yang Y, Stoilov P, Barash Y, Park JW, Lynch KW, Carstens RP. The global Protein-RNA interaction map of ESRP1 defines a post-transcriptional program that is essential for epithelial cell function. iScience 2022; 25:105205. [PMID: 36238894 PMCID: PMC9550651 DOI: 10.1016/j.isci.2022.105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
The epithelial splicing regulatory proteins, ESRP1 and ESRP2, are essential for mammalian development through the regulation of a global program of alternative splicing of genes involved in the maintenance of epithelial cell function. To further inform our understanding of the molecular functions of ESRP1, we performed enhanced crosslinking immunoprecipitation coupled with high-throughput sequencing (eCLIP) in epithelial cells of mouse epidermis. The genome-wide binding sites of ESRP1 were integrated with RNA-Seq analysis of alterations in splicing and total gene expression that result from epidermal ablation of Esrp1 and Esrp2. These studies demonstrated that ESRP1 functions in splicing regulation occur primarily through direct binding in a position-dependent manner to promote either exon inclusion or skipping. In addition, we also identified widespread binding of ESRP1 in 3' and 5' untranslated regions (UTRs) of genes involved in epithelial cell function, suggesting that its post-transcriptional functions extend beyond splicing regulation.
Collapse
Affiliation(s)
- Natoya J Peart
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
| | - Mathieu Quesnel-Vallières
- Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Sears
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuequin Yang
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Stoilov
- Department of Biochemistry and Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Yoseph Barash
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, USA
| | - Kristen W Lynch
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russ P Carstens
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Multi-omics analysis reveals RNA splicing alterations and their biological and clinical implications in lung adenocarcinoma. Signal Transduct Target Ther 2022; 7:270. [PMID: 35989380 PMCID: PMC9393167 DOI: 10.1038/s41392-022-01098-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Alternative RNA splicing is one of the most important mechanisms of posttranscriptional gene regulation, which contributes to protein diversity in eukaryotes. It is well known that RNA splicing dysregulation is a critical mechanism in tumor pathogenesis and the rationale for the promising splice-switching therapeutics for cancer treatment. Although we have a comprehensive understanding of DNA mutations, abnormal gene expression profiles, epigenomics, and proteomics in lung adenocarcinoma (LUAD), little is known about its aberrant alternative splicing profiles. Here, based on the multi-omics data generated from over 1000 samples, we systematically studied the RNA splicing alterations in LUAD and revealed their biological and clinical implications. We identified 3688 aberrant alternative splicing events (AASEs) in LUAD, most of which were alternative promoter and exon skip. The specific regulatory roles of RNA binding proteins, somatic mutations, and DNA methylations on AASEs were comprehensively interrogated. We dissected the functional implications of AASEs and concluded that AASEs mainly affected biological processes related to tumor proliferation and metastasis. We also found that one subtype of LUAD with a particular AASEs pattern was immunogenic and had a better prognosis and response rate to immunotherapy. These findings revealed novel events related to tumorigenesis and tumor immune microenvironment and laid the foundation for the development of splice-switching therapies for LUAD.
Collapse
|
32
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
34
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
35
|
Tsuchihashi K, Hirata Y, Yamasaki J, Suina K, Tanoue K, Yae T, Masuda K, Baba E, Akashi K, Kitagawa Y, Saya H, Nagano O. Presence of spontaneous epithelial-mesenchymal plasticity in esophageal cancer. Biochem Biophys Rep 2022; 30:101246. [PMID: 35330672 PMCID: PMC8938278 DOI: 10.1016/j.bbrep.2022.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Hirata
- Department of Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Suina
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenro Tanoue
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toshifumi Yae
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Shinjuku-ku, Tokyo, 160-8582, Japan
- Corresponding author. Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
36
|
Wang X, Xu C, Cai Y, Zou X, Chao Y, Yan Z, Zou C, Wu X, Tang L. CircZNF652 promotes the goblet cell metaplasia by targeting the miR-452-5p/JAK2 signaling pathway in allergic airway epithelia. J Allergy Clin Immunol 2022; 150:192-203. [PMID: 35120971 DOI: 10.1016/j.jaci.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) play potentially important roles in various human diseases; however, their roles in the goblet cell metaplasia of asthma remain unknown. OBJECTIVE We sought to investigate the potential role and underlying mechanism of circZNF652 in the regulation of allergic airway epithelial remodeling. METHODS The differential expression profiles of circRNAs were analyzed by transcriptome microarray, and the effects and mechanisms underlying circZNF652-mediated goblet cell metaplasia were investigated by quantitative real-time PCR, RNA fluorescence in situ hybridization, Western blot, RNA pull-down, and RNA immunoprecipitation analyses. The roles of circZNF652 and miR-452-5p in allergic airway epithelial remodeling were explored in both the mouse model with allergic airway inflammation and children with asthma. RESULTS One hundred sixty circRNAs were differentially expressed in bronchoalveolar lavage fluid of children with asthma versus children with foreign body aspiration, and 52 and 108 of them were significantly upregulated and downregulated, respectively. Among them, circZNF652 was predominantly expressed and robustly upregulated in airway epithelia of both the children with asthma and the mouse model with allergic airway inflammation. circZNF652 promoted the goblet cell metaplasia by functioning as a sponge of miR-452-5p, which released the Janus kinase 2 (JAK2) expression and subsequently activated JAK2/signal transducer and activator of transcription 6 (STAT6) signaling in the allergic airway epithelia. In addition, epithelial splicing regulatory protein 1, a splicing factor, accelerated the biogenesis of circZNF652 by binding to its flanking intron to promote the goblet cell metaplasia in allergic airway epithelial remodeling. CONCLUSIONS Upregulation of circZNF652 expression in allergic bronchial epithelia contributed to the goblet cell metaplasia by activating the miR-452-5p/JAK2/STAT6 signaling pathway; thus, blockage of circZNF652 or agonism of miR-452-5p provided an alternative approach for the therapeutic intervention of epithelial remodeling in allergic airway inflammation.
Collapse
Affiliation(s)
- Xiangzhi Wang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyun Xu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Cai
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zou
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yunqi Chao
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Yan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaochun Zou
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Endocrinology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Lee K, Yu D, Hyung D, Cho SY, Park C. ASpediaFI: Functional Interaction Analysis of Alternative Splicing Events. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:466-482. [PMID: 35085775 PMCID: PMC9801047 DOI: 10.1016/j.gpb.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 01/26/2023]
Abstract
Alternative splicing (AS) regulates biological processes governing phenotypes and diseases. Differential AS (DAS) gene test methods have been developed to investigate important exonic expression from high-throughput datasets. However, the DAS events extracted using statistical tests are insufficient to delineate relevant biological processes. In this study, we developed a novel application, Alternative Splicing Encyclopedia: Functional Interaction (ASpediaFI), to systemically identify DAS events and co-regulated genes and pathways. ASpediaFI establishes a heterogeneous interaction network of genes and their feature nodes (i.e., AS events and pathways) connected by co-expression or pathway gene set knowledge. Next, ASpediaFI explores the interaction network using the random walk with restart algorithm and interrogates the proximity from a query gene set. Finally, ASpediaFI extracts significant AS events, genes, and pathways. To evaluate the performance of our method, we simulated RNA sequencing (RNA-seq) datasets to consider various conditions of sequencing depth and sample size. The performance was compared with that of other methods. Additionally, we analyzed three public datasets of cancer patients or cell lines to evaluate how well ASpediaFI detects biologically relevant candidates. ASpediaFI exhibits strong performance in both simulated and public datasets. Our integrative approach reveals that DAS events that recognize a global co-expression network and relevant pathways determine the functional importance of spliced genes in the subnetwork. ASpediaFI is publicly available at https://bioconductor.org/packages/ASpediaFI.
Collapse
|
38
|
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis 2022; 39:391-406. [PMID: 35023031 PMCID: PMC10042269 DOI: 10.1007/s10585-022-10146-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023]
Abstract
Cellular plasticity lies at the core of cancer progression, metastasis, and resistance to treatment. Stemness and epithelial-mesenchymal plasticity in cancer are concepts that represent a cancer cell's ability to coopt and adapt normal developmental programs to promote survival and expansion. The cancer stem cell model states that a small subset of cancer cells with stem cell-like properties are responsible for driving tumorigenesis and metastasis while remaining especially resistant to common chemotherapeutic drugs. Epithelial-mesenchymal plasticity describes a cancer cell's ability to transition between epithelial and mesenchymal phenotypes which drives invasion and metastasis. Recent research supports the existence of stable epithelial/mesenchymal hybrid phenotypes which represent highly plastic states with cancer stem cell characteristics. The cell adhesion molecule CD44 is a widely accepted marker for cancer stem cells, and it lies at a functional intersection between signaling networks regulating both stemness and epithelial-mesenchymal plasticity. CD44 expression is complex, with alternative splicing producing many isoforms. Interestingly, not only does the pattern of isoform expression change during transitions between epithelial and mesenchymal phenotypes in cancer, but these isoforms have distinct effects on cell behavior including the promotion of metastasis and stemness. The role of CD44 both downstream and upstream of signaling pathways regulating epithelial-mesenchymal plasticity and stemness make this protein a valuable target for further research and therapeutic intervention.
Collapse
|
39
|
Alanazi IO, Alamery SF, Ebrahimie E, Mohammadi-Dehcheshmeh M. Splice-disrupt genomic variants in prostate cancer. Mol Biol Rep 2022; 49:4237-4246. [PMID: 35286517 PMCID: PMC9262760 DOI: 10.1007/s11033-022-07257-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Background Splice-disrupt genomic variants are one of the causes of cancer-causing errors in gene expression. Little is known about splice-disrupt genomic variants. Methods and results Here, pattern of splice-disrupt variants was investigated using 21,842,764 genomic variants in different types of prostate cancer. A particular attention was paid to genomic locations of splice-disrupt variants on target genes. HLA-A in prostate cancer, MSR1 in familial prostate cancer, and EGFR in both castration-resistant prostate cancer and metastatic castration-resistant had the highest allele frequencies of splice-disrupt variations. Some splice-disrupt variants, located on coding sequences of NCOR2, PTPRC, and CRP, were solely present in the advanced metastatic castration-resistant prostate cancer. High-risk splice-disrupt variants were identified based on computationally calculated Polymorphism Phenotyping (PolyPhen), Sorting Intolerant From Tolerant (SIFT), and Genomic Evolutionary Rate Profiling (GERP) + + scores as well as the recorded clinical significance in dbSNP database of NCBI. Functional annotation of damaging splice-disrupt variants highlighted important cancer-associated functions, including endocrine resistance, lipid metabolic process, steroid metabolic process, regulation of mitotic cell cycle, and regulation of metabolic process. This is the first study that profiles the splice-disrupt genomic variants and their target genes in prostate cancer. Literature mining based variant analysis highlighted the importance of rs1800716 variant, located on the CYP2D6 gene, involved in a range of important functions, such as RNA spicing, drug interaction, death, and urotoxicity. Conclusions This is the first study that profiles the splice-disrupt genomic variants and their target genes in different types of prostate cancer. Unravelling alternative splicing opens a new avenue towards the establishment of new diagnostic and prognostic markers for prostate cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07257-9.
Collapse
Affiliation(s)
- Ibrahim O. Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
| |
Collapse
|
40
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
41
|
Tang WJ, Watson CJ, Olmstead T, Allan CH, Kwon RY. Single-cell resolution of MET- and EMT-like programs in osteoblasts during zebrafish fin regeneration. iScience 2022; 25:103784. [PMID: 35169687 PMCID: PMC8829776 DOI: 10.1016/j.isci.2022.103784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Zebrafish regenerate fin rays following amputation through epimorphic regeneration, a process that has been proposed to involve the epithelial-to-mesenchymal transition (EMT). We performed single-cell RNA sequencing (scRNA-seq) to elucidate osteoblastic transcriptional programs during zebrafish caudal fin regeneration. We show that osteoprogenitors are enriched with components associated with EMT and its reverse, mesenchymal-to-epithelial transition (MET), and provide evidence that the EMT markers cdh11 and twist2 are co-expressed in dedifferentiating cells at the amputation stump at 1 dpa, and in differentiating osteoblastic cells in the regenerate, the latter of which are enriched in EMT signatures. We also show that esrp1, a regulator of alternative splicing in epithelial cells that is associated with MET, is expressed in a subset of osteoprogenitors during outgrowth. This study provides a single cell resource for the study of osteoblastic cells during zebrafish fin regeneration, and supports the contribution of MET- and EMT-associated components to this process.
Collapse
Affiliation(s)
- W. Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Claire J. Watson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Theresa Olmstead
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Christopher H. Allan
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
42
|
Segelle A, Núñez-Álvarez Y, Oldfield AJ, Webb KM, Voigt P, Luco RF. Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing. Cell Rep 2022; 38:110357. [PMID: 35172149 DOI: 10.1016/j.celrep.2022.110357] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Histone modifications impact final splicing decisions. However, there is little evidence of the driving role of these marks in inducing cell-specific splicing changes. Using CRISPR epigenome editing tools, we show in an epithelial-to-mesenchymal cell reprogramming system (epithelial-to-mesenchymal transition [EMT]) that a single change in H3K27ac or H3K27me3 levels right at the alternatively spliced exon is necessary and sufficient to induce a splicing change capable of recapitulating important aspects of EMT, such as cell motility and invasiveness. This histone-mark-dependent splicing effect is highly dynamic and mediated by direct recruitment of the splicing regulator PTB to its RNA binding sites. These results support a role for H3K27 marks in inducing a change in the cell's phenotype via regulation of alternative splicing. We propose the dynamic nature of chromatin as a rapid and reversible mechanism to coordinate the splicing response to cell-extrinsic cues, such as induction of EMT.
Collapse
Affiliation(s)
- Alexandre Segelle
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Yaiza Núñez-Álvarez
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Andrew J Oldfield
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Reini F Luco
- Institute of Human Genetics, University of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.
| |
Collapse
|
43
|
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J, Williams R, Pritchard‐Jones K, Malik KT, Oltean S, Brown KW. The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 2022; 16:630-647. [PMID: 34520622 PMCID: PMC8807366 DOI: 10.1002/1878-0261.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of foetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.
Collapse
Affiliation(s)
- Danny Legge
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Ling Li
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Whei Moriarty
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - David Lee
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Marianna Szemes
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Asef Zahed
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | - Wan Yun Chung
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Yara Aghabi
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Jasmin Barratt
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Richard Williams
- Cancer SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Karim T.A. Malik
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Keith W. Brown
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
44
|
Öther-Gee Pohl S, Myant KB. Alternative RNA splicing in tumour heterogeneity, plasticity and therapy. Dis Model Mech 2022; 15:dmm049233. [PMID: 35014671 PMCID: PMC8764416 DOI: 10.1242/dmm.049233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a process by which a single gene is able to encode multiple different protein isoforms. It is regulated by the inclusion or exclusion of introns and exons that are joined in different patterns prior to protein translation, thus enabling transcriptomic and proteomic diversity. It is now widely accepted that alternative splicing is dysregulated across nearly all cancer types. This widespread dysregulation means that nearly all cellular processes are affected - these include processes synonymous with the hallmarks of cancer - evasion of apoptosis, tissue invasion and metastasis, altered cellular metabolism, genome instability and drug resistance. Emerging evidence indicates that the dysregulation of alternative splicing also promotes a permissive environment for increased tumour heterogeneity and cellular plasticity. These are fundamental regulators of a patient's response to therapy. In this Review, we introduce the mechanisms of alternative splicing and the role of aberrant splicing in cancer, with particular focus on newfound evidence of alternative splicing promoting tumour heterogeneity, cellular plasticity and altered metabolism. We discuss recent in vivo models generated to study alternative splicing and the importance of these for understanding complex tumourigenic processes. Finally, we review the effects of alternative splicing on immune evasion, cell death and genome instability, and how targeting these might enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | - Kevin B. Myant
- Cancer Research UK Edinburgh Centre, Institute of Genetics of Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
45
|
Lyu J, Cheng C. Regulation of Alternative Splicing during Epithelial-Mesenchymal Transition. Cells Tissues Organs 2022; 211:238-251. [PMID: 34348273 PMCID: PMC8741878 DOI: 10.1159/000518249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is an essential mechanism of gene regulation, giving rise to remarkable protein diversity in higher eukaryotes. Epithelial-mesenchymal transition (EMT) is a developmental process that plays an essential role in metazoan embryogenesis. Recent studies have revealed that alternative splicing serves as a fundamental layer of regulation that governs cells to undergo EMT. In this review, we summarize recent findings on the functional impact of alternative splicing in EMT and EMT-associated activities. We then discuss the regulatory mechanisms that control alternative splicing changes during EMT.
Collapse
Affiliation(s)
- Jingyi Lyu
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Department of Molecular
& Human Genetics, Department of Molecular & Cellular Biology, Baylor College
of Medicine, Houston, TX 77030, USA,Integrative Molecular and Biomedical Sciences Graduate
Program, Baylor College of Medicine, Houston, TX 77030, USA.,To whom correspondence should be addressed:
| |
Collapse
|
46
|
The Estrogen Receptor α Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13246261. [PMID: 34944881 PMCID: PMC8699117 DOI: 10.3390/cancers13246261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The transcriptional activity of estrogen receptor α (ERα) in breast cancer (BC) is extensively characterized. Our group has previously shown that ERα controls the expression of a number of genes in its unliganded form (apoERα), among which a large group of RNA-binding proteins (RBPs) encode genes, suggesting its role in the control of co- and post-transcriptional events. Methods: apoERα-mediated RNA processing events were characterized by the analysis of transcript usage and alternative splicing changes in an RNA-sequencing dataset from MCF-7 cells after siRNA-induced ERα downregulation. Results: ApoERα depletion induced an expression change of 681 RBPs, including 84 splicing factors involved in translation, ribonucleoprotein complex assembly, and 3′end processing. ApoERα depletion results in 758 isoform switching events with effects on 3′end length and the splicing of alternative cassette exons. The functional enrichment of these events shows that post-transcriptional regulation is part of the mechanisms by which apoERα controls epithelial-to-mesenchymal transition and BC cell proliferation. In primary BCs, the inclusion levels of the experimentally identified alternatively spliced exons are associated with overall and disease-free survival. Conclusion: Our data supports the role of apoERα in maintaining the luminal phenotype of BC cells by extensively regulating gene expression at the alternative splicing level.
Collapse
|
47
|
Shivalingappa PKM, Sharma V, Shiras A, Bapat SA. RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 2021; 476:4493-4505. [PMID: 34499322 DOI: 10.1007/s11010-021-04256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.
Collapse
Affiliation(s)
| | - Vaishali Sharma
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Anjali Shiras
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
48
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
49
|
Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4061525. [PMID: 34660788 PMCID: PMC8514273 DOI: 10.1155/2021/4061525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding the pathogenesis of metastasis at the molecular levels is of great significance for cancer research. However, the molecular diagnosis or treatment of cancer metastasis is limited. Accumulating and growing evidence shows that epigenetic changes are present in all human cancers, and epigenetic regulation is an indispensable factor to promote tumor metastasis. With the deepening of research and the advancement of technology, the function and mechanism of epigenetic regulation, including DNA methylation, histone/RNA modification, and precursor messenger RNA alternative splicing and noncoding RNAs, has become more increasingly clear. At present, the application of epigenetic therapies in tumor treatment is becoming a feasible therapeutic route. In this review, we looked for the key molecules in epigenetic regulation and discuss their relative regulating mechanisms in cancer metastasis. Furthermore, we highlight promising therapeutic strategies, including monitoring serum DNA for diagnostic purposes and early phase clinical trial therapies that target DNA and histone methylation. This may also be beneficial in finding new targets for further prognosis and diagnosis of cancer metastasis.
Collapse
|
50
|
Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer? BIOLOGY 2021; 10:biology10090913. [PMID: 34571790 PMCID: PMC8469949 DOI: 10.3390/biology10090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Actin cytoskeleton is a dynamic subcellular component critical for maintaining cell shape and for elaborating response to any stimulus converging on the cell. Cytoskeleton constantly interfaces with diverse cellular components and affects a wide range of processes important in homeostasis and disease. What has been clearly demonstrated to date is that pathogens modify and use host cytoskeleton to their advantage. What is now emerging is that in sterile conditions, when a chronic inflammation occurs as in cancer, the subversion of tissue homeostasis induces an alarm status which mimics infection. This activates cellular players similar to those that solve an infection, but their persistence may pave the way for tumor progression. Understanding molecular mechanisms engaged by cytoskeleton to induce this viral mimicry could improve our knowledge of processes governing tumor progression and resistance to therapy. Abstract Chronic viral infection and cancer are closely inter-related and are both characterized by profound alteration of tissue homeostasis. The actin cytoskeleton dynamics highly participate in tissue homeostasis and act as a sensor leading to an immune-mediated anti-cancer and anti-viral response. Herein we highlight the crucial role of actin cytoskeleton dynamics in participating in a viral mimicry activation with profound effect in anti-tumor immune response. This still poorly explored field understands the cytoskeleton dynamics as a platform of complex signaling pathways which may regulate Type I IFN response in cancer. This emerging network needs to be elucidated to identify more effective anti-cancer strategies and to further advance the immuno-oncology field which has revolutionized the cancer treatment. For a progress to occur in this exciting arena we have to shed light on actin cytoskeleton related pathways and immune response. Herein we summarize the major findings, considering the double sword of the immune response and in particular the role of Type I IFN pathways in resistance to anti-cancer treatment.
Collapse
|