1
|
Chen X, Wang YJ, Mu TW. Proteostasis regulation of GABA A receptors in neuronal function and disease. Biomed Pharmacother 2025; 186:117992. [PMID: 40112516 PMCID: PMC12068001 DOI: 10.1016/j.biopha.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
The γ-aminobutyric acid type A receptors (GABAARs) are ligand-gated anion channels that mediate fast inhibitory neurotransmission in the mammalian central nervous system. GABAARs form heteropentameric assemblies comprising two α1, two β2, and one γ2 subunits as the most common subtype in mammalian brains. Proteostasis regulation of GABAARs involves subunit folding within the endoplasmic reticulum, assembling into heteropentamers, receptor trafficking to the cell surface, and degradation of terminally misfolded subunits. As GABAARs are surface proteins, their trafficking to the plasma membrane is critical for proper receptor function. Thus, variants in the genes encoding GABAARs that disrupt proteostasis result in various neurodevelopmental disorders, ranging from intellectual disability to idiopathic generalized epilepsy. This review summarizes recent progress about how the proteostasis network regulates protein folding, assembly, degradation, trafficking, and synaptic clustering of GABAARs. Additionally, emerging pharmacological approaches that restore proteostasis of pathogenic GABAAR variants are presented, providing a promising strategy to treat related neurological diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Brette R. Theory of axo-axonic inhibition. PLoS Comput Biol 2025; 21:e1013047. [PMID: 40258075 PMCID: PMC12052214 DOI: 10.1371/journal.pcbi.1013047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/05/2025] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
The axon initial segment of principal cells of the cortex and hippocampus is contacted by GABAergic interneurons called chandelier cells. The anatomy, as well as alterations in neurological diseases such as epilepsy, suggest that chandelier cells exert an important inhibitory control on action potential initiation. However, their functional role remains unclear, including whether their effect is indeed inhibitory or excitatory. One reason is that there is a relative gap in electrophysiological theory about the electrical effect of axo-axonic synapses. This contribution uses resistive coupling theory, a simplification of cable theory based on the observation that the small initial segment is resistively coupled to the large cell body acting as a current sink, to fill this gap. The main theoretical finding is that a synaptic input at the proximal axon shifts the action potential threshold by an amount equal to the product of synaptic conductance, driving force at threshold, and axial axonal resistance between the soma and either the synapse or of the middle of the initial segment, whichever is closer. The theory produces quantitative estimates useful to interpret experimental observations, and supports the idea that axo-axonic cells can potentially exert powerful inhibitory control on action potential initiation.
Collapse
Affiliation(s)
- Romain Brette
- Sorbonne Université, CNRS, Institute of Intelligent Systems and Robotics (ISIR), Paris, France
| |
Collapse
|
3
|
Liu FX, Yang SZ, Shi KK, Li DM, Song JB, Sun L, Dang X, Li JY, Deng ZQ, Zhao M, Feng YC. The role of protein phosphorylation modifications mediated by iron metabolism regulatory networks in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2025; 17:1540019. [PMID: 40071123 PMCID: PMC11893871 DOI: 10.3389/fnagi.2025.1540019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease characterized mainly by the formation of amyloid beta (Aβ) plaques and abnormal phosphorylation of tau. In recent years, an imbalance in iron homeostasis has been recognized to play a key role in the pathological process of AD. Abnormal iron accumulation can activate various kinases such as glycogen synthase kinase-3β, cyclin-dependent kinase 5, and mitogen-activated protein kinase, leading to abnormal phosphorylation of tau and amyloid precursor protein, and accelerating the formation of Aβ plaques and neurofibrillary tangles. In addition, iron-mediated oxidative stress not only triggers neuronal damage, but also exacerbates neuronal dysfunction by altering the phosphorylation of N-methyl-D-aspartate receptors and γ-aminobutyric acid type A receptors. Iron accumulation also affects the phosphorylation status of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, interfering with the dopamine signaling pathway. On the other hand, iron affects iron transport and metabolism in the brain by regulating the phosphorylation of transferrin, further disrupting iron homeostasis. Therapeutic strategies targeting iron metabolism show promise by reducing iron accumulation, inhibiting oxidative stress, and reducing abnormal phosphorylation of key proteins. This article reviews the molecular mechanisms of phosphorylation modifications mediated by iron homeostasis imbalance in AD, and discusses the potential of interventions that regulate iron metabolism and related signaling pathways, providing a new theoretical basis for the treatment of AD.
Collapse
Affiliation(s)
- Fei-Xiang Liu
- Department of Neuropsychiatry and Psychology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shun-Zhi Yang
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kai-Kai Shi
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ding-Ming Li
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jia-bin Song
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Yao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zi-qi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Chen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
5
|
Dong J, Wang Z, Li L, Zhang M, Wang S, Luo Y, Dong Y, Wang X, Wang Y, Wang K, Yin Y. Fasudil Alleviates Postoperative Neurocognitive Disorders in Mice by Downregulating the Surface Expression of α5GABAAR in Hippocampus. CNS Neurosci Ther 2024; 30:e70098. [PMID: 39491498 PMCID: PMC11532233 DOI: 10.1111/cns.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
AIM Postoperative neurocognitive disorder (PND) refers to the cognitive impairment experienced by patients after surgery. As a target of sevoflurane, a kind of inhalation anesthetic, the balance of the GABAergic system can be disrupted during the perioperative period. In this study, we explored the promoting effect of abnormal elevation of the α5 subtype of γ-aminobutyric acid type A (GABAA) receptors caused by sevoflurane and surgical trauma on PND, as well as the therapeutic effect of fasudil on PND. METHODS Eight-week-old mice were pretreated with fasudil, and after 10 days, sevoflurane-induced femoral fracture surgery was performed to establish an animal model of PND. The Morris water maze and fear conditioning tests were used to evaluate PND induced by this model. Biochemical and electrophysiological analyses were conducted to assess the protective effect of fasudil on the GABAergic system. RESULTS Following artificial fracture, the hippocampus-dependent memory was damaged in these mice. Fasudil pretreatment, however, ameliorated cognitive function impairment in mice induced by sevoflurane and surgery. Mechanistically, fasudil was found to restore the increased hippocampus expression and function of α5GABAARs in mice with PND. In addition, pretreatment with Fasudil inhibited the enhancement in the calcium ion concentration and phosphorylation of Camk2, as well as the activation of the Radixin pathway which led to increased phosphorylation of the ERM family in the hippocampal CA1 region of the PND model. CONCLUSION Preadministration of fasudil improved postoperative cognitive function in PND mice by inhibiting the activation of Camk2 and Radixin pathways and finally downregulating the surface expression of α5GABAAR in hippocampus neurons.
Collapse
Affiliation(s)
- Jinpeng Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | | | - Mengxue Zhang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Sixuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Ying Dong
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiaokun Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Academy of Military Medical SciencesBeijingChina
| | - Kaiyuan Wang
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yiqing Yin
- Department of Anesthesiology, Key Laboratory of Cancer Prevention and Therapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, National Clinical Research Center for CancerTianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
6
|
Colmers PLW, Arshad MN, Mukherjee J, Lin S, Ng SFJ, Sarmiere P, Davies PA, Moss SJ. Sustained Inhibition of GABA-AT by OV329 Enhances Neuronal Inhibition and Prevents Development of Benzodiazepine Refractory Seizures. eNeuro 2024; 11:ENEURO.0137-24.2024. [PMID: 38937107 PMCID: PMC11236575 DOI: 10.1523/eneuro.0137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
γ-Aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain which mediates its rapid effects on neuronal excitability via ionotropic GABAA receptors. GABA levels in the brain are critically dependent upon GABA-aminotransferase (GABA-AT) which promotes its degradation. Vigabatrin, a low-affinity GABA-AT inhibitor, exhibits anticonvulsant efficacy, but its use is limited due to cumulative ocular toxicity. OV329 is a rationally designed, next-generation GABA-AT inhibitor with enhanced potency. We demonstrate that sustained exposure to OV329 in mice reduces GABA-AT activity and subsequently elevates GABA levels in the brain. Parallel increases in the efficacy of GABAergic inhibition were evident, together with elevations in electroencephalographic delta power. Consistent with this, OV329 exposure reduced the severity of status epilepticus and the development of benzodiazepine refractory seizures. Thus, OV329 may be of utility in treating seizure disorders and associated pathologies that result from neuronal hyperexcitability.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Muhammad Nauman Arshad
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | - Shu Fun Josephine Ng
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1 6BT, United Kingdom
| |
Collapse
|
7
|
Nuwer JL, Povysheva N, Jacob TC. Long-term α5 GABA A receptor negative allosteric modulator treatment reduces NMDAR-mediated neuronal excitation and maintains basal neuronal inhibition. Neuropharmacology 2023; 237:109587. [PMID: 37270156 PMCID: PMC10527172 DOI: 10.1016/j.neuropharm.2023.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
α5 subunit-containing GABA type-A receptors (α5 GABAARs) are enriched in the hippocampus and play critical roles in neurodevelopment, synaptic plasticity, and cognition. α5 GABAAR preferring negative allosteric modulators (α5 NAMs) show promise mitigating cognitive impairment in preclinical studies of conditions characterized by excess GABAergic inhibition, including Down syndrome and memory deficits post-anesthesia. However, previous studies have primarily focused on acute application or single-dose α5 NAM treatment. Here, we measured the effects of chronic (7-day) in vitro treatment with L-655,708 (L6), a highly selective α5 NAM, on glutamatergic and GABAergic synapses in rat hippocampal neurons. We previously showed that 2-day in vitro treatment with L6 enhanced synaptic levels of the glutamate NMDA receptor (NMDAR) GluN2A subunit without modifying surface α5 GABAAR expression, inhibitory synapse function, or L6 sensitivity. We hypothesized that chronic L6 treatment would further increase synaptic GluN2A subunit levels while maintaining GABAergic inhibition and L6 efficacy, thus increasing neuronal excitation and glutamate-evoked intracellular calcium responses. Immunofluorescence experiments revealed that 7-day L6 treatment slightly increased the synaptic levels of gephyrin and surface α5 GABAARs. Functional studies showed that chronic α5 NAM treatment did not alter inhibition or α5 NAM sensitivity. Surprisingly, chronic L6 exposure decreased surface levels of GluN2A and GluN2B subunits, concurrent with reduced NMDAR-mediated neuronal excitation as seen by faster synaptic decay rates and reduced glutamate-evoked calcium responses. Together, these results show that chronic in vitro treatment with an α5 NAM leads to subtle homeostatic changes in inhibitory and excitatory synapses that suggest an overall dampening of excitability.
Collapse
Affiliation(s)
- Jessica L Nuwer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadya Povysheva
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hao Y, Liu H, Zeng XT, Wang Y, Zeng WX, Qian KY, Li L, Chi MX, Gao S, Hu Z, Tong XJ. UNC-43/CaMKII-triggered anterograde signals recruit GABA ARs to mediate inhibitory synaptic transmission and plasticity at C. elegans NMJs. Nat Commun 2023; 14:1436. [PMID: 36918518 PMCID: PMC10015018 DOI: 10.1038/s41467-023-37137-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Disturbed inhibitory synaptic transmission has functional impacts on neurodevelopmental and psychiatric disorders. An essential mechanism for modulating inhibitory synaptic transmission is alteration of the postsynaptic abundance of GABAARs, which are stabilized by postsynaptic scaffold proteins and recruited by presynaptic signals. However, how GABAergic neurons trigger signals to transsynaptically recruit GABAARs remains elusive. Here, we show that UNC-43/CaMKII functions at GABAergic neurons to recruit GABAARs and modulate inhibitory synaptic transmission at C. elegans neuromuscular junctions. We demonstrate that UNC-43 promotes presynaptic MADD-4B/Punctin secretion and NRX-1α/Neurexin surface delivery. Together, MADD-4B and NRX-1α recruit postsynaptic NLG-1/Neuroligin and stabilize GABAARs. Further, the excitation of GABAergic neurons potentiates the recruitment of NLG-1-stabilized-GABAARs, which depends on UNC-43, MADD-4B, and NRX-1. These data all support that UNC-43 triggers MADD-4B and NRX-1α, which act as anterograde signals to recruit postsynaptic GABAARs. Thus, our findings elucidate a mechanism for pre- and postsynaptic communication and inhibitory synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Yue Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ya Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ming-Xuan Chi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
9
|
Choi C, Smalley JL, Lemons AHS, Ren Q, Bope CE, Dengler JS, Davies PA, Moss SJ. Analyzing the mechanisms that facilitate the subtype-specific assembly of γ-aminobutyric acid type A receptors. Front Mol Neurosci 2022; 15:1017404. [PMID: 36263376 PMCID: PMC9574402 DOI: 10.3389/fnmol.2022.1017404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Impaired inhibitory signaling underlies the pathophysiology of many neuropsychiatric and neurodevelopmental disorders including autism spectrum disorders and epilepsy. Neuronal inhibition is regulated by synaptic and extrasynaptic γ-aminobutyric acid type A receptors (GABA A Rs), which mediate phasic and tonic inhibition, respectively. These two GABA A R subtypes differ in their function, ligand sensitivity, and physiological properties. Importantly, they contain different α subunit isoforms: synaptic GABA A Rs contain the α1-3 subunits whereas extrasynaptic GABA A Rs contain the α4-6 subunits. While the subunit composition is critical for the distinct roles of synaptic and extrasynaptic GABA A R subtypes in inhibition, the molecular mechanism of the subtype-specific assembly has not been elucidated. To address this issue, we purified endogenous α1- and α4-containing GABA A Rs from adult murine forebrains and examined their subunit composition and interacting proteins using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and quantitative analysis. We found that the α1 and α4 subunits form separate populations of GABA A Rs and interact with distinct sets of binding proteins. We also discovered that the β3 subunit, which co-purifies with both the α1 and α4 subunits, has different levels of phosphorylation on serines 408 and 409 (S408/9) between the two receptor subtypes. To understand the role S408/9 plays in the assembly of α1- and α4-containing GABA A Rs, we examined the effects of S408/9A (alanine) knock-in mutation on the subunit composition of the two receptor subtypes using LC-MS/MS and quantitative analysis. We discovered that the S408/9A mutation results in the formation of novel α1α4-containing GABA A Rs. Moreover, in S408/9A mutants, the plasma membrane expression of the α4 subunit is increased whereas its retention in the endoplasmic reticulum is reduced. These findings suggest that S408/9 play a critical role in determining the subtype-specific assembly of GABA A Rs, and thus the efficacy of neuronal inhibition.
Collapse
Affiliation(s)
- Catherine Choi
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joshua L. Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Abigail H. S. Lemons
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Qiu Ren
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Christopher E. Bope
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jake S. Dengler
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul A. Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,*Correspondence: Stephen J. Moss,
| |
Collapse
|
10
|
Chu MC, Wu HF, Lee CW, Chung YJ, Chi H, Chen PS, Lin HC. Generational synaptic functions of GABA A receptor β3 subunit deteriorations in an animal model of social deficit. J Biomed Sci 2022; 29:51. [PMID: 35821032 PMCID: PMC9277936 DOI: 10.1186/s12929-022-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of normal brain development is implicated in numerous psychiatric disorders with neurodevelopmental origins, including autism spectrum disorder (ASD). Widespread abnormalities in brain structure and functions caused by dysregulations of neurodevelopmental processes has been recently shown to exert adverse effects across generations. An imbalance between excitatory/inhibitory (E/I) transmission is the putative hypothesis of ASD pathogenesis, supporting by the specific implications of inhibitory γ-aminobutyric acid (GABA)ergic system in autistic individuals and animal models of ASD. However, the contribution of GABAergic system in the neuropathophysiology across generations of ASD is still unknown. Here, we uncover profound alterations in the expression and function of GABAA receptors (GABAARs) in the amygdala across generations of the VPA-induced animal model of ASD. METHODS The F2 generation was produced by mating an F1 VPA-induced male offspring with naïve females after a single injection of VPA on embryonic day (E12.5) in F0. Autism-like behaviors were assessed by animal behavior tests. Expression and functional properties of GABAARs and related proteins were examined by using western blotting and electrophysiological techniques. RESULTS Social deficit, repetitive behavior, and emotional comorbidities were demonstrated across two generations of the VPA-induced offspring. Decreased synaptic GABAAR and gephyrin levels, and inhibitory transmission were found in the amygdala from two generations of the VPA-induced offspring with greater reductions in the F2 generation. Weaker association of gephyrin with GABAAR was shown in the F2 generation than the F1 generation. Moreover, dysregulated NMDA-induced enhancements of gephyrin and GABAAR at the synapse in the VPA-induced offspring was worsened in the F2 generation than the F1 generation. Elevated glutamatergic modifications were additionally shown across generations of the VPA-induced offspring without generation difference. CONCLUSIONS Taken together, these findings revealed the E/I synaptic abnormalities in the amygdala from two generations of the VPA-induced offspring with GABAergic deteriorations in the F2 generation, suggesting a potential therapeutic role of the GABAergic system to generational pathophysiology of ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Han-Fang Wu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Chi-Wei Lee
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Yueh-Jung Chung
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Hsiang Chi
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
11
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Reddy DS. Neurosteroid replacement therapy for catamenial epilepsy, postpartum depression and neuroendocrine disorders in women. J Neuroendocrinol 2022; 34:e13028. [PMID: 34506047 PMCID: PMC9247111 DOI: 10.1111/jne.13028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022]
Abstract
Neurosteroids are involved in the pathophysiology of many neuroendocrine disorders in women. This review describes recent advancements in pharmacology of neurosteroids and emphasizes the benefits of neurosteroid replacement therapy for the management of neuroendocrine disorders such as catamenial epilepsy (CE), postpartum depression (PPD) and premenstrual brain conditions. Neurosteroids are endogenous modulators of neuronal excitability. A variety of neurosteroids are present in the brain including allopregnanolone (AP), allotetrahydro-deoxycorticosterone and androstanediol. Neurosteroids interact with synaptic and extrasynaptic GABAA receptors in the brain. AP and related neurosteroids, which are positive allosteric modulators of GABAA receptors, are powerful anticonvulsants, anxiolytic, antistress and neuroprotectant agents. In CE, seizures are most often clustered around a specific menstrual period in women. Neurosteroid withdrawal-linked plasticity in extrasynaptic receptors has been shown to play a key role in catamenial seizures, anxiety and other mood disorders. Based on our extensive research spanning two decades, we have proposed and championed neurosteroid replacement therapy as a rational strategy for treating disorders marked by neurosteroid-deficiency, such as CE and other related ovarian or menstrual disorders. In 2019, AP (renamed as brexanolone) was approved for treating PPD. A variety of synthetic neurosteroids are in clinical trials for epilepsy, depression and other brain disorders. Recent advancements in our understanding of neurosteroids have entered a new era of drug discovery and one that offers a high therapeutic potential for treating complex brain disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, USA
| |
Collapse
|
13
|
Wu K, Castellano D, Tian Q, Lu W. Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Rep 2021; 37:109960. [PMID: 34758303 PMCID: PMC8630577 DOI: 10.1016/j.celrep.2021.109960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Tonic inhibition mediated by extrasynaptic GABAARs regulates various brain functions. However, the mechanisms that regulate tonic inhibition remain largely unclear. Here, we report distinct actions of GluN2A- and GluN2B-NMDA receptors (NMDARs) on tonic inhibition in hippocampal neurons under basal and high activity conditions. Specifically, overexpression of GluN2B, but not GluN2A, reduces α5-GABAAR surface expression and tonic currents. Additionally, knockout of GluN2A and GluN2B decreases and increases tonic currents, respectively. Mechanistically, GluN2A-NMDARs inhibit and GluN2B-NMDARs promote α5-GABAAR internalization, resulting in increased and decreased surface α5-GABAAR expression, respectively. Furthermore, GluN2A-NMDARs, but not GluN2B-NMDARs, are required for homeostatic potentiation of tonic inhibition induced by prolonged increase of neuronal activity. Last, tonic inhibition decreases during acute seizures, whereas it increases 24 h later, involving GluN2-NMDAR-dependent signaling. Collectively, these data reveal an NMDAR subunit-specific regulation of tonic inhibition in physiological and pathological conditions and provide mechanistic insight into activity-dependent modulation of tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Fernandez‐Perez EJ, Muñoz B, Bascuñan DA, Peters C, Riffo‐Lepe NO, Espinoza MP, Morgan PJ, Filippi C, Bourboulou R, Sengupta U, Kayed R, Epsztein J, Aguayo LG. Synaptic dysregulation and hyperexcitability induced by intracellular amyloid beta oligomers. Aging Cell 2021; 20:e13455. [PMID: 34409748 PMCID: PMC8441418 DOI: 10.1111/acel.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Intracellular amyloid beta oligomer (iAβo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAβo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAβo) and synthetic (iAβo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAβo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAβo, indicating that iAβo can increase network excitability at a distance. Current-clamp recordings suggested that iAβo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAβo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.
Collapse
Affiliation(s)
| | - Braulio Muñoz
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Denisse A. Bascuñan
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Christian Peters
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Nicolas O. Riffo‐Lepe
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Maria P. Espinoza
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| | - Peter J. Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Department of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED)Institut National de la Santé et de la Recherche Médicale (INSERM) U901, Aix-Marseille UniversitéMarseilleFrance
| | - Luis G. Aguayo
- Laboratory of NeurophysiologyDepartment of PhysiologyUniversidad de ConcepciónConcepciónChile
| |
Collapse
|
15
|
Regulation of GABA A Receptors Induced by the Activation of L-Type Voltage-Gated Calcium Channels. MEMBRANES 2021; 11:membranes11070486. [PMID: 34209589 PMCID: PMC8304739 DOI: 10.3390/membranes11070486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
GABAA receptors are pentameric ion channels that mediate most synaptic and tonic extrasynaptic inhibitory transmissions in the central nervous system. There are multiple GABAA receptor subtypes constructed from 19 different subunits in mammals that exhibit different regional and subcellular distributions and distinct pharmacological properties. Dysfunctional alterations of GABAA receptors are associated with various neuropsychiatric disorders. Short- and long-term plastic changes in GABAA receptors can be induced by the activation of different intracellular signaling pathways that are triggered, under physiological and pathological conditions, by calcium entering through voltage-gated calcium channels. This review discusses several mechanisms of regulation of GABAA receptor function that result from the activation of L-type voltage gated calcium channels. Calcium influx via these channels activates different signaling cascades that lead to changes in GABAA receptor transcription, phosphorylation, trafficking, and synaptic clustering, thus regulating the inhibitory synaptic strength. These plastic mechanisms regulate the interplay of synaptic excitation and inhibition that is crucial for the normal function of neuronal circuits.
Collapse
|
16
|
Lombardi JP, Kinzlmaier DA, Jacob TC. Visualizing GABA A Receptor Trafficking Dynamics with Fluorogenic Protein Labeling. ACTA ACUST UNITED AC 2021; 92:e97. [PMID: 32364672 DOI: 10.1002/cpns.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAARs), exhibit highly dynamic trafficking and cell surface mobility. Regulated trafficking to and from the surface is a critical determinant of GABAAR neurotransmission. Receptors delivered by exocytosis diffuse laterally in the plasma membrane, with tethering and reduced movement at synapses occurring through receptor interactions with the subsynaptic scaffold. After diffusion away from synapses, receptors are internalized by clathrin-dependent endocytosis at extrasynaptic sites and can be either recycled back to the cell membrane or degraded in lysosomes. To study the dynamics of these key trafficking events in neurons, we have developed novel optical methods based around receptors containing a dual-tagged γ2 subunit (γ2pHFAP) in combination with fluorogen dyes. Specifically, the GABAAR γ2 subunit is tagged with a pH-sensitive green fluorescent protein and a fluorogen-activating peptide (FAP). The FAP allows receptor labeling with fluorogen dyes that are optically silent until bound to the FAP. Combining FAP and fluorescent imaging with organelle labeling allows novel and accurate measurement of receptor turnover and accumulation into intracellular compartments under basal conditions in scenarios ranging from in vitro seizure models to drug exposure paradigms. Here we provide a protocol to track and quantify receptors in transit from the neuronal surface to endosomes and lysosomes. This protocol is readily applicable to cell lines and primary cells, allowing rapid quantitative measurements of receptor surface levels and postendocytic trafficking decisions. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of cortical neuronal cultures for imaging assays Basic Protocol 2: Surface receptor internalization and trafficking to early endosomes Basic Protocol 3: Measurement of receptor steady state surface level, synaptic level, and lysosomal targeting.
Collapse
Affiliation(s)
- Jacob P Lombardi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Kinzlmaier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Local miRNA-Dependent Translational Control of GABA AR Synthesis during Inhibitory Long-Term Potentiation. Cell Rep 2021; 31:107785. [PMID: 32579917 PMCID: PMC7486624 DOI: 10.1016/j.celrep.2020.107785] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 12/29/2022] Open
Abstract
Molecular mechanisms underlying plasticity at brain inhibitory synapses remain poorly characterized. Increased postsynaptic clustering of GABAA receptors (GABAARs) rapidly strengthens inhibition during inhibitory long-term potentiation (iLTP). However, it is unclear how synaptic GABAAR clustering is maintained to sustain iLTP. Here, we identify a role for miR376c in regulating the translation of mRNAs encoding the synaptic α1 and γ2 GABAAR subunits, GABRA1 and GABRG2, respectively. Following iLTP induction, transcriptional repression of miR376c is induced through a calcineurin-NFAT-HDAC signaling pathway and promotes increased translation and clustering of synaptic GABAARs. This pathway is essential for the long-term expression of iLTP and is blocked by miR376c overexpression, specifically impairing inhibitory synaptic strength. Finally, we show that local de novo synthesis of synaptic GABAARs occurs exclusively in dendrites and in a miR376c-dependent manner following iLTP. Together, this work describes a local post-transcriptional mechanism that regulates inhibitory synaptic plasticity via miRNA control of dendritic protein synthesis. Clustering of GABAARs at inhibitory synapses is crucial for synaptic inhibition. Rajgor et al. discover that synaptic GABAAR expression is controlled by their local translation, regulated by miR376c. During inhibitory synaptic potentiation, miR376c is downregulated, relieving its translational repression of GABAAR mRNAs and leading to de novo synthesis of dendritic GABAARs.
Collapse
|
18
|
Wu K, Han W, Tian Q, Li Y, Lu W. Activity- and sleep-dependent regulation of tonic inhibition by Shisa7. Cell Rep 2021; 34:108899. [PMID: 33761345 PMCID: PMC8025742 DOI: 10.1016/j.celrep.2021.108899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tonic inhibition mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABAARs) critically regulates neuronal excitability and brain function. However, the mechanisms regulating tonic inhibition remain poorly understood. Here, we report that Shisa7 is critical for tonic inhibition regulation in hippocampal neurons. In juvenile Shisa7 knockout (KO) mice, α5-GABAAR-mediated tonic currents are significantly reduced. Mechanistically, Shisa7 is crucial for α5-GABAAR exocytosis. Additionally, Shisa7 regulation of tonic inhibition requires protein kinase A (PKA) that phosphorylates Shisa7 serine 405 (S405). Importantly, tonic inhibition undergoes activity-dependent regulation, and Shisa7 is required for homeostatic potentiation of tonic inhibition. Interestingly, in young adult Shisa7 KOs, basal tonic inhibition in hippocampal neurons is unaltered, largely due to the diminished α5-GABAAR component of tonic inhibition. However, at this stage, tonic inhibition oscillates during the daily sleep/wake cycle, a process requiring Shisa7. Together, these data demonstrate that intricate signaling mechanisms regulate tonic inhibition at different developmental stages and reveal a molecular link between sleep and tonic inhibition.
Collapse
Affiliation(s)
- Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Kiss E, Groeneweg F, Gorgas K, Schlicksupp A, Kins S, Kirsch J, Kuhse J. Amyloid-β Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis. J Alzheimers Dis 2020; 74:1167-1187. [DOI: 10.3233/jad-190976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- Department of Cellular and Molecular Biology, “Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Moraga-Cid G, San Martín VP, Lara CO, Muñoz B, Marileo AM, Sazo A, Muñoz-Montesino C, Fuentealba J, Castro PA, Guzmán L, Burgos CF, Zeilhofer HU, Aguayo LG, Corringer PJ, Yévenes GE. Modulation of glycine receptor single-channel conductance by intracellular phosphorylation. Sci Rep 2020; 10:4804. [PMID: 32179786 PMCID: PMC7076024 DOI: 10.1038/s41598-020-61677-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
Glycine receptors (GlyRs) are anion-permeable pentameric ligand-gated ion channels (pLGICs). The GlyR activation is critical for the control of key neurophysiological functions, such as motor coordination, respiratory control, muscle tone and pain processing. The relevance of the GlyR function is further highlighted by the presence of abnormal glycinergic inhibition in many pathophysiological states, such as hyperekplexia, epilepsy, autism and chronic pain. In this context, previous studies have shown that the functional inhibition of GlyRs containing the α3 subunit is a pivotal mechanism of pain hypersensitivity. This pathway involves the activation of EP2 receptors and the subsequent PKA-dependent phosphorylation of α3GlyRs within the intracellular domain (ICD), which decrease the GlyR-associated currents and enhance neuronal excitability. Despite the importance of this mechanism of glycinergic dis-inhibition associated with dysfunctional α3GlyRs, our current understanding of the molecular events involved is limited. Here, we report that the activation of PKA signaling pathway decreases the unitary conductance of α3GlyRs. We show in addition that the substitution of the PKA-targeted serine with a negatively charged residue within the ICD of α3GlyRs and of chimeric receptors combining bacterial GLIC and α3GlyR was sufficient to generate receptors with reduced conductance. Thus, our findings reveal a potential biophysical mechanism of glycinergic dis-inhibition and suggest that post-translational modifications of the ICD, such as phosphorylation, may shape the conductance of other pLGICs.
Collapse
Affiliation(s)
- Gustavo Moraga-Cid
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| | - Victoria P San Martín
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cesar O Lara
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ana M Marileo
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Anggelo Sazo
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Carola Muñoz-Montesino
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Patricio A Castro
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Carlos F Burgos
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Hanns U Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8090, Zurich, Switzerland
| | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile.
| |
Collapse
|
21
|
Foitzick MF, Medina NB, Iglesias García LC, Gravielle MC. Benzodiazepine exposure induces transcriptional down-regulation of GABA A receptor α1 subunit gene via L-type voltage-gated calcium channel activation in rat cerebrocortical neurons. Neurosci Lett 2020; 721:134801. [PMID: 32007495 DOI: 10.1016/j.neulet.2020.134801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
GABAA receptors are targets of different pharmacologically relevant drugs, such as barbiturates, benzodiazepines, and anesthetics. In particular, benzodiazepines are prescribed for the treatment of anxiety, sleep disorders, and seizure disorders. Benzodiazepines potentiate GABA responses by binding to GABAA receptors, which are mainly composed of α (1-3, 5), β2, and γ2 subunits. Prolonged activation of GABAA receptors by endogenous and exogenous modulators induces adaptive changes that lead to tolerance. For example, chronic administration of benzodiazepines produces tolerance to most of their pharmacological actions, limiting their usefulness. The mechanism of benzodiazepine tolerance is still unknown. To investigate the molecular basis of tolerance, we studied the effect of sustained exposure of rat cerebral cortical neurons to diazepam on the GABAA receptor. Flunitrazepam binding experiments showed that diazepam treatment induced uncoupling between GABA and benzodiazepine sites, which was blocked by co-incubation with flumazenil, picrotoxin, or nifedipine. Diazepam also produced selective transcriptional down-regulation of GABAA receptor α1 subunit gene through a mechanism dependent on the activation of L-type voltage-gated calcium channels. These findings suggest benzodiazepine-induced stimulation of calcium influx through L-type voltage-gated calcium channels triggers the activation of a signaling pathway that leads to uncoupling and an alteration of receptor subunit expression. Insights into the mechanism of benzodiazepine tolerance will contribute to the design of new drugs that can maintain their efficacies after long-term treatments.
Collapse
Affiliation(s)
- María Florencia Foitzick
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Nelsy Beatriz Medina
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Lucía Candela Iglesias García
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina
| | - María Clara Gravielle
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. CONICET, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Kfir A, Awasthi R, Ghosh S, Kundu S, Paul B, Lamprecht R, Barkai E. A Cellular Mechanism of Learning-Induced Enhancement of Synaptic Inhibition: PKC-Dependent Upregulation of KCC2 Activation. Sci Rep 2020; 10:962. [PMID: 31969605 PMCID: PMC6976593 DOI: 10.1038/s41598-020-57626-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/18/2019] [Indexed: 01/23/2023] Open
Abstract
Long-term memory of complex olfactory learning is expressed by wide spread enhancement in excitatory and inhibitory synaptic transmission onto piriform cortex pyramidal neurons. A particularly interesting modification in synaptic inhibition is the hyperpolarization of the reversal potential of the fast post synaptic inhibitory potential (fIPSP). Here we study the mechanism underlying the maintenance of such a shift in the fIPSP. Blocking of the neuronal specific K+-Cl- co-transporter (KCC2) in neurons of trained rats significantly depolarized the averaged fIPSP reversal potential of the spontaneous miniature inhibitory post synaptic currents (mIPSCs), to the averaged pre-training level. A similar effect was obtained by blocking PKC, which was previously shown to upregulate KCC2. Accordingly, the level of PKC-dependent phosphorylation of KCC2, at the serine 940 site, was significantly increased after learning. In contrast, blocking two other key second messenger systems CaMKII and PKA, which have no phosphorylation sites on KCC2, had no effect on the fIPSP reversal potential. Importantly, the PKC inhibitor also reduced the averaged amplitude of the spontaneous miniature excitatory synaptic currents (mEPSCs) in neurons of trained rats only, to the pre-training level. We conclude that learning-induced hyper-polarization of the fIPSP reversal potential is mediated by PKC-dependent increase of KCC2 phosphorylation.
Collapse
Affiliation(s)
- Adi Kfir
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Richa Awasthi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sourav Ghosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Sankhanava Kundu
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Blesson Paul
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Edi Barkai
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
23
|
Morgan PJ, Bourboulou R, Filippi C, Koenig-Gambini J, Epsztein J. Kv1.1 contributes to a rapid homeostatic plasticity of intrinsic excitability in CA1 pyramidal neurons in vivo. eLife 2019; 8:49915. [PMID: 31774395 PMCID: PMC6881145 DOI: 10.7554/elife.49915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
In area CA1 of the hippocampus, the selection of place cells to represent a new environment is biased towards neurons with higher excitability. However, different environments are represented by orthogonal cell ensembles, suggesting that regulatory mechanisms exist. Activity-dependent plasticity of intrinsic excitability, as observed in vitro, is an attractive candidate. Here, using whole-cell patch-clamp recordings of CA1 pyramidal neurons in anesthetized rats, we have examined how inducing theta-bursts of action potentials affects their intrinsic excitability over time. We observed a long-lasting, homeostatic depression of intrinsic excitability which commenced within minutes, and, in contrast to in vitro observations, was not mediated by dendritic Ih. Instead, it was attenuated by the Kv1.1 channel blocker dendrotoxin K, suggesting an axonal origin. Analysis of place cells’ out-of-field firing in mice navigating in virtual reality further revealed an experience-dependent reduction consistent with decreased excitability. We propose that this mechanism could reduce memory interference.
Collapse
Affiliation(s)
- Peter James Morgan
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Romain Bourboulou
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Caroline Filippi
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| | - Julie Koenig-Gambini
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France.,Institut Universitaire de France, Paris, France
| | - Jérôme Epsztein
- Institute of Neurobiology of the Mediterranean Sea (INMED), Turing Center for Living Systems (CENTURI), Aix-Marseille University, INSERM, Marseille, France
| |
Collapse
|
24
|
Mechanisms of GABA B receptor enhancement of extrasynaptic GABA A receptor currents in cerebellar granule cells. Sci Rep 2019; 9:16683. [PMID: 31723152 PMCID: PMC6853962 DOI: 10.1038/s41598-019-53087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Many neurons, including cerebellar granule cells, exhibit a tonic GABA current mediated by extrasynaptic GABAA receptors. This current is a critical regulator of firing and the target of many clinically relevant compounds. Using a combination of patch clamp electrophysiology and photolytic uncaging of RuBi-GABA we show that GABAB receptors are tonically active and enhance extrasynaptic GABAA receptor currents in cerebellar granule cells. This enhancement is not associated with meaningful changes in GABAA receptor potency, mean channel open-time, open probability, or single-channel current. However, there was a significant (~40%) decrease in the number of channels participating in the GABA uncaging current and an increase in receptor desensitization. Furthermore, we find that adenylate cyclase, PKA, CaMKII, and release of Ca2+ from intracellular stores are necessary for modulation of GABAA receptors. Overall, this work reveals crosstalk between postsynaptic GABAA and GABAB receptors and identifies the signaling pathways and mechanisms involved.
Collapse
|
25
|
Bayer KU, Schulman H. CaM Kinase: Still Inspiring at 40. Neuron 2019; 103:380-394. [PMID: 31394063 DOI: 10.1016/j.neuron.2019.05.033] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) was touted as a memory molecule, even before its involvement in long-term potentiation (LTP) was shown. The enzyme has not disappointed, with subsequent demonstrations of remarkable structural and regulatory properties. Its neuronal functions now extend to long-term depression (LTD), and last year saw the first direct evidence for memory storage by CaMKII. Although CaMKII may have taken the spotlight, it is a member of a large family of diverse and interesting CaM kinases. Our aim is to place CaMKII in context of the other CaM kinases and then review certain aspects of this kinase that are of current interest.
Collapse
Affiliation(s)
- K Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
26
|
Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Front Mol Neurosci 2019; 12:120. [PMID: 31178690 PMCID: PMC6536897 DOI: 10.3389/fnmol.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
The astrocyte-specific enzyme glutamine synthetase (GS), which catalyzes the amidation of glutamate to glutamine, plays an essential role in supporting neurotransmission and in limiting NH4+ toxicity. Accordingly, deficits in GS activity contribute to epilepsy and neurodegeneration. Despite its central role in brain physiology, the mechanisms that regulate GS activity are poorly defined. Here, we demonstrate that GS is directly phosphorylated on threonine residue 301 (T301) within the enzyme’s active site by cAMP-dependent protein kinase (PKA). Phosphorylation of T301 leads to a dramatic decrease in glutamine synthesis. Enhanced T301 phosphorylation was evident in a mouse model of epilepsy, which may contribute to the decreased GS activity seen during this trauma. Thus, our results highlight a novel molecular mechanism that determines GS activity under both normal and pathological conditions.
Collapse
Affiliation(s)
- Deborah Huyghe
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew R Denninger
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Frank
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ning Gao
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Nicholas Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew D Ferguson
- Structure & Biophysics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | | | - Peter Doig
- Mechanistic Biology & Profiling, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
27
|
Roseti C, Cifelli P, Ruffolo G, Barbieri E, Guescini M, Esposito V, Di Gennaro G, Limatola C, Giovannelli A, Aronica E, Palma E. Erythropoietin Increases GABA A Currents in Human Cortex from TLE Patients. Neuroscience 2019; 439:153-162. [PMID: 31047977 DOI: 10.1016/j.neuroscience.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/15/2022]
Abstract
Erythropoietin (EPO) is a hematopoietic growth factor that has an important role in the erythropoiesis. EPO and its receptor (EPO-R) are expressed all over in the mammalian brain. Furthermore, it has been reported that EPO may exert neuroprotective effect in animal models of brain disorders as ischemia and epilepsy. Here, we investigate whether EPO could modulate the GABA-evoked currents (IGABA) in both human epileptic and non-epileptic control brain tissues. Therefore, we transplanted in Xenopus oocytes cell membranes obtained from autoptic and surgical brain tissues (cortex) of seven temporal lope epilepsy (TLE) patients and of five control patients. Two microelectrodes voltage-clamp technique has been used to record IGABA. Moreover, qRT-PCR assay was performed in the same human tissues to quantify the relative gene expression levels of EPO/EPO-R. To further confirm experiments in oocytes, we performed additional experiments using patch-clamp recording in slices obtained from rat cerebellum. We show that exposure to EPO significantly increased the amplitude of the IGABA in all the patients analyzed. No differences in the expression of EPO and EPO-R in both TLE and control patients have been found. Notably, the increase of IGABA has been recorded also in rat cerebellar slices. Our findings show a new modulatory action of EPO on GABAA receptors (GABAA-Rs). This effect could be relevant to balance the GABAergic dysfunction in human TLE. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
| | - Pierangelo Cifelli
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy
| | - Elena Barbieri
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Science, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | - Cristina Limatola
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, (IS), Italy
| | - Aldo Giovannelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| | - Eleonora Palma
- Department of Physiology and Pharmacology, laboratory affiliated to Istituto Pasteur Italia, University of Rome Sapienza, Rome, Italy.
| |
Collapse
|
28
|
Lorenz-Guertin JM, Bambino MJ, Das S, Weintraub ST, Jacob TC. Diazepam Accelerates GABA AR Synaptic Exchange and Alters Intracellular Trafficking. Front Cell Neurosci 2019; 13:163. [PMID: 31080408 PMCID: PMC6497791 DOI: 10.3389/fncel.2019.00163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.
Collapse
Affiliation(s)
- Joshua M. Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J. Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sabyasachi Das
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Susan T. Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
29
|
O'Neill N, Sylantyev S. The Functional Role of Spontaneously Opening GABA A Receptors in Neural Transmission. Front Mol Neurosci 2019; 12:72. [PMID: 30983968 PMCID: PMC6447609 DOI: 10.3389/fnmol.2019.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Ionotropic type of γ-aminobutyric acid receptors (GABAARs) produce two forms of inhibitory signaling: phasic inhibition generated by rapid efflux of neurotransmitter GABA into the synaptic cleft with subsequent binding to GABAARs, and tonic inhibition generated by persistent activation of extrasynaptic and/or perisynaptic GABAARs by GABA continuously present in the extracellular space. It is widely accepted that phasic and tonic GABAergic inhibition is mediated by receptor groups of distinct subunit composition and modulated by different cytoplasmic mechanisms. Recently, however, it has been demonstrated that spontaneously opening GABAARs (s-GABAARs), which do not need GABA binding to enter an active state, make a significant input into tonic inhibitory signaling. Due to GABA-independent action mode, s-GABAARs promise new safer options for therapy of neural disorders (such as epilepsy) devoid of side effects connected to abnormal fluctuations of GABA concentration in the brain. However, despite the potentially important role of s-GABAARs in neural signaling, they still remain out of focus of neuroscience studies, to a large extent due to technical difficulties in their experimental research. Here, we summarize present data on s-GABAARs functional properties and experimental approaches that allow isolation of s-GABAARs effects from those of conventional (GABA-dependent) GABAARs.
Collapse
Affiliation(s)
- Nathanael O'Neill
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Bhandage AK, Barragan A. Calling in the Ca Valry- Toxoplasma gondii Hijacks GABAergic Signaling and Voltage-Dependent Calcium Channel Signaling for Trojan horse-Mediated Dissemination. Front Cell Infect Microbiol 2019; 9:61. [PMID: 30949456 PMCID: PMC6436472 DOI: 10.3389/fcimb.2019.00061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are regarded as the gatekeepers of the immune system but can also mediate systemic dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we review the current knowledge on how T. gondii hijacks the migratory machinery of DCs and microglia. Shortly after active invasion by the parasite, infected cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) and activate GABA-A receptors, which sets on a hypermigratory phenotype in parasitized DCs in vitro and in vivo. The signaling molecule calcium plays a central role for this migratory activation as signal transduction following GABAergic activation is mediated via the L-type voltage-dependent calcium channel (L-VDCC) subtype Cav1.3. These studies have revealed that DCs possess a GABA/L-VDCC/Cav1.3 motogenic signaling axis that triggers migratory activation upon T. gondii infection. Moreover, GABAergic migration can cooperate with chemotactic responses. Additionally, the parasite-derived protein Tg14-3-3 has been associated with hypermigration of DCs and microglia. We discuss the interference of T. gondii infection with host cell signaling pathways that regulate migration. Altogether, T. gondii hijacks non-canonical signaling pathways in infected immune cells to modulate their migratory properties, and thereby promote its own dissemination.
Collapse
Affiliation(s)
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
31
|
Qin D, Liu P, Chen H, Huang X, Ye W, Lin X, Wei F, Su J. Salicylate-Induced Ototoxicity of Spiral Ganglion Neurons: Ca 2+/CaMKII-Mediated Interaction Between NMDA Receptor and GABA A Receptor. Neurotox Res 2019; 35:838-847. [PMID: 30820888 DOI: 10.1007/s12640-019-0006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Sodium salicylate (SS) is one of the nonsteroidal anti-inflammatory drugs and widely used in clinical practice. Therefore, we aimed to investigate the potential ototoxicity mechanism of sodium salicylate: the influence of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaMKII) in interaction between NMDA receptors (NMDAR) and GABAA receptors (GABAAR) in rat cochlear spiral ganglion neurons (SGNs). After treatment with SS, NMDA, and an NMDAR inhibitor (APV), the changes of GABAAR β3 (GABR β3) mRNA, surface and total protein, and GABAAR currents in SGNs were assessed by quantitative PCR, Western blot, and whole-cell patch clamp. Mechanistically, SS and/or NMDA increased the GABR β3 mRNA expression, while decreased GABR β3 surface protein levels and GABAAR-mediated currents. Moreover, application of SS and/or NMDA showed promotion in phosphorylation levels at S383 of GABR β3. Collectively, Ca2+ chelator (BAPTA) or Ca2+/CaMKII inhibitor (KN-93) reversed the effects of SS and/or NMDA on GABAAR. Therefore, we hypothesize that the interaction between NMDAR and GABAAR is involved in the SGNs damage induced by SS. In addition, the underlying molecular mechanism is related to Ca2+/CaMKII-mediated signaling pathway, which suggests that the interaction between calcium signal-regulated receptors mediates SS ototoxicity.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Otolaryngology-Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Wenhua Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fangyu Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
32
|
Green MV, Thayer SA. HIV gp120 upregulates tonic inhibition through α5-containing GABA ARs. Neuropharmacology 2019; 149:161-168. [PMID: 30797029 DOI: 10.1016/j.neuropharm.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 02/17/2019] [Indexed: 12/17/2022]
Abstract
HIV-Associated Neurocognitive disorder (HAND) affects nearly half of infected patients. The HIV envelope protein gp120 is shed by infected cells and is a potent neurotoxin in vitro that reproduces many aspects of HAND when expressed in vivo. Here, we show that HIV gp120 increases the amplitude of a tonic current mediated by γ-aminobutyric acid type-A receptors (GABAARs). Treating rat hippocampal cultures with 600 pM gp120IIIB for 4 h increased a tonic bicuculline-sensitive current, which remained elevated for 24 h. The increased current resulted from upregulation of extrasynaptic α5-containing GABAARs, as indicated by inhibition with the selective inverse agonist basmisanil. Treatment with gp120 increased α5-GABAAR immunoreactivity on the cell surface without new protein synthesis. The increase in tonic inhibition was prevented by a C-X-C chemokine receptor type 4 (CXCR4) antagonist or elimination of microglia from the culture. Treatment with interleukin-1β (IL-1β) increased the tonic current and an IL-1 receptor antagonist blocked the gp120-evoked response. Pharmacological or genetic inhibition of p38 mitogen-activated protein kinase (MAPK) prevented the gp120-evoked increase in tonic current and direct activation of a mutant form of p38 MAPK expressed in neurons increased the current. Collectively, these data show that gp120 activates CXCR4 to stimulate microglia to release IL-1β. Subsequent stimulation of IL-1 receptors activates p38 MAPK in neurons leading to the upregulation of α5-containing GABAARs. Increased tonic inhibition impairs neuroplasticity and inhibition of α5-containing GABAARs improves cognitive function in disease models. Thus, gp120-induced upregulation of α5-containing GABAARs presents a novel therapeutic target for HAND.
Collapse
Affiliation(s)
- Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Stanley A Thayer
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA; Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
33
|
Keating N, Zeak N, Smith SS. Pubertal hormones increase hippocampal expression of α4βδ GABA A receptors. Neurosci Lett 2019; 701:65-70. [PMID: 30742936 DOI: 10.1016/j.neulet.2019.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
CA1 hippocampal expression of α4βδ GABAA receptors (GABARs) increases at the onset of puberty in female mice, an effect dependent upon the decline in hippocampal levels of the neurosteroid THP (3α-OH-5α-pregnan-20-one) which occurs at this time. The present study further characterized the mechanisms underlying α4βδ expression, assessed in vivo. Blockade of pubertal levels of 17β-estradiol (E2) (formestane, 0.5 mg/kg, i.p. 3 d) reduced α4 and δ expression by 75-80% (P < 0.05) in CA1 hippocampus of female mice, assessed using Western blot techniques. Conversely, E2 administration increased α4 and δ expression by 50-100% in adults, an effect enhanced by more than 2-fold by concomitant administration of the 5α-reductase blocker finasteride (50 mg/kg, i.p., 3d, P < 0.05), suggesting that both declining THP levels and increasing E2 levels before puberty trigger α4βδ expression. This effect was blocked by ICI 182,780 (20 mg/kg, s.c., 3 d), a selective blocker of E2 receptor-α (ER-α). These results suggest that both the rise in circulating levels of E2 and the decline in hippocampal THP levels at the onset of puberty trigger maximal levels of α4βδ expression in the CA1 hippocampus.
Collapse
Affiliation(s)
- Nicole Keating
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Nicole Zeak
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY, 11203, USA.
| |
Collapse
|
34
|
Modgil A, Vien TN, Ackley MA, Doherty JJ, Moss SJ, Davies PA. Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model. Front Mol Neurosci 2019; 12:15. [PMID: 30804752 PMCID: PMC6371020 DOI: 10.3389/fnmol.2019.00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. A reduction in neuronal inhibition mediated by γ-aminobutyric acid type A receptors (GABAARs) has been implicated in the pathophysiology of FXS. Neuroactive steroids (NASs) are known allosteric modulators of GABAAR channel function, but recent studies from our laboratory have revealed that NASs also exert persistent metabotropic effects on the efficacy of tonic inhibition by increasing the protein kinase C (PKC)-mediated phosphorylation of the α4 and β3 subunits which increase the membrane expression and boosts tonic inhibition. We have assessed the GABAergic signaling in the hippocampus of fragile X mental retardation protein (FMRP) knock-out (Fmr1KO) mouse. The GABAergic tonic current in dentate gyrus granule cells (DGGCs) from 3- to 5-week-old (p21–35) Fmr1KO mice was significantly reduced compared to WT mice. Additionally, spontaneous inhibitory post synaptic inhibitory current (sIPSC) amplitudes were increased in DGGCs from Fmr1 KO mice. While sIPSCs decay in both genotypes was prolonged by the prototypic benzodiazepine diazepam, those in Frm1-KO mice were selectively potentiated by RO15-4513. Consistent with this altered pharmacology, modifications in the expression levels and phosphorylation of receptor GABAAR subtypes that mediate tonic inhibition were seen in Fmr1 KO mice. Significantly, exposure to NASs induced a sustained elevation in tonic current in Fmr1 KO mice which was prevented with PKC inhibition. Likewise, exposure reduced elevated membrane excitability seen in the mutant mice. Collectively, our results suggest that NAS act to reverse the deficits of tonic inhibition seen in FXS, and thereby reduce aberrant neuronal hyperexcitability seen in this disorder.
Collapse
Affiliation(s)
- Amit Modgil
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Thuy N Vien
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | | | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
35
|
Reddy DS, Chuang SH, Hunn D, Crepeau AZ, Maganti R. Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Res 2018; 147:32-41. [PMID: 30212766 PMCID: PMC6192845 DOI: 10.1016/j.eplepsyres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
Sleep plays an intricate role in epilepsy and can affect the frequency and occurrence of seizures. With nearly 35% of U.S. adults failing to obtain the recommended 7 h of sleep every night, understanding the complex relationship between sleep and epilepsy is of utmost relevance. Sleep deprivation is a common trigger of seizures in many persons with epilepsy and sleep patterns play a role in the occurrence of seizures. Some patients have their first seizure or repeated seizures after an "all-nighter" at college or after a long period of chronic sleep deprivation. The strength of the relationship between sleep and seizures varies between patients, but improving sleep and optimizing seizure control can have significant positive effects on the quality of life for all these patients. Research has shown that the changes in the brain's electrical and hormonal activity occurring during normal sleep-wake cycles can be linked to both sleep and seizure patterns. Many questions remain to be answered about sleep and epilepsy. How can sleep deprivation trigger an epileptic seizure? How do circadian and hormonal changes influence sleep pattern and seizure occurrence? Can hormones or sleeping pills help with sleep in epilepsy? In this article we discuss these and many other questions on sleep in epilepsy, with an emphasis on sleep architecture, hormone changes, mechanistic factors, and possible prevention strategies.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA.
| | - Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Dayton Hunn
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Amy Z Crepeau
- Department of Neurology, Mayo Clinic Hospital, Phoenix, AZ 85054, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
36
|
Groeneweg FL, Trattnig C, Kuhse J, Nawrotzki RA, Kirsch J. Gephyrin: a key regulatory protein of inhibitory synapses and beyond. Histochem Cell Biol 2018; 150:489-508. [DOI: 10.1007/s00418-018-1725-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2018] [Indexed: 12/26/2022]
|
37
|
Lorenz-Guertin JM, Bambino MJ, Jacob TC. γ2 GABA AR Trafficking and the Consequences of Human Genetic Variation. Front Cell Neurosci 2018; 12:265. [PMID: 30190672 PMCID: PMC6116786 DOI: 10.3389/fncel.2018.00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the central nervous system (CNS). Most prevalent as heteropentamers composed of two α, two β, and a γ2 subunit, these ligand-gated ionotropic chloride channels are capable of extensive genetic diversity (α1-6, β1-3, γ1-3, δ, 𝜀, 𝜃, π, ρ1-3). Part of this selective GABAAR assembly arises from the critical role for γ2 in maintaining synaptic receptor localization and function. Accordingly, mutations in this subunit account for over half of the known epilepsy-associated genetic anomalies identified in GABAARs. Fundamental structure-function studies and cellular pathology investigations have revealed dynamic GABAAR trafficking and synaptic scaffolding as critical regulators of GABAergic inhibition. Here, we introduce in vitro and in vivo findings regarding the specific role of the γ2 subunit in receptor trafficking. We then examine γ2 subunit human genetic variation and assess disease related phenotypes and the potential role of altered GABAAR trafficking. Finally, we discuss new-age imaging techniques and their potential to provide novel insight into critical regulatory mechanisms of GABAAR function.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Nakamura T, Sakaue F, Nasu-Nishimura Y, Takeda Y, Matsuura K, Akiyama T. The Autism-Related Protein PX-RICS Mediates GABAergic Synaptic Plasticity in Hippocampal Neurons and Emotional Learning in Mice. EBioMedicine 2018; 34:189-200. [PMID: 30045817 PMCID: PMC6116350 DOI: 10.1016/j.ebiom.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 11/21/2022] Open
Abstract
GABAergic dysfunction underlies many neurodevelopmental and psychiatric disorders. GABAergic synapses exhibit several forms of plasticity at both pre- and postsynaptic levels. NMDA receptor (NMDAR)–dependent inhibitory long-term potentiation (iLTP) at GABAergic postsynapses requires an increase in surface GABAARs through promoted exocytosis; however, the regulatory mechanisms and the neuropathological significance remain unclear. Here we report that the autism-related protein PX-RICS is involved in GABAAR transport driven during NMDAR–dependent GABAergic iLTP. Chemically induced iLTP elicited a rapid increase in surface GABAARs in wild-type mouse hippocampal neurons, but not in PX-RICS/RICS–deficient neurons. This increase in surface GABAARs required the PX-RICS/GABARAP/14–3-3 complex, as revealed by gene knockdown and rescue studies. iLTP induced CaMKII–dependent phosphorylation of PX-RICS to promote PX-RICS–14-3-3 assembly. Notably, PX-RICS/RICS–deficient mice showed impaired amygdala–dependent fear learning, which was ameliorated by potentiating GABAergic activity with clonazepam. Our results suggest that PX-RICS–mediated GABAAR trafficking is a key target for GABAergic plasticity and its dysfunction leads to atypical emotional processing underlying autism. The autism-related protein PX-RICS is involved in promoted GABAAR transport during chemically induced iLTP. PX-RICS/RICS-null mice show impaired amygdala–dependent fear learning, which is alleviated by enhancing GABAergic activity. PX-RICS is a key target for GABAergic plasticity and its dysfunction causes atypical emotional processing underlying autism.
PX-RICS facilitates constitutive transport of GABAARs in neurons. PX-RICS deficiency leads to autistic-like social behaviors in mice and in patients with Jacobsen syndrome. Rare single-nucleotide variations in PX-RICS are linked to non-syndromic autism, schizophrenia and alexithymia. These findings strongly suggest that PX-RICS dysfunction impairs socio-emotional processing of the brain. Here we show that PX-RICS is also involved in activity–dependent GABAAR transport for GABAergic synaptic plasticity, and its dysfunction results in impaired emotional learning associated with the amygdale. Elucidation of the molecular link between GABAergic plasticity and socio-emotional learning could lead to a better understanding of autism pathogenesis and treatment.
Collapse
Affiliation(s)
- Tsutomu Nakamura
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan..
| | - Fumika Sakaue
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ken Matsuura
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
39
|
Chuang SH, Reddy DS. 3 β-Methyl-Neurosteroid Analogs Are Preferential Positive Allosteric Modulators and Direct Activators of Extrasynaptic δ-Subunit γ-Aminobutyric Acid Type A Receptors in the Hippocampus Dentate Gyrus Subfield. J Pharmacol Exp Ther 2018; 365:583-601. [PMID: 29602830 PMCID: PMC5941194 DOI: 10.1124/jpet.117.246660] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are powerful modulators of γ-aminobutyric acid (GABA)-A receptors. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one, GX) and synthetic analogs of the neurosteroid allopregnanolone (AP) are designed to treat epilepsy and related conditions. However, their precise mechanism of action in native neurons remains unclear. Here, we sought to determine the mode of action of GX and its analogs at GABA-A receptors in native hippocampal neurons by analyzing extrasynaptic receptor-mediated tonic currents and synaptic receptor-mediated phasic currents. Concentration-response profiles of GX were determined in two cell types: δ-containing dentate gyrus granule cells (DGGCs) and γ2-containing CA1 pyramidal cells (CA1PCs). GX produced significantly greater potentiation of the GABA-A receptor-activated chloride currents in DGGCs (500%) than CA1PCs (200%). In the absence of GABA, GX evoked 2-fold greater inward currents in DGGCs than CA1PCs, which were 2-fold greater than AP within DGGCs. In hippocampus slices, GX potentiated and directly activated tonic currents in DGGCs. These responses were significantly diminished in DGGCs from δ-subunit knockout (δKO) mice, confirming GX's selectivity for δGABA-A receptors. Like AP, GX potentiation of tonic currents was prevented by protein kinase C inhibition. Furthermore, GX's protection against hippocampus-kindled seizures was significantly diminished in δKO mice. GX analogs exhibited greater potency and efficacy than GX on δGABA-A receptor-mediated tonic inhibition. In summary, these results provide strong evidence that GX and its analogs are preferential allosteric modulators and direct activators of extrasynaptic δGABA-A receptors regulating network inhibition and seizures in the dentate gyrus. Therefore, these findings provide a mechanistic rationale for the clinical use of synthetic neurosteroids in epilepsy and seizure disorders.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
40
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
41
|
Chuang SH, Reddy DS. Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. J Pharmacol Exp Ther 2018; 364:180-197. [PMID: 29142081 PMCID: PMC5771312 DOI: 10.1124/jpet.117.244673] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
GABA-A receptors play a pivotal role in many brain diseases. Epilepsy is caused by acquired conditions and genetic defects in GABA receptor channels regulating neuronal excitability in the brain. The latter is referred to as GABA channelopathies. In the last two decades, major advances have been made in the genetics of epilepsy. The presence of specific GABAergic genetic abnormalities leading to some of the classic epileptic syndromes has been identified. Advances in molecular cloning and recombinant systems have helped characterize mutations in GABA-A receptor subunit genes in clinical neurology. GABA-A receptors are the prime targets for neurosteroids (NSs). However, GABA-A receptors are not static but undergo rapid changes in their number or composition in response to the neuroendocrine milieu. This review describes the recent advances in the genetic and neuroendocrine control of extrasynaptic and synaptic GABA-A receptors in epilepsy and its impact on neurologic conditions. It highlights the current knowledge of GABA genetics in epilepsy, with an emphasis on the neuroendocrine regulation of extrasynaptic GABA-A receptors in network excitability and seizure susceptibility. Recent advances in molecular regulation of extrasynaptic GABA-A receptor-mediated tonic inhibition are providing unique new therapeutic approaches for epilepsy, status epilepticus, and certain brain disorders. The discovery of an extrasynaptic molecular mechanism represents a milestone for developing novel therapies such as NS replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
42
|
Antisecretory Factor Modulates GABA A Receptor Activity in Neurons. J Mol Neurosci 2018; 64:312-320. [PMID: 29308551 DOI: 10.1007/s12031-017-1024-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
The antisecretory factor is an endogenous protein found in all mammalian tissues investigated so far. It acts by counteracting intestinal hypersecretion and various forms of inflammation, but the detailed mechanism of antisecretory factor (AF) action is unknown. We tested neuronal GABAA receptors by means of AF-16, a potent AF peptide derived from amino acids 36-51 from the NH2 part of AF. Cultured rat cerebellar granule cells were used, and the effects on the GABA-mediated chloride currents were determined by whole-cell patch clamp. Both the neurotransmitter GABA and AF-16 were added by perfusion of the experimental system. A 3-min AF-16 preincubation was more efficacious than 30 s in significantly elevating the rapidly desensitizing GABA-activated chloride current. No effect was found on the tonic, slowly desensitizing current. The GABA-activated current increase by AF-16 demonstrated a low k of 41 pM with a maximal increase of 37% persisting for some minutes after AF washout, independent from GABA concentration. This indicates an effect on the maximal stimulation (E%Max) excluding an altered affinity between GABA and its receptor. An immunocytochemical fluorescence approach with anti γ2 subunit antibodies demonstrated an increased expression of GABAA receptors. Thus, both the electrophysiological and the immunofluorescence approach indicate an increased appearance of GABAA receptors on the neuronal membrane. The rationale of the experiments was to test the effect of AF on a defined neuronal population of GABAA receptors. The implications of the results on the impact of AF on the enteric nervous system or on brain function are discussed.
Collapse
|
43
|
Emerging Mechanisms Underlying Dynamics of GABAergic Synapses. J Neurosci 2017; 37:10792-10799. [PMID: 29118207 DOI: 10.1523/jneurosci.1824-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Inhibitory circuits are diverse, yet with a poorly understood cell biology. Functional characterization of distinct inhibitory neuron subtypes has not been sufficient to explain how GABAergic neurotransmission sculpts principal cell activity in a relevant fashion. Our Mini-Symposium brings together several emerging mechanisms that modulate GABAergic neurotransmission dynamically from either the presynaptic or the postsynaptic site. The first two talks discuss novel developmental and neuronal subtype-specific contributions to the excitatory/inhibitory balance and circuit maturation. The next three talks examine how interactions between cellular pathways, lateral diffusion of proteins between synapses, and chloride transporter function at excitatory and inhibitory synapses and facilitate inhibitory synapse adaptations. Finally, we address functional differences within GABAergic interneurons to highlight the importance of diverse, flexible, and versatile inputs that shape network function. Together, the selection of topics demonstrates how developmental and activity-dependent mechanisms coordinate inhibition in relation to the excitatory inputs and vice versa.
Collapse
|
44
|
Malvaut S, Gribaudo S, Hardy D, David LS, Daroles L, Labrecque S, Lebel-Cormier MA, Chaker Z, Coté D, De Koninck P, Holzenberger M, Trembleau A, Caille I, Saghatelyan A. CaMKIIα Expression Defines Two Functionally Distinct Populations of Granule Cells Involved in Different Types of Odor Behavior. Curr Biol 2017; 27:3315-3329.e6. [PMID: 29107547 DOI: 10.1016/j.cub.2017.09.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 12/25/2022]
Abstract
Granule cells (GCs) in the olfactory bulb (OB) play an important role in odor information processing. Although they have been classified into various neurochemical subtypes, the functional roles of these subtypes remain unknown. We used in vivo two-photon Ca2+ imaging combined with cell-type-specific identification of GCs in the mouse OB to examine whether functionally distinct GC subtypes exist in the bulbar network. We showed that half of GCs express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα+) and that these neurons are preferentially activated by olfactory stimulation. The higher activity of CaMKIIα+ neurons is due to the weaker inhibitory input that they receive compared to their CaMKIIα-immunonegative (CaMKIIα-) counterparts. In line with these functional data, immunohistochemical analyses showed that 75%-90% of GCs expressing the immediate early gene cFos are CaMKIIα+ in naive animals and in mice that have been exposed to a novel odor and go/no-go operant conditioning, or that have been subjected to long-term associative memory and spontaneous habituation/dishabituation odor discrimination tasks. On the other hand, a perceptual learning task resulted in increased activation of CaMKIIα- cells. Pharmacogenetic inhibition of CaMKIIα+ GCs revealed that this subtype is involved in habituation/dishabituation and go/no-go odor discrimination, but not in perceptual learning. In contrast, pharmacogenetic inhibition of GCs in a subtype-independent manner affected perceptual learning. Our results indicate that functionally distinct populations of GCs exist in the OB and that they play distinct roles during different odor tasks.
Collapse
Affiliation(s)
- Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Simona Gribaudo
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Delphine Hardy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Laura Daroles
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Simon Labrecque
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | | | - Zayna Chaker
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Daniel Coté
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Paul De Koninck
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Martin Holzenberger
- INSERM and Sorbonne Universités, UPMC, Centre de Recherche Saint-Antoine, Paris, France
| | - Alain Trembleau
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France
| | - Isabelle Caille
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, 75005 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
45
|
Vien TN, Moss SJ, Davies PA. Regulating the Efficacy of Inhibition Through Trafficking of γ-Aminobutyric Acid Type A Receptors. Anesth Analg 2017; 123:1220-1227. [PMID: 27285004 DOI: 10.1213/ane.0000000000001349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.
Collapse
Affiliation(s)
- Thuy N Vien
- From the *Department of Neuroscience, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts; and †Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
46
|
Domínguez S, Fernández de Sevilla D, Buño W. Muscarinic Long-Term Enhancement of Tonic and Phasic GABA A Inhibition in Rat CA1 Pyramidal Neurons. Front Cell Neurosci 2016; 10:244. [PMID: 27833531 PMCID: PMC5080370 DOI: 10.3389/fncel.2016.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 01/23/2023] Open
Abstract
Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.
Collapse
Affiliation(s)
- Soledad Domínguez
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Centre National de la Recherche Scientifique, Paris Descartes University, UMR 8118, ParisFrance
| | - David Fernández de Sevilla
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain
| | - Washington Buño
- Instituto Cajal - Consejo Superior de Investigaciones Cientificas Madrid, Spain
| |
Collapse
|
47
|
Tong XJ, Hu Z, Liu Y, Anderson D, Kaplan JM. A network of autism linked genes stabilizes two pools of synaptic GABA(A) receptors. eLife 2015; 4:e09648. [PMID: 26575289 PMCID: PMC4642926 DOI: 10.7554/elife.09648] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023] Open
Abstract
Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI:http://dx.doi.org/10.7554/eLife.09648.001 Behaviors ranging from movement to memory are dependent on the activity of extensive networks of cells called neurons. Within these networks, neurons communicate across junctions called synapses. The arrival of an electrical signal called an action potential at the ‘presynaptic’ neuron on one side of the synapse triggers the neuron to release chemical neurotransmitter molecules into the synapse. These molecules then bind to receptors on the ‘postsynaptic’ cell on the other side of the synapse. At excitatory synapses, the binding of neurotransmitter to postsynaptic receptors increases the likelihood that the postsynaptic cell will fire its own action potential. By contrast, at inhibitory synapses the binding of neurotransmitters reduces the chances of the postsynaptic cell firing. Most inhibitory synapses use a type of neurotransmitter called GABA, which exerts its effects mainly by binding to a class of receptors called GABA-activated chloride channels (also known as GABAA receptors). GABAA receptors at inhibitory synapses can themselves be divided into two groups: ‘mobile’ receptors, which can move within the cell membrane that surrounds the postsynaptic cell; and ‘immobilized’ receptors that form clusters and cannot move. Recent work in mammalian cells identified a protein complex that anchors GABAA receptors to the cell's internal skeleton to immobilize the receptors. However, there is evidence to suggest that these are not the only proteins that control the location of the receptors. By studying the inhibitory synapses formed between neurons and body muscles in the roundworm species Caenorhabditis elegans, Tong, Hu et al. now show that different groups of proteins maintain the positioning of immobilized and mobile receptors. Specifically, proteins called LIN-2A (a component of the cell's internal skeleton) and FRM-3 (which joins receptors to the cell's skeleton) immobilize GABAA receptors, whilst the proteins Neuroligin and Neurexin ensure that mobile GABAA receptors remain within the synapse. Disturbances to the activity of inhibitory synapses are often seen in autism spectrum disorders, and so too are mutations in the genes that encode the mammalian equivalents of Neuroligin, Neurexin and LIN-2A. The work of Tong, Hu et al. thus suggests a mechanism by which these mutations might contribute to information processing impairments in people with autism. Further research could now investigate if (and how) other genes linked to autism spectrum disorders alter inhibitory synapses. DOI:http://dx.doi.org/10.7554/eLife.09648.002
Collapse
Affiliation(s)
- Xia-Jing Tong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Yu Liu
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Dorian Anderson
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
48
|
Kudryashova IV. The plasticity of inhibitory synapses as a factor of long-term modifications. NEUROCHEM J+ 2015. [DOI: 10.1134/s1819712415030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Jang HJ, Cho KH, Joo K, Kim MJ, Rhie DJ. Differential modulation of phasic and tonic inhibition underlies serotonergic suppression of long-term potentiation in the rat visual cortex. Neuroscience 2015; 301:351-62. [PMID: 26086544 DOI: 10.1016/j.neuroscience.2015.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/07/2015] [Accepted: 06/09/2015] [Indexed: 01/22/2023]
Abstract
GABA receptor type A (GABA(A)R)-mediated inhibition is divided into phasic and tonic inhibition. GABA(A)Rs mediating the two inhibitory modalities exhibit differences in subcellular localization and subunit composition. We previously demonstrated that phasic and tonic inhibition are independently regulated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and protein kinase A (PKA), respectively. Since modulation of GABA(A)Rs by phosphorylation differs depending on subunit composition and protein kinases, phasic and tonic inhibition might be differentially regulated by a single neuromodulator activating multiple protein kinases. However, the neuromodulatory control for phasic and tonic inhibition is largely unknown. Thus, in the present study, we concurrently investigated the serotonin (5-HT) regulation of phasic and tonic inhibition and its functional implication in the pyramidal neurons of the rat visual cortex. Interestingly, 5-HT enhanced phasic inhibition but suppressed tonic inhibition. Increase in phasic inhibition was mediated by 5-HT2 receptor and CaMKII, whereas decrease in tonic inhibition depended on 5-HT1A receptor and PKA. Thus, phasic and tonic inhibition might be independently regulated even by a single neuromodulator. Functionally, the opposite modulation of phasic and tonic inhibition decreased the summation of consecutive excitatory postsynaptic potentials (EPSPs) without affecting the shape of single EPSPs, which might underlie the suppression of the induction of long-term potentiation by 5-HT. These results suggest that the integrative regulation of phasic and tonic inhibition provides mechanisms for elaborate modulation of shape and summation of EPSPs and long-term synaptic plasticity.
Collapse
Affiliation(s)
- H-J Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - K-H Cho
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - K Joo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - M-J Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - D-J Rhie
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea; Catholic Neuroscience Institute, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
50
|
Hogg DW, Pamenter ME, Dukoff DJ, Buck LT. Decreases in mitochondrial reactive oxygen species initiate GABA(A) receptor-mediated electrical suppression in anoxia-tolerant turtle neurons. J Physiol 2015; 593:2311-26. [PMID: 25781154 DOI: 10.1113/jp270474] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Anoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur. Electrical suppression is primarily the result of enhanced γ-aminobutyric acid (GABA) transmission; however, the underlying mechanism responsible for initiating oxygen-sensitive GABAergic spike arrest is unknown. In turtle cortical pyramidal neurons there are three types of GABA(A) receptor-mediated currents: spontaneous inhibitory postsynaptic currents (IPSCs), giant IPSCs and tonic currents. The aim of this study was to assess the effects of reactive oxygen species (ROS) scavenging on these three currents since ROS levels naturally decrease with anoxia and may serve as a redox signal to initiate spike arrest. We found that anoxia, pharmacological ROS scavenging, or inhibition of mitochondrial ROS generation enhanced all three types of GABA currents, with tonic currents comprising ∼50% of the total current. Application of hydrogen peroxide inhibited all three GABA currents, demonstrating a reversible redox-sensitive signalling mechanism. We conclude that anoxia-mediated decreases in mitochondrial ROS production are sufficient to initiate a redox-sensitive inhibitory GABA signalling cascade that suppresses electrical activity when oxygen is limited. This unique strategy for reducing neuronal ATP consumption during anoxia represents a natural mechanism in which to explore therapies to protect mammalian brain from low-oxygen insults.
Collapse
Affiliation(s)
- David W Hogg
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - David J Dukoff
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| | - Leslie T Buck
- Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5
| |
Collapse
|