1
|
Sherry J, Pawar KI, Dolat L, Smith E, Chang IC, Pha K, Kaake R, Swaney DL, Herrera C, McMahon E, Bastidas RJ, Johnson JR, Valdivia RH, Krogan NJ, Elwell CA, Verba K, Engel JN. The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection. Cell Rep 2025; 44:115509. [PMID: 40186871 DOI: 10.1016/j.celrep.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates in a specialized membrane-bound compartment where it repositions host organelles during infection to acquire nutrients and evade host surveillance. We describe a bacterial effector, Dre1, that binds specifically to dynactin associated with host microtubule organizing centers without globally impeding dynactin function. Dre1 is required to reposition the centrosome, mitotic spindle, Golgi apparatus, and primary cilia around the inclusion and contributes to pathogen fitness in cell-based and mouse models of infection. We utilized Dre1 to affinity purify the megadalton dynactin protein complex and determined the first cryoelectron microscopy (cryo-EM) structure of human dynactin. Our results suggest that Dre1 binds to the pointed end of dynactin and uncovers the first bacterial effector that modulates dynactin function. Our work highlights how a pathogen employs a single effector to evoke targeted, large-scale changes in host cell organization that facilitate pathogen growth without inhibiting host viability.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Komal Ishwar Pawar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - I-Chang Chang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kliment Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Radhakrishnan P, Quadri N, Erger F, Fuhrmann N, Geist OM, Netzer C, Khyriem I, Muranjan M, Udani V, Yeole M, Mascarenhas S, Limaye S, Siddiqui S, Upadhyai P, Shukla A. Biallelic Variants in LRRC45 Impair Ciliogenesis and Cause a Severe Neurological Disorder. Clin Genet 2025; 107:311-322. [PMID: 39638757 PMCID: PMC11790379 DOI: 10.1111/cge.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Leucine - rich repeat containing 45 protein (LRRC45) protein localizes at the proximal end of centrioles and forms a component of the proteinaceous linker between them, with an important role in centrosome cohesion. In addition, a pool of it localizes at the distal appendages of the modified parent centriole that forms the primary cilium and it has essential functions in the establishment of the transition zone and axonemal extension during early ciliogenesis. Here, we describe three individuals from two unrelated families with severe central nervous system anomalies. Exome sequencing identified biallelic variants in LRRC45 in the affected individuals: P1: c.1402-2A>G; P2 and P3: c.1262G>C (p.Arg421Thr). Investigation of the variant c.1402-2A>G in patient-derived skin fibroblasts revealed that it triggers aberrant splicing, leading to an abnormal LRRC45 transcript that lacks exon 14. Consistent with this the mRNA and protein levels of LRRC45 were drastically reduced in P1-derived fibroblast cells compared to the controls. P1 fibroblasts showed a significant reduction of primary cilia frequency and length. In silico modeling of the missense variant in P2/P3 suggested a destabilizing effect on LRRC45. Given these findings, we propose that the pathogenic loss-of-function variants in LRRC45 are associated with a novel spectrum of neurological ciliopathy phenotypes.
Collapse
Affiliation(s)
- Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Florian Erger
- Center for Rare Diseases Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nico Fuhrmann
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Otilia-Maria Geist
- Department of Gynecology and Obstetrics, Klinikum Leverkusen, Leverkusen, Germany
| | - Christian Netzer
- Center for Rare Diseases Cologne, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ibakordor Khyriem
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mamta Muranjan
- Department of Paediatrics, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - Vrajesh Udani
- Department of Child Neurology, PD Hinduja National Hospital, Mumbai, India
| | - Mayuri Yeole
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sanket Limaye
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Kim MH, Jeong YJ, Urm SH, Seog DH. The heterotrimeric kinesin-2 family member KIF3A directly binds to disabled-1 (Dab1). BMB Rep 2024; 57:447-452. [PMID: 38919020 PMCID: PMC11524828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 06/27/2024] Open
Abstract
The heterotrimeric molecular motor kinesin-2 is involved in the microtubule-dependent transport of intracellular cargo. It consists of two distinct motor subunits (KIF3A, and KIF3B) and a non-motor subunit, kinesin-associated protein 3 (KAP3). The cargo-binding domain (CBD) at the carboxyl (C)-terminus of KIF3s plays an important role in the interaction with several different binding proteins. To identify the binding proteins for heterotrimeric kinesin-2, we performed a yeast two-hybrid screen and found a new interaction with Disables-1 (Dab1), the intracellular adaptor protein of reelin receptors. Dab1 bound to the CBD of KIF3A, but did not interact with the C-terminal domain of KIF3B, KIF5B, KIF17 or KAP3. The phosphotyrosine binding (PTB) domain-containing region of Dab1 is essential for the interaction with KIF3A. KIF3A interacted with GST-Dab1, and GST-CaMKIIα, but did not interact with GST-apolipoprotein E receptor 2 (ApoER2)-C or with GST alone. When co-expressed in HEK-293T cells, Dab1 co-precipitated with KIF3A, but not with KIF5B. Dab1 and KIF3A were co-localized in cultured cells. We also identified deduced cell surface expression of ApoER2 in KIF3A dominant-negative cells. These results suggest that the KIF3A plays a role in the intracellular trafficking of ApoER2 to the cell surface. [BMB Reports 2024; 57(10): 447-452].
Collapse
Affiliation(s)
- Myoung Hun Kim
- Department of Anesthesia and Pain Medicine, Busan Paik Hospital, Inje University, Busan 47392, Korea
| | - Young Joo Jeong
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
| | - Sang-Hwa Urm
- Department of Preventive Medicine, College of Medicine, Inje University, Busan 47392, Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea
- Demetia and Neurodegenerative Disease Research Center, College of Medicine, Inje University, Busan 47392, Korea
| |
Collapse
|
4
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
5
|
Gilbert T, Gorlt C, Barbier M, Duployer B, Plozza M, Dufrancais O, Martet LE, Dalbard E, Segot L, Tenailleau C, Haren L, Vérollet C, Bierkamp C, Merdes A. Loss of ninein interferes with osteoclast formation and causes premature ossification. eLife 2024; 13:e93457. [PMID: 38836552 PMCID: PMC11175614 DOI: 10.7554/elife.93457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.
Collapse
Affiliation(s)
- Thierry Gilbert
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Camille Gorlt
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Merlin Barbier
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Marianna Plozza
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Ophélie Dufrancais
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Laure-Elene Martet
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Elisa Dalbard
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Loelia Segot
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
- International Research Project CNRS “MAC-TB/HIV”ToulouseFrance
| | - Christiane Bierkamp
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| |
Collapse
|
6
|
Weijman JF, Vuolo L, Shak C, Pugnetti A, Mukhopadhyay AG, Hodgson LR, Heesom KJ, Roberts AJ, Stephens DJ. Roles for CEP170 in cilia function and dynein-2 assembly. J Cell Sci 2024; 137:jcs261816. [PMID: 38533689 PMCID: PMC11112123 DOI: 10.1242/jcs.261816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.
Collapse
Affiliation(s)
- Johannes F. Weijman
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anna Pugnetti
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Lorna R. Hodgson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony J. Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
7
|
Liu JC, Pan ZN, Ju JQ, Zou YJ, Pan MH, Wang Y, Wu X, Sun SC. Kinesin KIF3A regulates meiotic progression and spindle assembly in oocyte meiosis. Cell Mol Life Sci 2024; 81:168. [PMID: 38587639 PMCID: PMC11001723 DOI: 10.1007/s00018-024-05213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Li L, Ran J. Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death Dis 2024; 15:47. [PMID: 38218748 PMCID: PMC10787775 DOI: 10.1038/s41419-024-06428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cilia are highly conserved eukaryotic organelles that protrude from the cell surface and are involved in sensory perception, motility, and signaling. Their proper assembly and function rely on the bidirectional intraflagellar transport (IFT) system, which involves motor proteins, including antegrade kinesins and retrograde dynein. Although the role of IFT-mediated transport in cilia has been extensively studied, recent research has highlighted the contribution of IFT-independent kinesins in ciliary processes. The coordinated activities and interplay between IFT kinesins and IFT-independent kinesins are crucial for maintaining ciliary homeostasis. In this comprehensive review, we aim to delve into the specific contributions and mechanisms of action of the IFT-independent kinesins in cilia. By shedding light on their involvement, we hope to gain a more holistic perspective on ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
9
|
Zhang L, Zhang H, Agborbesong E, Zhou JX, Li X. Phosphorylation of MIF by PIP4K2a is necessary for cilia biogenesis. Cell Death Dis 2023; 14:795. [PMID: 38052787 PMCID: PMC10698143 DOI: 10.1038/s41419-023-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Primary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Macrophage migration inhibitory factor (MIF) has long been recognized as a secreted cytokine in the pathogenesis of various human diseases, including cancer and autosomal dominant polycystic kidney disease (ADPKD). Unlike other cytokines, unique functional characteristics of intracellular MIF have emerged. In this study, we show that MIF is localized and formed a ring like structure at the proximal end of centrioles, where it regulates cilia biogenesis through affecting 1) the recruitment of TTBK2 to basal body and the removal of CP110 from mother centriole, 2) the accumulation of CEP290 at centriolar satellites, and 3) the trafficking of intraflagellar transport (IFT) related proteins. We also show that MIF functions as a novel transcriptional factor to regulate the expression of genes related to ciliogenesis via binding on the promotors of those genes. MIF also binds chromatin and regulates transcription of genes involved in diverse homeostatic signaling pathways. We identify phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2a) as an upstream regulator of MIF, which interacts with and phosphorylates MIF at S91 to increase its interaction with 14-3-3ζ, resulting in its nuclear translocation and transcription regulation. This study suggests that MIF is a key player in cilia biogenesis and a novel transcriptional regulator in homeostasis, which forward our understanding of how MIF is able to carry out several nonoverlapping functions.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongbing Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
10
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
11
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Forni G, Mikheyev AS, Luchetti A, Mantovani B. Gene transcriptional profiles in gonads of Bacillus taxa (Phasmida) with different cytological mechanisms of automictic parthenogenesis. ZOOLOGICAL LETTERS 2022; 8:14. [PMID: 36435814 PMCID: PMC9701443 DOI: 10.1186/s40851-022-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
- Dip. Scienze Agrarie e Ambientali, University of Milano, Milano, Italy
| | - Alexander S Mikheyev
- Australian National University, ACT, Canberra, 2600, Australia
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
13
|
Paul C, Tang R, Longobardi C, Lattanzio R, Eguether T, Turali H, Bremond J, Maurizy C, Gabola M, Poupeau S, Turtoi A, Denicolai E, Cufaro MC, Svrcek M, Seksik P, Castronovo V, Delvenne P, de Laurenzi V, Da Costa Q, Bertucci F, Lemmers B, Pieragostino D, Mamessier E, Janke C, Pinet V, Hahne M. Loss of primary cilia promotes inflammation and carcinogenesis. EMBO Rep 2022; 23:e55687. [PMID: 36281991 PMCID: PMC9724674 DOI: 10.15252/embr.202255687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis-associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)-induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS-induced colitis. Secretome and immunohistochemical analyses of DSS-treated mice display an elevated production of the proinflammatory cytokine IL-6 in PC-deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL-6 as identified by RNA-seq analysis together with blocking experiments. These findings suggest an activation loop between IL-6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.
Collapse
Affiliation(s)
- Conception Paul
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ruizhi Tang
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Ciro Longobardi
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance,Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands,Oncode Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Thibaut Eguether
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Hulya Turali
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Julie Bremond
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Chloé Maurizy
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Monica Gabola
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Sophie Poupeau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Treatment Laboratory, Institut de Recherche en Cancérologie de MontpellierMontpellierFrance
| | - Emilie Denicolai
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Maria Concetta Cufaro
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Magali Svrcek
- Department of Pathology, AP‐HP, Hôpital Saint‐AntoineSorbonne UniversitéParisFrance
| | - Philippe Seksik
- Centre de Recherche Saint AntoineSorbonne Université, INSERM, APHPParisFrance
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA CancerUniversity of LiègeLiègeBelgium
| | - Philippe Delvenne
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance,Department of Pathology, University Hospital (CHU)University of LiègeLiègeBelgium
| | - Vincenzo de Laurenzi
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Quentin Da Costa
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - François Bertucci
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Bénédicte Lemmers
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST)‘G. d'Annunzio’ University of Chieti–PescaraChietiItaly
| | - Emilie Mamessier
- Cancer Research Center of Marseille (CRCM), Laboratory of Predictive Oncology, Inserm U1068 ‐ CNRS UMR7258 – University of Aix‐Marseille UM105 ‐ Paoli Calmettes Institute (IPC)Label “Ligue contre le cancer”MarseilleFrance
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348Label “Equipe FRM”OrsayFrance,Université Paris Sud, Université Paris‐Saclay, CNRS UMR 3348OrsayFrance
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Label “Equipe FRM”MontpellierFrance
| |
Collapse
|
14
|
Kodani A, Knopp KA, Di Lullo E, Retallack H, Kriegstein AR, DeRisi JL, Reiter JF. Zika virus alters centrosome organization to suppress the innate immune response. EMBO Rep 2022; 23:e52211. [PMID: 35793002 PMCID: PMC9442309 DOI: 10.15252/embr.202052211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) is a flavivirus transmitted via mosquitoes and sex to cause congenital neurodevelopmental defects, including microcephaly. Inherited forms of microcephaly (MCPH) are associated with disrupted centrosome organization. Similarly, we found that ZIKV infection disrupted centrosome organization. ZIKV infection disrupted the organization of centrosomal proteins including CEP63, a MCPH-associated protein. The ZIKV nonstructural protein NS3 bound CEP63, and expression of NS3 was sufficient to alter centrosome architecture and CEP63 localization. Loss of CEP63 suppressed ZIKV-induced centrosome disorganization, indicating that ZIKV requires CEP63 to disrupt centrosome organization. ZIKV infection or CEP63 loss decreased the centrosomal localization and stability of TANK-binding kinase 1 (TBK1), a regulator of the innate immune response. ZIKV infection also increased the centrosomal accumulation of the CEP63 interactor DTX4, a ubiquitin ligase that degrades TBK1. Therefore, we propose that ZIKV disrupts CEP63 function to increase centrosomal DTX4 localization and destabilization of TBK1, thereby tempering the innate immune response.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Cell and Molecular Biology, Center for Pediatric Neurological Disease ResearchSt. Jude Children's Research HospitalMemphisTNUSA
| | - Kristeene A Knopp
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Hanna Retallack
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Joseph L DeRisi
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Jeremy F Reiter
- Department of Biochemistry and BiophysicsUniversity of California, San FranciscoSan FranciscoCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
15
|
Duplication and Segregation of Centrosomes during Cell Division. Cells 2022; 11:cells11152445. [PMID: 35954289 PMCID: PMC9367774 DOI: 10.3390/cells11152445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
During its division the cell must ensure the equal distribution of its genetic material in the two newly created cells, but it must also distribute organelles such as the Golgi apparatus, the mitochondria and the centrosome. DNA, the carrier of heredity, located in the nucleus of the cell, has made it possible to define the main principles that regulate the progression of the cell cycle. The cell cycle, which includes interphase and mitosis, is essentially a nuclear cycle, or a DNA cycle, since the interphase stages names (G1, S, G2) phases are based on processes that occur exclusively with DNA. However, centrosome duplication and segregation are two equally important events for the two new cells that must inherit a single centrosome. The centrosome, long considered the center of the cell, is made up of two small cylinders, the centrioles, made up of microtubules modified to acquire a very high stability. It is the main nucleation center of microtubules in the cell. Apart from a few exceptions, each cell in G1 phase has only one centrosome, consisting in of two centrioles and pericentriolar materials (PCM), which must be duplicated before the cell divides so that the two new cells formed inherit a single centrosome. The centriole is also the origin of the primary cilia, motile cilia and flagella of some cells.
Collapse
|
16
|
Yasunaga T, Wiegel J, Bergen MD, Helmstädter M, Epting D, Paolini A, Çiçek Ö, Radziwill G, Engel C, Brox T, Ronneberger O, Walentek P, Ulbrich MH, Walz G. Microridge-like structures anchor motile cilia. Nat Commun 2022; 13:2056. [PMID: 35440631 PMCID: PMC9018822 DOI: 10.1038/s41467-022-29741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/30/2022] [Indexed: 01/11/2023] Open
Abstract
Several tissues contain cells with multiple motile cilia that generate a fluid or particle flow to support development and organ functions; defective motility causes human disease. Developmental cues orient motile cilia, but how cilia are locked into their final position to maintain a directional flow is not understood. Here we find that the actin cytoskeleton is highly dynamic during early development of multiciliated cells (MCCs). While apical actin bundles become increasingly more static, subapical actin filaments are nucleated from the distal tip of ciliary rootlets. Anchorage of these subapical actin filaments requires the presence of microridge-like structures formed during MCC development, and the activity of Nonmuscle Myosin II. Optogenetic manipulation of Ezrin, a core component of the microridge actin-anchoring complex, or inhibition of Myosin Light Chain Kinase interfere with rootlet anchorage and orientation. These observations identify microridge-like structures as an essential component of basal body rootlet anchoring in MCCs.
Collapse
Affiliation(s)
- Takayuki Yasunaga
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Johannes Wiegel
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Max D Bergen
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Daniel Epting
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Andrea Paolini
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Özgün Çiçek
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Gerald Radziwill
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Christina Engel
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Thomas Brox
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Olaf Ronneberger
- Pattern Recognition and Image Processing, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 52, 79110, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Peter Walentek
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Vineethakumari C, Lüders J. Microtubule Anchoring: Attaching Dynamic Polymers to Cellular Structures. Front Cell Dev Biol 2022; 10:867870. [PMID: 35309944 PMCID: PMC8927778 DOI: 10.3389/fcell.2022.867870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023] Open
Abstract
Microtubules are dynamic, filamentous polymers composed of α- and β-tubulin. Arrays of microtubules that have a specific polarity and distribution mediate essential processes such as intracellular transport and mitotic chromosome segregation. Microtubule arrays are generated with the help of microtubule organizing centers (MTOC). MTOCs typically combine two principal activities, the de novo formation of microtubules, termed nucleation, and the immobilization of one of the two ends of microtubules, termed anchoring. Nucleation is mediated by the γ-tubulin ring complex (γTuRC), which, in cooperation with its recruitment and activation factors, provides a template for α- and β-tubulin assembly, facilitating formation of microtubule polymer. In contrast, the molecules and mechanisms that anchor newly formed microtubules at MTOCs are less well characterized. Here we discuss the mechanistic challenges underlying microtubule anchoring, how this is linked with the molecular activities of known and proposed anchoring factors, and what consequences defective microtubule anchoring has at the cellular and organismal level.
Collapse
|
18
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
19
|
Huang SC, Vu LV, Yu FH, Nguyen DT, Benz EJ. Multifunctional protein 4.1R regulates the asymmetric segregation of Numb during terminal erythroid maturation. J Biol Chem 2021; 297:101051. [PMID: 34364872 PMCID: PMC8408529 DOI: 10.1016/j.jbc.2021.101051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 10/25/2022] Open
Abstract
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dan T Nguyen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts, USA; Leukemia Program, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Spiliotis ET, Kesisova IA. Spatial regulation of microtubule-dependent transport by septin GTPases. Trends Cell Biol 2021; 31:979-993. [PMID: 34253430 DOI: 10.1016/j.tcb.2021.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
The intracellular long-range transport of membrane vesicles and organelles is mediated by microtubule motors (kinesins, dynein) which move cargo with spatiotemporal accuracy and efficiency. How motors navigate the microtubule network and coordinate their activity on membrane cargo are fundamental but poorly understood questions. New studies show that microtubule-dependent membrane traffic is spatially controlled by septins - a unique family of multimerizing GTPases that associate with microtubules and membrane organelles. We review how septins selectively regulate motor interactions with microtubules and membrane cargo. We posit that septins provide a novel traffic code that specifies the movement and directionality of select motor-cargo complexes on distinct microtubule tracks.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Donati A, Anselme I, Schneider-Maunoury S, Vesque C. Planar polarization of cilia in the zebrafish floor-plate involves Par3-mediated posterior localization of highly motile basal bodies. Development 2021; 148:269080. [PMID: 34104942 DOI: 10.1242/dev.196386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Epithelial cilia, whether motile or primary, often display an off-center planar localization within the apical cell surface. This form of planar cell polarity (PCP) involves the asymmetric positioning of the ciliary basal body (BB). Using the monociliated epithelium of the embryonic zebrafish floor-plate, we investigated the dynamics and mechanisms of BB polarization by live imaging. BBs were highly motile, making back-and-forth movements along the antero-posterior (AP) axis and contacting both the anterior and posterior membranes. Contacts exclusively occurred at junctional Par3 patches and were often preceded by membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. Later, BBs became less motile and eventually settled at posterior apical junctions enriched in Par3. BB posterior positioning followed Par3 posterior enrichment and was impaired upon Par3 depletion or disorganization of Par3 patches. In the PCP mutant vangl2, BBs were still motile but displayed poorly oriented membrane contacts that correlated with Par3 patch fragmentation and lateral spreading. Thus, we propose an unexpected function for posterior Par3 enrichment in controlling BB positioning downstream of the PCP pathway.
Collapse
Affiliation(s)
- Antoine Donati
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Isabelle Anselme
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS), Developmental Biology Unit, 75005 Paris, France
| |
Collapse
|
22
|
Rodrigues EC, Grawenhoff J, Baumann SJ, Lorenzon N, Maurer SP. Mammalian Neuronal mRNA Transport Complexes: The Few Knowns and the Many Unknowns. Front Integr Neurosci 2021; 15:692948. [PMID: 34211375 PMCID: PMC8239176 DOI: 10.3389/fnint.2021.692948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of messenger RNAs (mRNAs) are transported into neurites to provide templates for the assembly of local protein networks. These networks enable a neuron to configure different cellular domains for specialized functions. According to current evidence, mRNAs are mostly transported in rather small packages of one to three copies, rarely containing different transcripts. This opens up fascinating logistic problems: how are hundreds of different mRNA cargoes sorted into distinct packages and how are they coupled to and released from motor proteins to produce the observed mRNA distributions? Are all mRNAs transported by the same transport machinery, or are there different adaptors or motors for different transcripts or classes of mRNAs? A variety of often indirect evidence exists for the involvement of proteins in mRNA localization, but relatively little is known about the essential activities required for the actual transport process. Here, we summarize the different types of available evidence for interactions that connect mammalian mRNAs to motor proteins to highlight at which point further research is needed to uncover critical missing links. We further argue that a combination of discovery approaches reporting direct interactions, in vitro reconstitution, and fast perturbations in cells is an ideal future strategy to unravel essential interactions and specific functions of proteins in mRNA transport processes.
Collapse
Affiliation(s)
- Elsa C. Rodrigues
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia Grawenhoff
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian J. Baumann
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Nicola Lorenzon
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian P. Maurer
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
23
|
Nlp promotes autophagy through facilitating the interaction of Rab7 and FYCO1. Signal Transduct Target Ther 2021; 6:152. [PMID: 33859171 PMCID: PMC8050283 DOI: 10.1038/s41392-021-00543-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is the main degradation pathway to eliminate long-lived and aggregated proteins, aged or malfunctioning organelles, which is essential for the intracellular homeostasis and prevention of malignant transformation. Although the processes of autophagosome biogenesis have been well illuminated, the mechanism of autophagosome transport remains largely unclear. In this study, we demonstrated that the ninein-like protein (Nlp), a well-characterized centrosomal associated protein, was able to modulate autophagosome transport and facilitate autophagy. During autophagy, Nlp colocalized with autophagosomes and physically interacted with autophagosome marker LC3, autophagosome sorting protein Rab7 and its downstream effector FYCO1. Interestingly, Nlp enhanced the interaction between Rab7 and FYCO1, thus accelerated autophagic flux and the formation of autophagolysosomes. Furthermore, compared to the wild-type mice, NLP deficient mice treated with chemical agent DMBA were prone to increased incidence of hepatomegaly and liver cancer, which were tight associated with the hepatic autophagic defect. Taken together, our findings provide a new insight for the first time that the well-known centrosomal protein Nlp is also a new regulator of autophagy, which promotes the interaction of Rab7 and FYCO1 and facilitates the formation of autophagolysosome.
Collapse
|
24
|
Yang Y, Chen M, Li J, Hong R, Yang J, Yu F, Li T, Yang S, Ran J, Guo C, Zhao Y, Luan Y, Liu M, Li D, Xie S, Zhou J. A cilium-independent role for intraflagellar transport 88 in regulating angiogenesis. Sci Bull (Beijing) 2021; 66:727-739. [PMID: 36654447 DOI: 10.1016/j.scib.2020.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023]
Abstract
Endothelial cilia are microtubule-based hair-like protrusions in the lumen ofblood vessels that function as fluid mechanosensors to regulate vascular hemodynamics.However, the functions of endothelial cilia in vascular development remain controversial. In this study, depletion of several key proteins responsible for ciliogenesis allows us to identify a cilium-independent role for intraflagellartransport88 (IFT88) in mammalian angiogenesis. Disruption of primary cilia by heat shock does not affect the angiogenic process. However, depletion of IFT88 significantly inhibits angiogenesis both in vitro and in vivo. IFT88 mediates angiogenesis by regulating the migration, polarization, proliferation, and oriented division of vascular endothelial cells. Further mechanistic studies demonstrate that IFT88 interacts with γ-tubulin and microtubule plus-end tracking proteins and promotes microtubule stability. Our findings indicate that IFT88 regulates angiogenesis through its actions in microtubule-based cellular processes, independent of its role in ciliogenesis.
Collapse
Affiliation(s)
- Yang Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Jingrui Li
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Renjie Hong
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jia Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Fan Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Te Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Song Yang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Jie Ran
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Chunyue Guo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Yi Zhao
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Luan
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| | - Jun Zhou
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China; College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
25
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
26
|
Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun 2020; 11:4092. [PMID: 32796837 PMCID: PMC7427989 DOI: 10.1038/s41467-020-17895-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the gene encoding kinesin family member 3A, KIF3A, have been associated with atopic dermatitis (AD), a chronic inflammatory skin disorder. We find that KIF3A SNP rs11740584 and rs2299007 risk alleles create cytosine-phosphate-guanine sites, which are highly methylated and result in lower KIF3A expression, and this methylation is associated with increased transepidermal water loss (TEWL) in risk allele carriers. Kif3aK14∆/∆ mice have increased TEWL, disrupted junctional proteins, and increased susceptibility to develop AD. Thus, KIF3A is required for skin barrier homeostasis whereby decreased KIF3A skin expression causes disrupted skin barrier function and promotes development of AD. Genetic variants in KIF3A are associated with atopic dermatitis (AD). Here, the authors identify two AD-risk alleles that show high methylation resulting in lower KIF3A expression. Mice with epidermis-specific loss of Kif3a show disrupted skin barrier homeostasis and increased AD susceptibility.
Collapse
|
27
|
Venugopal N, Ghosh A, Gala H, Aloysius A, Vyas N, Dhawan J. The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts. BMC Mol Cell Biol 2020; 21:25. [PMID: 32293249 PMCID: PMC7161131 DOI: 10.1186/s12860-020-00266-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/19/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Reversible cell cycle arrest (quiescence/G0) is characteristic of adult stem cells and is actively controlled at multiple levels. Quiescent cells also extend a primary cilium, which functions as a signaling hub. Primary cilia have been shown to be important in multiple developmental processes, and are implicated in numerous developmental disorders. Although the association of the cilium with G0 is established, the role of the cilium in the control of the quiescence program is still poorly understood. RESULTS Primary cilia are dynamically regulated across different states of cell cycle exit in skeletal muscle myoblasts: quiescent myoblasts elaborate a primary cilium in vivo and in vitro, but terminally differentiated myofibers do not. Myoblasts where ciliogenesis is ablated using RNAi against a key ciliary assembly protein (IFT88) can exit the cell cycle but display an altered quiescence program and impaired self-renewal. Specifically, the G0 transcriptome in IFT88 knockdown cells is aberrantly enriched for G2/M regulators, suggesting a focused repression of this network by the cilium. Cilium-ablated cells also exhibit features of activation including enhanced activity of Wnt and mitogen signaling and elevated protein synthesis via inactivation of the translational repressor 4E-BP1. CONCLUSIONS Taken together, our results show that the primary cilium integrates and dampens proliferative signaling, represses translation and G2/M genes, and is integral to the establishment of the quiescence program.
Collapse
Affiliation(s)
- Nisha Venugopal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ananga Ghosh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Hardik Gala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
| | - Ajoy Aloysius
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- National Centre for Biological Sciences, Bengaluru, 560065, India
| | - Neha Vyas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India
- Present address: St. John's Research Institute, Bengaluru, 560034, India
| | - Jyotsna Dhawan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, -500 007, India.
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, 560065, India.
| |
Collapse
|
28
|
Hossain D, Barbelanne M, Tsang WY. Requirement of NPHP5 in the hierarchical assembly of basal feet associated with basal bodies of primary cilia. Cell Mol Life Sci 2020; 77:195-212. [PMID: 31177295 PMCID: PMC11104825 DOI: 10.1007/s00018-019-03181-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
During ciliogenesis, the mother centriole transforms into a basal body competent to nucleate a cilium. The mother centriole and basal body possess sub-distal appendages (SDAs) and basal feet (BF), respectively. SDAs and BF are thought to be equivalent structures. In contrast to SDA assembly, little is known about the players involved in BF assembly and its assembly order. Furthermore, the contribution of BF to ciliogenesis is not understood. Here, we found that SDAs are distinguishable from BF and that the protein NPHP5 is a novel SDA and BF component. Remarkably, NPHP5 is specifically required for BF assembly in cells able to form basal bodies but is dispensable for SDA assembly. Determination of the hierarchical assembly reveals that NPHP5 cooperates with a subset of SDA/BF proteins to organize BF. The assembly pathway of BF is similar but not identical to that of SDA. Loss of NPHP5 or a BF protein simultaneously inhibits BF assembly and primary ciliogenesis, and these phenotypes could be rescued by manipulating the expression of certain components in the BF assembly pathway. These findings define a novel role for NPHP5 in specifically regulating BF assembly, a process which is tightly coupled to primary ciliogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Marine Barbelanne
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada.
| |
Collapse
|
29
|
Pizon V, Gaudin N, Poteau M, Cifuentes-Diaz C, Demdou R, Heyer V, Reina San Martin B, Azimzadeh J. hVFL3/CCDC61 is a component of mother centriole subdistal appendages required for centrosome cohesion and positioning. Biol Cell 2019; 112:22-37. [PMID: 31789463 DOI: 10.1111/boc.201900038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND The centrosome regulates cell spatial organisation by controlling the architecture of the microtubule (MT) cytoskeleton. Conversely, the position of the centrosome within the cell depends on cytoskeletal networks it helps organizing. In mammalian cells, centrosome positioning involves a population of MT stably anchored at centrioles, the core components of the centrosome. An MT-anchoring complex containing the proteins ninein and Cep170 is enriched at subdistal appendages (SAP) that decorate the older centriole (called mother centriole) and at centriole proximal ends. Here, we studied the role played at the centrosome by hVFL3/CCDC61, the human ortholog of proteins required for anchoring distinct sets of cytoskeletal fibres to centrioles in unicellular eukaryotes. RESULTS We show that hVFL3 co-localises at SAP and at centriole proximal ends with components of the MT-anchoring complex, and physically interacts with Cep170. Depletion of hVFL3 increased the distance between mother and daughter centrioles without affecting the assembly of a filamentous linker that tethers the centrioles and contains the proteins rootletin and C-Nap1. When the linker was disrupted by inactivating C-Nap1, hVFL3-depletion exacerbated centriole splitting, a phenotype also observed following depletion of other SAP components. This supported that hVFL3 is required for SAP function, which we further established by showing that centrosome positioning is perturbed in hVFL3-depleted interphase cells. Finally, we found that hVFL3 is an MT-binding protein. CONCLUSIONS AND SIGNIFICANCE Together, our results support that hVFL3 is required for anchoring MT at SAP during interphase and ensuring proper centrosome cohesion and positioning. The role of the VFL3 family of proteins thus appears to have been conserved in evolution despite the great variation in the shape of centriole appendages in different eukaryotic species.
Collapse
Affiliation(s)
- Véronique Pizon
- Université de Paris, Institut Jacques Monod, 75013, Paris, France
| | - Noémie Gaudin
- Université de Paris, Institut Jacques Monod, 75013, Paris, France
| | - Marion Poteau
- Institut Gustave Roussy, CNRS UMR 8200/Université Paris-Sud, 94 805, Villejuif, France
| | | | - Roland Demdou
- Université de Paris, Institut Jacques Monod, 75013, Paris, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bernardo Reina San Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
30
|
Dynamic Changes in Ultrastructure of the Primary Cilium in Migrating Neuroblasts in the Postnatal Brain. J Neurosci 2019; 39:9967-9988. [PMID: 31685650 DOI: 10.1523/jneurosci.1503-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/08/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.
Collapse
|
31
|
Wang J, Gao X, Zheng X, Hou C, Xie Q, Lou B, Zhu J. Expression and potential functions of KIF3A/3B to promote nuclear reshaping and tail formation during Larimichthys polyactis spermiogenesis. Dev Genes Evol 2019; 229:161-181. [PMID: 31486889 DOI: 10.1007/s00427-019-00637-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
KIF3A and KIF3B are homologous motor subunits of the Kinesin II protein family. KIF3A, KIF3B, and KAP3 form a heterotrimeric complex and play a significant role in spermatogenesis. Here, we first cloned full-length kif3a/3b cDNAs from Larimichthys polyactis. Lp-kif3a/3b are highly related to their homologs in other animals. The proteins are composed of three domains, an N-terminal head domain, a central stalk domain, and a C-terminus tail domain. Lp-kif3a/3b mRNAs were found to be ubiquitously expressed in the examined tissues, with high expression in the testis. Fluorescence in situ hybridization (FISH) was used to analyze the expression of Lp-kif3a/3b mRNAs during spermiogenesis. The results showed that Lp-kif3a/3b mRNAs had similar expression pattern and were continuously expressed during spermiogenesis. From middle spermatid to mature sperm, Lp-kif3a/3b mRNAs gradually localized to the side of the spermatid where the midpiece and tail form. In addition, we used immunofluorescence (IF) to observe that Lp-KIF3A protein co-localizes with tubulin during spermiogenesis. In early spermatid, Lp-KIF3A protein and microtubule signals were randomly distributed in the cytoplasm. In middle spermatid, however, the protein was detected primarily around the nucleus. In late spermatid, the protein migrated primarily to one side of the nucleus where the tail forms. In mature sperm, Lp-KIF3A and microtubules accumulated in the midpiece. Moreover, Lp-KIF3A co-localized with the mitochondria. In mature sperm, Lp-KIF3A and mitochondria were present in the midpiece. Therefore, Lp-KIF3A/KIF3B may be involved in spermiogenesis in L. polyactis, particularly during nuclear reshaping and tail formation.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Xinming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, People's Republic of China
- Marine Fisheries Research Institute of Zhejiang, Zhoushan, 316100, Zhejiang Province, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, People's Republic of China.
- Marine Fisheries Research Institute of Zhejiang, Zhoushan, 316100, Zhejiang Province, People's Republic of China.
| | - Junquan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang Province, People's Republic of China.
| |
Collapse
|
32
|
Lamri L, Twan WK, Katoh TA, Botilde Y, Takaoka K, Ikawa Y, Nishimura H, Fukumoto A, Minegishi K, Mizuno K, Hamada H. Ciliogenesis-coupled accumulation of IFT-B proteins in a novel cytoplasmic compartment. Genes Cells 2019; 24:731-745. [PMID: 31554018 DOI: 10.1111/gtc.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Cluap1/IFT38 is a ciliary protein that belongs to the IFT-B complex and is required for ciliogenesis. In this study, we have examined the behaviors of Cluap1 protein in nonciliated and ciliated cells. In proliferating cells, Cluap1 is located at the distal appendage of the mother centriole. When cells are induced to form cilia, Cluap1 is found in a novel noncentriolar compartment, the cytoplasmic IFT spot, which mainly exists once in a cell. Other IFT-B proteins such as IFT46 and IFT88 are colocalized in this spot. The cytoplasmic IFT spot is present in mouse embryonic fibroblasts (MEFs) but is absent in ciliogenesis-defective MEFs lacking Cluap1, Kif3a or Odf2. The cytoplasmic IFT spot is also found in mouse embryos but is absent in the Cluap1 mutant embryo. When MEFs are induced to form cilia, the cytoplasmic IFT spot appears at an early step of ciliogenesis but starts to disappear when ciliogenesis is mostly completed. These results suggest that IFT-B proteins such as Cluap1 accumulate in a previously undescribed cytoplasmic compartment during ciliogenesis.
Collapse
Affiliation(s)
- Lynda Lamri
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Wang Kyaw Twan
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yanick Botilde
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yayoi Ikawa
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Nishimura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Akemi Fukumoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Katsura Minegishi
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
33
|
Martin-Hurtado A, Martin-Morales R, Robledinos-Antón N, Blanco R, Palacios-Blanco I, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep 2019; 9:13896. [PMID: 31554934 PMCID: PMC6761261 DOI: 10.1038/s41598-019-50356-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NRF2 is a master regulator of cellular antioxidant and detoxification responses, but it also regulates other processes such as autophagy and pluripotency. In human embryonic stem cells (hESCs), NRF2 antagonizes neuroectoderm differentiation, which only occurs after NRF2 is repressed via a Primary Cilia-Autophagy-NRF2 (PAN) axis. However, the functional connections between NRF2 and primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae, remain poorly understood. For instance, nothing is known about whether NRF2 affects cilia, or whether cilia regulation of NRF2 extends beyond hESCs. Here, we show that NRF2 and primary cilia reciprocally regulate each other. First, we demonstrate that fibroblasts lacking primary cilia have higher NRF2 activity, which is rescued by autophagy-activating mTOR inhibitors, indicating that the PAN axis also operates in differentiated cells. Furthermore, NRF2 controls cilia formation and function. NRF2-null cells grow fewer and shorter cilia and display impaired Hedgehog signaling, a cilia-dependent pathway. These defects are not due to increased oxidative stress or ciliophagy, but rather to NRF2 promoting expression of multiple ciliogenic and Hedgehog pathway genes. Among these, we focused on GLI2 and GLI3, the transcription factors controlling Hh pathway output. Both their mRNA and protein levels are reduced in NRF2-null cells, consistent with their gene promoters containing consensus ARE sequences predicted to bind NRF2. Moreover, GLI2 and GLI3 fail to accumulate at the ciliary tip of NRF2-null cells upon Hh pathway activation. Given the importance of NRF2 and ciliary signaling in human disease, our data may have important biomedical implications.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Natalia Robledinos-Antón
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ruth Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ines Palacios-Blanco
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain
| | - Isabel Lastres-Becker
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Francesc R Garcia-Gonzalo
- Alberto Sols Biomedical Research Institute UAM-CSIC and Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain. .,La Paz University Hospital Research Institute (IdiPAZ), Madrid, Spain.
| |
Collapse
|
34
|
Hata S, Pastor Peidro A, Panic M, Liu P, Atorino E, Funaya C, Jäkle U, Pereira G, Schiebel E. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat Cell Biol 2019; 21:1138-1151. [DOI: 10.1038/s41556-019-0382-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
|
35
|
Kodani A, Moyer T, Chen A, Holland A, Walsh CA, Reiter JF. SFI1 promotes centriole duplication by recruiting USP9X to stabilize the microcephaly protein STIL. J Cell Biol 2019; 218:2185-2197. [PMID: 31197030 PMCID: PMC6605807 DOI: 10.1083/jcb.201803041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 01/08/2023] Open
Abstract
In mammals, centrioles participate in brain development, and human mutations affecting centriole duplication cause microcephaly. Here, we identify a role for the mammalian homologue of yeast SFI1, involved in the duplication of the yeast spindle pole body, as a critical regulator of centriole duplication in mammalian cells. Mammalian SFI1 interacts with USP9X, a deubiquitylase associated with human syndromic mental retardation. SFI1 localizes USP9X to the centrosome during S phase to deubiquitylate STIL, a critical regulator of centriole duplication. USP9X-mediated deubiquitylation protects STIL from degradation. Consistent with a role for USP9X in stabilizing STIL, cells from patients with USP9X loss-of-function mutations have reduced STIL levels. Together, these results demonstrate that SFI1 is a centrosomal protein that localizes USP9X to the centrosome to stabilize STIL and promote centriole duplication. We propose that the USP9X protection of STIL to facilitate centriole duplication underlies roles of both proteins in human neurodevelopment.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Tyler Moyer
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen Chen
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
36
|
Sprott D, Poitz DM, Korovina I, Ziogas A, Phieler J, Chatzigeorgiou A, Mitroulis I, Deussen A, Chavakis T, Klotzsche-von Ameln A. Endothelial-Specific Deficiency of ATG5 (Autophagy Protein 5) Attenuates Ischemia-Related Angiogenesis. Arterioscler Thromb Vasc Biol 2019; 39:1137-1148. [PMID: 31070476 DOI: 10.1161/atvbaha.119.309973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
Abstract
Objective- Pathological angiogenesis, such as exuberant retinal neovascularization during proliferative retinopathies, involves endothelial responses to ischemia/hypoxia and oxidative stress. Autophagy is a clearance system enabling bulk degradation of intracellular components and is implicated in cellular adaptation to stressful conditions. Here, we addressed the role of the ATG5 (autophagy-related protein 5) in endothelial cells in the context of pathological ischemia-related neovascularization in the murine model of retinopathy of prematurity. Approach and Results- Autophagic vesicles accumulated in neovascular tufts of the retina of retinopathy of prematurity mice. Endothelium-specific Atg5 deletion reduced pathological neovascularization in the retinopathy of prematurity model. In contrast, no alterations in physiological retina vascularization were observed in endothelial-specific ATG5 deficiency, suggesting a specific role of endothelial ATG5 in pathological hypoxia/reoxygenation-related angiogenesis. Consistently, in an aortic ring angiogenesis assay, endothelial ATG5 deficiency resulted in impaired angiogenesis under hypoxia/reoxygenation conditions. As compared to ATG5-sufficient endothelial cells, ATG5-deficient cells displayed impaired mitochondrial respiratory activity, diminished production of mitochondrial reactive oxygen species and decreased phosphorylation of the VEGFR2 (vascular endothelial growth factor receptor 2). Consistently, ATG5-deficient endothelial cells displayed decreased oxidative inactivation of PTPs (phospho-tyrosine phosphatases), likely due to the reduced reactive oxygen species levels resulting from ATG5 deficiency. Conclusions- Our data suggest that endothelial ATG5 supports mitochondrial function and proangiogenic signaling in endothelial cells in the context of pathological hypoxia/reoxygenation-related neovascularization. Endothelial ATG5, therefore, represents a potential target for the treatment of pathological neovascularization-associated diseases, such as retinopathies.
Collapse
Affiliation(s)
- David Sprott
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - David M Poitz
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
- Department of Internal Medicine and Cardiology (D.M.P.), Technische Universität Dresden, Germany
| | - Irina Korovina
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine (I.K.), Technische Universität Dresden, Germany
| | - Athanasios Ziogas
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Julia Phieler
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Antonios Chatzigeorgiou
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Ioannis Mitroulis
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Andreas Deussen
- Institute for Physiology (A.D., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Triantafyllos Chavakis
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
| | - Anne Klotzsche-von Ameln
- From the Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty (D.S., D.M.P., I.K., A.Z., J.P., A.C., I.M., T.C., A.K.-v.A.), Technische Universität Dresden, Germany
- Institute for Physiology (A.D., A.K.-v.A.), Technische Universität Dresden, Germany
| |
Collapse
|
37
|
Odabasi E, Gul S, Kavakli IH, Firat-Karalar EN. Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep 2019; 20:embr.201947723. [PMID: 31023719 PMCID: PMC6549029 DOI: 10.15252/embr.201947723] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.
Collapse
Affiliation(s)
- Ezgi Odabasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seref Gul
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim H Kavakli
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | | |
Collapse
|
38
|
Engelke MF, Waas B, Kearns SE, Suber A, Boss A, Allen BL, Verhey KJ. Acute Inhibition of Heterotrimeric Kinesin-2 Function Reveals Mechanisms of Intraflagellar Transport in Mammalian Cilia. Curr Biol 2019; 29:1137-1148.e4. [PMID: 30905605 PMCID: PMC6445692 DOI: 10.1016/j.cub.2019.02.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/02/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
Abstract
The trafficking of components within cilia, called intraflagellar transport (IFT), is powered by kinesin-2 and dynein-2 motors. Loss of function in any subunit of the heterotrimeric KIF3A/KIF3B/KAP kinesin-2 motor prevents ciliogenesis in mammalian cells and has hindered an understanding of how kinesin-2 motors function in cilium assembly and IFT. We used a chemical-genetic approach to generate an inhibitable KIF3A/KIF3B/KAP kinesin-2 motor (i3A/i3B) that is capable of rescuing wild-type (WT) motor function for cilium assembly and Hedgehog signaling in Kif3a/Kif3b double-knockout cells. We demonstrate that KIF3A/KIF3B function is required not just for cilium assembly but also for cilium maintenance, as inhibition of i3A/i3B blocks IFT within 2 min and leads to a complete loss of primary cilia within 8 h. In contrast, inhibition of dynein-2 has no effect on cilium maintenance within the same time frame. The kinetics of cilia loss indicate that two processes contribute to ciliary disassembly in response to cessation of anterograde IFT: a slow shortening that is steady over time and a rapid deciliation that occurs with stochastic onset. We also demonstrate that the kinesin-2 family members KIF3A/KIF3C and KIF17 cannot rescue ciliogenesis in Kif3a/Kif3b double-knockout cells or delay the loss of assembled cilia upon i3A/i3B inhibition. These results demonstrate that KIF3A/KIF3B/KAP is the sole and essential motor for cilium assembly and maintenance in mammalian cells. These findings highlight differences in how kinesin-2 motors were adapted for cilium assembly and IFT function across species.
Collapse
Affiliation(s)
- Martin F Engelke
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Bridget Waas
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Sarah E Kearns
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayana Suber
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Allison Boss
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Benjamin L Allen
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
40
|
Tu HQ, Qin XH, Liu ZB, Song ZQ, Hu HB, Zhang YC, Chang Y, Wu M, Huang Y, Bai YF, Wang G, Han QY, Li AL, Zhou T, Liu F, Zhang XM, Li HY. Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis. Nat Commun 2018; 9:5277. [PMID: 30538248 PMCID: PMC6290075 DOI: 10.1038/s41467-018-07664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Defective ciliogenesis causes human developmental diseases termed ciliopathies. Microtubule (MT) asters originating from centrosomes in mitosis ensure the fidelity of cell division by positioning the spindle apparatus. However, the function of microtubule asters in interphase remains largely unknown. Here, we reveal an essential role of MT asters in transition zone (TZ) assembly during ciliogenesis. We demonstrate that the centrosome protein FSD1, whose biological function is largely unknown, anchors MT asters to interphase centrosomes by binding to microtubules. FSD1 knockdown causes defective ciliogenesis and affects embryonic development in vertebrates. We further show that disruption of MT aster anchorage by depleting FSD1 or other known anchoring proteins delocalizes the TZ assembly factor Cep290 from centriolar satellites, and causes TZ assembly defects. Thus, our study establishes FSD1 as a MT aster anchorage protein and reveals an important function of MT asters anchored by FSD1 in TZ assembly during ciliogenesis. Microtubule asters originate from centrosomes but their role during interphase remains largely unknown. Here, the authors find that microtubule asters anchored by previously-uncharacterized FSD1 play a role in ciliogenesis by maintaining the dynamic localization of centriolar satellites.
Collapse
Affiliation(s)
- Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xuan-He Qin
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhi-Bin Liu
- University of Chinese Academy of Science, Beijing, 100101, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yun-Feng Bai
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China. .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
41
|
Abstract
The primary cilium is an antenna-like organelle assembled on most types of quiescent and differentiated mammalian cells. This immotile structure is essential for interpreting extracellular signals that regulate growth, development and homeostasis. As such, ciliary defects produce a spectrum of human diseases, termed ciliopathies, and deregulation of this important organelle also plays key roles during tumor formation and progression. Recent studies have begun to clarify the key mechanisms that regulate ciliary assembly and disassembly in both normal and tumor cells, highlighting new possibilities for therapeutic intervention. Here, we review these exciting new findings, discussing the molecular factors involved in cilium formation and removal, the intrinsic and extrinsic control of cilium assembly and disassembly, and the relevance of these processes to mammalian cell growth and disease.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
42
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
43
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
44
|
Hong SR, Wang CL, Huang YS, Chang YC, Chang YC, Pusapati GV, Lin CY, Hsu N, Cheng HC, Chiang YC, Huang WE, Shaner NC, Rohatgi R, Inoue T, Lin YC. Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nat Commun 2018; 9:1732. [PMID: 29712905 PMCID: PMC5928066 DOI: 10.1038/s41467-018-03952-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells and are suggested to be involved in a wide range of cellular activities. However, the complexity and dynamic distribution of tubulin PTMs within cells have hindered the understanding of their physiological roles in specific subcellular compartments. Here, we develop a method to rapidly deplete tubulin glutamylation inside the primary cilia, a microtubule-based sensory organelle protruding on the cell surface, by targeting an engineered deglutamylase to the cilia in minutes. This rapid deglutamylation quickly leads to altered ciliary functions such as kinesin-2-mediated anterograde intraflagellar transport and Hedgehog signaling, along with no apparent crosstalk to other PTMs such as acetylation and detyrosination. Our study offers a feasible approach to spatiotemporally manipulate tubulin PTMs in living cells. Future expansion of the repertoire of actuators that regulate PTMs may facilitate a comprehensive understanding of how diverse tubulin PTMs encode ciliary as well as cellular functions. Tubulin post-translational modifications (PTMs) occur spatiotemporally throughout cells, therefore assessing the physiological roles in specific subcellular compartments has been challenging. Here the authors develop a method to rapidly deplete tubulin glutamylation inside the primary cilia by targeting an engineered deglutamylase to the axoneme.
Collapse
Affiliation(s)
- Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cuei-Ling Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yao-Shen Huang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chen Chang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ya-Chu Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Chun-Yu Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ning Hsu
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsiao-Chi Cheng
- Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yueh-Chen Chiang
- Interdisciplinary Program of Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wei-En Huang
- Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, 92121, CA, USA
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, 21205, MD, USA.
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
45
|
Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 2017; 7:rsob.160274. [PMID: 28179500 PMCID: PMC5356440 DOI: 10.1098/rsob.160274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.
Collapse
Affiliation(s)
| | - Chris Rookyard
- School of Computing Science, University of East Anglia, Norwich, UK
| | | | - Jonathan Gadsby
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - James Perkins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth K Lund
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom Wileman
- Medical School, University of East Anglia, Norwich, UK
| | - Mette M Mogensen
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
46
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
47
|
Lu D, Rauhauser A, Li B, Ren C, McEnery K, Zhu J, Chaki M, Vadnagara K, Elhadi S, Jetten AM, Igarashi P, Attanasio M. Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney Int 2017; 89:1307-23. [PMID: 27181777 DOI: 10.1016/j.kint.2016.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/12/2016] [Accepted: 03/03/2016] [Indexed: 01/27/2023]
Abstract
Enlargement of kidney tubules is a common feature of multiple cystic kidney diseases in humans and mice. However, while some of these pathologies are characterized by cyst expansion and organ enlargement, in others, progressive interstitial fibrosis and kidney atrophy prevail. The Kif3a knockout mouse is an established non-orthologous mouse model of cystic kidney disease. Conditional inactivation of Kif3a in kidney tubular cells results in loss of primary cilia and rapid cyst growth. Conversely, loss of function of the gene GLIS2/NPHP7 causes progressive kidney atrophy, interstitial inflammatory infiltration, and fibrosis. Kif3a null tubular cells have unrestrained proliferation and reduced stabilization of p53 resulting in a loss of cell cycle arrest in the presence of DNA damage. In contrast, loss of Glis2 is associated with activation of checkpoint kinase 1, stabilization of p53, and induction of cell senescence. Interestingly, the cystic phenotype of Kif3a knockout mice is partially rescued by genetic ablation of Glis2 and pharmacological stabilization of p53. Thus, Kif3a is required for cell cycle regulation and the DNA damage response, whereas cell senescence is significantly enhanced in Glis2 null cells. Hence, cell senescence is a central feature in nephronophthisis type 7 and Kif3a is unexpectedly required for efficient DNA damage response and cell cycle arrest.
Collapse
Affiliation(s)
- Dongmei Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alysha Rauhauser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Binghua Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kayla McEnery
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jili Zhu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Nephrology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Moumita Chaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Elhadi
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Peter Igarashi
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Eugene McDermott Center for Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
48
|
Huang N, Xia Y, Zhang D, Wang S, Bao Y, He R, Teng J, Chen J. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat Commun 2017; 8:15057. [PMID: 28422092 PMCID: PMC5399293 DOI: 10.1038/ncomms15057] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
In animal cells, the centrosome is the main microtubule-organizing centre where microtubules are nucleated and anchored. The centriole subdistal appendages (SDAs) are the key structures that anchor microtubules in interphase cells, but the composition and assembly mechanisms of SDAs are not well understood. Here, we reveal that centrosome-binding proteins, coiled-coil domain containing (CCDC) 120 and CCDC68 are two novel SDA components required for hierarchical SDA assembly in human cells. CCDC120 is anchored to SDAs by ODF2 and recruits CEP170 and Ninein to the centrosome through different coiled-coil domains at its N terminus. CCDC68 is a CEP170-interacting protein that competes with CCDC120 in recruiting CEP170 to SDAs. Furthermore, CCDC120 and CCDC68 are required for centrosome microtubule anchoring. Our findings elucidate the molecular basis for centriole SDA hierarchical assembly and microtubule anchoring in human interphase cells.
Collapse
Affiliation(s)
- Ning Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuqing Xia
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Donghui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Song Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yitian Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Runsheng He
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Morlon-Guyot J, Francia ME, Dubremetz JF, Daher W. Towards a molecular architecture of the centrosome in Toxoplasma gondii. Cytoskeleton (Hoboken) 2017; 74:55-71. [PMID: 28026138 DOI: 10.1002/cm.21353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Maria E Francia
- Molecular Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Jean-François Dubremetz
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
50
|
Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, Spassky N. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 2016; 144:201-210. [PMID: 27993979 PMCID: PMC5394754 DOI: 10.1242/dev.138271] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023]
Abstract
Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Philippe Foerster
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| | - Marie Daclin
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| | - Shihavuddin Asm
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| | - Marion Faucourt
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Auguste Genovesio
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| | - Nathalie Spassky
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), INSERM U1024, and CNRS UMR 8197, PSL Research University, 46 rue d'Ulm, Paris 75005, France
| |
Collapse
|