1
|
Wang J, Tran-Huynh AM, Kim BJ, Chan DW, Holt MV, Fandino D, Yu X, Qi X, Wang J, Zhang W, Wu YH, Anurag M, Zhang XHF, Zhang B, Cheng C, Foulds CE, Ellis MJ. Death-associated protein kinase 3 modulates migration and invasion of triple-negative breast cancer cells. PNAS NEXUS 2024; 3:pgae401. [PMID: 39319326 PMCID: PMC11421662 DOI: 10.1093/pnasnexus/pgae401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pull-down assay (KIPA), leading to the observation that death-associated protein kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple-negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with down-regulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by a mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that leucine-zipper protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a newly discovered regulator of EMT/desmosome components that promote TNBC cell migration.
Collapse
Affiliation(s)
- Junkai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anh M Tran-Huynh
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Doug W Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoli Qi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chonghui Cheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Hyodo T, Asano-Inami E, Ito S, Sugiyama M, Nawa A, Rahman ML, Hasan MN, Mihara Y, Lam VQ, Karnan S, Ota A, Tsuzuki S, Hamaguchi M, Hosokawa Y, Konishi H. Leucine zipper protein 1 (LUZP1) regulates the constriction velocity of the contractile ring during cytokinesis. FEBS J 2024; 291:927-944. [PMID: 38009294 DOI: 10.1111/febs.17017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
There has been a great deal of research on cell division and its mechanisms; however, its processes still have many unknowns. To find novel proteins that regulate cell division, we performed the screening using siRNAs and/or the expression plasmid of the target genes and identified leucine zipper protein 1 (LUZP1). Recent studies have shown that LUZP1 interacts with various proteins and stabilizes the actin cytoskeleton; however, the function of LUZP1 in mitosis is not known. In this study, we found that LUZP1 colocalized with the chromosomal passenger complex (CPC) at the centromere in metaphase and at the central spindle in anaphase and that these LUZP1 localizations were regulated by CPC activity and kinesin family member 20A (KIF20A). Mass spectrometry analysis identified that LUZP1 interacted with death-associated protein kinase 3 (DAPK3), one regulator of the cleavage furrow ingression in cytokinesis. In addition, we found that LUZP1 also interacted with myosin light chain 9 (MYL9), a substrate of DAPK3, and comprehensively inhibited MYL9 phosphorylation by DAPK3. In line with a known role for MYL9 in the actin-myosin contraction, LUZP1 suppression accelerated the constriction velocity at the division plane in our time-lapse analysis. Our study indicates that LUZP1 is a novel regulator for cytokinesis that regulates the constriction velocity of the contractile ring.
Collapse
Affiliation(s)
- Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Eri Asano-Inami
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | | | - Mai Sugiyama
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuko Mihara
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | | | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
3
|
LUZP1: A new player in the actin-microtubule cross-talk. Eur J Cell Biol 2022; 101:151250. [PMID: 35738212 DOI: 10.1016/j.ejcb.2022.151250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
LUZP1 (leucine zipper protein 1) was first described as being important for embryonic development. Luzp1 null mice present defective neural tube closure and cardiovascular problems, which cause perinatal death. Since then, LUZP1 has also been implicated in the etiology of diseases like the 1p36 and the Townes-Brocks syndromes, and the molecular mechanisms involving this protein started being uncovered. Proteomics studies placed LUZP1 in the interactomes of the centrosome-cilium interface, centriolar satellites, and midbody. Concordantly, LUZP1 is an actin and microtubule-associated protein, which localizes to the centrosome, the basal body of primary cilia, the midbody, actin filaments and cellular junctions. LUZP1, like its interactor EPLIN, is an actin-stabilizing protein and a negative regulator of primary cilia formation. Moreover, through the regulation of actin, LUZP1 has been implicated in the regulation of cell cycle progression, cell migration and epithelial cell apical constriction. This review discusses the latest findings concerning LUZP1 molecular functions and implications in disease development.
Collapse
|
4
|
Niri F, Terpstra A, Lim KRQ, McDermid H. Chromatin remodeling factor CECR2 forms tissue-specific complexes with CCAR2 and LUZP1. Biochem Cell Biol 2021; 99:759-765. [PMID: 34197713 DOI: 10.1139/bcb-2021-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin remodeling complexes alter chromatin structure to control access to DNA and therefore control cellular processes such as transcription, DNA replication, and DNA repair. CECR2 is a chromatin remodeling factor that plays an important role in neural tube closure and reproduction. Loss-of-function mutations in Cecr2 result primarily in the perinatal lethal neural tube defect exencephaly, with non-penetrant mice that survive to adulthood exhibiting subfertility. CECR2 forms a complex with ISWI proteins SMARCA5 and/or SMARCA1, but further information on the structure and function of the complex is not known. We therefore have identified candidate components of the CECR2-containing remodeling factor (CERF) complex in embryonic stem (ES) cells through mass spectroscopy. Both SMARCA5 and SMARCA1 were confirmed to be present in CERF complexes in ES cells and testis. However, novel proteins CCAR2 and LUZP1 are CERF components in ES cells but not testis. This tissue specificity in mice suggests these complexes may also have functional differences. Furthermore, LUZP1, loss of which is also associated with exencephaly, appears to play a role in stabilizing the CERF complex in ES cells. Keywords: CECR2, LUZP1, CCAR2, Chromatin remodeling factor, Neural tube defects.
Collapse
Affiliation(s)
- Farshad Niri
- University of Alberta, 3158, Edmonton, Alberta, Canada, T6G 2R3.,Edmonton, Alberta, Canada, T6E 1V3;
| | | | | | | |
Collapse
|
5
|
Ebert SM, Bullard SA, Basisty N, Marcotte GR, Skopec ZP, Dierdorff JM, Al-Zougbi A, Tomcheck KC, DeLau AD, Rathmacher JA, Bodine SC, Schilling B, Adams CM. Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPβ. J Biol Chem 2020; 295:2787-2803. [PMID: 31953319 PMCID: PMC7049960 DOI: 10.1074/jbc.ra119.012095] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is a highly-prevalent and debilitating condition that remains poorly understood at the molecular level. Previous work found that aging, fasting, and immobilization promote skeletal muscle atrophy via expression of activating transcription factor 4 (ATF4) in skeletal muscle fibers. However, the direct biochemical mechanism by which ATF4 promotes muscle atrophy is unknown. ATF4 is a member of the basic leucine zipper transcription factor (bZIP) superfamily. Because bZIP transcription factors are obligate dimers, and because ATF4 is unable to form highly-stable homodimers, we hypothesized that ATF4 may promote muscle atrophy by forming a heterodimer with another bZIP family member. To test this hypothesis, we biochemically isolated skeletal muscle proteins that associate with the dimerization- and DNA-binding domain of ATF4 (the bZIP domain) in mouse skeletal muscle fibers in vivo Interestingly, we found that ATF4 forms at least five distinct heterodimeric bZIP transcription factors in skeletal muscle fibers. Furthermore, one of these heterodimers, composed of ATF4 and CCAAT enhancer-binding protein β (C/EBPβ), mediates muscle atrophy. Within skeletal muscle fibers, the ATF4-C/EBPβ heterodimer interacts with a previously unrecognized and evolutionarily conserved ATF-C/EBP composite site in exon 4 of the Gadd45a gene. This three-way interaction between ATF4, C/EBPβ, and the ATF-C/EBP composite site activates the Gadd45a gene, which encodes a critical mediator of muscle atrophy. Together, these results identify a biochemical mechanism by which ATF4 induces skeletal muscle atrophy, providing molecular-level insights into the etiology of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California 94945
| | - George R Marcotte
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Zachary P Skopec
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Asma Al-Zougbi
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Kristin C Tomcheck
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Austin D DeLau
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jacob A Rathmacher
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Sue C Bodine
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Emmyon, Inc., Coralville, Iowa 52241
| | | | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241.
| |
Collapse
|
6
|
Garg J, Saettone A, Nabeel-Shah S, Cadorin M, Ponce M, Marquez S, Pu S, Greenblatt J, Lambert JP, Pearlman RE, Fillingham J. The Med31 Conserved Component of the Divergent Mediator Complex in Tetrahymena thermophila Participates in Developmental Regulation. Curr Biol 2019; 29:2371-2379.e6. [PMID: 31280994 DOI: 10.1016/j.cub.2019.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/18/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Mediator is a large protein complex required for basal and regulated expression of most RNA polymerase II (RNAP II)-transcribed genes, in part due to its interaction with and phosphorylation of the conserved C-terminal domain (CTD) of Rpb1 [1, 2]. Mediator has been implicated in many aspects of gene expression including chromatin looping [3], higher-order chromatin folding [4], mRNA processing [5] and export [6], and transcriptional memory [7]. Mediator is thought to have played a major role during eukaryotic diversification [8, 9], although its function remains unknown in evolutionarily deep branching eukaryotes lacking canonical CTD heptad repeats. We used the ciliate protozoan Tetrahymena thermophila as a model organism whose genome encodes a highly divergent Rpb1 lacking canonical CTD heptad repeats. We endogenously tagged the Med31 subunit of the Mediator complex and performed affinity purification coupled with mass spectrometry (AP-MS) to identify Mediator subunits. We found that Med31 physically interacts with a large number of proteins (>20), several of which share similarities to canonical Mediator subunits in yeast and humans as well as Tetrahymena-specific proteins. Furthermore, Med31 ChIP-seq analysis suggested a global role for Mediator in transcription regulation. We demonstrated that MED31 knockdown in growing Tetrahymena results in the ectopic expression of developmental genes important for programmed DNA rearrangements. In addition, indirect immunofluorescence revealed Med31 localization in meiotic micronuclei, implicating Mediator in RNAPII-dependent ncRNA transcription. Our results reveal structural and functional insights and implicate Mediator as an ancient cellular machinery for transcription regulation with a possible involvement in global transcription of ncRNAs.
Collapse
Affiliation(s)
- Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Matthew Cadorin
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Marcelo Ponce
- SciNet HPC Consortium, University of Toronto, 661 University Avenue, Suite 1140, Toronto, ON M5G 1M1, Canada
| | - Susanna Marquez
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Laurier Boulevard, Quebec, QC G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
7
|
Tourigny JP, Saleh MM, Schumacher K, Devys D, Zentner GE. Mediator Is Essential for Small Nuclear and Nucleolar RNA Transcription in Yeast. Mol Cell Biol 2018; 38:e00296-18. [PMID: 30275344 PMCID: PMC6275182 DOI: 10.1128/mcb.00296-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 09/21/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic RNA polymerase II (RNAPII) transcribes mRNA genes and non-protein-coding RNA (ncRNA) genes, including those encoding small nuclear and nucleolar RNAs (sn/snoRNAs). In metazoans, RNAPII transcription of sn/snoRNAs is facilitated by a number of specialized complexes, but no such complexes have been discovered in yeast. It has been proposed that yeast sn/snoRNA and mRNA expression relies on a set of common factors, but the extent to which regulators of mRNA genes function at yeast sn/snoRNA genes is unclear. Here, we investigated a potential role for the Mediator complex, essential for mRNA gene transcription, in sn/snoRNA gene transcription. We found that Mediator maps to sn/snoRNA gene regulatory regions and that rapid depletion of the essential structural subunit Med14 strongly reduces RNAPII and TFIIB occupancy as well as nascent transcription of sn/snoRNA genes. Deletion of Med3 and Med15, subunits of the activator-interacting Mediator tail module, does not affect Mediator recruitment to or RNAPII and TFIIB occupancy of sn/snoRNA genes. Our analyses suggest that Mediator promotes PIC formation and transcription at sn/snoRNA genes, expanding the role of this critical regulator beyond its known functions in mRNA gene transcription and demonstrating further mechanistic similarity between the transcription of mRNA and sn/snoRNA genes.
Collapse
Affiliation(s)
- Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Moustafa M Saleh
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kenny Schumacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Gabriel E Zentner
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Zeng F, Shabala S, Maksimović JD, Maksimović V, Bonales-Alatorre E, Shabala L, Yu M, Zhang G, Živanović BD. Revealing mechanisms of salinity tissue tolerance in succulent halophytes: A case study for Carpobrotus rossi. PLANT, CELL & ENVIRONMENT 2018; 41:2654-2667. [PMID: 29956332 DOI: 10.1111/pce.13391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Efforts to breed salt tolerant crops could benefit from investigating previously unexplored traits. One of them is a tissue succulency. In this work, we have undertaken an electrophysiological and biochemical comparison of properties of mesophyll and storage parenchyma leaf tissues of a succulent halophyte species Carpobrotus rosii ("pigface"). We show that storage parenchyma cells of C. rossii act as Na+ sink and possessed both higher Na+ sequestration (298 vs. 215 mM NaCl in mesophyll) and better K+ retention ability. The latter traits was determined by the higher rate of H+ -ATPase operation and higher nonenzymatic antioxidant activity in this tissue. Na+ uptake in both tissues was insensitive to either Gd3+ or elevated Ca2+ ruling out involvement of nonselective cation channels as a major path for Na+ entry. Patch-clamp experiments have revealed that Caprobrotus plants were capable to downregulate activity of fast vacuolar channels when exposed to saline environment; this ability was higher in the storage parenchyma cells compared with mesophyll. Also, storage parenchyma cells have constitutively lower number of open slow vacuolar channels, whereas in mesophyll, this suppression was inducible by salt. Taken together, these results provide a mechanistic basis for efficient Na+ sequestration in the succulent leaf tissues.
Collapse
Affiliation(s)
- Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, China
- College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | | | - Vuk Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Edgar Bonales-Alatorre
- College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
- Centro Universitario de Investigaciones Biomédicas, University of Colima, Colima, México
| | - Lana Shabala
- College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Branka D Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Nagpal N, Sharma S, Maji S, Durante G, Ferracin M, Thakur JK, Kulshreshtha R. Essential role of MED1 in the transcriptional regulation of ER-dependent oncogenic miRNAs in breast cancer. Sci Rep 2018; 8:11805. [PMID: 30087366 PMCID: PMC6081450 DOI: 10.1038/s41598-018-29546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 07/12/2018] [Indexed: 01/24/2023] Open
Abstract
Mediator complex has been extensively shown to regulate the levels of several protein-coding genes; however, its role in the regulation of miRNAs in humans remains unstudied so far. Here we show that MED1, a Mediator subunit in the Middle module of Mediator complex, is overexpressed in breast cancer and is a negative prognostic factor. The levels of several miRNAs (miR-100-5p, -191-5p, -193b-3p, -205-5p, -326, -422a and -425-5p) were found to be regulated by MED1. MED1 induces miR-191/425 cluster in an estrogen receptor-alpha (ER-α) dependent manner. Occupancy of MED1 on estrogen response elements (EREs) upstream of miR-191/425 cluster is estrogen and ER-α-dependent and ER-α-induced expression of these miRNAs is MED1-dependent. MED1 mediates induction of cell proliferation and migration and the genes associated with it (JUN, FOS, EGFR, VEGF, MMP1, and ERBB4) in breast cancer, which is abrogated when used together with miR-191-inhibition. Additionally, we show that MED1 also regulates the levels of direct miR-191 target genes such as SATB1, CDK6 and BDNF. Overall, the results show that MED1/ER-α/miR-191 axis promotes breast cancer cell proliferation and migration and may serve as a novel target for therapy.
Collapse
Affiliation(s)
- Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.,Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shivani Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sourobh Maji
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Giorgio Durante
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
10
|
Putlyaev EV, Ibragimov AN, Lebedeva LA, Georgiev PG, Shidlovskii YV. Structure and Functions of the Mediator Complex. BIOCHEMISTRY (MOSCOW) 2018; 83:423-436. [PMID: 29626929 DOI: 10.1134/s0006297918040132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mediator is a key factor in the regulation of expression of RNA polymerase II-transcribed genes. Recent studies have shown that Mediator acts as a coordinator of transcription activation and participates in maintaining chromatin architecture in the cell nucleus. In this review, we present current concepts on the structure and functions of Mediator.
Collapse
Affiliation(s)
- E V Putlyaev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | |
Collapse
|
11
|
Jiménez-Romero S, Carrasco-Salas P, Benítez-Burraco A. Language and Cognitive Impairment Associated with a Novel p.Cys63Arg Change in the MED13L Transcriptional Regulator. Mol Syndromol 2018; 9:83-91. [PMID: 29593475 DOI: 10.1159/000485638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the MED13L gene, which encodes a subunit of a transcriptional regulatory complex, result in a complex phenotype entailing physical and cognitive anomalies. Deep language impairment has been reported in affected individuals, mostly in patients with copy number variations. We report on a child with a nonsynonymous p.Cys63Arg change in MED13L (chr12:116675396A>G, GRCh37) who exhibits profound language impairment in the expressive domain, cognitive delay, behavioral disturbances, and an autism-like phenotype. Because of the brain areas in which MED13L is expressed and because of the functional links between MED13L and the products of selected candidate genes for cognitive disorders involving language deficits, the proband's linguistic phenotype may result from changes in a functional network important for language development and evolution.
Collapse
Affiliation(s)
- Salud Jiménez-Romero
- Maimónides Institute of Biomedical Research, Córdoba, Spain.,Department of Psychology, University of Córdoba, Córdoba, Spain
| | | | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, University of Seville, Seville, Spain
| |
Collapse
|
12
|
Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci 2017; 42:850-861. [PMID: 28964624 PMCID: PMC5660625 DOI: 10.1016/j.tibs.2017.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Collapse
Affiliation(s)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
13
|
Schiano C, Rienzo M, Casamassimi A, Soricelli A, Napoli C. Splicing regulators in endothelial cell differentiation. J Cardiovasc Med (Hagerstown) 2017; 18:742-749. [PMID: 28661931 DOI: 10.2459/jcm.0000000000000536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Alternative splicing represents a key mechanism of gene regulation. Despite its role in regulating cell pluripotency and differentiation being well known, the underlining mechanisms are still poorly studied. Here, we investigated the possible involvement of splicing regulators during the different steps of endothelial cell differentiation through expression studies on human circulating progenitors. METHODS Total RNAs were extracted from all cells and reverse-transcribed. Semiquantitative and real-time RT-PCR was performed using selective oligonucleotides. Differences between group means were considered significant at P value less than 0.05 and more significant at P value less than 0.01. Protein extracts were incubated with an antibody directed against MED23. Immunoprecipitation of supernatants and pellets was probed with both anti-Muscleblind-like splicing regulator (MBNL)1 and anti-MBNL2 antibodies. RESULTS Several clinical trials demonstrated the safety and efficacy of progenitor cells in regenerative therapy of the cardiovascular system. Particularly, we analyzed the expression of genes belonging to muscleblind family members and MED complex subunits, which are known to be involved during differentiation in other models. This study shows that MED23, MBNL1 and MBNL2 were all expressed at high levels only in differentiated cells. Moreover, immunoprecipitation assays indicated that MED23 is able to bind MBNLs in endothelial cells. CONCLUSION Our data suggest that MED23, MBNL1 and MBNL2 could regulate alternative splicing events activated during differentiation through a common mechanism. Hence, these observations corroborate previous evidence that splicing regulators may have an essential role in the basic apparatus required for cell pluripotency and reprogramming, allowing identification of novel biomarkers to use for early diagnosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Concetta Schiano
- aIRCCS SDN bDepartment of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania 'Luigi Vanvitelli' cDepartment of Diagnostic Imaging, University of Naples "Parthenope" dU.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Università degli Studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | | | | | | | | |
Collapse
|
14
|
Vosnakis N, Koch M, Scheer E, Kessler P, Mély Y, Didier P, Tora L. Coactivators and general transcription factors have two distinct dynamic populations dependent on transcription. EMBO J 2017; 36:2710-2725. [PMID: 28724529 PMCID: PMC5599802 DOI: 10.15252/embj.201696035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
SAGA and ATAC are two distinct chromatin modifying co‐activator complexes with distinct enzymatic activities involved in RNA polymerase II (Pol II) transcription regulation. To investigate the mobility of co‐activator complexes and general transcription factors in live‐cell nuclei, we performed imaging experiments based on photobleaching. SAGA and ATAC, but also two general transcription factors (TFIID and TFIIB), were highly dynamic, exhibiting mainly transient associations with chromatin, contrary to Pol II, which formed more stable chromatin interactions. Fluorescence correlation spectroscopy analyses revealed that the mobile pool of the two co‐activators, as well as that of TFIID and TFIIB, can be subdivided into “fast” (free) and “slow” (chromatin‐interacting) populations. Inhibiting transcription elongation decreased H3K4 trimethylation and reduced the “slow” population of SAGA, ATAC, TFIIB and TFIID. In addition, inhibiting histone H3K4 trimethylation also reduced the “slow” populations of SAGA and ATAC. Thus, our results demonstrate that in the nuclei of live cells the equilibrium between fast and slow population of SAGA or ATAC complexes is regulated by active transcription via changes in the abundance of H3K4me3 on chromatin.
Collapse
Affiliation(s)
- Nikolaos Vosnakis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - Pascal Didier
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
15
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
16
|
Liu Q, Li FC, Elsheikha HM, Sun MM, Zhu XQ. Identification of host proteins interacting with Toxoplasma gondii GRA15 (TgGRA15) by yeast two-hybrid system. Parasit Vectors 2017; 10:1. [PMID: 28049510 PMCID: PMC5209834 DOI: 10.1186/s13071-016-1943-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
Background Toxoplasma gondii, an obligate intracellular protozoan parasite, possesses the remarkable ability to co-opt host cell machinery in order to maintain its intracellular survival. This parasite can modulate signaling pathways of its host through the secretion of polymorphic effector proteins localized in the rhoptry and dense granule organelles. One of such effectors is T. gondii type II-specific dense granule protein 15, TgGRA15, which activates NF-κB pathway. The aim of the present study was to identify the host interaction partner proteins of TgGRA15. Methods We screened a yeast two-hybrid mouse cDNA library using TgGRA15 as the bait. TgGRA15 (PRU strain, Type II) was cloned into the pGBKT7 vector and expressed in the Y2HGold yeast strain. Then, the bait protein expression was validated by western blotting analysis, followed by auto-activation and toxicity tests in comparison with control (Y2HGold yeast strain transformed with empty pGBKT7 vector). Results This screening led to the identification of mouse Luzp1 and AW209491 as host binding proteins that interact with TgGRA15. Luzp1 contains three nuclear localizing signals and is involved in regulating a subset of host non-coding RNA genes. Conclusions These findings reveal, for the first time, new host cell proteins interacting with TgGRA15. The identification of these cellular targets and the understanding of their contribution to the host-pathogen interaction may serve as the foundation for novel therapeutic and prevention strategies against T. gondii infection.
Collapse
Affiliation(s)
- Qing Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Miao-Miao Sun
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| |
Collapse
|
17
|
Riss A, Scheer E, Joint M, Trowitzsch S, Berger I, Tora L. Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator Complexes Enhance the Acetyltransferase Activity of GCN5. J Biol Chem 2015; 290:28997-9009. [PMID: 26468280 DOI: 10.1074/jbc.m115.668533] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Histone acetyl transferases (HATs) play a crucial role in eukaryotes by regulating chromatin architecture and locus specific transcription. GCN5 (KAT2A) is a member of the GNAT (Gcn5-related N-acetyltransferase) family of HATs. In metazoans this enzyme is found in two functionally distinct coactivator complexes, SAGA (Spt Ada Gcn5 acetyltransferase) and ATAC (Ada Two A-containing). These two multiprotein complexes comprise complex-specific and shared subunits, which are organized in functional modules. The HAT module of ATAC is composed of GCN5, ADA2a, ADA3, and SGF29, whereas in the SAGA HAT module ADA2b is present instead of ADA2a. To better understand how the activity of human (h) hGCN5 is regulated in the two related, but different, HAT complexes we carried out in vitro HAT assays. We compared the activity of hGCN5 alone with its activity when it was part of purified recombinant hATAC or hSAGA HAT modules or endogenous hATAC or hSAGA complexes using histone tail peptides and full-length histones as substrates. We demonstrated that the subunit environment of the HAT complexes into which GCN5 incorporates determines the enhancement of GCN5 activity. On histone peptides we show that all the tested GCN5-containing complexes acetylate mainly histone H3K14. Our results suggest a stronger influence of ADA2b as compared with ADA2a on the activity of GCN5. However, the lysine acetylation specificity of GCN5 on histone tails or full-length histones was not changed when incorporated in the HAT modules of ATAC or SAGA complexes. Our results thus demonstrate that the catalytic activity of GCN5 is stimulated by subunits of the ADA2a- or ADA2b-containing HAT modules and is further increased by incorporation of the distinct HAT modules in the ATAC or SAGA holo-complexes.
Collapse
Affiliation(s)
- Anne Riss
- From the Cellular Signaling and Nuclear Dynamics Program and
| | | | - Mathilde Joint
- Proteomics platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France and
| | - Simon Trowitzsch
- EMBL Grenoble Outstation, 6 rue Jules Horowitz BP 181, F-38042 Grenoble Cedex, France and The School of Biochemistry, University of Bristol, University Walk, Clifton BS8 1TD, United Kingdom
| | - Imre Berger
- EMBL Grenoble Outstation, 6 rue Jules Horowitz BP 181, F-38042 Grenoble Cedex, France and The School of Biochemistry, University of Bristol, University Walk, Clifton BS8 1TD, United Kingdom
| | - László Tora
- From the Cellular Signaling and Nuclear Dynamics Program and
| |
Collapse
|
18
|
Li G, Yuan L, Liu D, Liu J. Upregulation of Leucine Zipper Protein mRNA in Hepatocellular Carcinoma Associated With Poor Prognosis. Technol Cancer Res Treat 2015; 15:517-22. [PMID: 26031464 DOI: 10.1177/1533034615587432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/23/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Leucine zipper protein (LUZP) plays key roles in development. Overexpression of LUZP was documented in several types of solid tumors. In this study, expression of LUZP messenger RNA (LUZP mRNA) in human hepatocellular carcinoma (HCC) was examined, and the correlations of LUZP mRNA level with patients' characteristics and prognosis were also investigated. METHODS Total RNA was extracted from HCC and paired noncancerous liver tissues of 77 patients. Expression of LUZP mRNA in the tissues was determined by real-time quantitative reverse transcriptase polymerase chain reaction. Using average LUZP mRNA level in noncancerous liver tissues as the cutoff, patients with HCC were categorized into high-expression group and low-expression group. Correlations of LUZP mRNA with clinical parameters were analyzed. Overall survival of the patients in the 2 groups was analyzed by Kaplan-Meier method. RESULTS The LUZP mRNA level was significantly higher in HCC samples than in the noncancerous liver tissues (1.87 ± 0.11 vs 0.58 ± 0.05, P < .01). Significant differences were found between the 2 groups in terms of portal vein invasion, Tumor Lymph Node Metastasis (TNM) stage, and recurrence of HCC. The current study failed to find significant differences between the 2 groups in clinical characteristics such as age, gender, lymph node metastasis, hepatitis B virus infection, family HCC history, and alcohol intake. Overall survival in high-expression group was 12 months while that in the low-expression group was 34 months (P = .03). CONCLUSION The LUZP mRNA is a prognostic indicator in HCC, and overexpression is associated with poor prognosis in patients with HCC.
Collapse
Affiliation(s)
- Guangbing Li
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Yuan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Dejie Liu
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
19
|
Takahashi H, Takigawa I, Watanabe M, Anwar D, Shibata M, Tomomori-Sato C, Sato S, Ranjan A, Seidel CW, Tsukiyama T, Mizushima W, Hayashi M, Ohkawa Y, Conaway JW, Conaway RC, Hatakeyama S. MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex. Nat Commun 2015; 6:5941. [PMID: 25575120 DOI: 10.1038/ncomms6941] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Ichigaku Takigawa
- Creative Research Institution, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Delnur Anwar
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Mio Shibata
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Chris W Seidel
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Wataru Mizushima
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Masayasu Hayashi
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Joan W Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Ronald C Conaway
- 1] Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, Missouri 64110, USA [2] Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS 66160, USA
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
20
|
Newton R, Wernisch L. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships. PLoS One 2014; 9:e105522. [PMID: 25148247 PMCID: PMC4141782 DOI: 10.1371/journal.pone.0105522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022] Open
Abstract
Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments.
Collapse
Affiliation(s)
- Richard Newton
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
- * E-mail:
| | - Lorenz Wernisch
- Biostatistics Unit, Medical Research Council, Cambridge, United Kingdom
| |
Collapse
|
21
|
de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, Berns A, van Lohuizen M, Wessels LFA, de Ridder J. Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet 2014; 10:e1004250. [PMID: 24721906 PMCID: PMC3983033 DOI: 10.1371/journal.pgen.1004250] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/04/2014] [Indexed: 12/16/2022] Open
Abstract
The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes. Retroviruses and transposons are widely used in cancer research and gene therapy. However, these systems show integration biases that may strongly affect results. To address this issue, we generated very large datasets consisting of to unselected integrations for the Sleeping Beauty and piggyBac transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome, and a striking similarity was observed between piggyBac and the Murine Leukemia Virus. Moreover, we find that target site selection is directed at multiple scales. At larger scales, it is similar across systems, and directed by a set of domain-oriented features, including chromatin compaction, replication timing, and CpG islands. Notable differences between systems are defined at smaller scales by a diverse range of epigenetic features. As a practical application of our findings, we determined that three recent insertional mutagenesis screens - commonly used for cancer gene discovery - contained 7%–33% putative false positive integration hotspots.
Collapse
Affiliation(s)
- Johann de Jong
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Waseem Akhtar
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II; Klinikum Rechts der Isar; Technische Universität München, German Cancer Research Center (DKFZ), Heidelberg, & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Skoltech Center for Stem Cell Research, Skolkovo Institute for Science and Technology, Skolkovo, Odintsovsky, Moscow, Russia
| | - Maarten van Lohuizen
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F. A. Wessels
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| |
Collapse
|
22
|
Abstract
ChIP-seq has become the primary method for identifying in vivo protein-DNA interactions on a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of December 2012. Individually and in aggregate, these data are an important and information-rich resource. However, uncertainties about data quality confound their use by the wider research community. Recently, the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively measure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer inspection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles. Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful, but a substantial minority (20%) were of apparently poor quality, and another ∼25% were of intermediate quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunoprecipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to that used here could guide experimentalists at early stages in a study, provide useful input in the publication process, and be used to stratify ChIP-seq data for different community-wide uses.
Collapse
|
23
|
Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. Involvement of Mediator complex in malignancy. Biochim Biophys Acta Rev Cancer 2013; 1845:66-83. [PMID: 24342527 DOI: 10.1016/j.bbcan.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Filomena de Nigris
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
24
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
25
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
26
|
Ma Y, Chen Z, Jin Y, Liu W. Identification of a histone acetyltransferase as a novel regulator of Drosophila
intestinal stem cells. FEBS Lett 2013; 587:1489-95. [DOI: 10.1016/j.febslet.2013.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
|
27
|
Umlauf D, Bonnet J, Waharte F, Fournier M, Stierle M, Fischer B, Brino L, Devys D, Tora L. The human TREX-2 complex is stably associated with the nuclear pore basket. J Cell Sci 2013; 126:2656-67. [DOI: 10.1242/jcs.118000] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes mRNA export involves many evolutionarily conserved factors that carry the nascent transcript to the nuclear pore complex (NPC). The THO/TREX complex couples transcription to mRNA export and recruits the mRNA export receptor NXF1 for the transport of mRNP particles to the NPC. The transcription and export complex 2 (TREX-2) was suggested to interact with NXF1 and to shuttle between transcription sites and the NPC. Here, we characterize the dynamics of human TREX-2 and show that it stably associates with the NPC basket. Moreover, the association of TREX-2 with the NPC requires the basket nucleoporins NUP153 and TPR, but is independent of transcription. Differential profiles of mRNA nuclear accumulation reveal that TREX-2 functions similarly to basket nucleoporins, but differently from NXF1. Thus, our results show that TREX-2 is an NPC-associated complex in mammalian cells and suggest that it is involved in putative NPC basket-related functions.
Collapse
|
28
|
Yanicostas C, Barbieri E, Hibi M, Brice A, Stevanin G, Soussi-Yanicostas N. Requirement for zebrafish ataxin-7 in differentiation of photoreceptors and cerebellar neurons. PLoS One 2012; 7:e50705. [PMID: 23226359 PMCID: PMC3511343 DOI: 10.1371/journal.pone.0050705] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
The expansion of a polyglutamine (polyQ) tract in the N-terminal region of ataxin-7 (atxn7) is the causative event in spinocerebellar ataxia type 7 (SCA7), an autosomal dominant neurodegenerative disorder mainly characterized by progressive, selective loss of rod-cone photoreceptors and cerebellar Purkinje and granule cells. The molecular and cellular processes underlying this restricted neuronal vulnerability, which contrasts with the broad expression pattern of atxn7, remains one of the most enigmatic features of SCA7, and more generally of all polyQ disorders. To gain insight into this specific neuronal vulnerability and achieve a better understanding of atxn7 function, we carried out a functional analysis of this protein in the teleost fish Danio rerio. We characterized the zebrafish atxn7 gene and its transcription pattern, and by making use of morpholino-oligonucleotide-mediated gene inactivation, we analysed the phenotypes induced following mild or severe zebrafish atxn7 depletion. Severe or nearly complete zebrafish atxn7 loss-of-function markedly impaired embryonic development, leading to both early embryonic lethality and severely deformed embryos. More importantly, in relation to SCA7, moderate depletion of the protein specifically, albeit partially, prevented the differentiation of both retina photoreceptors and cerebellar Purkinje and granule cells. In addition, [1–232] human atxn7 fragment rescued these phenotypes showing strong function conservation of this protein through evolution. The specific requirement for zebrafish atxn7 in the proper differentiation of cerebellar neurons provides, to our knowledge, the first in vivo evidence of a direct functional relationship between atxn7 and the differentiation of Purkinje and granule cells, the most crucial neurons affected in SCA7 and most other polyQ-mediated SCAs. These findings further suggest that altered protein function may play a role in the pathophysiology of the disease, an important step toward the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Constantin Yanicostas
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisa Barbieri
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
| | - Masahiko Hibi
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Alexis Brice
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
| | - Giovanni Stevanin
- INSERM, U975, Paris, France
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR_S975, GHU Pitié-Salpêtrière, Paris, France
- CNRS, UMR7225, Paris, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Nadia Soussi-Yanicostas
- INSERM, U676, Hôpital Robert Debré, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
29
|
Conaway RC, Conaway JW. The Mediator complex and transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:69-75. [PMID: 22983086 DOI: 10.1016/j.bbagrm.2012.08.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/14/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mediator is an evolutionarily conserved multisubunit RNA polymerase II (Pol II) coregulatory complex. Although Mediator was initially found to play a critical role in the regulation of the initiation of Pol II transcription, recent studies have brought to light an expanded role for Mediator at post-initiation stages of transcription. SCOPE OF REVIEW We provide a brief description of the structure of Mediator and its function in the regulation of Pol II transcription initiation, and we summarize recent findings implicating Mediator in the regulation of various stages of Pol II transcription elongation. MAJOR CONCLUSIONS Emerging evidence is revealing new roles for Mediator in nearly all stages of Pol II transcription, including initiation, promoter escape, elongation, pre-mRNA processing, and termination. GENERAL SIGNIFICANCE Mediator plays a central role in the regulation of gene expression by impacting nearly all stages of mRNA synthesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
30
|
Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines. PLoS One 2012; 7:e41762. [PMID: 22912678 PMCID: PMC3422281 DOI: 10.1371/journal.pone.0041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/25/2012] [Indexed: 01/04/2023] Open
Abstract
Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.
Collapse
|
31
|
Abstract
At Schizosaccharomyces pombe centromeres, heterochromatin formation is required for de novo incorporation of the histone H3 variant CENP-A(Cnp1), which in turn directs kinetochore assembly and ultimately chromosome segregation during mitosis. Noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (Pol II) directs heterochromatin formation through not only the RNA interference (RNAi) machinery but also RNAi-independent RNA processing factors. Control of centromeric ncRNA transcription is therefore a key factor for proper centromere function. We here demonstrate that Mediator directs ncRNA transcription and regulates centromeric heterochromatin formation in fission yeast. Mediator colocalizes with Pol II at centromeres, and loss of the Mediator subunit Med20 causes a dramatic increase in pericentromeric transcription and desilencing of the core centromere. As a consequence, heterochromatin formation is impaired via both the RNAi-dependent and -independent pathways, resulting in loss of CENP-A(Cnp1) from the core centromere, a defect in kinetochore function, and a severe chromosome segregation defect. Interestingly, the increased centromeric transcription observed in med20Δ cells appears to directly block CENP-A(Cnp1) incorporation since inhibition of Pol II transcription can suppress the observed phenotypes. Our data thus identify Mediator as a crucial regulator of ncRNA transcription at fission yeast centromeres and add another crucial layer of regulation to centromere function.
Collapse
|
32
|
Lam KC, Mühlpfordt F, Vaquerizas JM, Raja SJ, Holz H, Luscombe NM, Manke T, Akhtar A. The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 2012; 8:e1002736. [PMID: 22723752 PMCID: PMC3375229 DOI: 10.1371/journal.pgen.1002736] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP-seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP-seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication-related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription.
Collapse
Affiliation(s)
- Kin Chung Lam
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Friederike Mühlpfordt
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juan M. Vaquerizas
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Herbert Holz
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Nicholas M. Luscombe
- EMBL European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan
| | - Thomas Manke
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
33
|
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev 2012; 26:527-41. [PMID: 22426530 DOI: 10.1101/gad.184705.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L. SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol Cell 2011; 44:410-423. [PMID: 22055187 DOI: 10.1016/j.molcel.2011.08.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/30/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
Abstract
Histone acetyltransferase (HAT) complexes are coactivators that are important for transcriptional activation by modifying chromatin. Metazoan SAGA and ATAC are distinct multisubunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here, we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue-specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a role for the ATAC complex in the regulation of a set of enhancers.
Collapse
Affiliation(s)
- Arnaud R Krebs
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | - Krishanpal Karmodiya
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | - Marianne Lindahl-Allen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, C-315240 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, C-315240 Longwood Avenue, Boston, MA 02115, USA
| | - Làszlò Tora
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
35
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
36
|
The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol 2011; 31:3734-44. [PMID: 21746879 DOI: 10.1128/mcb.05231-11] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The multisubunit SAGA coactivator complex facilitates access of general transcription factors to DNA through histone acetylation mediated by GCN5. USP22 (ubiquitin-specific protease 22) was recently described as a subunit of the human SAGA complex that removes ubiquitin from monoubiquitinated histone H2B and H2A in vitro. Here we demonstrate an allosteric regulation of USP22 through multiple interactions with different domains of other subunits of the SAGA deubiquitination module (ATXN7, ATXN7L3, and ENY2). Downregulation of ATXN7L3 by short hairpin RNA (shRNA) specifically inactivated the SAGA deubiquitination activity, leading to a strong increase of global H2B ubiquitination and a moderate increase of H2A ubiquitination. Thus, SAGA is the major H2Bub deubiquitinase in human cells, and this activity cannot be fully compensated by other deubiquitinases. Here we show that the deubiquitination activity of SAGA is required for full activation of SAGA-dependent inducible genes. Interestingly, the reduction of the SAGA deubiquitination activity and the parallel increase in H2B ubiquitation at inducible target genes before activation do not induce aberrant gene expression. Our data together indicate that different dynamic equilibriums of H2B ubiquitination/deubiquitination are established at different gene regulatory elements and that H2B ubiquitination changes are necessary but not sufficient to trigger parallel activation of gene expression.
Collapse
|
37
|
Abstract
Mediator, a conserved multiprotein complex in animals, plants, and fungi, is a cofactor of RNA Polymerase II (Pol II). It is known to promote basal Pol II-mediated transcription as well as bridge sequence-specific transcriptional regulators and Pol II to integrate regulatory information. Pol II transcribes not only protein-coding genes but also intergenic regions to generate noncoding RNAs such as small RNAs (microRNAs and small interfering RNAs) and long noncoding RNAs. Intriguingly, two plant-specific polymerases, Pol IV and Pol V, have evolved from Pol II and play a role in the production of small interfering RNAs and long noncoding RNAs at heterochromatic regions to maintain genome stability through transcriptional gene silencing (TGS). Recent studies have defined the composition of the plant Mediator and evaluated its role in noncoding RNA production in relationship to Pol II, Pol IV and Pol V. Here, we review the functions of Mediator and that of noncoding RNAs generated by Pol II, Pol IV and Pol V in plants, and discuss a role of Mediator in epigenetic regulation via noncoding RNA production.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | | |
Collapse
|
38
|
Kim YJ, Zheng B, Yu Y, Won SY, Mo B, Chen X. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J 2011; 30:814-22. [PMID: 21252857 DOI: 10.1038/emboj.2011.3] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/22/2010] [Indexed: 12/23/2022] Open
Abstract
Mediator is a conserved multi-subunit complex known to promote the transcription of protein-coding genes by RNA polymerase II (Pol II) in eukaryotes. It has been increasingly realized that Pol II transcribes a large number of intergenic loci to generate noncoding RNAs, but the role of Mediator in Pol II-mediated noncoding RNA production has been largely unexplored. The role of Mediator in noncoding RNA production in plants is particularly intriguing given that plants have evolved from Pol II two additional polymerases, Pol IV and Pol V, to specialize in noncoding RNA production and transcriptional gene silencing at heterochromatic loci. Here, we show that Mediator is required for microRNA (miRNA) biogenesis by recruiting Pol II to promoters of miRNA genes. We also show that several well-characterized heterochromatic loci are de-repressed in Mediator mutants and that Mediator promotes Pol II-mediated production of long noncoding scaffold RNAs, which serve to recruit Pol V to these loci. This study expands the function of Mediator to include Pol II-mediated intergenic transcription and implicates a role of Mediator in genome stability.
Collapse
Affiliation(s)
- Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Malik S, Roeder RG. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 2010; 11:761-72. [PMID: 20940737 DOI: 10.1038/nrg2901] [Citation(s) in RCA: 557] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
Collapse
Affiliation(s)
- Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.
| | | |
Collapse
|