1
|
Zhao Q, Pan P, Mo L, Wu J, Liao S, Lu H, Zhang Q, Zhang X. The ELF3-TRIM22-MAVS signaling axis regulates type I interferon and antiviral responses. J Virol 2025; 99:e0000425. [PMID: 40162781 PMCID: PMC12090806 DOI: 10.1128/jvi.00004-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Activation of the innate immune response is essential for host cells to restrict the dissemination of invading viruses and other pathogens. Proteins belonging to the tripartite motif (TRIM) family are key effectors in antiviral innate immunity. Among these, TRIM22, a RING-type E3 ubiquitin ligase, has been recognized as a significant regulator in the pathogenesis of various diseases. In the present study, we identified TRIM22 as a critical modulator of mitochondrial antiviral signaling protein (MAVS) activation. Loss of TRIM22 function led to reduced production of type I interferons (IFNs) in response to viral infection such as influenza A virus (IAV) or vesicular stomatitis virus (VSV), thereby facilitating viral replication. Mechanistically, TRIM22 was found to enhance retinoic acid-inducible gene I (RIG-I)-mediated signaling through the catalysis of Lys63-linked polyubiquitination of MAVS, which, in turn, activated the TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) pathway, driving IFN-β production. Additionally, TRIM22 was shown to inhibit the assembly of the MAVS-NLRX1 inhibitory complex, further amplifying innate immune responses. Our findings also demonstrated that RNA virus infection upregulated TRIM22 expression via the nuclear translocation of ELF3, a transcription factor that activates TRIM22 gene expression. This regulatory loop underscores the role of TRIM22 in modulating the type I IFN pathway, providing critical insights into the host's antiviral defense mechanisms. Our research highlights the potential of targeting the ELF3-TRIM22-MAVS axis as a therapeutic strategy for enhancing antiviral immunity and preventing RNA virus infections.IMPORTANCEInterferon (IFN)-mediated antiviral responses are crucial for the host's defense against foreign pathogens and are regulated by various signaling pathways. The tripartite motif (TRIM) family, recognized for its multifaceted roles in immune regulation and antiviral defense, plays a significant part in this process. In our study, we explored the important role of TRIM22, a protein that helped regulate the host's immune response to viral infections. We found that TRIM22 enhances the Lys63-linked polyubiquitination of mitochondrial antiviral signaling protein (MAVS), which was essential for producing type I interferons. Interestingly, we discovered that the expression of TRIM22 increases after an RNA virus infection, due to a transcription factor ELF3, which moved into the nucleus of cells to activate TRIM22 transcription. This created a feedback loop that strengthens the role of TRIM22 in modulating the type I IFN pathway. By uncovering these mechanisms, we aimed to enhance our understanding of how the immune system works and provide insights that could lead to innovative antiviral therapies.
Collapse
Affiliation(s)
- Qiaozhi Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Pan Pan
- School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lirong Mo
- Department of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Jiangtao Wu
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shengjie Liao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hua Lu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiwei Zhang
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou, Guangdong, China
| | - Xiaoshen Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Losarwar S, Pancholi B, Babu R, Garabadu D. Mitochondria-dependent innate immunity: A potential therapeutic target in Flavivirus infection. Int Immunopharmacol 2025; 154:114551. [PMID: 40158432 DOI: 10.1016/j.intimp.2025.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Mitochondria, known as the powerhouse of cells, play a crucial role in host innate immunity during flavivirus infections such as Dengue, Zika, West Nile, and Japanese Encephalitis Virus. Mitochondrial antiviral signaling protein (MAVS) resides on the outer mitochondrial membrane which is triggered by viral RNA recognition by RIG-I-like receptors (RLRs). This activation induces IRF3 and NF-κB signaling, resulting in type I interferon (IFN) production and antiviral responses. Upon flavivirus infection, mitochondrial stress and dysfunction may lead to the release of mitochondrial DNA (mtDNA) into the cytoplasm, which serves as a damage-associated molecular pattern (DAMP). Cytosolic mtDNA is sensed by cGAS (cyclic GMP-AMP synthase), leading to the activation of the STING (Stimulator of Interferon Genes) pathway to increase IFN production and expand inflammation. Flaviviral proteins control mitochondrial morphology by controlling mitochondrial fission (MF) and fusion (MFu), disrupting mitochondrial dynamics (MD) to inhibit MAVS signaling and immune evasion. Flaviviral proteins also cause oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which triggers NLRP3 inflammasome activation and amplifies inflammation. Additionally, flaviviruses drive metabolic reprogramming by shifting host cell metabolism from oxidative phosphorylation (OxPhos) to glycolysis and fatty acid synthesis, creating a pro-replicative environment that supports viral replication and persistence. Thus, the present review explores the complex interaction between MAVS, mtDNA, and the cGAS-STING pathway, which is key to the innate immune response against flavivirus infections. Understanding these mechanisms opens new avenues in therapeutic interventions in targeting mitochondrial pathways to enhance antiviral immunity and mitigate viral infection.
Collapse
Affiliation(s)
- Saurabh Losarwar
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | | | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India
| | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bhatinda 151401, India.
| |
Collapse
|
3
|
Xie J, Fu Q, Qin L, Lin L, Wu Q, Zeng K, Wu J, Cao Z, Ou Y. Ochratoxin A induces lung cell PANoptosis through activation of the AIM 2 inflammasome. Int Immunopharmacol 2025; 150:114184. [PMID: 39938165 DOI: 10.1016/j.intimp.2025.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Ochratoxin A (OTA), a mycotoxin from filamentous fungi, significantly threatens human and animal health through food contamination. OTA is prevalent in food products, posing a significant health risk. Here, we observed that OTA induces senescence in lung cells. This study further assessed the toxicological effects of OTA on lung cells and clarified its molecular mechanism. We utilized in vitro cell models (TC-1 and MLE-12) to evaluate the impact of OTA on lung cells using Western-blot, indirect immunofluorescence and ELISA. The results revealed that OTA leads to inflammatory cell death in lung cells. Further investigations demonstrated that OTA elevates the expression levels of PANoptosis markers, including ZBP1, Caspase1/GSDMD (pyroptosis), Caspase3/7 (apoptosis) and RIP3/pMLKL (necroptosis). We further explored the mechanism through which OTA induces PANoptosis in lung cells. Experimental results indicated that OTA increased mitochondrial ROS levels, subsequently leading to a decrease in mitochondrial membrane potential, which activates AIM2. Consequently, AIM2 participates in the formation of ZBP1-induced PAN-optosome, ultimately resulting in PANoptosis of lung cells. In vivo studies further revealed that OTA induces lung damage. This new discovery establishes a basis for future studies on the toxicological effects of OTA on lung tissue.
Collapse
Affiliation(s)
- Jianlong Xie
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Qiujuan Fu
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Lingling Qin
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Liyao Lin
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Qin Wu
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Kaiqi Zeng
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Jiahuan Wu
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Ziyi Cao
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China; First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yongfang Ou
- Pathological Diagnosis and Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.
| |
Collapse
|
4
|
Zhao Y, Sui L, Pan M, Jin F, Huang Y, Fang S, Wang M, Che L, Xu W, Liu N, Gao H, Hou Z, Du F, Wei Z, Bell-Sakyi L, Zhao J, Zhang K, Zhao Y, Liu Q. The segmented flavivirus Alongshan virus reduces mitochondrial mass by degrading STAT2 to suppress the innate immune response. J Virol 2025; 99:e0130124. [PMID: 39655955 PMCID: PMC11784234 DOI: 10.1128/jvi.01301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025] Open
Abstract
Alongshan virus (ALSV) is a newly discovered pathogen in the Flaviviridae family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes. Furthermore, ALSV is sensitive to IFN-β, but it has developed strategies to counteract the host's type I IFN response. Mechanistically, ALSV's nonstructural protein NSP1 interacts with and degrades human STAT2 through an autophagy pathway, with species-dependent effects. This degradation directly inhibits the expression of interferon-stimulated genes (ISGs). Additionally, NSP1-mediated degradation of STAT2 disrupts mitochondrial dynamics, leading to mitophagy and inhibition of mitochondrial biogenesis. This, in turn, suppresses the host's innate immune response. Interestingly, we found that inhibiting mitophagy using 3-methyladenine and enhancing mitochondrial biogenesis with the PPARγ agonist pioglitazone can reverse NSP1-mediated inhibition of ISGs, suggesting that promoting mitochondrial mass could serve as an effective antiviral strategy. Specifically, the NSP1 methyltransferase domain binds to the key sites of F175/R176 located in the coiled-coil domain of STAT2. Our findings provide valuable insights into the intricate regulatory cross talk between ALSV and the host's innate immune response, shedding light on the pathogenesis of this emerging segmented flavivirus and offering potential intervention strategies.IMPORTANCEAlongshan virus (ALSV), a segmented flavivirus belonging to the Flaviviridae family, was first identified in individuals who had been bitten by ticks in Northeastern China. ALSV infection is responsible for causing Alongshan fever, a condition characterized by various clinical symptoms, including fever, headache, skin rash, myalgia, arthralgia, depression, and coma. There is an urgent need for effective antiviral therapies. Here, we demonstrate that ALSV is susceptible to IFN-β but has developed mechanisms to counteract the host's innate immune response. Specifically, the ALSV nonstructural protein NSP1 interacts with STAT2, leading to its degradation via an autophagy pathway that exhibits species-dependent effects. Additionally, NSP1 disrupts mitochondrial dynamics and suppresses mitochondrial biogenesis, resulting in a reduction in mitochondrial mass, which ultimately contributes to the inhibition of the host's innate immune response. Interestingly, we found that inhibiting mitophagy and promoting mitochondrial biogenesis can reverse NSP1-mediated suppression of innate immune response by increasing mitochondrial mass. These findings provide valuable insights into the molecular mechanisms of ALSV pathogenesis and suggest potential therapeutic targets against ALSV infection.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fangyu Jin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lihe Che
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Bao D, Yi S, Zhao L, Zhao H, Liu J, Wei Y, Hu G, Liu X. Porcine Epidemic Diarrhea Virus Infection of Porcine Intestinal Epithelial Cells Causes Mitochondrial DNA Release and the Activation of the NLRP3 Inflammasome to Mediate Interleukin-1β Secretion. Vet Sci 2024; 11:643. [PMID: 39728983 DOI: 10.3390/vetsci11120643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells. IL-1β production and caspase-1 activity were assessed by quantitative PCR and enzyme-linked immunosorbent assay. NLRP3 inflammasome activation was assessed using immunoprecipitation experiments. Mitochondrial damage was evaluated by analyzing the mitochondrial membrane potential and ATP levels and by the flow cytometry examination of mitochondrial reactive oxygen species (mtROS). Mitochondria and mtDNA localization were observed using immunofluorescence. The inhibition of mtROS and mtDNA production allowed NLRP3 inflammasome and IL-1β expression detection and the evaluation of the pathway underlying NLRP3 inflammasome activation in PEDV-infected IPEC-J2 cells. IPEC-J2 cells upregulated IL-1β upon PEDV infection, where mature IL-1β secretion depended on caspase-1 activity, triggered NLRP3 inflammasome expression and assembly, and caused mitochondrial dysfunction, leading to mtDNA release and NLRP3 inflammasome activation, while mtROS contributed to NF-κB pathway activation, enhancing IL-1β secretion. This is the first demonstration of the mechanism underlying mtDNA release and NLRP3 inflammasome activation facilitating IL-1β secretion from PEDV-infected IPEC-J2 cells. These data enhance our understanding of the inflammatory mechanisms triggered by PEDV.
Collapse
Affiliation(s)
- Di Bao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shushuai Yi
- College of Veterinary Medicune, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Luobing Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Kemao Street No. 186, Gongzhuling 136100, China
| | - Han Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiuyuan Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yiming Wei
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Guixue Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Xinxin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Jilin Academy of Agricultural Sciences, Kemao Street No. 186, Gongzhuling 136100, China
| |
Collapse
|
6
|
Ying C, Hua Z, Ma F, Yang Y, Wang Y, Liu K, Yin G. Hepatic immune response of Coilia nasus infected with Anisakidae during ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101261. [PMID: 38897035 DOI: 10.1016/j.cbd.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
7
|
Yang H, Sun P, Zhou S, Tang Y, Li S, Li W, Yu X, Liu H, Wu Y. Chlamydia psittaci infection induces IFN-I and IL-1β through the cGAS-STING-IRF3/NLRP3 pathway via mitochondrial oxidative stress in human macrophages. Vet Microbiol 2024; 299:110292. [PMID: 39581075 DOI: 10.1016/j.vetmic.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Chlamydia psittaci (C. psittaci) is a multi-host pathogen that elicits robust innate immune responses in macrophages. Chlamydiae target host mitochondria to manipulate the cellular fate and metabolic functions. However, the effect of C. psittaci on the host mitochondria remains obscure. This study investigated how C. psittaci, post-infection in human macrophages, induces mitochondrial oxidative stress and damage to activate the cGAS-STING-IRF3/NLRP3 pathway for IFN-I and IL-1β production. Results demonstrate that C. psittaci increased mitochondrial ROS (mtROS) production. This induced the release of oxidized mitochondrial DNA (mtDNA) into the cytoplasm of macrophages. It also augmented IFN-I and IL-1β production dependent on the cGAS-STING pathway. Macrophages pre-treated with mtROS inhibitor mito-TEMPO displayed reduced oxidized mtDNA. This consequently lowered IFN-I and IL-1β production via the cGAS-STING pathway induced by C. psittaci. Additionally, we found that mtROS production may inhibit C. psittaci proliferation through the synergistic action of IFN-I and IL-1β. In conclusion, our study reveals that C. psittaci induces mtROS production leading to mtDNA release. This activates the cGAS-STING-IRF3/NLRP3 pathway to increase IFN-I and IL-1β production. This study elucidates a novel mechanism of bacterial pathogen activation in the cGAS-STING pathway. This reveals the molecular mechanisms underlying the immune response to C. psittaci infection and proposes potential targets for the treatment of C. psittaci related diseases.
Collapse
Affiliation(s)
- Hongyu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Peiyuan Sun
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shi Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Xiang Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Hanying Liu
- Health Management Medicine Center, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
8
|
Owumi S, Olanlokun JO, Wu B, Duro-Ladipo AM, Oyelere SE, Khan SI, Oyelere AK. Elucidation of the Active Agents in a West African Ground Herbal Medicine Formulation That Elicit Antimalarial Activities in In Vitro and In Vivo Models. Molecules 2024; 29:5658. [PMID: 39683816 DOI: 10.3390/molecules29235658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Agunmu (ground herbal medicine) is a form of West African traditional medicine consisting of a cocktail of herbs. The goal of this study is to evaluate a formulation of Agunmu made from M. indica, A. repens, E. chlorantha, A. boonei, and B. ferruginea, sold in the open market and commonly used for the treatment of malaria by the locals, for its antimalarial effects and to determine the active principles that may contribute to the antimalarial effect. The ethanolic extract obtained from this formulation (Ag-Iba) was analyzed, using TLC, LC-MS, and Tandem-MS techniques, to determine its phytochemical properties. The extract was tested in vitro against representative bacteria strains, cancer and normal human cell lines, and susceptible (D6) and resistant (W2) Plasmodium falciparum. In subsequent in vivo experiments, graded doses of the extract were used to treat mice infected with chloroquine-susceptible (NK-65) and chloroquine-resistant (ANKA) strains of Plasmodium berghei. Bacteria growth was monitored with a disc diffusion assay, cancer cell viability was determined with MTS assay, and percentage parasitemia and parasite clearance were determined by microscopy. Bound heme content, host mitochondria permeability transition (mPT) pore opening, F0F1-ATPase, and lipid peroxidation were determined via spectrophotometry. Indices of oxidative stress, anti-oxidant activities, toxicity, cell death, and inflammatory responses were obtained using biochemical and ELISA techniques. The histology of the liver and spleen was performed using the standard method. We elucidated the structures of the critical active principles in the extract to be flavonoids: kaempferol, quercetin, myricetin, and their glycosides with little or no detectable levels of the toxic Aristolochic acids that are found in Aristolochia repens, one of the components of the formulation. The extract also showed anti-plasmodial activity in in vitro and in vivo models. Furthermore, the extract dose-dependently decreased mitochondrial dysfunction, cell death, and inflammatory and oxidative damage but increased antioxidant potentials. Presumably, the active principles in the extract work as a combinatorial therapy to elicit potent antimalarial activity. Overall, our study unraveled the active components from a commercial herbal formulation that could be reformulated for antimalarial therapy.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan 200005, Nigeria
| | - John O Olanlokun
- Laboratories for Biomembrane and Biotechnology Research, Department of Biochemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Bocheng Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Shabana I Khan
- NCNPR, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Tanaka T, Hirai S, Manabe H, Endo K, Shimbo H, Nishito Y, Horiuchi J, Yoshitane H, Okado H. Minocycline prevents early age-related cognitive decline in a mouse model of intellectual disability caused by ZBTB18/RP58 haploinsufficiency. J Neuroinflammation 2024; 21:260. [PMID: 39396010 PMCID: PMC11471036 DOI: 10.1186/s12974-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/01/2024] [Indexed: 10/14/2024] Open
Abstract
Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Shinobu Hirai
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroyuki Manabe
- Department of Neurophysiology, Nara Medical University, Nara, 634-8521, Japan
| | - Kentaro Endo
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroko Shimbo
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Junjiro Horiuchi
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hikari Yoshitane
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
10
|
Lin J, Chen X, Du Y, Li J, Guo T, Luo S. Mitophagy in Cell Death Regulation: Insights into Mechanisms and Disease Implications. Biomolecules 2024; 14:1270. [PMID: 39456203 PMCID: PMC11506020 DOI: 10.3390/biom14101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Mitophagy, a selective form of autophagy, plays a crucial role in maintaining optimal mitochondrial populations, normal function, and intracellular homeostasis by monitoring and removing damaged or excess mitochondria. Furthermore, mitophagy promotes mitochondrial degradation via the lysosomal pathway, and not only eliminates damaged mitochondria but also regulates programmed cell death-associated genes, thus preventing cell death. The interaction between mitophagy and various forms of cell death has recently gained increasing attention in relation to the pathogenesis of clinical diseases, such as cancers and osteoarthritis, neurodegenerative, cardiovascular, and renal diseases. However, despite the abundant literature on this subject, there is a lack of understanding regarding the interaction between mitophagy and cell death. In this review, we discuss the main pathways of mitophagy, those related to cell death mechanisms (including apoptosis, ferroptosis, and pyroptosis), and the relationship between mitophagy and cell death uncovered in recent years. Our study offers potential directions for therapeutic intervention and disease diagnosis, and contributes to understanding the molecular mechanism of mitophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin 150000, China; (J.L.); (X.C.); (Y.D.); (J.L.); (T.G.)
| |
Collapse
|
11
|
Kuo CL, Lin YC, Lo YK, Lu YZ, Babuharisankar AP, Lien HW, Chou HY, Lee AYL. The mitochondrial stress signaling tunes immunity from a view of systemic tumor microenvironment and ecosystem. iScience 2024; 27:110710. [PMID: 39262792 PMCID: PMC11388186 DOI: 10.1016/j.isci.2024.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Mitochondria play important roles in cell fate, calcium signaling, mitophagy, and the signaling through reactive oxygen species (ROS). Recently, mitochondria are considered as a signaling organelle in the cell and communicate with other organelles to constitute the mitochondrial information processing system (MIPS) that transduce input-to-output biological information. The success in immunotherapy, a concept of systemic therapy, has been proved to be dependent on paracrine interactions within the tumor microenvironment (TME) and distant organs including microbiota and immune components. We will adopt a broader view from the concept of TME to tumor micro- and macroenvironment (TM 2 E) or tumor-organ ecosystem (TOE). In this review, we will discuss the role of mitochondrial signaling by mitochondrial ROS, calcium flux, metabolites, mtDNA, vesicle transportation, and mitochondria-derived peptide in the TME and TOE, in particular immune regulation and effective cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Ying-Chen Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu Kang Lo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Zhi Lu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | | | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Department of Life Sciences, College of Health Sciences & Technology, National Central University, Zhongli, Taoyuan 32001, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Wibisono P, Liu Y, Roberts KP, Baluya D, Sun J. Neuronal GPCR NMUR-1 regulates energy homeostasis in response to pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602733. [PMID: 39026696 PMCID: PMC11257582 DOI: 10.1101/2024.07.09.602733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
A key question in current immunology is how the innate immune system generates high levels of specificity. Our previous study in Caenorhabditis elegans revealed that NMUR-1, a neuronal G protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U (NMU), regulates distinct innate immune responses to different bacterial pathogens. Here, by using quantitative proteomics and functional assays, we discovered that NMUR-1 regulates F1FO ATP synthase and ATP production in response to pathogen infection, and that such regulation contributes to NMUR-1-mediated specificity of innate immunity. We further demonstrated that ATP biosynthesis and its contribution to defense is neurally controlled by the NMUR-1 ligand CAPA-1 and its expressing neurons ASG. These findings indicate that NMUR-1 neural signaling regulates the specificity of innate immunity by controlling energy homeostasis as part of defense against pathogens. Our study provides mechanistic insights into the emerging roles of NMU signaling in immunity across animal phyla.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Yiyong Liu
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Genomics Core, Washington State University, Spokane, WA, USA
| | - Kenneth P Roberts
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Dodge Baluya
- Tissue Imaging, Metabolomics and Proteomics Laboratory, Washington State University, Pullman, WA, USA
| | - Jingru Sun
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
13
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
14
|
Nishiji T, Hoshino A, Uchio Y, Matoba S. Generation of inducible mitophagy mice. Genes Cells 2024; 29:159-168. [PMID: 38131500 DOI: 10.1111/gtc.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Mitophagy is programmed selective autophagy of mitochondria and is important for mitochondrial quality control and cellular homeostasis. Mitochondrial dysfunction and impaired mitophagy are closely associated with various diseases, including heart failure and diabetes. To better understand the pathophysiological role of mitophagy, we generated doxycycline-inducible mitophagy mice using a synthetic mitophagy adaptor protein consisting of an outer mitochondrial membrane targeting sequence and an engineered LIR. To evaluate the activation of mitophagy upon doxycycline treatment, we also generated mitophagy reporter mito-QC mice in which mitochondria tandemly express mCherry and GFP, and only GFP signals are lost in acidic lysosomes subjected to mitophagy. With the ROSA26 promoter-driven rtTA, mitophagy was observed at least in heart, liver, and skeletal muscle. We investigated the relationship between mitophagy activation and pressure overload heart failure or high fat diet-induced obesity. Unexpectedly, we were unable to confirm the protective effect of mitophagy in these two pathological models. Further titration of the level of mitophagy induction is required to demonstrate the potency of the protective effects of mitophagy in disease models.
Collapse
Affiliation(s)
- Toshiyuki Nishiji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Uchio
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Shao L, Hu F, Xu R, Nie H, Zhang H, Zhang P. METTL14 Regulates the m6A Modification of TRAF6 to Suppress Mitochondrial Dysfunction and Ferroptosis in Dopaminergic Neurons via the cGAS-STING Pathway. Curr Mol Med 2024; 24:1518-1528. [PMID: 37881068 DOI: 10.2174/0115665240263859231018110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVES The degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson's disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGASSTING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration. METHODS 1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated. RESULTS METTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway. CONCLUSION METTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.
Collapse
Affiliation(s)
- Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hong Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| |
Collapse
|
16
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
17
|
Galizzi G, Di Carlo M. Mitochondrial DNA and Inflammation in Alzheimer's Disease. Curr Issues Mol Biol 2023; 45:8586-8606. [PMID: 37998717 PMCID: PMC10670154 DOI: 10.3390/cimb45110540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction and neuroinflammation are implicated in the pathogenesis of most neurodegenerative diseases, such as Alzheimer's disease (AD). In fact, although a growing number of studies show crosstalk between these two processes, there remain numerous gaps in our knowledge of the mechanisms involved, which requires further clarification. On the one hand, mitochondrial dysfunction may lead to the release of mitochondrial damage-associated molecular patterns (mtDAMPs) which are recognized by microglial immune receptors and contribute to neuroinflammation progression. On the other hand, inflammatory molecules released by glial cells can influence and regulate mitochondrial function. A deeper understanding of these mechanisms may help identify biomarkers and molecular targets useful for the treatment of neurodegenerative diseases. This review of works published in recent years is focused on the description of the mitochondrial contribution to neuroinflammation and neurodegeneration, with particular attention to mitochondrial DNA (mtDNA) and AD.
Collapse
Affiliation(s)
- Giacoma Galizzi
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Via Ugo La Malfa, 153-90146 Palermo, Italy;
| | | |
Collapse
|
18
|
Yonemoto K, Fujii F, Taira R, Ohgidani M, Eguchi K, Okuzono S, Ichimiya Y, Sonoda Y, Chong PF, Goto H, Kanemasa H, Motomura Y, Ishimura M, Koga Y, Tsujimura K, Hashiguchi T, Torisu H, Kira R, Kato TA, Sakai Y, Ohga S. Heterogeneity and mitochondrial vulnerability configurate the divergent immunoreactivity of human induced microglia-like cells. Clin Immunol 2023; 255:109756. [PMID: 37678717 DOI: 10.1016/j.clim.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1β after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1β production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Collapse
Affiliation(s)
- Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Aichi, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Jiang X, Xiao Y, Hou W, Yu J, He TS, Xu LG. The RNA-binding protein ZFP36 strengthens innate antiviral signaling by targeting RIG-I for K63-linked ubiquitination. J Cell Physiol 2023; 238:2348-2360. [PMID: 37565597 DOI: 10.1002/jcp.31088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Innate immunity is the first line of defense against infections, which functions as a significant role in resisting pathogen invasion. Rapid immune response is initiated by pattern recognition receptors (PRRs) quickly distinguishing "self" and "non-self." Upon evolutionarily conserved pathogen-associated molecular pattern (PAMP) is recognized by PRRs, innate immune response against infection is triggered via an orchestration of molecular interaction, cytokines cascades, and immune cells. RIG-I plays a critical role in type I interferon (IFN-I) production by direct recognition of cytoplasmic double-stranded viral RNA. However, the activation mechanism of RIG-I is incompletely understood. In this study, we reported RNA-binding protein ZFP36 as a positive regulator of RIG-I-mediated IFN-I production. ZFP36 is a member of Zinc finger proteins (ZFPs) characterized by the zinc finger (ZnF) motif, which broadly involved gene transcription and signal transduction. However, its role in regulating antiviral innate immune signaling is still unclear. We found that ZFP36 associates with RIG-I and potentiates the FN-β production induced by SeV. Mechanistically, ZFP36 promotes K63-linked polyubiquitination of RIG-I, mostly at K154/K164/K172, thereby facilitating the activation of RIG-I during infection. While the mutant ZFP36 (C118S/C162S) failed to increase polyubiquitination of RIG-I and SeV induced FN-β. Our findings collectively demonstrated that ZFP36 acts as a positive regulator in antiviral innate immunity by targeting RIG-I for K63-linked ubiquitination, thus improving our understanding of the activation mechanism of RIG-I.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yanping Xiao
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Wen Hou
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jingge Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tian-Sheng He
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Bai H, Xu SL, Shi JJ, Ding YP, Liu QQ, Jiang CH, He LL, Zhang HR, Lu SF, Gu YH. Electroacupuncture preconditioning protects against myocardial ischemia-reperfusion injury by modulating dynamic inflammatory response. Heliyon 2023; 9:e19396. [PMID: 37809701 PMCID: PMC10558356 DOI: 10.1016/j.heliyon.2023.e19396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Background The protective effects of electroacupuncture (EA) preconditioning against myocardial ischemia-reperfusion injury (MIRI) have been reported. However, the underlying mechanism remains unclear. Recent research has indicated that the dynamic inflammatory response following MIRI plays an essential role in the progression of myocardial injury. This study aimed to investigate the myocardial protective effects of EA preconditioning on MIRI in rats and to explore the relevant mechanism from the perspective of dynamic inflammatory response. Methods A MIRI model was employed, and the rats were subjected to EA on Neiguan for four days prior to modeling. The myocardial protective effect of EA preconditioning was evaluated by echocardiography, Evans blue and triphenyltetrazolium chloride staining. Real-time polymerase chain reaction, Western blot, hematoxylin & eosin staining, and immunohistochemistry were utilized to detect the content of mitochondrial DNA, NOD receptor family protein 3 (NLRP3) inflammasome activation, neutrophil recruitment and macrophage infiltration in blood samples and myocardium below the ligation. Results We found that EA preconditioning could accelerate the recovery of left ventricle function after MIRI and reduce the myocardial infarction area, thereby protecting the myocardium against MIRI. Furthermore, EA preconditioning was observed to ameliorate mitochondrial impairment, reduce the level of plasma mitochondrial DNA, modulate NLRP3 inflammasome activation, attenuate neutrophil infiltration, and promote the polarization of M1 macrophages towards M2 macrophages in the myocardium after MIRI. Conclusion EA preconditioning could reduce plasma mtDNA, suppress overactivation of the NLRP3 inflammasome, facilitate the transition from the acute pro-inflammatory phase to the anti-inflammatory reparative phase after MIRI, and ultimately confer cardioprotective benefits.
Collapse
Affiliation(s)
- Hua Bai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sen-Lei Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun-Jing Shi
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Ping Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiong-Qiong Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chun-Hong Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li He
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Ru Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Huang Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
21
|
Feng M, Wang X, Zhou S, Li M, Liu T, Wei X, Lin W. CD83 + B cells alleviate uveitis through inhibiting DCs by sCD83. Immunology 2023; 170:134-153. [PMID: 37137669 DOI: 10.1111/imm.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Soluble CD83 (sCD83) exerts immunosuppressive functions in many autoimmune diseases, including experimental autoimmune uveitis (EAU), but the cells and mechanisms involved are unclear. This study showed that CD83+ B cells were the main sources of sCD83. They alleviated the symptoms of EAU and decreased the percentage of T cells and DCs in the eyes and lymph nodes. These CD83+ B cells decreased IL-1β, IL-18 and IFN-γ secretion by DCs through sCD83. sCD83 interacted with GTPase Ras-related protein (Rab1a) in DCs to promote Rab1a accumulation in autolysosomes and inhibit mTORC1 phosphorylation and NLRP3 expression. Hence, CD83+ B cells play a regulatory role in EAU by secreting sCD83. The lack of regulation of CD83+ B cells might be an important factor leading to hyperimmune activation in patients with autoimmune uveitis. CD83+ B cells suppress activated DCs in uveitis, indicating the potential therapeutic role of CD83+ B cells in uveitis.
Collapse
Affiliation(s)
- Meng Feng
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Shuping Zhou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Minghao Li
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Tingting Liu
- Shandong Eye Hospital, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Wei Lin
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Medicine and Health Key Laboratory of Rheumatism, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Ghaffari S, Rezaei N. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy. J Transl Med 2023; 21:551. [PMID: 37587450 PMCID: PMC10433623 DOI: 10.1186/s12967-023-04418-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023] Open
Abstract
Despite being an integral part of the immune response in the tumor microenvironment (TME), few studies have mechanistically elucidated eosinophil functions in cancer outcomes. Eosinophils are a minor population of granulocytes that are mostly explored in asthma and allergic disorders. Their influence on primary and metastatic tumors, however, has recently come to light. Eosinophils' diverse armamentarium of mediators and receptors allows them to participate in innate and adaptive immunity, such as type 1 and type 2 immunity, and shape TME and tumor outcomes. Based on TME cells and cytokines, activated eosinophils drive other immune cells to ultimately promote or suppress tumor growth. Discovering exactly what conditions determine the pro-tumorigenic or anti-tumorigenic role of eosinophils allows us to take advantage of these signals and devise novel strategies to target cancer cells. Here, we first revisit eosinophil biology and differentiation as recognizing eosinophil mediators is crucial to their function in homeostatic and pathological conditions as well as tumor outcome. The bulk of our paper discusses eosinophil interactions with tumor cells, immune cells-including T cells, plasma cells, natural killer (NK) cells-and gut microbiota. Eosinophil mediators, such as IL-5, IL-33, granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin (TSLP), and CCL11 also determine eosinophil behavior toward tumor cells. We then examine the implications of these findings for cancer immunotherapy approaches, including immune checkpoint blockade (ICB) therapy using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy. Eosinophils synergize with CAR T cells and ICB therapy to augment immunotherapies.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
23
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
24
|
Fu C, Cao N, Liu W, Zhang Z, Yang Z, Zhu W, Fan S. Crosstalk between mitophagy and innate immunity in viral infection. Front Microbiol 2022; 13:1064045. [PMID: 36590405 PMCID: PMC9800879 DOI: 10.3389/fmicb.2022.1064045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses. Viral infection causes many physiological and pathological alterations in host cells, including mitophagy and innate immune pathways. Accumulating evidence suggests that some virus promote self-replication through regulating mitophagy-mediated innate immunity. Clarifying the regulatory relationships among mitochondria, mitophagy, innate immunity, and viral infection will shed new insight for pathogenic mechanisms and antiviral strategies. This review systemically summarizes the activation pathways of mitophagy and the relationship between mitochondria and innate immune signaling pathways, and then discusses the mechanisms of viruses on mitophagy and innate immunity and how viruses promote self-replication by regulating mitophagy-mediated innate immunity.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zihui Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Wenhui Zhu,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,Shuangqi Fan,
| |
Collapse
|
25
|
Melatonin suppresses the antiviral immune response to EMCV infection through intracellular ATP deprivation caused by mitochondrial fragmentation. Heliyon 2022; 8:e11149. [PMID: 36303911 PMCID: PMC9593192 DOI: 10.1016/j.heliyon.2022.e11149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Melatonin, a sleep hormone derived from the pineal gland, has an anti-inflammatory effect on the immune system in addition to modulating the brain nervous system. Previous studies have shown that melatonin suppresses signaling pathways downstream of multiple pattern recognition receptors on the innate immune cells during pathogen infection, but the specific mechanism of suppression has not been well understood. Using an encephalomyocarditis virus (EMCV) infection model in macrophages, we investigated the effects of melatonin on the antiviral response in innate immunity and found that melatonin attenuated the uptake of viral particles into macrophages. Furthermore, melatonin suppressed cytoskeletal regulation by decreasing ATP production by mitochondria. Finally, in an in vivo infection experiment, we also found that melatonin administration partially exacerbated the infection in the mouse brain. These results suggest that melatonin may have an inhibitory effect on excessive inflammation by suppressing cytoskeletal regulation in the innate immune system, but also suggest that suppression of inflammation may lead to insufficient protection against EMCV infection in vivo.
Collapse
|
26
|
Beckley MA, Shrestha S, Singh KK, Portman MA. The role of mitochondria in the pathogenesis of Kawasaki disease. Front Immunol 2022; 13:1017401. [PMID: 36300112 PMCID: PMC9592088 DOI: 10.3389/fimmu.2022.1017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price. Release of mitochondrial DNA into the cytoplasm acts as damage-associated molecular patterns, initiating the development of inflammation. As a source of reactive oxygen species, they facilitate activation of the NLRP3 inflammasome. Kawasaki disease involves many of these inflammatory pathways. Progressive mitochondrial dysfunction alters the activity of immune cells and may play a role in the pathogenesis of Kawasaki disease. Because they contain their own genome, mitochondria are susceptible to mutation which can propagate their dysfunction and immunostimulatory potential. Population-specific variants in mitochondrial DNA have also been linked to racial disparities in disease risk and treatment response. Our objective is to critically examine the current literature of mitochondria's role in coordinating proinflammatory signaling pathways, focusing on potential mitochondrial dysfunction in Kawasaki disease. No association between impaired mitochondrial function and Kawasaki disease exists, but we suggest a relationship between the two. We hypothesize a framework of mitochondrial determinants that may contribute to ethnic/racial disparities in the progression of Kawasaki disease.
Collapse
Affiliation(s)
- Mikayla A. Beckley
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keshav K. Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael A. Portman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Luo J, Shen S, Xia J, Wang J, Gu Z. Mitochondria as the Essence of Yang Qi in the Human Body. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:336-348. [PMID: 36939762 PMCID: PMC9590506 DOI: 10.1007/s43657-022-00060-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
The concept of Yang Qi in Traditional Chinese Medicine (TCM) has many similarities with mitochondria in modern medicine. Both are indispensable to human beings and closely related to life and death. This article discusses the similarities in various aspects between mitochondria and Yang Qi, including body temperature, aging, newborns, circadian rhythm, immunity, and meridian. It is well-known that Yang Qi is vital for human health. Interestingly, decreased mitochondrial function is thought to be key to the development of various diseases. Here, we further explain diseases induced by Yang Qi deficiency, such as cancer, chronic fatigue syndrome, sleep disorder, senile dementia, and metabolic diseases, from the perspective of mitochondrial function. We aim to establish similarities and connections between two important concepts, and hope our essay can stimulate further discussion and investigation on unifying important concepts in western medicine and alternative medicine, especially TCM, and provide unique holistic insights into understanding human health.
Collapse
Affiliation(s)
- Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193 China
| | - Shiwei Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853 USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
28
|
Snäkä T, Bekkar A, Desponds C, Prével F, Claudinot S, Isorce N, Teixeira F, Grasset C, Xenarios I, Lopez-Mejia IC, Fajas L, Fasel N. Sex-Biased Control of Inflammation and Metabolism by a Mitochondrial Nod-Like Receptor. Front Immunol 2022; 13:882867. [PMID: 35651602 PMCID: PMC9150262 DOI: 10.3389/fimmu.2022.882867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria regulate steroid hormone synthesis, and in turn sex hormones regulate mitochondrial function for maintaining cellular homeostasis and controlling inflammation. This crosstalk can explain sex differences observed in several pathologies such as in metabolic or inflammatory disorders. Nod-like receptor X1 (NLRX1) is a mitochondria-associated innate receptor that could modulate metabolic functions and attenuates inflammatory responses. Here, we showed that in an infectious model with the human protozoan parasite, Leishmania guyanensis, NLRX1 attenuated inflammation in females but not in male mice. Analysis of infected female and male bone marrow derived macrophages showed both sex- and genotype-specific differences in both inflammatory and metabolic profiles with increased type I interferon production, mitochondrial respiration, and glycolytic rate in Nlrx1-deficient female BMDMs in comparison to wild-type cells, while no differences were observed between males. Transcriptomics of female and male BMDMs revealed an altered steroid hormone signaling in Nlrx1-deficient cells, and a “masculinization” of Nlrx1-deficient female BMDMs. Thus, our findings suggest that NLRX1 prevents uncontrolled inflammation and metabolism in females and therefore may contribute to the sex differences observed in infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Amel Bekkar
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prével
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Filipa Teixeira
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Coline Grasset
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
29
|
Sun L, Zheng W, Sun Y, Xu T. Long non-coding RNA LTCONS7822 positively regulates innate immunity by targeting MITA in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 125:285-291. [PMID: 35595061 DOI: 10.1016/j.fsi.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Accumulated studies have shown that long non-coding RNA (lncRNA) is considered a critical regulatory factor in mammals, with a length greater than 200 nucleotides, and it can participate in gene imprinting, dose compensation, transcription enhancement, and antisense regulation. Most of the above studies are carried out in mammals, and there are very few studies on lncRNA of lower vertebrates. Here, we report a novel lncRNA, LTCONS7822, which can play a positive regulatory effect on antiviral immunity in miiuy croaker, Miichthys miiuy. Our results show that the levels of lncRNA LTCONS7822 were significantly increased after poly (I:C) stimulation. Further study, we found that lncRNA LTCONS7822 could positively regulate MITA at the post-transcriptional level. In addition, the dual-luciferase reporter assay analysis showed that the positive regulatory effect of lncRNA LTCONS7822 on NF-κB and IRF3 signaling pathways presented the dose and time-dependent manner. Western blotting experiments proved that lncRNA LTCONS7822 has a positive regulatory effect on MITA. Collectively, our study provided new information to enrich the immune regulation network of lncRNA in teleost fish.
Collapse
Affiliation(s)
- Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
30
|
Glon D, Vilmen G, Perdiz D, Hernandez E, Beauclair G, Quignon F, Berlioz-Torrent C, Maréchal V, Poüs C, Lussignol M, Esclatine A. Essential role of hyperacetylated microtubules in innate immunity escape orchestrated by the EBV-encoded BHRF1 protein. PLoS Pathog 2022; 18:e1010371. [PMID: 35275978 PMCID: PMC8942261 DOI: 10.1371/journal.ppat.1010371] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.
Collapse
Affiliation(s)
- Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Guillaume Beauclair
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, Paris, France
| | | | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMR-S 938, INSERM, Sorbonne Université, Paris, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
- Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Saclay, Site Antoine Béclère, Clamart, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
31
|
Hollis F, Pope BS, Gorman-Sandler E, Wood SK. Neuroinflammation and Mitochondrial Dysfunction Link Social Stress to Depression. Curr Top Behav Neurosci 2022; 54:59-93. [PMID: 35184261 DOI: 10.1007/7854_2021_300] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Major depressive disorder is a debilitating mental illness and a leading cause of global disease burden. While many etiological factors have been identified, social stress is a highly prevalent causative factor for the onset of depression. Unfortunately, rates of depression continue to increase around the world, and the recent COVID-19 pandemic has further exacerbated this mental health crisis. Though several therapeutic strategies are available, nearly 50% of patients who receive treatment never reach remission. The exact mechanisms by which social stress exposure promotes the development of depression are unclear, making it challenging to develop novel and more effective therapeutics. However, accumulating evidence points to a role for stress-induced neuroinflammation, particularly in treatment-resistant patients. Moreover, recent evidence has expanded the concept of the pathogenesis of depression to mitochondrial dysfunction, suggesting that the combined effects of social stress on mitochondria and inflammation may synergize to facilitate stress-related depression. In this chapter, we review evidence for neuroinflammation and mitochondrial dysfunction in the pathogenesis of social stress-induced depression and discuss these in the context of novel therapeutic targets for the treatment of depression.
Collapse
Affiliation(s)
- Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brittany S Pope
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Exercise Science, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Erin Gorman-Sandler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Susan K Wood
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
32
|
Saada J, McAuley RJ, Marcatti M, Tang TZ, Motamedi M, Szczesny B. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. J Biol Chem 2022; 298:101523. [PMID: 34953858 PMCID: PMC8753185 DOI: 10.1016/j.jbc.2021.101523] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress, inflammation, and aberrant activation of microglia in the retina are commonly observed in ocular pathologies. In glaucoma or age-related macular degeneration, the chronic activation of microglia affects retinal ganglion cells and photoreceptors, respectively, contributing to gradual vision loss. However, the molecular mechanisms that cause activation of microglia in the retina are not fully understood. Here we show that exposure of retinal pigment epithelial (RPE) cells to chronic low-level oxidative stress induces mitochondrial DNA (mtDNA)-specific damage, and the subsequent translocation of damaged mtDNA to the cytoplasm results in the binding and activation of intracellular DNA receptor Z-DNA-binding protein 1 (ZBP1). Activation of the mtDNA/ZBP1 pathway triggers the expression of proinflammatory markers in RPE cells. In addition, we show that the enhanced release of extracellular vesicles (EVs) containing fragments of mtDNA derived from the apical site of RPE cells induces a proinflammatory phenotype of microglia via activation of ZBP1 signaling. Collectively, our report establishes oxidatively damaged mtDNA as an important signaling molecule with ZBP1 as its intracellular receptor in the development of an inflammatory response in the retina. We propose that this novel mtDNA-mediated autocrine and paracrine mechanism for triggering and maintaining inflammation in the retina may play an important role in ocular pathologies. Therefore, the molecular mechanisms identified in this report are potentially suitable therapeutic targets to ameliorate development of ocular pathologies.
Collapse
Affiliation(s)
- Jamal Saada
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ryan J McAuley
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michela Marcatti
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tony Zifeng Tang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
33
|
He TS, Huang J, Chen T, Zhang Z, Cai K, Yu J, Xu LG. The Kinase MAP4K1 Inhibits Cytosolic RNA-Induced Antiviral Signaling by Promoting Proteasomal Degradation of TBK1/IKKε. Microbiol Spectr 2021; 9:e0145821. [PMID: 34908452 PMCID: PMC8672915 DOI: 10.1128/spectrum.01458-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines in response to acute viral infection. However, excessive or prolonged production of IFN-I is harmful and even fatal to the host by causing autoimmune disorders. In this study, we identified mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) as a negative regulator in the RIG-I-like receptor (RLR) signaling pathway. MAP4K1, a member of Ste20-like serine/threonine kinases, was previously known as a prominent regulator in adaptive immunity by downregulating T-cell receptor (TCR) signaling and B-cell receptor (BCR) signaling. However, its role in regulating antiviral innate immune signaling is still unclear. This study reports an undiscovered role of MAP4K1, which inhibits RLR signaling by targeting TBK1/IKKε for proteasomal degradation via the ubiquitin ligase DTX4. We initially identify MAP4K1 as an interacting partner of TBK1 by yeast two-hybrid screens and subsequently investigate its function in RLR-mediated antiviral signaling pathways. Overexpression of MAP4K1 significantly inhibits RNA virus-triggered activation of IFN-β and the production of proinflammatory cytokines. Consistently, knockdown or knockout experiments show opposite effects. Furthermore, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via DTX4. Knockdown of DTX4 abrogated the ubiquitination and degradation of TBK1/IKKε. Collectively, our results identify that MAP4K1 acts as a negative regulator in antiviral innate immunity by targeting TBK1/IKKε, discover a novel TBK1 inhibitor, and extend a novel functional role of MAP4K1 in immunity. IMPORTANCE TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines to restrict the spread of invading viruses. However, excessive or prolonged production of IFN-I is harmful to the host by causing autoimmune disorders. In this study, we identified that mitogen-activated protein kinase kinase kinase kinase 1 (MAP4K1) is a negative regulator in the RLR signaling pathway. Notably, MAP4K1 promotes the degradation of TBK1/IKKε by K48-linked ubiquitination via the ubiquitin ligase DTX4, leading to the negative regulation of the IFN signaling pathway. Previous studies showed that MAP4K1 has a pivotal function in adaptive immune responses. This study identifies that MAP4K1 also plays a vital role in innate immunity and outlines a novel mechanism by which the IFN signaling pathway is tightly controlled to avoid excessive inflammation. Our study documents a novel TBK1 inhibitor, which serves as a potential therapeutic target for autoimmune diseases, and elucidated a significant function for MAP4K1 linked to innate immunity in addition to subsequent adaptive immunity.
Collapse
Affiliation(s)
- Tian-Sheng He
- College of Life Science, Jiangxi Normal University, Nanchang, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jingping Huang
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Tian Chen
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zhi Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Kuntai Cai
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jingge Yu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Liang-Guo Xu
- College of Life Science, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
34
|
Shim DW, Cho HJ, Hwang I, Jung TY, Kim HS, Ryu JH, Yu JW. Intracellular NAD+ Depletion Confers a Priming Signal for NLRP3 Inflammasome Activation. Front Immunol 2021; 12:765477. [PMID: 34987507 PMCID: PMC8722528 DOI: 10.3389/fimmu.2021.765477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor in many redox and non-redox NAD+-consuming enzyme reactions. Intracellular NAD+ level steadily declines with age, but its role in the innate immune potential of myeloid cells remains elusive. In this study, we explored whether NAD+ depletion by FK866, a highly specific inhibitor of the NAD salvage pathway, can affect pattern recognition receptor-mediated responses in macrophages. NAD+-depleted mouse bone marrow-derived macrophages (BMDMs) exhibited similar levels of proinflammatory cytokine production in response to LPS or poly (I:C) stimulation compared with untreated cells. Instead, FK866 facilitated robust caspase-1 activation in BMDMs in the presence of NLRP3-activating signals such as ATP and nigericin, a potassium ionophore. However, this FK866-mediated caspase-1 activation was completely abolished in Nlrp3-deficient macrophages. FK866 plus nigericin stimulation caused an NLRP3-dependent assembly of inflammasome complex. In contrast, restoration of NAD+ level by supplementation with nicotinamide mononucleotide abrogated the FK866-mediated caspase-1 cleavage. FK866 did not induce or increase the expression levels of NLRP3 and interleukin (IL)-1β but drove mitochondrial retrograde transport into the perinuclear region. FK866-nigericin-induced mitochondrial transport is critical for caspase-1 cleavage in macrophages. Consistent with the in vitro experiments, intradermal coinjection of FK866 and ATP resulted in robust IL-1β expression and caspase-1 activation in the skin of wild-type, but not Nlrp3-deficient mice. Collectively, our data suggest that NAD+ depletion provides a non-transcriptional priming signal for NLRP3 activation via mitochondrial perinuclear clustering, and aging-associated NAD+ decline can trigger NLRP3 inflammasome activation in ATP-rich environments.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo-Joung Cho
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Taek-Yeol Jung
- Department of Life Science, College of Natural Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun-Seok Kim
- Department of Life Science, College of Natural Science, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Ju Hee Ryu
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Je-Wook Yu,
| |
Collapse
|
35
|
Clough E, Inigo J, Chandra D, Chaves L, Reynolds JL, Aalinkeel R, Schwartz SA, Khmaladze A, Mahajan SD. Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia: Implications for Neuro-COVID. J Neuroimmune Pharmacol 2021; 16:770-784. [PMID: 34599743 PMCID: PMC8487226 DOI: 10.1007/s11481-021-10015-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023]
Abstract
Emerging clinical data from the current COVID-19 pandemic suggests that ~ 40% of COVID-19 patients develop neurological symptoms attributed to viral encephalitis while in COVID long haulers chronic neuro-inflammation and neuronal damage result in a syndrome described as Neuro-COVID. We hypothesize that SAR-COV2 induces mitochondrial dysfunction and activation of the mitochondrial-dependent intrinsic apoptotic pathway, resulting in microglial and neuronal apoptosis. The goal of our study was to determine the effect of SARS-COV2 on mitochondrial biogenesis and to monitor cell apoptosis in human microglia non-invasively in real time using Raman spectroscopy, providing a unique spatio-temporal information on mitochondrial function in live cells. We treated human microglia with SARS-COV2 spike protein and examined the levels of cytokines and reactive oxygen species (ROS) production, determined the effect of SARS-COV2 on mitochondrial biogenesis and examined the changes in molecular composition of phospholipids. Our results show that SARS- COV2 spike protein increases the levels of pro-inflammatory cytokines and ROS production, increases apoptosis and increases the oxygen consumption rate (OCR) in microglial cells. Increases in OCR are indicative of increased ROS production and oxidative stress suggesting that SARS-COV2 induced cell death. Raman spectroscopy yielded significant differences in phospholipids such as Phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which account for ~ 80% of mitochondrial membrane lipids between SARS-COV2 treated and untreated microglial cells. These data provide important mechanistic insights into SARS-COV2 induced mitochondrial dysfunction which underlies neuropathology associated with Neuro-COVID.
Collapse
Affiliation(s)
- Erin Clough
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Joseph Inigo
- Department of Pharmacology & Therapeutics Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology & Therapeutics Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lee Chaves
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Ravikumar Aalinkeel
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Stanley A Schwartz
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Alexander Khmaladze
- Department of Physics, University At Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Clinical Translational Research Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
36
|
Pacheco R, Quezada SA, Kalergis AM, Becker MI, Ferreira J, De Ioannes AE. Allergens of the urushiol family promote mitochondrial dysfunction by inhibiting the electron transport at the level of cytochromes b and chemically modify cytochrome c 1. Biol Res 2021; 54:35. [PMID: 34711292 PMCID: PMC8554850 DOI: 10.1186/s40659-021-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Urushiols are pro-electrophilic haptens that cause severe contact dermatitis mediated by CD8+ effector T-cells and downregulated by CD4+ T-cells. However, the molecular mechanism by which urushiols stimulate innate immunity in the initial stages of this allergic reaction is poorly understood. Here we explore the sub-cellular mechanisms by which urushiols initiate the allergic response. Results Electron microscopy observations of mouse ears exposed to litreol (3-n-pentadecyl-10-enyl-catechol]) showed keratinocytes containing swollen mitochondria with round electron-dense inclusion bodies in the matrix. Biochemical analyses of sub-mitochondrial fractions revealed an inhibitory effect of urushiols on electron flow through the mitochondrial respiratory chain, which requires both the aliphatic and catecholic moieties of these allergens. Moreover, urushiols extracted from poison ivy/oak (mixtures of 3-n-pentadecyl-8,11,13 enyl/3-n-heptadecyl-8,11 enyl catechol) exerted a higher inhibitory effect on mitochondrial respiration than did pentadecyl catechol or litreol, indicating that the higher number of unsaturations in the aliphatic chain, stronger the allergenicity of urushiols. Furthermore, the analysis of radioactive proteins isolated from mitochondria incubated with 3H-litreol, indicated that this urushiol was bound to cytochrome c1. According to the proximity of cytochromes c1 and b, functional evidence indicated the site of electron flow inhibition was within complex III, in between cytochromes bL (cyt b566) and bH (cyt b562). Conclusion Our data provide functional and molecular evidence indicating that the interruption of the mitochondrial electron transport chain constitutes an important mechanism by which urushiols initiates the allergic response. Thus, mitochondria may constitute a source of cellular targets for generating neoantigens involved in the T-cell mediated allergy induced by urushiols. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00357-z.
Collapse
Affiliation(s)
- Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Fundación Ciencia & Vida, Santiago, Chile. .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London (UCL) Cancer Institute, London, England, UK
| | - Alexis M Kalergis
- Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Department of Research and Development, Biosonda Corporation, Santiago, Chile.,Faculty of Physical and Mathematical Sciences, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Santiago, Chile
| | - Jorge Ferreira
- Faculty of Medicine, Institute of Biomedical Sciences, Molecular and Clinical Pharmacology Program, Universidad de Chile, Santiago, Chile
| | - Alfredo E De Ioannes
- Department of Research and Development, Biosonda Corporation, Santiago, Chile.,Faculty of Physical and Mathematical Sciences, Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Institute of Biomedical Sciences, Molecular and Clinical Pharmacology Program, Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hänggi D, Muhammad S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front Immunol 2021; 12:748663. [PMID: 34691061 PMCID: PMC8529160 DOI: 10.3389/fimmu.2021.748663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.
Collapse
Affiliation(s)
- Zaib A. Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Mahtab A. Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Awais Ali Zaidi
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
- Imran Idrees College of Pharmacy, Lahore, Pakistan
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
38
|
Mitochondria-Induced Immune Response as a Trigger for Neurodegeneration: A Pathogen from Within. Int J Mol Sci 2021; 22:ijms22168523. [PMID: 34445229 PMCID: PMC8395232 DOI: 10.3390/ijms22168523] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023] Open
Abstract
Symbiosis between the mitochondrion and the ancestor of the eukaryotic cell allowed cellular complexity and supported life. Mitochondria have specialized in many key functions ensuring cell homeostasis and survival. Thus, proper communication between mitochondria and cell nucleus is paramount for cellular health. However, due to their archaebacterial origin, mitochondria possess a high immunogenic potential. Indeed, mitochondria have been identified as an intracellular source of molecules that can elicit cellular responses to pathogens. Compromised mitochondrial integrity leads to release of mitochondrial content into the cytosol, which triggers an unwanted cellular immune response. Mitochondrial nucleic acids (mtDNA and mtRNA) can interact with the same cytoplasmic sensors that are specialized in recognizing genetic material from pathogens. High-energy demanding cells, such as neurons, are highly affected by deficits in mitochondrial function. Notably, mitochondrial dysfunction, neurodegeneration, and chronic inflammation are concurrent events in many severe debilitating disorders. Interestingly in this context of pathology, increasing number of studies have detected immune-activating mtDNA and mtRNA that induce an aberrant production of pro-inflammatory cytokines and interferon effectors. Thus, this review provides new insights on mitochondria-driven inflammation as a potential therapeutic target for neurodegenerative and primary mitochondrial diseases.
Collapse
|
39
|
Immunometabolism Modulation in Therapy. Biomedicines 2021; 9:biomedicines9070798. [PMID: 34356862 PMCID: PMC8301471 DOI: 10.3390/biomedicines9070798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
The study of cancer biology should be based around a comprehensive vision of the entire tumor ecosystem, considering the functional, bioenergetic and metabolic state of tumor cells and those of their microenvironment, and placing particular importance on immune system cells. Enhanced understanding of the molecular bases that give rise to alterations of pathways related to tumor development can open up new therapeutic intervention opportunities, such as metabolic regulation applied to immunotherapy. This review outlines the role of various oncometabolites and immunometabolites, such as TCA intermediates, in shaping pro/anti-inflammatory activity of immune cells such as MDSCs, T lymphocytes, TAMs and DCs in cancer. We also discuss the extraordinary plasticity of the immune response and its implication in immunotherapy efficacy, and highlight different therapeutic intervention possibilities based on controlling the balanced systems of specific metabolites with antagonistic functions.
Collapse
|
40
|
Shin HJ, Kim S, Park H, Shin M, Kang I, Kang M. Nucleotide-binding domain and leucine-rich-repeat-containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung-like changes. Aging Cell 2021; 20:e13410. [PMID: 34087956 PMCID: PMC8282248 DOI: 10.1111/acel.13410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction has long been implicated to have a causative role in organismal aging. A mitochondrial molecule, nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 (NLRX1), represents the only NLR family member that targets this cellular location, implying that NLRX1 probably establishes a fundamental link between mitochondrial functions and cellular physiology. However, the significance of NLRX1 function in cellular senescence, a key conceptual constituent in aging biology, is yet to be defined. Here, we demonstrate that molecular hallmarks involved in aging biology including NAD+ decline, and activation of mTOR, p53, and p16INK4A are significantly enhanced in NLRX1 deficiency in vitro. Mechanistic studies of replicative cellular senescence in the presence or absence of NLRX1 in vitro reveal that NLRX1‐deficient fibroblasts fail to maintain optimal NAD+/NADH ratio, which instigates the decline of SIRT1 and the activation of mTOR, p16INK4A, and p53, leading to the increase in senescence‐associated beta‐galactosidase (SA‐β‐gal)‐positive cells. Importantly, the enhanced cellular senescence response in NLRX1 deficiency is significantly attenuated by pharmacological inhibition of mTOR signaling in vitro. Finally, our in vivo murine studies reveal that NLRX1 decreases with age in murine lungs and NLRX1 deficiency in vivo accelerates pulmonary functional and structural changes that recapitulate the findings observed in human aging lungs. In conclusion, the current study provides evidence for NLRX1 as a crucial regulator of cellular senescence and in vivo lung aging.
Collapse
Affiliation(s)
- Hyeon Jun Shin
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Sang‐Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Hong‐Jai Park
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Min‐Sun Shin
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| | - Min‐Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine Department of Internal Medicine Yale University School of Medicine New Haven CT USA
| |
Collapse
|
41
|
Moya GE, Rivera PD, Dittenhafer-Reed KE. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int J Mol Sci 2021; 22:7030. [PMID: 34209978 PMCID: PMC8268735 DOI: 10.3390/ijms22137030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
Collapse
Affiliation(s)
| | - Phillip D. Rivera
- Department of Chemistry and Biology, Hope College, Holland, MI 49423, USA;
| | | |
Collapse
|
42
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
43
|
Yasukawa K, Koshiba T. Mitochondrial reactive zones in antiviral innate immunity. Biochim Biophys Acta Gen Subj 2021; 1865:129839. [PMID: 33412226 DOI: 10.1016/j.bbagen.2020.129839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Mitochondria are multi-functioning organelles that participate in a wide range of biologic processes from energy metabolism to cellular suicide. Mitochondria are also involved in the cellular innate immune response against microorganisms or environmental irritants, particularly in mammals. Mitochondrial-mediated innate immunity is achieved by the activation of two discrete signaling pathways, the NLR family pyrin domain-containing 3 inflammasomes and the retinoic acid-inducible gene I-like receptor pathway. In both pathways, a mitochondrial outer membrane adaptor protein, called mitochondrial antiviral signaling MAVS, and mitochondria-derived components play a key role in signal transduction. In this review, we discuss current insights regarding the fundamental phenomena of mitochondrial-related innate immune responses, and review the specific roles of various mitochondrial subcompartments in fine-tuning innate immune signaling events. We propose that specific targeting of mitochondrial functions is a potential therapeutic approach for the management of infectious diseases and autoinflammatory disorders with an excessive immune response.
Collapse
Affiliation(s)
- Kai Yasukawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan.
| |
Collapse
|
44
|
Song L, Gao C, Xue T, Yang N, Fu Q, Zhu Q, Ge X, Li C. Characterization and expression analysis of mitochondrial localization molecule: NOD-like receptor X1 (Nlrx1) in mucosal tissues of turbot (Scophthalmus maximus) following bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103944. [PMID: 33248045 DOI: 10.1016/j.dci.2020.103944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The NOD-like receptor X1 (NLRX1) is a member of highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family (known as NLR), that localizes to the mitochondrial outer membrane and regulate the innate immunity by interacting with mitochondrial antiviral-signaling protein (MAVS). As one of cytoplasmic PRRs, NLRX1 plays key roles for pathogen recognition, autophagy and regulating of subsequent immune signaling pathways. In this study, we identified the nlrx1 in turbot as well as its expression profiles in mucosal surfaces following bacterial infection. In our results, the full-length nlrx1 transcript consists of an open reading frame (ORF) of 4,886 bp encoding the putative peptide of 966 amino acids. The phylogenetic analysis revealed the SmNlrx1 showed the closest relationship to Cynoglossus semilaevis. In addition, the Nlrx1 mRNA expression could be detected in all the examined tissues, with the most abundant expression level in head kidney, and the lowest expression level in liver. Moreover, Nlrx1 showed similar expression patterns following Vibrio anguillarum and Streptococcus iniae infection, that were both significantly up-regulated following challenge, especially post S. iniae challenge. Finally, fluorescence microscopy unveiled that the SmNlrx1 localized to mitochondria in HEK293T by N-terminal mitochondrial targeting sequence. Characterization of Nlrx1 might have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity and will probably contribute to the development of novel intervention strategies for farming turbot.
Collapse
Affiliation(s)
- Lin Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; School of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
45
|
Comparative response of Spodoptera litura challenged per os with Serratia marcescens strains differing in virulence. J Invertebr Pathol 2021; 183:107562. [PMID: 33652013 DOI: 10.1016/j.jip.2021.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/06/2023]
Abstract
Host plays an important role in influencing virulence of a pathogen and efficacy of a biopesticide. The present study was aimed to characterize the possible factors present in Spodoptera litura that influenced pathogenecity of orally ingested S. marcescens strains, differing in their virulence. Fifth instar larvae of S. litura responded differently as challenged by two Serratia marcescens strains, SEN (virulent strain, LC50 7.02 103 cfu/ml) and ICC-4 (non-virulent strain, LC50 1.19 1012 cfu/ml). Considerable increase in activity of lytic enzymes protease and phospholipase was recorded in the gut and hemolymph of larvae fed on diet supplemented with S. marcescens strain ICC-4 as compared to the larvae treated with S. marcescens strain SEN. However, a significant up-regulation of antioxidative enzymes SOD (in foregut and midgut), CAT (in the midgut) and GST (in the foregut and hemolymph) was recorded in larvae fed on diet treated with the virulent S. marcescens strain SEN in comparison to larvae fed on diet treated with the non-virulent S. marcescens strain ICC-4. Activity of defense related enzymes lysozyme and phenoloxidase activity were also higher in the hemolymph of larvae fed with diet treated with S. marcescens strain SEN as compared to hemolymph of S. marcescens strain ICC-4 treated larvae. More number of over-expressed proteins was observed in the gut and hemolymph of S. marcescens strains ICC-4 and SEN treated larvae, respectively. Identification of the selected differentially expressed proteins indicated induction of proteins involved in insect innate immune response (Immunoglobulin I-set domain, Apolipophorin III, leucine rich repeat and Titin) in S. marcescens strain SEN treated larvae. Over-expression of two proteins, actin related protein and mt DNA helicase, were noted in S. marcescens treated larvae with very high levels observed in the non-virulent strain. Up-regulation of homeobox protein was noted only in S. marcescens strain ICC-4 challenged larvae. This study indicated that ingestion of non-virulent S. marcescens strain ICC-4 induced strong immune response in insect gut while there was weak response to the virulent S. marcescens strain SEN which probably resulted in difference in their virulence.
Collapse
|
46
|
Choi I, Son H, Baek JH. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life (Basel) 2021; 11:69. [PMID: 33477822 PMCID: PMC7832849 DOI: 10.3390/life11010069] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression.
Collapse
Affiliation(s)
| | | | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; (I.C.); (H.S.)
| |
Collapse
|
47
|
Abdel-Rahman EA, Zaky EA, Aboulsaoud M, Elhossiny RM, Youssef WY, Mahmoud AM, Ali SS. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in children's platelets but unimproved by hyperbaric oxygen therapy. Free Radic Res 2021; 55:26-40. [PMID: 33402007 DOI: 10.1080/10715762.2020.1856376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitochondrial and immune dysfunctions are often implicated in the aetiology of autism spectrum disorder (ASD). Here, we studied for the first time the relationship between ASD severity measures and mitochondrial respiratory rates in freshly isolated platelets as well as the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in isolated neutrophils. We also verified the impact of hyperbaric oxygen therapy (HBOT) on mitochondrial and immune functions as well as on ASD severity measures. Blood samples were collected from three age-matched male groups (Control (Norm-N), autistic (Aut-N), and autistic + HBOT (Aut-H); N = 10 per group). Using high resolution respirometry, we found that routine basal respiration, complex I- and complex I + II-dependent oxidative phosphorylation rate were significantly impaired in Aut-N platelets. Similarly, deficits in immune response of neutrophils were evidenced through lower rates of oxygen consumption and reactive oxygen species (ROS) production by phagocytic NOX. ASD-related behavioural outcomes were found to moderately correlate with platelets' mitochondrial bioenergetic parameters as well as with NOX-mediated activity in neutrophils. HBOT was not able to improve mitochondrial dysfunctions or to counteract ASD-related behavioral deficits. Although HBOT improved one measure of the immune response; namely, NOX-mediated superoxide burst, this was not associated with significant changes in trends of recurrent infections between groups. Taken together, our data suggest that ASD-associated mitochondria and immune deficits are detectable in platelets and neutrophils. We also found no evidence that HBOT confers any significant improvement of ASD-associated physiological or behavioural phenotypes.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt.,Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Eman A Zaky
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mahmoud Aboulsaoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa Y Youssef
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| |
Collapse
|
48
|
Luckhart S, Riehle MA. Midgut Mitochondrial Function as a Gatekeeper for Malaria Parasite Infection and Development in the Mosquito Host. Front Cell Infect Microbiol 2020; 10:593159. [PMID: 33363053 PMCID: PMC7759495 DOI: 10.3389/fcimb.2020.593159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Across diverse organisms, various physiologies are profoundly regulated by mitochondrial function, which is defined by mitochondrial fusion, biogenesis, oxidative phosphorylation (OXPHOS), and mitophagy. Based on our data and significant published studies from Caenorhabditis elegans, Drosophila melanogaster and mammals, we propose that midgut mitochondria control midgut health and the health of other tissues in vector mosquitoes. Specifically, we argue that trade-offs among resistance to infection, metabolism, lifespan, and reproduction in vector mosquitoes are fundamentally controlled both locally and systemically by midgut mitochondrial function.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Takagi T, Yoshioka Y, Zayasu Y, Satoh N, Shinzato C. Transcriptome Analyses of Immune System Behaviors in Primary Polyp of Coral Acropora digitifera Exposed to the Bacterial Pathogen Vibrio coralliilyticus under Thermal Loading. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:748-759. [PMID: 32696240 DOI: 10.1007/s10126-020-09984-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Elevated sea surface temperature associated with global warming is a serious threat to coral reefs. Elevated temperatures directly or indirectly alter the distribution of coral-pathogen interactions and thereby exacerbate infectious coral diseases. The pathogenic bacterium Vibrio coralliilyticus is well-known as a causative agent of infectious coral disease. Rising sea surface temperature promotes the infection of corals by this bacterium, which causes several coral pathologies, such as bacterial bleaching, tissue lysis, and white syndrome. However, the effects of thermal stress on coral immune responses to the pathogen are poorly understood. To delineate the effects of thermal stress on coral immunity, we performed transcriptome analysis of aposymbiotic primary polyps of the reef-building coral Acropora digitifera exposed to V. coralliilyticus under thermal stress conditions. V. coralliilyticus infection of coral that was under thermal stress had negative effects on various molecular processes, including suppression of gene expression related to the innate immune response. In response to the pathogen, the coral mounted various responses including changes in protein metabolism, exosome release delivering signal molecules, extracellular matrix remodeling, and mitochondrial metabolism changes. Based on these results, we provide new insights into innate immunity of A. digitifera against pathogen infection under thermal stress conditions.
Collapse
Affiliation(s)
- Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| |
Collapse
|
50
|
Glon D, Lussignol M, Esclatine A. [Mitophagy: a strategy of the Epstein-Barr virus to evade innate immunity]. Med Sci (Paris) 2020; 36:990-993. [PMID: 33151861 DOI: 10.1051/medsci/2020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institut de biologie intégrative de la cellule (I2BC), 5 rue Jean-Baptiste Clément, 91198 Gif-sur-Yvette, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institut de biologie intégrative de la cellule (I2BC), 5 rue Jean-Baptiste Clément, 91198 Gif-sur-Yvette, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institut de biologie intégrative de la cellule (I2BC), 5 rue Jean-Baptiste Clément, 91198 Gif-sur-Yvette, France
| |
Collapse
|